JP2004022466A - High-capacity negative electrode - Google Patents

High-capacity negative electrode Download PDF

Info

Publication number
JP2004022466A
JP2004022466A JP2002179111A JP2002179111A JP2004022466A JP 2004022466 A JP2004022466 A JP 2004022466A JP 2002179111 A JP2002179111 A JP 2002179111A JP 2002179111 A JP2002179111 A JP 2002179111A JP 2004022466 A JP2004022466 A JP 2004022466A
Authority
JP
Japan
Prior art keywords
negative electrode
resin film
weight
current collector
conductive treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002179111A
Other languages
Japanese (ja)
Other versions
JP4039893B2 (en
Inventor
Takaaki Okamura
岡村 高明
Kohei Izumi
泉 孝平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Kohan Co Ltd
Original Assignee
Toyo Kohan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kohan Co Ltd filed Critical Toyo Kohan Co Ltd
Priority to JP2002179111A priority Critical patent/JP4039893B2/en
Publication of JP2004022466A publication Critical patent/JP2004022466A/en
Application granted granted Critical
Publication of JP4039893B2 publication Critical patent/JP4039893B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-capacity negative electrode using lithium as a negative electrode active material, utilizing the characteristic of lithium of high capacity, and extremely useful for reducing the weight and size of a battery. <P>SOLUTION: This negative electrode has a structure composed by stacking lithium on both surfaces of a composite collector comprising a resin film, conductive treatment layers formed on both the surfaces of the resin layer, and a metal-plated layer formed on the conductive treatment layers by electrolytic plating. The composite collector has a surface electric resistance of 40 mΩ/cm or below and a tensile strength of 0.8 kg/cm or above, and is characterized by satisfying the condition of the following inequality: Y1+Y2+Y3≤0.8×(X1+X2+X3)×Y3/X3, wherein X1 is the thickness (μm) of the resin film; X2 is the the total thickness (μm) of the conductive treatment layer; X3 is the the total thickness (μm) of the metal-plated layer; Y1 is the weight (mg/cm<SP>2</SP>) of the resin film; Y2 is the weight (mg/cm<SP>2</SP>) of the conductive treatment layer; and Y3 is the weight (mg/cm<SP>2</SP>) of the metal-plated layer. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する分野】
本発明は、主にリチウム系電池に用いる負極に関する。
【0002】
【従来の技術】
近年、携帯用無線電話、携帯用パソコン、携帯用ビデオカメラ等の電子機器の携帯化に伴い、各種電子機器が小型化され、リチウム系やニッケル水素系などの内蔵二次電池を高容量化し、軽く薄くすることが強く求められるようになってきている。
例えば、リチウム二次電池は、カーボン系負極活物質を集電体表面に保持してなる負極と、リチウムコバルト複合酸化物の如きリチウムイオンと可逆的に電気化学反応をする正極活物質を集電体表面に保持してなる正極と、電解液とを有しており、負極と正極との間には、両極の短絡を防止するセパレータが配置されている。
このようなリチウム二次電池においては、電池総重量を占める負極(特に集電体)の割合が大きいため、その軽量化にあたっては、特に負極の軽量化が必要となる。
【0003】
【発明が解決しようとする課題】
集電体を軽量化する試みとしては、例えば特開平5−31494号公報に、樹脂フィルム上に、金属蒸着やスパッタリングにより極薄の導電層を積層する方法が提案されている。しかしながら、この方法では、樹脂フィルム上に積層される金属導体層の厚みの上限値が、経済性や樹脂の耐熱性の観点から2000Å程度が限度である。即ち、導電層を極薄とせざるを得ず、集電能力が明らかに劣るばかりではなく、経時による電池内での腐食により、極薄の導電層が溶解消失してしまい、集電能力が一段と低下するなど、とても実用に供せられるものではなかった。
【0004】
また、負極活物質としては、金属リチウムが注目されている。金属リチウムは高容量活物質であり、これを用いた電池は、単位重量及び単位体積当りの電池容量が大きくなり、電池の軽量化の点で大きく期待されている。
しかしながら、金属Liは高容量活物質である反面、機械的強度が弱いという欠点を有している。このため、単体で負極に使用する場合には、機械的強度を確保するために必要以上の厚み(例えば150μm以上)とすることが必要であり、高容量であるという金属Liの特徴が十分に発揮されず、単位重量及び体積当たりの電池容量を増大させるには至っていない。
また、集電体としてCu箔を用い、このCu箔上に金属リチウムを積層して負極とすることも最近行われてきたが、Cu箔が高比重であるため、このような方法においても、単位重量当たりの容量が大きいという金属リチウムの特性が損なわれていた。
【0005】
従って、本発明の目的は、負極活物質として金属リチウムが使用され、高容量であるという金属リチウムの特性が十分に活かされ、電池の軽量化、コンパクト化に極めて有用な高容量負極を提供することにある。
【0006】
【課題を解決するための手段】
本発明によれば、樹脂フィルムと、該樹脂フィルムの両面に形成された導電処理層と、電解めっき処理により該導電処理層上に形成された金属めっき層とからなる複合集電体の両面に金属リチウムが積層された構造を有しており、前記複合集電体は、40mΩ/cm以下の表面電気抵抗と0.8kg/cm以上の引っ張り強度とを有し、且つ、下記式の条件を満足していることを特徴とする高容量負極;
Y1+Y2+Y3≦0.8×(X1+X2+X3)×Y3/X3
