JP2004022384A - Hybrid vehicle - Google Patents

Hybrid vehicle Download PDF

Info

Publication number
JP2004022384A
JP2004022384A JP2002176860A JP2002176860A JP2004022384A JP 2004022384 A JP2004022384 A JP 2004022384A JP 2002176860 A JP2002176860 A JP 2002176860A JP 2002176860 A JP2002176860 A JP 2002176860A JP 2004022384 A JP2004022384 A JP 2004022384A
Authority
JP
Japan
Prior art keywords
state
battery
regenerative
storage battery
hybrid vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002176860A
Other languages
Japanese (ja)
Inventor
Eiji Kadouchi
門内 英治
Kanji Takada
高田 寛治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002176860A priority Critical patent/JP2004022384A/en
Publication of JP2004022384A publication Critical patent/JP2004022384A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem wherein some patterns of travel cause a deficiency of travel assist capacity and a reduction in capacity for regenerative power, in a hybrid vehicle whose input/output is controlled as a constant charge state of a battery is maintained and regenerative power and discharge power are predicted. <P>SOLUTION: A hybrid automobile has setting means for setting at least two states out of a state of maintaining a high charge state of a battery, a state of maintaining a lower level, and an intermediate state. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明はエンジンを主たる駆動力源としモーターより補助的な駆動力を得るハイブリッド自動車に関する。
【0002】
【従来の技術】
モーターにより補助的な駆動力を得るハイブリッド自動車に搭載された蓄電池は、一般的に、なるべく一定の充電状態を維持しつつ電池が受け入れ可能な回生電力、放電電力を予測しながら入出力を制御する。
【0003】
例えば、特開平11−121048号公報に示されるように、該一定の充電状態として50%前後の値を採用するのが一般的である。これは電池の充電状態(以降s.o.c.と呼ぶ)が概ね20%以下では十分なアシスト力が得られず、s.o.c.が80%以上であると制動時の回生電力を電池が受け入れることが出来なくなるので上下限より均等に離れている50%前後を管理の中心としているためである。
【0004】
【発明が解決しようとする課題】
しかしながら、このような制御では走行時の走行パターンによっては、走行アシスト能力が不足したり、回生電力を受け入れる能力が低下する場合がある。これは車両に搭載される電池が、体積、重量、コストの点で容量が規制される為と、走行パターンによってはアシストや回生が短時間に集中しs.o.c.が大きく低下または上昇する為である。
【0005】
さらに、電池温度が低下した場合や、電池が劣化した場合には、このような傾向はより顕著なものとなる。特に、s.o.c.が低下している状況で高速登坂走行時の追い越し加速等を行うと、アシスト力が不足する問題が生じていた。このような加速性能の低下は車両を安全に運行する上で大きな問題となる。
【0006】
また、高速道路から離れて料金所へ向かう場合等は、大きな回生電力を得ることが可能だが、s.o.c.が上昇していた場合、回生電力を蓄電池が受け入れる事が出来ず、本来回収できるエネルギーをメカニカルブレーキで熱に代えて捨てることとなり、燃費に悪影響を及ぼしていた。
【0007】
【課題を解決するための手段】
このような課題を解決する為に、本発明は、ハイブリッド自動車において、蓄電池の充電状態を高めに維持する状態と、低めに維持する状態と、それらの中間的な状態のうち少なくとも2つ以上の状態を設定する設定手段を有するものである。
【0008】
【発明の実施の形態】
本発明は、駆動力源と、モーターと、発電機と蓄電池から構成され、駆動力源からの出力の一部と回生電力の少なくとも一方で該蓄電池を充電し、該蓄電池を放電することによって駆動力を得るハイブリッド自動車において、蓄電池の充電状態を高めに維持する状態と、低めに維持する状態と、それらの中間的な状態のうち少なくとも2つ以上の状態を設定する設定手段を有するものであって、、予めs.o.c.とアシスト性能や回生受け入れ性能を種々の条件で調べておき必要とされるs.o.c.を求め、それに基いて運転の状況に応じた蓄電池のs.o.c.を任意に設定することによって、充電状態を高めに設定した場合では駆動力を優先させ、充電状態を低めに設定した場合では燃費を優先させることができ、効率的な走行が可能となる。なお、発電機を兼ねるモーターを使用しても同様の効果を得ることができる。
【0009】
例えば高速度で追い越しを行う場合には予めs.o.c.を高めに設定し、実際に蓄電池のs.o.c.が設定レベルにあることを確認した後、追い越し操作を行えば、期待通りのアシスト性能で追い越しを完了する事が可能となる。また、高速道路の料金所の手前など大きな回生エネルギーの発生が予測される場合はs.o.c.を予め低めに設定し、効率良く回生電力を受け入れることも可能となる。
【0010】
また本発明は、設定手段が運転手の操作可能な部位に設置されており、さらには、蓄電池の充電状態を表示する表示手段を有することによって、運転者が容易に操作、視認することが可能となる。
【0011】
また本発明は、選択される状態が燃費優先状態から駆動力を優先する状態まで連続的に設定可能であるものであって、よりきめ細かく運転手が充電状態を設定することが可能となる。
【0012】
また本発明は、蓄電池の充電状態が設定手段と、電池温度もしくは/及び車速もしくは/及び電池の劣化状況により決定されるものであって、正確な駆動力の確保や燃費の向上を達成することが可能となる。
【0013】
【実施例】
以下に本発明の実施例について、図面を用いて説明する。
【0014】
まず一般的なハイブリッド電気自動車の構成を図1に示す。動作としてはエンジン4を主たる駆動力源とし、モーター6と組電池システム2によりエンジン出力のアシストや回生制動のエネルギー回収を行う。エンジン4は変速機5を介してモーター6に接続され、さらにデファレンシャルギヤ8を介して車輪7に動力を伝達する。また、加速時は組電池システム2よりインバーター3を介してモーター6に電力が供給され、エンジン出力をアシストし、減速時は逆にモーター6で制動力を発生しながら発電を行い、発電した電力をインバーター3を介して組電池システム2に戻す。
【0015】
制御ECU1は、アクセル開度情報やその他車両情報、エンジン4からの情報、電池ECU9からの情報に基き、エンジン4及びインバータ3を制御すると共にバッテリーの過充電や過放電、過負荷等を防止する。
【0016】
電池ECU9は、制御ECU1より信号を受けて、車両が走行中、駐車中あるいは停車中かを判断し、各状態に応じて制御ECU1は組電池システム2からの情報に基きエンジン4やインバータ3、モーター6を制御する。これは電池を過充電や過放電から守るためである。
【0017】
なお、本実施例での組電池システムは一般的なLiイオン二次電池容量6Ah、公称電圧3.6Vを80セル直列に構成したものであり、本車両は車体重量が1.2tである。
【0018】
図2には本実施例の組電池システムの詳細図が示されており、C1〜C80は該Liイオン二次電池80セルであり、個々の電池毎にs.o.c.バラツキ補正用の抵抗R1〜R80が備えられ、またスイッチ11および表示器12も備えられている。
【0019】
なお、スイッチ11を操作することにより制御ECU1に充電状態を高めに維持する状態か、充電状態を低めに維持する状態か、それらの中間的な状態いずれを選択したか伝達する。
【0020】
また、表示器12は電池が設定した状態になったことを運転手に連絡する手段である。
【0021】
なお、スイッチ11及び表示器12は運転席10に搭乗した運転者が容易に操作、視認出来る位置に取り付けられる。
【0022】
電池ECU9は電圧検出手段15、温度検出手段16、電流検出手段17からの電池電圧情報、電池温度情報、充放電電流情報を得て制御ECUへ充電許可信号、放電許可信号、推奨処置に関する情報を出力する。充電許可信号とは組電池が充電可能な状態であることを示す信号であり電池電圧が320V以下の時に出力される。また、放電許可信号とは組電池が放電可能な状態に有ることを示す信号であり電池電圧が200V以上の時に出力される。また、推奨処置とは管理目標のs.o.c.に対し現在のs.o.c.が低い場合は充電を、高い場合は放電を指示する情報である。
【0023】
更に本発明では制御ECUからスイッチ11の設定に関する情報を得て表示器12に出力する信号を制御ECUへ出力する。
【0024】
次いで、図3(a)に本実施例で使用した組電池2の使用開始初期の電池温度毎のs.o.c.に対するアシスト能力をアシスト可能電力量として、図3(b)に本実施例で使用した組電池2の5万km走行後の電池温度毎のs.o.c.に対するアシスト能力をアシスト可能電力量として、図4(a)に本実施例で使用した組電池2の使用開始初期の電池温度毎のs.o.c.に対する回生能力を回生可能電力量として、図4(b)に本実施例で使用した組電池2の5万km走行後のs.o.c.に対する回生能力を回生可能電力量として示す。
【0025】
アシスト能力は、各々の電池温度、充電状態においてモーターの最大負荷30kW一定電力で放電を行い電池電圧が200V以下にならず電池温度が50℃を越えない電力量を最大電力量として求めた。なお、200Vは単セル当たりに換算すると2.5VでありLiイオン電池の場合には、これ以下の電圧まで放電すると負極の腐食等、電池寿命上好ましくない現象が生じる。