式中、X1:樹脂フィルムの厚み(μm)
X2:導電処理層のトータル厚み(μm)
X3:金属めっき層のトータル厚み(μm)
Y1:樹脂フィルムの重量(mg/cm
Y2:導電処理層の重量(mg/cm
Y3:金属めっき層の重量(mg/cm
が提供される。
【0007】
即ち、本発明においては、高比重のCu箔の代わりに、芯体として低比重であるが、機械的強度の強い樹脂フィルムを使用し、該樹脂フィルムの両面に、導電処理層を介して金属めっき層が積層されたものを複合集電体とすることにより、集電体の機械的強度を確保しつつ軽量化を行い、該複合集電体の両面に容量的に必要な金属リチウムを積層することによって、金属リチウムの高容量性を有効に実現することを可能としたものである。
本発明においては、
1.金属リチウムは、厚みが片面当たり2〜50μmであること、
2.複合集電体の表裏通電抵抗が100mΩ/cm以下であること、
3.前記金属めっき層がCuを主体にしたものであること、
4.樹脂フィルムと導電処理層と金属めっき層との合計厚み(X1+X2+X3)が9μm以下であること、
が好適である。
【0008】
【発明の実施の形態】
以下、本発明の高容量負極を、添付図面に示す具体例に基づいて詳細に説明する。
図1は、本発明の高容量負極の概略積層構造を示す断面図である。
図2は、図1の高容量負極に使用されている複合集電体の層構成を示す断面図である。
図3は、図1の高容量負極に使用されている複合集電体の実施態様を示す断面図である。
図4は、図1の高容量負極に使用されている複合集電体の他の実施態様を示す断面図である。
【0009】
図1において、全体として1で示す本発明の高容量負極1は、複合集電体10と、その両面に積層された金属リチウム箔20とから構成されている。
【0010】
かかる高容量負極1において、複合集電体10は、図2に示すように、芯体の樹脂フィルム11と、該フィルムの両面に形成された導電処理層12と、該導電処理層12上に形成された金属めっき層13とからなっている。即ち、前記金属リチウム箔20は、金属めっき層13上に積層されている。
【0011】
樹脂フィルム11としては、電池の種類や要求される性能等によって種々の材質のものを用いることができ、特に限定されるものではないが、一般的には、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリプロピレン(PP)、ポリエチレン(PE)、アクリル酸やマレイン酸等の不飽和カルボン酸などで変性した酸変性オレフィン樹脂等が使用される。
本発明において、樹脂フィルム11の厚みは、後述する条件式を満足するような厚みに設定されるが、一般的には、かかる条件式を満足する限りにおいて、負極に要求される特性、例えば機械的強度、軽量性、薄膜性等に応じて、2μm〜20μmの範囲に設定されるのがよい。
更に、樹脂フィルム11が延伸されているか、未延伸であるか、或いは樹脂フィルム11の結晶化度等は、特に限定されるものではないが、機械的強度が特に要求される場合には、延伸フィルムを用いるのがよく、以下に述べる導電処理層12との密着性が要求される場合には、未延伸で低結晶化度のフィルムを用いることが好適である。
【0012】
導電処理層12は、樹脂フィルム11上に後述する金属めっき層13を形成させるために設けられるものであり、一般的には、Cu,Ni,Ag等を主体とする金属や、導電剤であるカーボン粉末などから形成される。
例えば、蒸着やスパッタリング等の手段により、上記金属の極薄膜を樹脂フィルム11上に形成することにより、導電処理層12を設けることができる。また、上記金属の粉末やカーボン粉末などの少なくとも1種を含有する導電剤を、ビヒクル(例えばエポキシフェノール樹脂)と混合して塗布液を調製し、該塗布液を樹脂フィルム11の表面に薄くコーティングして乾燥することにより形成された導電性塗膜を導電処理層12とすることもできる。
さらには、上述した金属の極薄膜の上に導電性塗膜を形成し、このような複合層を導電処理層12とすることもできる。このような複合層を導電処理層12とする場合には、上層の導電性塗膜がバリヤーとなるため、めっき液に侵されやすいAl等の金属を用いて極薄膜を形成することも可能である。
【0013】
また、導電処理層12は、該層の電気抵抗が1.3Ω/cm以下となるような厚みとすべきである。電気抵抗が1.3Ω/cmよりも高くなると、この上に、以下に述べる金属めっき層13を形成することが困難となるからである。
【0014】
上記の導電処理層12上には、電解めっき処理により、金属めっき層13が形成される。
金属めっき層の構成する金属としては、Cu,Ni等を挙げることができるが、通常は、Cuであることが好適である。
【0015】
上記の金属めっき層の厚みは、めっき後の複合集電体10の表面電気抵抗が40mΩ以下となるように設定される。
なお、この表面電気抵抗とは、めっき層13が形成されている複合集電体10を1cm幅の大きさに切り出し、このサンプルの測定面上に、1cmの間隔をおいて4mmの面積の+端子と−端子を充分に接触させて電気抵抗を測定した値である。この表面電気抵抗値を測定する際には、非測定面の導電処理層や金属めっき層は除去して、非測定面の影響をなくすことが必要である。
【0016】
本発明において、上述した樹脂フィルム11、導電処理層12及び金属めっき層13は、下記式を満足するように組み合わされて複合集電体10を形成していることが重要である。
Y1+Y2+Y3≦0.8×(X1+X2+X3)×Y3/X3
式中、X1:樹脂フィルムの厚み(μm)
X2:導電処理層のトータル厚み(μm)
X3:金属めっき層のトータル厚み(μm)
Y1:樹脂フィルムの重量(mg/cm
Y2:導電処理層の重量(mg/cm
Y3:金属めっき層の重量(mg/cm
上記条件式は、複合集電体10の重量が、めっき層の金属成分だけからなる単なる金属集電体の同一厚みの重量と比較して、8割以下に軽量化されていることを意味するものであり、これにより、金属リチウム箔20を備えた高容量負極1の軽量化を達成することができる。
【0017】
また、高容量負極1に軽さだけでなく薄さが要求される場合には、樹脂フィルム11と導電処理層12と金属めっき層13との合計厚み(X1+X2+X3)を9μm以下とすることが好ましい。
【0018】
また、本発明においては、上記のようにして形成された複合集電体の引っ張り強度が0.8kg/cm以上であることが必要である。引っ張り強度が0.8kg/cm未満となると、金属リチウム箔20の強度が低いことも相俟って、電池を組み立てる際のテンションに高容量負極1或いは複合集電体10が耐えられなくなり、破断や変形等を生じてしまう。
なお、この引っ張り強度は、1cm幅で10cm長に複合集電体10をカットし、20mm/分の速度で引っ張ったときの降伏点強度を意味する。
【0019】
一般に、金属単体では、9μm以下の厚みの箔を安定的に製造することが困難であり、また、十分な引っ張り強度を得ることも困難である。本発明では、樹脂フィルム11と導電処理層12と金属めっき層13とを前述した条件式を満足するように組み合わせることにより、軽量化のみならず薄膜化も可能となり、有用性は極めて大きい。
【0020】
また、本発明においては、複合集電体10の表裏通電抵抗を100mΩ以下にすることが好適である。通電抵抗が100mΩを越えると、リード線を片面しか接合しない場合、非接合面の集電性が顕著に劣ってきて、電池性能を低下させる要因になるからである。
この通電抵抗とは4mmの面積の+端子を、前述した複合集電体10の表面電気抵抗測定用サンプルの片面に十分に接触させ、且つその裏面に(+端子の反対側に位置する部分)に、4mmの面積の−端子を充分接触させて電気抵抗を測定した値である。
【0021】
本発明において、上述した複合集電体10の両面、即ち、金属めっき層13上に形成される金属リチウム箔20は、例えば、金属リチウム箔を用い、加圧成型することにより、複合集電体10上に積層される。
かかる金属リチウム箔20の厚みは、一般的には、必要な電池容量を得るために、2〜50μmの厚みが好ましい。該厚みが2μm未満では、高容量負極の特長が見出せにくくなり、50μmを超えると、金属リチウム単体に対する優位性が薄れてくる。本発明において、負極活物質として使用される金属リチウムは高容量であるため、この厚みが薄く軽くても、高容量の電池を得るのに有利である。また、強度が低いという金属リチウムの欠点は、上述した複合集電体10の使用により十分に補われ、金属リチウムの高容量性能を十分に発揮させることが可能となる。