【0026】
一方、回生能力は、最大回生能力24kW定電力で充電を行い320Vを越えず、電池温度が50℃を越えない電力量を最大電力量として求めた。なお、320Vは単セル当たりに換算すると4Vであり、Liイオンの場合にはこの電圧を越えると電解液の分解反応など電池寿命に好ましくない現象が起きる。
【0027】
また、上限温度50℃は電池の構成部品の熱劣化を防止すると共に活物質が電解液と反応して電池が発火するのを防止するために設けた温度上限であり、定電力放電30kWと定電力充電24kWは車両の駆動モーター、インバーターにより決定される値である。
【0028】
これら上限電圧や下限電圧、上限温度は電池設計によって変化する値であり、また充放電の電力はモーターやインバーターの設計によって決まるものであるが、本実施例では上述の値を採用した。
【0029】
また図3に示されたアシスト能力は駆動力を優先する場合に必要とされるものであり、図4に示された回生能力は燃費優先とした場合に必要とされるものである。
【0030】
次に駆動力を優先した場合に必要とされるアシスト能力、燃費を優先させた場合に必要とされる回生能力を求めた根拠について説明する。本実施例で用いたハイブリッド車の車両重量は1.2tエンジン出力は60kW、モーター出力は30kWである。
【0031】
ここで、低速から時速100km/hまで加速した場合、モーター出力は30kWであり加速に20秒要すると仮定すると、アシストが必要なのは20秒×30kWで166Whとなり、モーターの最大能力を20秒間維持する為には20秒間で166Whの出力が必要となる。
【0032】
一方、減速の場合は(減速時間を十分に長く取れば)モーターの回生出力は約24kWである。ここで、車両の運動エネルギー1.3kWの20%程度(260wh)は回生が可能であることから、回生出力が24kWであれば40秒かけて減速する状況となる。なお、回生されないエネルギーは熱に変換される。
【0033】
この様にして、駆動力を優先する状態では20秒で166Whのアシスト能力、燃費を優先するモードでは40秒間で260Whの回生能力が必要とされる。
【0034】
次に、このようなs.o.c.毎、電池温度毎、電池の劣化状態毎のアシスト能力、回生能力に関する情報を基に、駆動力を優先する状態でのアシスト能力を確保する方法、および燃費を優先する状態での回生能力を確保する方法について述べる。
【0035】
図2に示した通り電池ECU9は走行中に電圧検出手段15より電池電圧情報を、温度検出手段16より電池温度情報を、電流検出手段17より充放電電流情報を得ることによって電池s.o.c.、電池劣化の状況を推定し、電池温度情報、s.o.c.推定値、電池劣化に関する推定値を用いてs.o.c.を制御する。
【0036】
具体的には、例えば図3(a)の電池が劣化していない状態で電池温度20℃、駆動力優先の場合s.o.c.は55%付近に設定する必要がある。ここで、運転手が燃費と駆動力を調和させる状態から駆動力を優先する状態にスイッチ11を切り替えた場合、電池ECU9はその情報を制御ECU1から受け取り状態の変更を認識する。
【0037】
次に電池ECU9はそれらに先立って車両の走行距離、電池の電流−電圧(I−V)特性の変化、電池温度、負荷電流、充放電電量の積算量から電池の劣化状態、推定s.o.c.を求める。この場合劣化はほとんどなく電池温度は20℃なので図3(a)が適用され目標s.o.c.は55%となる。
【0038】
電池ECUはその時点の推定s.o.c.と目標s.o.c.を比較して目標が低い場合には制御ECUに充電を推奨する信号を出し、推定s.o.c.が目標s.o.c.を上回る場合は表示器12により駆動優先状態に有ることを運転手に伝達する。以上が駆動優先の場合の具体的な動作であるが、燃費優先の場合も同様に達成できる。
【0039】
次に0℃、20℃において車両が余り走行していない初期状態と5万km走行した状態での本発明による駆動力優先状態、燃費優先状態と従来例としてs.o.c.を50%に固定した状態での回生能力、アシスト能力を示す。
【0040】
ここで、図5は20℃、初期の、図6は20℃、5万km走行後の、図7は0℃、初期の、図8は0℃、5万kmの本発明による駆動力優先の状態、燃費優先の状態および従来例として燃費と駆動性を調和させた状態を示す。
【0041】
これらの図からも明らかな様に駆動力と燃費を調和させた状態に比べ、本発明による駆動力優先ではアシスト能力の確保が確実に達成され、本発明による燃費優先では回生能力の確保が確実に達成されている。
【0042】
なお、上記の条件では必要な回生能力やアシスト能力を確保するs.o.c.が存在したのでこうした結果となったが、−20℃などの条件下で必要な回生能力やアシスト能力を確保するs.o.c.が存在しない場合には、表示装置により条件が達成されていないことを運転手は知ることが可能である。
【0043】
一方、従来例ではs.o.c.を50%に維持する為、電池温度や電池の劣化状況によりアシスト能力や回生能力が変動して一定とならず、更に現在のアシスト能力や回生能力を知る手段を有しておらず、また、s.o.c.50%に維持する制御を行っているが、回生が集中した場合やアシストが集中した場合には、s.o.c.のずれが生じるものの、それらによるアシスト力の低下や回生能力の低下を知る手段を有していない。
【0044】
更に従来例と本実施例の燃費優先モードでの燃費の比較を表1に示す。なお、燃費評価は気温5℃、市街地の走行を10km、都市高速の走行を40km、山岳道の走行を15kmとして行った。
【0045】
【表1】