【0022】
本発明において、図1或いは図2に示されている複合集電体10は、フラットな形状を有しているが、このような形状に限定されるものではなく、例えば図3に示すように、波状のうねりを有する形状とすることもできる。また、表面に凹凸が形成された形状とすることもできる。
このような形状にすることにより、負極面積の拡大化等により、電池性能の向上に寄与することができる。
また、集電体表面と接触する金属リチウムの投錨効果も図れ、金属リチウムとの密着性を向上させることができ、電池内の化学反応の促進に寄与することができる。
【0023】
上記のような波状化や凹凸の形成は、例えば、樹脂フィルム11の表面に導電処理層12を形成させた後、エンボス模様を形成した熱ロールを上下に圧着してエンボス加工を行い、次いで導電処理層12の上に金属めっき層13を形成することにより容易に行うことができる。
従来の金属集電体では、熱エンボス加工が困難であることから、機械的塑性変形加工により実施することになるが、金属に割れが生じたり、形状が不均一になったり、あるいはエンボス加工しても活物質形成工程等でエンボスが消失する等、機械的塑性変形加工は容易ではない。この点からも、樹脂フィルム11を芯体とする複合集電体10を用いた本発明の工業的有用性は大である。
【0024】
更に本発明においては、図4に示すように、樹脂フィルム11に多数の貫通孔15を形成することもできる。このような貫通孔15を形成しておくことによって、表裏通電性が確保できる様になるばかりか、その効果は孔径にもよるが、より一層の軽量化を図ることができる。
【0025】
樹脂フィルム11への貫通孔15の形成は、例えば、加熱した多数の針を設けた型を押し当てるなどの手段により行うことができる。また、放電加工や、小径のパンチを用いての打ち抜き加工等によっても容易に貫通孔15を形成することができ、その手段は特に制限されない。
【0026】
また、上記のような貫通孔15を形成することにより、複合集電体10の表裏に形成されている金属めっき層13同士の通電性が高められ、例えば、図4に示されているように、複合集電体10の一方の面にのみリード線17を接合して所定の端子(図示せず)との電気的に接続すればよいという効果が発現する。
即ち、Cu箔等の金属箔を集電体として用いた場合には、その両面が集電面となり、一方の面にのみリード線を設ければよいが、樹脂フィルムを芯体として用いた複合集電体では、両面にリード線を接合する必要があり、製造工程が煩雑になる等の問題がある。しかるに、上記のように樹脂フィルム11に貫通孔15を設けることにより、複合集電体10の両面に形成されている金属めっき層13同士の通電性が高められるため、このような問題を有効に回避することが可能となる。
【0027】
貫通孔15を形成することにより、金属めっき層13同士の通電性が高められる理由は、次のようなものと考えられる。
即ち、貫通孔15が形成されている樹脂フィルム11に、前述した方法により導電処理層12及び金属めっき層13を形成すると、金属めっき層13が貫通孔15の内部に回りこみ、この結果、両面の金属めっき層13同士の通電性が高められるものと考えられる。実際、貫通孔15の内部を顕微鏡観察すると、金属めっき層13の回りこみを確認することができる。
勿論、本発明においては、上記の貫通孔15の内面にも導電処理層12を形成することにより、金属めっき層13同士の通電性を一層高めることができる。
【0028】
上述した複合集電体10とその両面に設けられた金属リチウム箔20とからなる本発明の負極は、一次電池及び二次電池の区別はないが、特に二次電池としての用途に極めて好適であり、この負極を用いることにより、金属リチウムの特性を活かし、電池の軽量化や高容量化を図ることができる。
例えばリチウム二次電池では、正極としては、これに限定されるものではないが、Al箔等の集電体に、LiCoOなどのリチウムコバルト系複合酸化物やポリアニリンなどの導電性高分子からなる正極活物質の層を設けたものが使用され、正極と負極との間の電解質としては、非水系溶媒に電解質塩を溶解させたものが使用される。非水系溶媒には、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、ジプロピルカーボネート等のカーボネート、γ−ブチロラクトン、プロピオラクトン等の環状エステル、ジエトキシエタン、ジメトキシエタン等の鎖状エーテル、ジメチルアセトアミド等のアミド、アセトニトリル、プロピオニトリル等のニトリル、及びこれらの混合溶媒などがある。また、電解質塩としては、LiPF,LiClO,CFSOLi,CSOLi,(CFSONLi,(CFSOCLi,LiBF,LiAsFなどのリチウム塩がある。さらに、セパレータとしては、ポリエチレンやポリプロピレンなどのポリオレフィン系多孔質膜が使用される。電解質が固体の場合は、セパレーターは必ずしも必要でない。
【0029】
【実施例】
本発明を次の例で説明する。
【0030】
(実施例1)
樹脂フィルムとして、4μm厚み(X1=4)のPETフィルムを用い、その両面に乾燥厚みで1μmずつNi粉を導電剤として配合したNi系の塗料を塗布し乾燥した(X2=2)。
さらに、その両面に、厚み:2μmのCuをめっきし(X3=4)、複合集電体を作成した。
この複合集電体において、PETフィルムの重量は0.564mg/cm(Y1=0.564)、Ni系塗料を塗装した導電処理層の重量は0.644mg/cm(Y2=0.644)、Cuめっきの重量は3.572mg/cm(Y3=3.572)であった。
上記で作成された複合集電体の両面に、活物質として、各々同厚の金属リチウム(厚み50μm)を積層し負極とした。
【0031】
(実施例2)
樹脂フィルムとして、4μm厚み(X1=4)のPETフィルムを用い、その両面に乾燥厚みで1μmずつ実施例1と同様のNi系の塗料を塗布し乾燥した(X2=2)。
さらに、その両面に、厚み:0.3μmのCuをめっきし(X3=0.6)、複合集電体を作成した。
この複合集電体において、PETフィルムの重量は0.564mg/cm(Y1=0.564)、Ni系塗料を塗装した導電処理層の重量は0.644mg/cm(Y2=0.644)、Cuめっきの重量は0.536mg/cm(Y3=0.536)であった。
上記の複合集電体を用いた以外は、実施例1と全く同様にして金属リチウム箔を積層して負極とした。
【0032】
(実施例3)
樹脂フィルムとして、14μm厚み(X1=14)のPETフィルムを用い、その両面に乾燥厚みで1μmずつ実施例1と同様のNi系の塗料を塗布し乾燥した(X2=2)。
さらに、その両面に、厚み:4μmのCuをめっきし(X3=8)、複合集電体を作成した。
この複合集電体において、PETフィルムの重量は1.974mg/cm(Y1=1.974)、Ni系塗料を塗装した導電処理層の重量は0.644mg/cm(Y2=0.644)、Cuめっきの重量は7.144mg/cm(Y3=7.144)であった。
上記の複合集電体を用いた以外は、実施例1と全く同様にして金属リチウム箔を積層して負極とした。
【0033】
(実施例4)
樹脂フィルムとして、4μm厚み(X1=4)のPETフィルムを用い、その両面に500ÅずつCuの蒸着層を形成した(X2=0.1)。
さらに、その両面に、厚み:2μmのCuをめっきし(X3=4)、複合集電体を作成した。
この複合集電体において、PETフィルムの重量は0.564mg/cm(Y1=0.564)、Cuを蒸着した導電処理層の重量は0.047mg/cm(Y2=0.047)、Cuめっきの重量は3.572mg/cm(Y3=3.572)であった。
上記の複合集電体を用いた以外は、実施例1と全く同様にして金属リチウム箔を積層して負極とした。
【0034】
(実施例5)
積層した金属リチウムの厚みが2μmである他は実施例4と同様にして負極とした。
【0035】
(実施例6)
樹脂フィルムとして、14μm厚み(X1=14)のマレイン酸変性オレフィンフィルムを用いた他は、実施例4と同様にして負極とした。
【0036】
(参考例1)
15μmのCu箔に、グラファイト:PVDF=100:11(重量比)の組成からなる活物質(20mg/cm)を積層した以外は、実施例1と全く同様にして負極を得た。
【0037】
上記の実施例1〜6及び参考例1で使用された複合集電体について、その表面電気抵抗は何れも40mΩ/cm以下であり、また、その引っ張り強度は何れも0.8kg/cm以上であった。更に、これら複合集電体でのX1〜X3及びY1〜Y3のパラメータの値を表1に示す。
【0038】
【表1】

Figure 2004022466
【0039】
上記の実施例1〜6及び参考例1の10cmの負極の両面に以下の電解質を介して、15cmの正極を組み合せてLi電池とした。
正極:
Al箔(20μm)の片面に、LiCoO:アセチレンブラック:PVDF=100:8:12(重量比)の組成からなる活物質をいずれの負極活物質に対しても、充分な量である500mg/cm積層したもの。
電解質:
プロピレンカーボネートとエチレンカーボネートを等重量比で配合した液にLiBFを1モル/L添加した溶液とポリアクリロニトリルを9:1にブレンド後、160℃で1分間でゲル化したゲル電解質。
【0040】
上記のLi電池について、以下の方法により、電池容量及び集電性能指数を算出した。
実施例1〜6及び参考例1の負極を用いて形成されたLi電池を、60℃の雰囲気中に1ヶ月放置後、充電終了電圧=4.2V、放電終了電圧=2V、充放電速度=0.2Cの条件下で定電流充放電を行い、放電容量を測定し、下記式により、単位重量の負極の放電容量寄与率(ここでは単位重量負極容量と呼ぶ)を求め、負極性能を評価した。
単位重量負極容量:放電容量(mAh)/用いた負極重量(g)
【0041】
【表2】
Figure 2004022466
【0042】
【発明の効果】
本発明の負極は、金属リチウムの高容量を活かし、従来の負極に比して軽量化、薄肉化が図れ、ひいては二次電池の高容量化を実現することができる。
【図面の簡単な説明】
【図1】本発明の高容量負極の概略積層構造を示す断面図。
【図2】図1の高容量負極に使用されている複合集電体の層構成を示す断面図。
【図3】図1の高容量負極に使用されている複合集電体の実施態様を示す断面図。
【図4】図1の高容量負極に使用されている複合集電体の他の実施態様を示す断面図。
【符号の説明】
1…高容量負極
10…複合集電体
11…樹脂フィルム
12…導電処理層
13…金属メッキ層
15…貫通孔
17…リード線
20…金属リチウム箔[0001]
[Field of the Invention]
The present invention relates to a negative electrode mainly used for a lithium-based battery.
[0002]
[Prior art]
In recent years, as electronic devices such as portable wireless telephones, portable personal computers, and portable video cameras have become portable, various electronic devices have been miniaturized, and built-in secondary batteries such as lithium-based and nickel-hydrogen-based batteries have been increased in capacity. There is a strong demand for light and thinning.
For example, a lithium secondary battery collects a negative electrode formed by holding a carbon-based negative electrode active material on the surface of a current collector and a positive electrode active material that reversibly electrochemically reacts with lithium ions such as lithium cobalt composite oxide. It has a positive electrode held on the body surface and an electrolytic solution, and a separator for preventing a short circuit between both electrodes is disposed between the negative electrode and the positive electrode.
In such a lithium secondary battery, since the proportion of the negative electrode (particularly the current collector) occupying the total weight of the battery is large, it is necessary to reduce the weight of the negative electrode particularly in reducing the weight.
[0003]
[Problems to be solved by the invention]
As an attempt to reduce the weight of the current collector, for example, JP-A-5-31494 proposes a method of laminating an extremely thin conductive layer on a resin film by metal vapor deposition or sputtering. However, in this method, the upper limit of the thickness of the metal conductor layer laminated on the resin film is about 2000 mm from the viewpoint of economy and heat resistance of the resin. In other words, the conductive layer has to be extremely thin, and the current collection capability is not only inferior, but also due to corrosion in the battery over time, the ultrathin conductive layer dissolves and disappears, further increasing the current collection capability. It was not very useful for practical use.
[0004]
Further, metallic lithium has attracted attention as a negative electrode active material. Metallic lithium is a high-capacity active material, and a battery using the lithium has a large battery capacity per unit weight and unit volume, and is highly expected in terms of weight reduction of the battery.
However, metal Li is a high-capacity active material, but has a drawback of low mechanical strength. For this reason, when it is used alone for the negative electrode, it is necessary to make it thicker than necessary (for example, 150 μm or more) in order to ensure mechanical strength, and the characteristic of metal Li that it has a high capacity is sufficient. The battery capacity per unit weight and volume has not been increased.
Moreover, although Cu foil was used as a current collector and metal lithium was laminated on this Cu foil to make a negative electrode recently, since Cu foil has a high specific gravity, even in such a method, The characteristic of metallic lithium that the capacity per unit weight is large was impaired.
[0005]
Accordingly, an object of the present invention is to provide a high-capacity negative electrode that uses metallic lithium as a negative electrode active material and fully utilizes the high-capacity characteristic of metallic lithium, and is extremely useful for reducing the weight and size of batteries. There is.
[0006]
[Means for Solving the Problems]
According to the present invention, on both surfaces of a composite current collector comprising a resin film, a conductive treatment layer formed on both surfaces of the resin film, and a metal plating layer formed on the conductive treatment layer by electrolytic plating treatment. The composite current collector has a structure in which metallic lithium is laminated, has a surface electrical resistance of 40 mΩ / cm or less and a tensile strength of 0.8 kg / cm or more, and satisfies the following formula: High capacity negative electrode characterized by satisfaction;
Y1 + Y2 + Y3 ≦ 0.8 × (X1 + X2 + X3) × Y3 / X3
In the formula, X1: thickness of resin film (μm)
X2: Total thickness of the conductive treatment layer (μm)
X3: Total thickness of metal plating layer (μm)
Y1: Weight of resin film (mg / cm 2 )
Y2: Weight of conductive treatment layer (mg / cm 2 )
Y3: Weight of metal plating layer (mg / cm 2 )
Is provided.
[0007]
That is, in the present invention, instead of a high specific gravity Cu foil, a resin film having a low specific gravity but a strong mechanical strength is used as a core, and a metal film is provided on both sides of the resin film via a conductive treatment layer. By using a composite current collector with a laminated plating layer, the weight of the current collector is reduced while securing the mechanical strength, and capacitive metal lithium is laminated on both sides of the composite current collector. By doing so, it is possible to effectively realize the high capacity of metallic lithium.
In the present invention,
1. The metallic lithium has a thickness of 2 to 50 μm per side,
2. The current carrying resistance of the composite current collector is 100 mΩ / cm or less,
3. The metal plating layer is mainly composed of Cu;
4). The total thickness (X1 + X2 + X3) of the resin film, the conductive treatment layer, and the metal plating layer is 9 μm or less,
Is preferred.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the high capacity | capacitance negative electrode of this invention is demonstrated in detail based on the specific example shown to an accompanying drawing.
FIG. 1 is a cross-sectional view showing a schematic laminated structure of a high capacity negative electrode of the present invention.
FIG. 2 is a cross-sectional view showing the layer structure of the composite current collector used in the high capacity negative electrode of FIG.
FIG. 3 is a cross-sectional view showing an embodiment of the composite current collector used in the high capacity negative electrode of FIG.
4 is a cross-sectional view showing another embodiment of the composite current collector used in the high-capacity negative electrode of FIG.
[0009]
In FIG. 1, a high-capacity negative electrode 1 of the present invention indicated by 1 as a whole is composed of a composite current collector 10 and metal lithium foils 20 laminated on both surfaces thereof.
[0010]
In the high-capacity negative electrode 1, the composite current collector 10 includes a core resin film 11, conductive treatment layers 12 formed on both surfaces of the film, and the conductive treatment layer 12, as shown in FIG. It consists of the formed metal plating layer 13. That is, the metal lithium foil 20 is laminated on the metal plating layer 13.
[0011]
The resin film 11 can be made of various materials depending on the type of battery and required performance, and is not particularly limited. Generally, polyethylene terephthalate (PET), polyethylene naphthalate is used. (PEN), polypropylene (PP), polyethylene (PE), an acid-modified olefin resin modified with an unsaturated carboxylic acid such as acrylic acid or maleic acid, or the like is used.
In the present invention, the thickness of the resin film 11 is set to a thickness that satisfies a conditional expression described later. Generally, as long as the conditional expression is satisfied, characteristics required for the negative electrode, for example, mechanical Depending on the mechanical strength, lightness, thin film properties, etc., it is preferable to set the range of 2 μm to 20 μm.
Furthermore, the resin film 11 is stretched or unstretched, or the crystallinity of the resin film 11 is not particularly limited. However, when mechanical strength is particularly required, the resin film 11 is stretched. It is preferable to use a film. When adhesion to the conductive treatment layer 12 described below is required, it is preferable to use an unstretched and low crystallinity film.
[0012]
The conductive treatment layer 12 is provided to form a metal plating layer 13 to be described later on the resin film 11, and is generally a metal mainly composed of Cu, Ni, Ag, or the like, or a conductive agent. It is formed from carbon powder or the like.