Figure 2004022384
【0046】
表1から明らかなように、優先的に回生エネルギーを利用することにより燃費向上を達成できる。なお、この評価では燃費優先の状態で計測したが運転者の判断で適宜駆動優先と切りかえることにより駆動性能と燃費向上を両立させることが可能である。
【0047】
また、本実施例では駆動力優先状態、燃費優先状態の2ポジションを有するものとしたが、回生能力とアシスト能力が260:166になる点を燃費と駆動を両立する点として加えて3ポジションとしても良い。なお、この比率は任意に設定が可能である。
【0048】
また、設定スイッチをスライド式のボリュームにして、回生能力を任意に設定できる機能や、アシスト能力を任意に設定できる機能により、利便性をより高めることが可能である。
【0049】
さらに加速が完了して高速走行に入った場合、加速性能を要求する確率が減るため、車速に基いてアシスト優先から燃費優先へ自動的に切りかえる機能を付与することでより利便性を向上する。
【0050】
【発明の効果】
このような構成により追い越し時のアシスト能力の確保と、運転手による確認、燃費の向上を達成でき、ハイブリッド自動車の利便性を改善することが出来る。
【図面の簡単な説明】
【図1】本実施例のハイブリッド電気自動車の構成図
【図2】本実施例の組電池システムの構成図
【図3】(a)本実施例における組電池の初期のs.o.c.とアシスト能力の関係図
(b)本実施例における組電池の5万km走行後のs.o.c.とアシスト能力の関係図
【図4】(a)本実施例における組電池の初期の回生能力を示す図
(b)本実施例における組電池の5万km走行後の回生能力を示す図
【図5】20℃、初期における本実施例及び従来例の回生能力とアシスト能力を示す図
【図6】20℃、5万km走行後における本実施例及び従来例の回生能力とアシスト能力を示す図
【図7】0℃、初期における本実施例及び従来例の回生能力とアシスト能力を示す図
【図8】0℃、5万km走行後における本実施例及び従来例の回生能力とアシスト能力を示す図
【符号の説明】
1    制御ECU
2    組電池システム
3    インバーター
4    エンジン
5    変速機
6    モーター
7    車輪
8    デファレンシャルギア
9    電池ECU
10  運転席
11  モード切り替えスイッチ
12  表示器
13  マルチプレクサ
14  抵抗放電器
15  電圧検出手段
16  温度検出手段
17  電流検出手段[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a hybrid vehicle that uses an engine as a main driving force source and obtains an auxiliary driving force from a motor.
[0002]
[Prior art]
A storage battery mounted on a hybrid vehicle that obtains an auxiliary driving force by a motor generally controls input and output while predicting regenerative power and discharge power that can be accepted by the battery while maintaining a constant charge state as much as possible. .
[0003]
For example, as shown in JP-A-11-112048, it is common to adopt a value of about 50% as the fixed state of charge. This is because a sufficient assist force cannot be obtained when the state of charge of the battery (hereinafter referred to as “soc”) is approximately 20% or less. o. c. Is 80% or more, the battery cannot accept the regenerative power at the time of braking. Therefore, the center of management is around 50%, which is evenly separated from the upper and lower limits.
[0004]
[Problems to be solved by the invention]
However, in such control, depending on a traveling pattern during traveling, the traveling assist capability may be insufficient, or the capability of receiving regenerative power may be reduced. This is because the capacity of the battery mounted on the vehicle is regulated in terms of volume, weight, and cost, and depending on the driving pattern, assist and regeneration are concentrated in a short time and s. o. c. Is greatly reduced or increased.
[0005]
Further, when the battery temperature is lowered or the battery is deteriorated, such a tendency becomes more remarkable. In particular, s. o. c. When overtaking acceleration or the like during high-speed uphill running is performed in a situation where the vehicle speed is decreasing, there has been a problem that the assist force is insufficient. Such a decrease in acceleration performance is a serious problem in safely operating the vehicle.
[0006]
In addition, when the vehicle leaves the expressway and goes to the tollgate, a large regenerative power can be obtained. o. c. If the battery power had risen, the regenerative power could not be received by the storage battery, and the originally recoverable energy would be discarded instead of heat by a mechanical brake, adversely affecting fuel economy.
[0007]
[Means for Solving the Problems]
In order to solve such a problem, the present invention provides a hybrid vehicle in which at least two or more of a state in which the state of charge of a storage battery is maintained at a high level, a state in which the state of charge is maintained at a low level, and an intermediate state therebetween It has setting means for setting a state.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention includes a driving power source, a motor, a generator, and a storage battery, and is driven by charging the storage battery and / or discharging the storage battery in at least one of a part of the output from the driving power source and regenerative power. A hybrid vehicle that obtains power has setting means for setting at least two or more of a state in which the state of charge of the storage battery is maintained at a high level, a state in which the state is maintained at a low level, and an intermediate state therebetween. And s. o. c. And the assist performance and regenerative receiving performance are examined under various conditions, and s. o. c. Is calculated, and based on this, the s. o. c. Arbitrarily, the driving force can be prioritized when the charging state is set higher, and the fuel efficiency can be prioritized when the charging state is set lower, so that efficient traveling can be achieved. The same effect can be obtained by using a motor that also serves as a generator.
[0009]
For example, when passing at a high speed, s. o. c. Is set higher, and s. o. c. If the overtaking operation is performed after confirming that is at the set level, the overtaking can be completed with the expected assist performance. If large regenerative energy is expected, such as just before a tollgate on an expressway, s. o. c. Can be set lower in advance, and the regenerative electric power can be efficiently received.
[0010]
Further, according to the present invention, the driver can be easily operated and visually recognized by providing the setting means at a position operable by the driver, and further including the display means for displaying the state of charge of the storage battery. It becomes.
[0011]
Further, according to the present invention, the state to be selected can be continuously set from a state in which fuel consumption is prioritized to a state in which driving force is prioritized, so that the driver can set the charging state more finely.
[0012]
According to the present invention, the state of charge of the storage battery is determined by the setting means and the battery temperature or / and the vehicle speed or / and the deterioration state of the battery. Becomes possible.
[0013]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0014]
First, the configuration of a general hybrid electric vehicle is shown in FIG. In operation, the engine 4 is used as a main driving force source, and the motor 6 and the battery pack system 2 assist in engine output and recover energy for regenerative braking. The engine 4 is connected to a motor 6 via a transmission 5, and further transmits power to wheels 7 via a differential gear 8. Also, during acceleration, electric power is supplied from the assembled battery system 2 to the motor 6 via the inverter 3 to assist the engine output, and during deceleration, the motor 6 generates power while generating a braking force. Is returned to the battery pack system 2 via the inverter 3.
[0015]
The control ECU 1 controls the engine 4 and the inverter 3 based on accelerator opening information and other vehicle information, information from the engine 4, and information from the battery ECU 9, and also prevents overcharge, overdischarge, overload, and the like of the battery. .
[0016]
The battery ECU 9 receives a signal from the control ECU 1 and determines whether the vehicle is traveling, parked or stopped, and according to each state, the control ECU 1 controls the engine 4 and the inverter 3 based on information from the battery pack system 2. The motor 6 is controlled. This is to protect the battery from overcharge and overdischarge.
[0017]
Note that the assembled battery system in this embodiment has a general Li-ion secondary battery capacity of 6 Ah and a nominal voltage of 3.6 V in series with 80 cells, and the vehicle has a body weight of 1.2 t.
[0018]
FIG. 2 shows a detailed view of the battery pack system of the present embodiment. C1 to C80 are 80 cells of the Li-ion secondary battery, and each cell has an s. o. c. Resistors R1 to R80 for variation correction are provided, and a switch 11 and a display 12 are also provided.
[0019]
By operating the switch 11, the control ECU 1 is notified of whether the state of charge is maintained at a higher level, the state of charge is maintained at a lower level, or an intermediate state between them.
[0020]
The display 12 is a means for notifying the driver that the battery has been set.
[0021]
The switch 11 and the display 12 are mounted at a position where the driver in the driver's seat 10 can easily operate and visually recognize the switch.
[0022]
The battery ECU 9 obtains the battery voltage information, the battery temperature information, and the charge / discharge current information from the voltage detection means 15, the temperature detection means 16, and the current detection means 17, and sends a charge permission signal, a discharge permission signal, and information on a recommended action to the control ECU. Output. The charge permission signal is a signal indicating that the battery pack is in a chargeable state, and is output when the battery voltage is 320 V or less. The discharge permission signal is a signal indicating that the battery pack is in a dischargeable state, and is output when the battery voltage is 200 V or more. The recommended action is the management target s. o. c. For the current s. o. c. If the value is low, the information indicates the charge, and if the value is high, the information indicates the discharge.
[0023]
Further, in the present invention, information relating to the setting of the switch 11 is obtained from the control ECU, and a signal output to the display 12 is output to the control ECU.
[0024]
Next, FIG. 3A shows the s.c. for each battery temperature at the beginning of use of the battery pack 2 used in the present embodiment. o. c. FIG. 3 (b) shows the assist capability with respect to s.c. for each battery temperature after traveling 50,000 km of the battery pack 2 used in this embodiment. o. c. FIG. 4 (a) shows the assist capability for the battery pack 2 used in the present embodiment as s. o. c. FIG. 4B shows the regenerative capacity of the battery pack 2 used in the present embodiment as s. o. c. Is shown as the regenerable electric energy.
[0025]
The assist capability was determined as the maximum amount of power at which the battery was discharged at a constant power of 30 kW at the maximum load of the motor at each battery temperature and charge state, and the battery voltage did not fall below 200 V and the battery temperature did not exceed 50 ° C. Note that 200 V is 2.5 V when converted to a single cell. In the case of a Li-ion battery, discharging to a voltage lower than this causes undesirable phenomena such as corrosion of the negative electrode and the like, in terms of battery life.
[0026]
On the other hand, the regenerative capacity was determined by charging the battery with the maximum regenerative capacity of 24 kW constant power and not exceeding 320 V and the amount of power at which the battery temperature did not exceed 50 ° C. as the maximum amount of power. Note that 320 V is 4 V in terms of a single cell, and in the case of Li ions, when the voltage exceeds this voltage, a phenomenon unfavorable to battery life such as a decomposition reaction of an electrolytic solution occurs.
[0027]
The upper limit temperature of 50 ° C. is a temperature upper limit provided to prevent thermal degradation of battery components and to prevent the active material from reacting with the electrolytic solution to ignite the battery. The 24 kW power charge is a value determined by the drive motor and inverter of the vehicle.
[0028]
The upper limit voltage, the lower limit voltage, and the upper limit temperature are values that vary depending on the battery design, and the power for charging and discharging is determined by the design of the motor and the inverter. In the present embodiment, the above values are used.
[0029]
The assist ability shown in FIG. 3 is required when the driving force is prioritized, and the regenerative ability shown in FIG. 4 is required when the fuel efficiency is prioritized.
[0030]
Next, the grounds for obtaining the assist capability required when the driving force is prioritized and the regenerative capability required when the fuel efficiency is prioritized will be described. The hybrid vehicle used in this embodiment has a vehicle weight of 1.2 t, an engine output of 60 kW, and a motor output of 30 kW.
[0031]
Here, when accelerating from a low speed to 100 km / h per hour, assuming that the motor output is 30 kW and the acceleration takes 20 seconds, assistance is required at 166 Wh at 20 seconds × 30 kW, and the maximum capacity of the motor is maintained for 20 seconds. For this purpose, an output of 166 Wh is required for 20 seconds.
[0032]
On the other hand, in the case of deceleration (if the deceleration time is sufficiently long), the regenerative output of the motor is about 24 kW. Here, about 20% (260 wh) of the kinetic energy of 1.3 kW of the vehicle can be regenerated, and if the regenerative output is 24 kW, the vehicle decelerates in 40 seconds. Note that energy that is not regenerated is converted into heat.
[0033]
In this way, in the state where the driving force is prioritized, the assist capability of 166 Wh is required in 20 seconds, and in the mode in which the fuel efficiency is prioritized, the regenerative capability of 260 Wh is required in 40 seconds.
[0034]
Next, such an s. o. c. Based on information on assist capacity and regenerative capacity for each battery, battery temperature, and battery deterioration state, a method to secure assist capacity in a state where drive power is prioritized, and regenerative capacity in a state where fuel efficiency is prioritized How to do it.
[0035]