For example, the conductive treatment layer 12 can be provided by forming the ultrathin metal film on the resin film 11 by means such as vapor deposition or sputtering. Also, a conductive agent containing at least one of the above metal powder and carbon powder is mixed with a vehicle (for example, epoxy phenol resin) to prepare a coating solution, and the coating solution is thinly coated on the surface of the resin film 11. Then, the conductive coating film formed by drying can be used as the conductive treatment layer 12.
Furthermore, a conductive coating film can be formed on the above-mentioned ultra-thin metal film, and such a composite layer can be used as the conductive treatment layer 12. When such a composite layer is used as the conductive treatment layer 12, since the upper conductive coating serves as a barrier, it is possible to form an ultrathin film using a metal such as Al which is easily affected by the plating solution. is there.
[0013]
The conductive treatment layer 12 should have a thickness such that the electrical resistance of the layer is 1.3 Ω / cm or less. This is because if the electric resistance is higher than 1.3 Ω / cm, it is difficult to form a metal plating layer 13 described below on the electric resistance.
[0014]
A metal plating layer 13 is formed on the conductive treatment layer 12 by electrolytic plating.
Examples of the metal constituting the metal plating layer include Cu and Ni, but Cu is usually preferable.
[0015]
The thickness of the metal plating layer is set so that the surface electrical resistance of the composite current collector 10 after plating is 40 mΩ or less.
In addition, this surface electrical resistance means that the composite current collector 10 on which the plating layer 13 is formed is cut into a size of 1 cm width, and has an area of 4 mm 2 at intervals of 1 cm on the measurement surface of this sample. It is a value obtained by measuring the electrical resistance by sufficiently bringing the + terminal and the-terminal into contact with each other. When measuring the surface electrical resistance value, it is necessary to remove the conductive treatment layer and the metal plating layer on the non-measurement surface to eliminate the influence of the non-measurement surface.
[0016]
In the present invention, it is important that the resin film 11, the conductive treatment layer 12, and the metal plating layer 13 described above are combined so as to satisfy the following formula to form the composite current collector 10.
Y1 + Y2 + Y3 ≦ 0.8 × (X1 + X2 + X3) × Y3 / X3
In the formula, X1: thickness of resin film (μm)
X2: Total thickness of the conductive treatment layer (μm)
X3: Total thickness of metal plating layer (μm)
Y1: weight of the resin film (mg / cm 2)
Y2: Weight of conductive treatment layer (mg / cm 2 )
Y3: Weight of metal plating layer (mg / cm 2 )
The above conditional expression means that the weight of the composite current collector 10 is reduced to 80% or less compared to the weight of the same thickness of a simple metal current collector made of only the metal component of the plating layer. Thereby, the weight reduction of the high capacity | capacitance negative electrode 1 provided with the metal lithium foil 20 can be achieved.
[0017]
When the high-capacity negative electrode 1 is required to be thin as well as light, the total thickness (X1 + X2 + X3) of the resin film 11, the conductive treatment layer 12, and the metal plating layer 13 is preferably 9 μm or less. .
[0018]
In the present invention, the tensile strength of the composite current collector formed as described above needs to be 0.8 kg / cm or more. When the tensile strength is less than 0.8 kg / cm, in combination with the low strength of the metal lithium foil 20, the high capacity negative electrode 1 or the composite current collector 10 cannot withstand the tension when assembling the battery, and breakage occurs. Or deformation.
This tensile strength means the yield point strength when the composite current collector 10 is cut to a length of 1 cm and a length of 10 cm and pulled at a speed of 20 mm / min.
[0019]
In general, it is difficult for a single metal to stably produce a foil having a thickness of 9 μm or less, and it is also difficult to obtain a sufficient tensile strength. In the present invention, by combining the resin film 11, the conductive treatment layer 12, and the metal plating layer 13 so as to satisfy the conditional expressions described above, not only weight reduction but also thinning is possible, and the utility is extremely great.
[0020]
In the present invention, it is preferable that the front and back energization resistance of the composite current collector 10 is 100 mΩ or less. If the energization resistance exceeds 100 mΩ, when only one side of the lead wire is bonded, the current collecting property of the non-bonded surface is remarkably inferior, which causes a decrease in battery performance.
The energizing resistance is a positive terminal having an area of 4 mm 2 is sufficiently brought into contact with one surface of the above-described sample for measuring the surface electrical resistance of the composite current collector 10 and is disposed on the back surface thereof (the part located on the opposite side of the positive terminal) ), And the electric resistance was measured by sufficiently contacting a negative terminal having an area of 4 mm 2 .
[0021]
In the present invention, the metal lithium foil 20 formed on both surfaces of the above-described composite current collector 10, that is, the metal plating layer 13, is formed by pressure molding using, for example, a metal lithium foil. 10 is laminated.
In general, the thickness of the metal lithium foil 20 is preferably 2 to 50 μm in order to obtain a necessary battery capacity. When the thickness is less than 2 μm, it is difficult to find the features of the high capacity negative electrode, and when it exceeds 50 μm, the superiority to the metallic lithium alone is reduced. In the present invention, metallic lithium used as the negative electrode active material has a high capacity, so even if the thickness is thin and light, it is advantageous to obtain a high capacity battery. Further, the drawback of metallic lithium having low strength is sufficiently compensated by using the composite current collector 10 described above, and the high capacity performance of metallic lithium can be sufficiently exhibited.
[0022]
In the present invention, the composite current collector 10 shown in FIG. 1 or 2 has a flat shape, but is not limited to such a shape. For example, as shown in FIG. Alternatively, the shape may have a wave-like undulation. Moreover, it can also be set as the shape by which the unevenness | corrugation was formed in the surface.
By adopting such a shape, it is possible to contribute to the improvement of battery performance by increasing the negative electrode area or the like.
In addition, the throwing effect of metallic lithium in contact with the current collector surface can be achieved, the adhesion with metallic lithium can be improved, and the chemical reaction in the battery can be promoted.
[0023]
For example, after forming the conductive treatment layer 12 on the surface of the resin film 11, the embossing process is performed by pressing the hot roll formed with the embossed pattern up and down, and then conducting the conductive process. This can be easily performed by forming the metal plating layer 13 on the treatment layer 12.
In conventional metal current collectors, hot embossing is difficult, so mechanical plastic deformation is used, but the metal is cracked, non-uniform in shape, or embossed. However, mechanical plastic deformation processing is not easy, for example, the embossing disappears in the active material forming step. Also from this point, the industrial utility of the present invention using the composite current collector 10 having the resin film 11 as a core is great.
[0024]
Furthermore, in this invention, as shown in FIG. 4, many through-holes 15 can also be formed in the resin film 11. FIG. By forming such a through hole 15, not only can the front and back energization be ensured, but the effect depends on the hole diameter, but a further reduction in weight can be achieved.
[0025]
Formation of the through hole 15 in the resin film 11 can be performed by, for example, pressing a mold provided with a large number of heated needles. Further, the through hole 15 can be easily formed by electric discharge machining, punching using a small diameter punch, or the like, and the means is not particularly limited.
[0026]
Moreover, by forming the through holes 15 as described above, the conductivity between the metal plating layers 13 formed on the front and back of the composite current collector 10 is enhanced, for example, as shown in FIG. The effect that the lead wire 17 is bonded only to one surface of the composite current collector 10 and electrically connected to a predetermined terminal (not shown) is exhibited.
That is, when a metal foil such as Cu foil is used as a current collector, both surfaces thereof become current collecting surfaces, and a lead wire only needs to be provided on one surface, but a composite using a resin film as a core. In the current collector, there is a problem that it is necessary to join lead wires on both sides, and the manufacturing process becomes complicated. However, by providing the through-holes 15 in the resin film 11 as described above, the conductivity between the metal plating layers 13 formed on both surfaces of the composite current collector 10 can be improved, so that this problem is effectively prevented. It can be avoided.