As shown in FIG. 2, the battery ECU 9 obtains battery voltage information from the voltage detecting means 15, battery temperature information from the temperature detecting means 16, and charge / discharge current information from the current detecting means 17 while the vehicle is running. o. c. , Estimating the state of battery deterioration, battery temperature information, s. o. c. Using the estimated value and the estimated value related to battery deterioration, s. o. c. Control.
[0036]
Specifically, for example, when the battery temperature is 20 ° C. and the driving force is prioritized in a state where the battery in FIG. o. c. Needs to be set to around 55%. Here, when the driver switches the switch 11 from the state in which the fuel efficiency and the driving force are harmonized to the state in which the driving force is prioritized, the battery ECU 9 receives the information from the control ECU 1 and recognizes the change in the state.
[0037]
Next, the battery ECU 9 determines the state of deterioration of the battery, the estimated s. o. c. Ask for. In this case, there is almost no deterioration and the battery temperature is 20 ° C., so that FIG. o. c. Is 55%.
[0038]
The battery ECU estimates the current s. o. c. And goal s. o. c. If the target is low, a signal recommending charging is sent to the control ECU, and the estimated s. o. c. Is the target s. o. c. In the case of exceeding, the display 12 informs the driver of the drive priority state. The above is the specific operation in the case of giving priority to driving, but the same can be achieved in the case of giving priority to fuel efficiency.
[0039]
Next, at 0 ° C. and 20 ° C., the driving force priority state and the fuel consumption priority state according to the present invention in the initial state where the vehicle does not travel much and the state where the vehicle has traveled 50,000 km are described as s. o. c. Shows the regenerative ability and assist ability in a state where is fixed at 50%.
[0040]
Here, FIG. 5 shows the initial driving force at 20 ° C., FIG. 6 shows the driving force after traveling at 50,000 km at 20 ° C., FIG. 7 shows the initial driving force at 0 ° C., and FIG. , A state in which fuel efficiency is prioritized, and a state in which fuel efficiency and driveability are harmonized as a conventional example.
[0041]
As is clear from these figures, as compared with the state in which the driving force and the fuel efficiency are harmonized, the securing of the assist capability is surely achieved with the priority of the driving force according to the present invention, and the securing of the regenerative capability is reliably secured with the priority of the fuel efficiency according to the present invention. Has been achieved.
[0042]
In addition, under the above conditions, necessary regenerative ability and assist ability are secured. o. c. However, these results were obtained because of the presence of the s.c., but the required regenerative and assisting abilities were secured under conditions such as −20 ° C. o. c. Does not exist, the driver can know that the condition has not been achieved by the display device.
[0043]
On the other hand, in the conventional example, s. o. c. Is maintained at 50%, the assist ability and the regenerative ability fluctuate depending on the battery temperature and the deterioration state of the battery, do not become constant, and further, there is no means for knowing the current assist ability and the regenerative ability. s. o. c. Although control is performed to maintain 50%, when regeneration is concentrated or assist is concentrated, s. o. c. However, there is no means for knowing a decrease in assist force or a decrease in regenerative ability due to the deviation.
[0044]
Further, Table 1 shows a comparison of fuel efficiency between the conventional example and the fuel efficiency priority mode according to the present embodiment. The fuel efficiency was evaluated at a temperature of 5 ° C., traveling 10 km in an urban area, traveling 40 km in an urban highway, and traveling 15 km on a mountain road.
[0045]
[Table 1]
Figure 2004022384
[0046]
As is clear from Table 1, improvement in fuel efficiency can be achieved by using regenerative energy preferentially. In this evaluation, measurement was performed in a state of giving priority to fuel efficiency, but it is possible to achieve both drive performance and improvement in fuel efficiency by appropriately switching to drive priority at the driver's discretion.
[0047]
Further, in the present embodiment, two positions of the driving force priority state and the fuel consumption priority state are provided. However, a point where the regenerative ability and the assist ability become 260: 166 is added as a point at which both the fuel consumption and the driving are compatible. Is also good. This ratio can be set arbitrarily.
[0048]
In addition, the convenience can be further improved by the function of setting the regenerative power arbitrarily and the function of arbitrarily setting the assist power by setting the setting switch to a slide type volume.
[0049]
Further, when the vehicle enters high-speed driving after acceleration is completed, the probability of requesting acceleration performance is reduced. Therefore, the convenience is further improved by providing a function of automatically switching from assist priority to fuel efficiency priority based on the vehicle speed.
[0050]
【The invention's effect】
With such a configuration, it is possible to secure the assisting ability at the time of overtaking, confirm by the driver, and improve the fuel efficiency, thereby improving the convenience of the hybrid vehicle.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a hybrid electric vehicle according to an embodiment; FIG. 2 is a configuration diagram of an assembled battery system according to the embodiment; FIG. o. c. (B) Relationship between s.c. after running 50,000 km of the battery pack in this embodiment. o. c. FIG. 4A is a diagram showing the initial regenerative capacity of the battery pack in the present embodiment, and FIG. 4B is a diagram showing the regenerative capacity of the battery pack in the present embodiment after traveling 50,000 km. 5 is a diagram showing the regenerative ability and the assist ability of the present embodiment and the conventional example at 20 ° C. and the initial stage. FIG. 7 is a diagram showing the regenerative ability and the assist ability of the present embodiment and the conventional example at 0 ° C. and the initial stage. Diagrams [Description of symbols]
1 Control ECU
2 Battery pack system 3 Inverter 4 Engine 5 Transmission 6 Motor 7 Wheels 8 Differential gear 9 Battery ECU
Reference Signs List 10 Driver's seat 11 Mode changeover switch 12 Display 13 Multiplexer 14 Resistance discharger 15 Voltage detecting means 16 Temperature detecting means 17 Current detecting means