[0027]
The reason why the conductivity between the metal plating layers 13 is enhanced by forming the through holes 15 is considered as follows.
That is, when the conductive treatment layer 12 and the metal plating layer 13 are formed on the resin film 11 in which the through holes 15 are formed by the above-described method, the metal plating layer 13 wraps around the through holes 15, and as a result, both surfaces It is considered that the electrical conductivity between the metal plating layers 13 is improved. Actually, when the inside of the through hole 15 is observed with a microscope, it is possible to confirm the wraparound of the metal plating layer 13.
Of course, in the present invention, the conductive property between the metal plating layers 13 can be further enhanced by forming the conductive treatment layer 12 on the inner surface of the through hole 15.
[0028]
The negative electrode of the present invention comprising the composite current collector 10 described above and the metal lithium foil 20 provided on both surfaces thereof is not particularly distinguished between a primary battery and a secondary battery, but is particularly suitable for use as a secondary battery. By using this negative electrode, the characteristics of metallic lithium can be utilized to reduce the weight and capacity of the battery.
For example, in a lithium secondary battery, the positive electrode is not limited to this, but a current collector such as an Al foil is made of a lithium cobalt-based composite oxide such as LiCoO 2 or a conductive polymer such as polyaniline. What provided the layer of the positive electrode active material is used, and what melt | dissolved electrolyte salt in the nonaqueous solvent is used as an electrolyte between a positive electrode and a negative electrode. Non-aqueous solvents include carbonates such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate and dipropyl carbonate, cyclic esters such as γ-butyrolactone and propiolactone, chain ethers such as diethoxyethane and dimethoxyethane, dimethyl There are amides such as acetamide, nitriles such as acetonitrile and propionitrile, and mixed solvents thereof. As the electrolyte salt, LiPF 6, LiClO 4, CF 3 SO 3 Li, C 4 F 6 SO 3 Li, (CF 3 SO 2) 2 NLi, (CF 3 SO 2) 3 CLi, LiBF 4, LiAsF 6 There are lithium salts. Furthermore, as the separator, a polyolefin-based porous film such as polyethylene or polypropylene is used. When the electrolyte is solid, the separator is not always necessary.
[0029]
【Example】
The invention is illustrated by the following examples.
[0030]
Example 1
As the resin film, a PET film having a thickness of 4 μm (X1 = 4) was used, and a Ni-based paint in which Ni powder was blended by 1 μm in dry thickness as a conductive agent was applied to both surfaces and dried (X2 = 2).
Further, Cu having a thickness of 2 μm was plated on both surfaces (X3 = 4) to prepare a composite current collector.
In this composite current collector, the weight of the PET film is 0.564 mg / cm 2 (Y1 = 0.564), and the weight of the conductive treatment layer coated with the Ni-based paint is 0.644 mg / cm 2 (Y2 = 0.644). ), The weight of the Cu plating was 3.572 mg / cm 2 (Y3 = 3.572).
On both surfaces of the composite current collector prepared above, metallic lithium (thickness 50 μm) each having the same thickness was laminated as an active material to form a negative electrode.
[0031]
(Example 2)
A PET film having a thickness of 4 μm (X1 = 4) was used as the resin film, and a Ni-based paint similar to that of Example 1 was applied to each side by a dry thickness of 1 μm and dried (X2 = 2).
Furthermore, Cu of thickness: 0.3 micrometer was plated on both surfaces (X3 = 0.6), and the composite electrical power collector was created.
In this composite current collector, the weight of the PET film is 0.564 mg / cm 2 (Y1 = 0.564), and the weight of the conductive treatment layer coated with the Ni-based paint is 0.644 mg / cm 2 (Y2 = 0.644). ), the weight of Cu plating was 0.536mg / cm 2 (Y3 = 0.536 ).
Except for using the above composite current collector, a metal lithium foil was laminated in the same manner as in Example 1 to obtain a negative electrode.
[0032]
(Example 3)
As a resin film, a PET film having a thickness of 14 μm (X1 = 14) was used, and a Ni-based paint similar to that in Example 1 was applied to each of the both surfaces by a dry thickness of 1 μm and dried (X2 = 2).
Furthermore, Cu of thickness: 4 μm was plated on both surfaces (X3 = 8) to prepare a composite current collector.
In this composite current collector, the weight of the PET film was 1.974 mg / cm 2 (Y1 = 1.974), and the weight of the conductive treatment layer coated with the Ni-based paint was 0.644 mg / cm 2 (Y2 = 0.644). ), The weight of the Cu plating was 7.144 mg / cm 2 (Y3 = 7.144).
Except for using the above composite current collector, a metal lithium foil was laminated in the same manner as in Example 1 to obtain a negative electrode.
[0033]
(Example 4)
A 4 μm thick (X1 = 4) PET film was used as the resin film, and Cu vapor-deposited layers were formed on both sides of the PET film (X2 = 0.1).
Further, Cu having a thickness of 2 μm was plated on both surfaces (X3 = 4) to prepare a composite current collector.
In this composite current collector, the weight of the PET film is 0.564 mg / cm 2 (Y1 = 0.564), the weight of the conductive treatment layer deposited with Cu is 0.047 mg / cm 2 (Y2 = 0.047), The weight of Cu plating was 3.572 mg / cm 2 (Y3 = 3.572).
Except for using the above composite current collector, a metal lithium foil was laminated in the same manner as in Example 1 to obtain a negative electrode.
[0034]
(Example 5)
A negative electrode was prepared in the same manner as in Example 4 except that the thickness of the laminated metal lithium was 2 μm.
[0035]
(Example 6)
A negative electrode was prepared in the same manner as in Example 4 except that a maleic acid-modified olefin film having a thickness of 14 μm (X1 = 14) was used as the resin film.
[0036]
(Reference Example 1)
A negative electrode was obtained in exactly the same manner as in Example 1, except that an active material (20 mg / cm 2 ) having a composition of graphite: PVDF = 100: 11 (weight ratio) was laminated on a 15 μm Cu foil.
[0037]
Regarding the composite current collectors used in Examples 1 to 6 and Reference Example 1, the surface electrical resistance is 40 mΩ / cm or less, and the tensile strength is 0.8 kg / cm or more. there were. Further, Table 1 shows values of parameters of X1 to X3 and Y1 to Y3 in these composite current collectors.
[0038]
[Table 1]
Figure 2004022466
[0039]
Lithium batteries were obtained by combining 15 cm 2 positive electrodes on both sides of the 10 cm 2 negative electrodes of Examples 1 to 6 and Reference Example 1 via the following electrolyte.
Positive electrode:
An active material having a composition of LiCoO 2 : acetylene black: PVDF = 100: 8: 12 (weight ratio) is provided on one side of an Al foil (20 μm) in a sufficient amount for any negative electrode active material, 500 mg / cm 2 laminated.
Electrolytes:
A gel electrolyte prepared by blending a solution prepared by adding 1 mol / L of LiBF 4 and polyacrylonitrile in a mixture of propylene carbonate and ethylene carbonate at an equal weight ratio to 9: 1, and then gelling at 160 ° C. for 1 minute.
[0040]
About said Li battery, the battery capacity and the current collection performance index were computed with the following method.
Li batteries formed using the negative electrodes of Examples 1 to 6 and Reference Example 1 were left in an atmosphere of 60 ° C. for one month, and then charge termination voltage = 4.2V, discharge termination voltage = 2V, charge / discharge rate = Charge and discharge at a constant current under the condition of 0.2 C, measure the discharge capacity, obtain the discharge capacity contribution ratio (referred to as unit weight negative electrode capacity here) of the negative electrode of unit weight by the following formula, and evaluate the negative electrode performance did.
Unit weight Negative electrode capacity: discharge capacity (mAh) / negative electrode weight used (g)
[0041]
[Table 2]
Figure 2004022466
[0042]
【The invention's effect】
The negative electrode of the present invention can be made lighter and thinner than conventional negative electrodes by taking advantage of the high capacity of metallic lithium, thereby realizing a higher capacity of the secondary battery.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a schematic laminated structure of a high capacity negative electrode of the present invention.
2 is a cross-sectional view showing a layer structure of a composite current collector used in the high capacity negative electrode of FIG.
3 is a cross-sectional view showing an embodiment of a composite current collector used in the high capacity negative electrode of FIG.
4 is a cross-sectional view showing another embodiment of the composite current collector used in the high capacity negative electrode of FIG. 1. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... High capacity | capacitance negative electrode 10 ... Composite collector 11 ... Resin film 12 ... Conductive treatment layer 13 ... Metal plating layer 15 ... Through-hole 17 ... Lead wire 20 ... Metal lithium foil