Claims (5)

駆動力源と、モーターと、発電機と蓄電池から構成され、駆動力源からの出力の一部と回生電力の少なくとも一方で該蓄電池を充電し、該蓄電池を放電することによって駆動力を得るハイブリッド自動車において、蓄電池の充電状態を高めに維持する状態と、低めに維持する状態と、それらの中間的な状態のうち少なくとも2つ以上の状態を設定する設定手段を有するハイブリッド自動車。A hybrid that includes a driving power source, a motor, a generator, and a storage battery, and that charges the storage battery and / or discharges the storage battery to at least one of at least a part of output from the driving power source and regenerative power to obtain driving power. A hybrid vehicle having setting means for setting at least two or more of a state in which the state of charge of the storage battery is maintained at a higher level, a state in which the storage battery is maintained at a lower level, and an intermediate state therebetween. 設定手段が運転手の操作可能な部位に設置されている請求項1記載のハイブリッド自動車。The hybrid vehicle according to claim 1, wherein the setting unit is provided at a position where the driver can operate. 蓄電池の充電状態を表示する表示手段を有する請求項1に記載のハイブリッド自動車。The hybrid vehicle according to claim 1, further comprising a display unit that displays a state of charge of the storage battery. 選択される状態が燃費優先状態から駆動力を優先する状態まで連続的に設定可能な請求項1記載のハイブリッド自動車。The hybrid vehicle according to claim 1, wherein the selected state can be continuously set from a fuel efficiency priority state to a driving force priority state. 蓄電池の充電状態が設定手段と、電池温度もしくは/及び車速により決定される請求項1記載のハイブリッド自動車。2. The hybrid vehicle according to claim 1, wherein the state of charge of the storage battery is determined by the setting means and the battery temperature and / or the vehicle speed.
JP2002176860A 2002-06-18 2002-06-18 Hybrid vehicle Pending JP2004022384A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002176860A JP2004022384A (en) 2002-06-18 2002-06-18 Hybrid vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002176860A JP2004022384A (en) 2002-06-18 2002-06-18 Hybrid vehicle

Publications (1)

Publication Number Publication Date
JP2004022384A true JP2004022384A (en) 2004-01-22

Family

ID=31175051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002176860A Pending JP2004022384A (en) 2002-06-18 2002-06-18 Hybrid vehicle

Country Status (1)

Country Link
JP (1) JP2004022384A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008044516A1 (en) * 2006-10-11 2008-04-17 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle, hybrid vehicle control method, program for causing computer to execute the control method, and computer-readable recording medium containing the program
JP2012029503A (en) * 2010-07-26 2012-02-09 Toshiba Corp Secondary battery pack, battery charger, and vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008044516A1 (en) * 2006-10-11 2008-04-17 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle, hybrid vehicle control method, program for causing computer to execute the control method, and computer-readable recording medium containing the program
US8210293B2 (en) 2006-10-11 2012-07-03 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle, method of controlling hybrid vehicle, program for causing computer to execute the method of controlling hybrid vehicle, and computer readable storage medium having the program stored therein
JP2012029503A (en) * 2010-07-26 2012-02-09 Toshiba Corp Secondary battery pack, battery charger, and vehicle

Similar Documents

Publication Publication Date Title
JP5608747B2 (en) Storage capacity management device
CN109552109B (en) Dual function battery system and method
US20070018608A1 (en) Secondary battery control apparatus and control method
US20110037434A1 (en) Method of controlling battery charge level of hybrid electric vehicle
JPH10295045A (en) Control apparatus for power generation of hybrid electric vehicle
US7900726B2 (en) Method and system for hybrid energy management control
JPH08336205A (en) Battery charger for hybrid vehicle
JPH08289407A (en) Power generation control device for hybrid vehicle
JP2004025979A (en) Power supply system for travelling vehicle
JP2004112900A (en) Power generation controller for vehicle
JP6219655B2 (en) Vehicle power supply
JP2004032871A (en) Power supply system for traveling vehicle
EP3817180A1 (en) Hybrid energy storage module system having auxiliary battery
US10406909B2 (en) Control device for internal combustion engine
JP2012125050A (en) Power supply control device of electric vehicle
WO2014007031A1 (en) Vehicle-mounted power supply control device
JPH0746709A (en) Charging and discharging controller for battery of parallel hybrid car
JP2004201411A (en) Apparatus and method for controlling power source
JPH11165540A (en) Secondary battery control device for hybrid automobile
JP2004022384A (en) Hybrid vehicle
JP5783051B2 (en) Secondary battery and secondary battery remaining capacity calculation device
JP2015057939A (en) Power supply control device of electric automobile
JP2012125049A (en) Power supply control device of electric vehicle
JP2013031248A (en) Battery device hysteresis reduction system
JP2004282999A (en) Controlling equipment and control method of hybrid vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041222

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070612