Claims (5)

樹脂フィルムと、該樹脂フィルムの両面に形成された導電処理層と、電解めっき処理により該導電処理層上に形成された金属めっき層とからなる複合集電体の両面に金属リチウムが積層された構造を有しており、前記複合集電体は、40mΩ/cm以下の表面電気抵抗と0.8kg/cm以上の引っ張り強度とを有し、且つ、下記式の条件を満足していることを特徴とする高容量負極;
Y1+Y2+Y3≦0.8×(X1+X2+X3)×Y3/X3
式中、X1:樹脂フィルムの厚み(μm)
X2:導電処理層のトータル厚み(μm)
X3:金属めっき層のトータル厚み(μm)
Y1:樹脂フィルムの重量(mg/cm
Y2:導電処理層の重量(mg/cm
Y3:金属めっき層の重量(mg/cm)。
Metallic lithium was laminated on both sides of a composite current collector comprising a resin film, a conductive treatment layer formed on both surfaces of the resin film, and a metal plating layer formed on the conductive treatment layer by electrolytic plating. The composite current collector has a surface electrical resistance of 40 mΩ / cm or less and a tensile strength of 0.8 kg / cm or more, and satisfies the condition of the following formula: Features high capacity negative electrode;
Y1 + Y2 + Y3 ≦ 0.8 × (X1 + X2 + X3) × Y3 / X3
In the formula, X1: thickness of resin film (μm)
X2: Total thickness of the conductive treatment layer (μm)
X3: Total thickness of metal plating layer (μm)
Y1: Weight of resin film (mg / cm 2 )
Y2: Weight of conductive treatment layer (mg / cm 2 )
Y3: Weight of metal plating layer (mg / cm 2 ).
前記金属リチウムは厚さが片面当たり2〜50μmであることを特徴とする請求項1に記載の高容量負極。The high capacity negative electrode according to claim 1, wherein the metallic lithium has a thickness of 2 to 50 μm per side. 前記複合集電体の表裏通電抵抗が100mΩ/cm以下である請求項1または2に記載の高容量負極。The high-capacity negative electrode according to claim 1 or 2, wherein the composite current collector has a front and back energization resistance of 100 mΩ / cm or less. 前記金属めっき層がCuを主体にしたものである請求項1乃至3に記載の高容量負極。The high capacity negative electrode according to claim 1, wherein the metal plating layer is mainly composed of Cu. 前記樹脂フィルムと前記導電処理層と前記金属めっき層との合計厚み(X1+X2+X3)が9μm以下である請求項1乃至4の何れかに記載の高容量負極。5. The high-capacity negative electrode according to claim 1, wherein a total thickness (X1 + X2 + X3) of the resin film, the conductive treatment layer, and the metal plating layer is 9 μm or less.
JP2002179111A 2002-06-19 2002-06-19 High capacity negative electrode Expired - Fee Related JP4039893B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002179111A JP4039893B2 (en) 2002-06-19 2002-06-19 High capacity negative electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002179111A JP4039893B2 (en) 2002-06-19 2002-06-19 High capacity negative electrode

Publications (2)

Publication Number Publication Date
JP2004022466A true JP2004022466A (en) 2004-01-22
JP4039893B2 JP4039893B2 (en) 2008-01-30

Family

ID=31176635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002179111A Expired - Fee Related JP4039893B2 (en) 2002-06-19 2002-06-19 High capacity negative electrode

Country Status (1)

Country Link
JP (1) JP4039893B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008140552A (en) * 2006-11-29 2008-06-19 Nissan Motor Co Ltd Electrode for bipolar battery
JP2009043625A (en) * 2007-08-09 2009-02-26 Panasonic Corp Anode current collector for lithium ion secondary battery, anode for lithium ion secondary battery, and lithium ion secondary battery
JP2012064501A (en) * 2010-09-17 2012-03-29 Hitachi Ltd Nonaqueous electrolyte secondary battery and collector
KR20200023886A (en) * 2018-08-27 2020-03-06 주식회사 엘지화학 Electrode for lithium secondary battery and preparation method thereof
CN112186192A (en) * 2019-07-01 2021-01-05 宁德时代新能源科技股份有限公司 Negative current collector, negative pole piece and electrochemical device
WO2022208682A1 (en) * 2021-03-30 2022-10-06 Tdk株式会社 Power storage device electrode and lithium ion secondary battery
US11932959B2 (en) 2021-10-26 2024-03-19 Contemporary Amperex Technology Co., Limited Copper plating solution and negative electrode composite current collector prepared using same
US11984603B2 (en) 2018-08-27 2024-05-14 Lg Energy Solution, Ltd. Electrode for lithium secondary battery and manufacturing method thereof

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008140552A (en) * 2006-11-29 2008-06-19 Nissan Motor Co Ltd Electrode for bipolar battery
JP2009043625A (en) * 2007-08-09 2009-02-26 Panasonic Corp Anode current collector for lithium ion secondary battery, anode for lithium ion secondary battery, and lithium ion secondary battery
JP4594965B2 (en) * 2007-08-09 2010-12-08 パナソニック株式会社 Negative electrode current collector for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2012064501A (en) * 2010-09-17 2012-03-29 Hitachi Ltd Nonaqueous electrolyte secondary battery and collector
JP7062170B2 (en) 2018-08-27 2022-05-06 エルジー エナジー ソリューション リミテッド Electrodes for lithium secondary batteries and their manufacturing methods
CN111194496A (en) * 2018-08-27 2020-05-22 株式会社Lg化学 Electrode for lithium secondary battery and method for manufacturing same
JP2021504898A (en) * 2018-08-27 2021-02-15 エルジー・ケム・リミテッド Electrodes for lithium secondary batteries and their manufacturing methods
KR20200023886A (en) * 2018-08-27 2020-03-06 주식회사 엘지화학 Electrode for lithium secondary battery and preparation method thereof
KR102433360B1 (en) * 2018-08-27 2022-08-16 주식회사 엘지에너지솔루션 Electrode for lithium secondary battery and preparation method thereof
US11984603B2 (en) 2018-08-27 2024-05-14 Lg Energy Solution, Ltd. Electrode for lithium secondary battery and manufacturing method thereof
CN112186192A (en) * 2019-07-01 2021-01-05 宁德时代新能源科技股份有限公司 Negative current collector, negative pole piece and electrochemical device
WO2022208682A1 (en) * 2021-03-30 2022-10-06 Tdk株式会社 Power storage device electrode and lithium ion secondary battery
JPWO2022208682A1 (en) * 2021-03-30 2022-10-06
JP7392828B2 (en) 2021-03-30 2023-12-06 Tdk株式会社 Electrodes for power storage devices and lithium ion secondary batteries
US11932959B2 (en) 2021-10-26 2024-03-19 Contemporary Amperex Technology Co., Limited Copper plating solution and negative electrode composite current collector prepared using same
JP7477707B2 (en) 2021-10-26 2024-05-01 寧徳時代新能源科技股▲分▼有限公司 Copper plating solution and negative electrode composite current collector produced therefrom

Also Published As

Publication number Publication date
JP4039893B2 (en) 2008-01-30

Similar Documents

Publication Publication Date Title
JP5858325B2 (en) battery
EP1551070A1 (en) Composite current collector
WO2016031690A1 (en) Electrode
JP5957947B2 (en) Bipolar electrode and bipolar lithium ion secondary battery using the same
JP2003282064A (en) Compound current collector
CN108075089A (en) For the metal deposition of the battery for being incorporated to bipolarity current-collector for forming bimetal structure and being made from it and its application
US20070059603A1 (en) Electrode, battery using the same and method for manufacturing the electrode
CN108140802B (en) Electrode and method for manufacturing same
JP2012009209A (en) Negative electrode for lithium ion secondary battery
JP2006260904A (en) Winding type battery and its manufacturing method
JP4988169B2 (en) Lithium secondary battery
JP6137637B2 (en) battery
JP2015037008A (en) Electrode active material layer for nonaqueous electrolyte secondary battery, and method for manufacturing the same
JP2019175657A (en) Lithium ion secondary battery
JP2003031224A (en) Light-weight current collector for secondary battery
JP4039893B2 (en) High capacity negative electrode
JP2007273313A (en) Electrode plate for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery
JP2019169346A (en) Lithium ion secondary battery
JPWO2015046394A1 (en) Negative electrode active material, negative electrode using the same, and lithium ion secondary battery
JP2004296305A (en) Lithium ion secondary battery
JP4594598B2 (en) Electrochemical element
JP4422968B2 (en) Electrochemical element
JP7016234B2 (en) Lithium ion battery
JP2001283811A (en) Separator and nonaqueous electrolyte battery
JP2015125972A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4039893

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131116

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees