JP2004021246A - Sound-absorption structure by specification of particle structure of foamed body - Google Patents

Sound-absorption structure by specification of particle structure of foamed body Download PDF

Info

Publication number
JP2004021246A
JP2004021246A JP2002208912A JP2002208912A JP2004021246A JP 2004021246 A JP2004021246 A JP 2004021246A JP 2002208912 A JP2002208912 A JP 2002208912A JP 2002208912 A JP2002208912 A JP 2002208912A JP 2004021246 A JP2004021246 A JP 2004021246A
Authority
JP
Japan
Prior art keywords
sound
phenol foam
layer
cell
foam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002208912A
Other languages
Japanese (ja)
Other versions
JP2004021246A5 (en
Inventor
Koichi Take
武 紘一
Kunio Takahashi
高橋 邦雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JUNSEI KK
Original Assignee
JUNSEI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JUNSEI KK filed Critical JUNSEI KK
Priority to JP2002208912A priority Critical patent/JP2004021246A/en
Publication of JP2004021246A publication Critical patent/JP2004021246A/en
Publication of JP2004021246A5 publication Critical patent/JP2004021246A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sound-absorption structure in light weight and of simple construction method. <P>SOLUTION: The sound-absorption structure having a sandwich structure in which three-layer structure using an aluminum expand metal 3 with thickness of 1.6 mm with air permeability as a sound-absorption surface member layer on the sound impinging side and using a sound-absorption core member layer formed by filling and conjugating hard connection open cell phenol form 1 with thickness of 30 mm comprising the particle structure in a resin impregnated paper honeycomb material 2 with self size of 121 mm and thickness of 30 mm, a sound reflection member layer and a surface member with permeability as the sound-absorption member is integrated by adhesion is obtained. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
住環境及び労働環境において騒音対策は避けて通れない問題として地球規模で取上げられている。住環境においては戸建の隣接室、マンションの隣接室及び隣問題、そして道路・鉄道・飛行場・航空機・工場隣接から発生する音、又労働環境においては仕事場だからといって従来は我慢が当然とされていたが1992年の労働省通達、ISO基準に元ずく改善及び規制が開始されている。水質・空気・省エネ対策等に対し、音対策は我慢で逃避されていた分野であり技術面からは未開拓な技術領域がある。
【0002】
【従来の技術】
遮音対策の現在の技術は質量法則に元ずいており、コンクリートの厚い壁・鉛を取扱った構造等で重量を大きくする、厚さ取る対策が最も有効な構造とされ多く施工されている。軽量化対策をとる場合は、グラスウール等の繊維層と空気層を組合わせ厚さを取った対策構造になっている。又市販されている吸音材・合成樹脂系発泡体・石綿板・石膏ボード・合板等を組合せ経験を含めたアイデア構造での施工がされているが原理面では質量法則の範囲を脱していない。従って従来の遮音壁構造は全て現場施工による築造となり、施工が簡単で軽量な吸音性能が証明されたパネル製品の市販はない。
【0003】
【発明が解決しようとする課題】
軽量で現場施工の簡単な吸音材は現在の住環境及び労働環境対策において求められている。本発明は従来の遮音理論である質量法則に元ずくのではなく、新しい概念として説明されているスズ理論の実践と実証により軽量で現場施工の簡単な遮音構造の発明及び発見にある。スズ理論によれば音のエネルギーを運動のエネルギーに変換させることにより軽量構造でも遮音性がでるとされている。つまり発泡体の適性な材質及び粒子構造を発明或いは発見できればその発泡体の多孔層となっている気泡粒子構造内に音を導き粒子全体を音圧によって振動させ、運動のエネルギーとして音が吸収されることになる。本発明課題は発泡体が吸音層となる適性材質及び適性粒子構造を発見することにある。標準パネル製品として性能が証明されれば専門家が施工する現場施工の築造でなく素人でも施工できる吸音パネルとして市場に提供できる。
【0004】
【課題を解決するための手段】
スズ理論の証明手段の材料として本発明では発泡体である密度30kg/m 以下の軽くセルサイズ100ミクロン以下の微細な粒子構造を有する硬質の連通気泡フェノールフォーム材の中に発見し特定した。連通気泡を有する微細な粒子構造の中に音を導き気泡粒子全体を音圧によって振動させ運動のエネルギーとして音を吸収させる。この特定の前提として連立気泡と独立気泡の粒子構造の差を比較整理をするため独立気泡の硬質ウレタンフォームを取上げ対比実験をした所、垂直入射吸音率測定方法で連通気泡の硬質フェノールフォームは低周波領域で4倍、高周波領域で3〜4倍の吸音率を示しフェノールフォームの連通気泡と材質の有意性が確認された。連通気泡材質を有する他発泡体もあり探索も試みたが弾力性がある軟質系材質でありパネルの芯材としての適性はなく対象検討材料から削除した。多孔質材料の吸音特性を決定する因子として、単位面積の流れ抵抗・多孔度・空気の体積弾性率・構造因子が重要因子になると専門書で説明されており特定した硬質連通気泡のフェノールフォームは100ミクロン以下の微細な粒子構造を有し音を吸収するために必要な連通気泡を持ち多孔層となっている粒子構造は流れ抵抗も大きく、粒子壁の薄い粒子構造は空気を多く含有できる気泡構造になっており又特定している密度30kg/m以下の粒子壁の薄く軽い硬質フェノールの材質と微細な粒子構造は特に音圧による振動吸収に最大の効果をだす気泡構成となる。従来使用されている硬質フェノールフォームは独立気泡で密度が40kg/m以上を有し、本発明で特定した密度30kg/m以下の低い領域ではフェノールフォーム材質の強度が弱く脆い性質がでて工業用に使用できない範囲の品質であった。本発明では硬質フェノールフォームの脆さを切断のし易さとして利用しハニカム材の鋭いセル端面を工具のように使用し硬質フェノールフォームを簡単に切断しセルの中に充填することにより工業的に使用することに成功した。この結果硬質フェノールフォームの強度不足及び脆さは硬質フェノールフォームを包むハニカム材セル構造で解決された。特定した硬質連通気泡フェノールフォームの粒子構造は単独でも吸音性に効果があるがハニカム材セル構造の中に充填することにより音の振動吸収が更に上がり吸音性は10〜20%向上する効果が確認された。
【0005】
【発明の実施の形態】
スズ理論の実現できる音を吸収する材料として発見した密度が23kg/m で粒子サイズ100ミクロン以下の個々に気泡が開泡され連続気泡の粒子構造を有している硬質フェノールフォームをセル構造がむき出しの状態の板で音源と接する躯体の中に挿入するだけでも音吸収の効果はでるが、遮音に対しては隙間なく躯体及び構造体と一体化させる必要があるため、フェノールフォームの強度・脆さが問題となる。その問題点を改善する使用方法として厚さ30mmの硬質連通気泡のフェノールフォームと同一寸法形状のセルサイズ12mmの厚み30mmの樹脂含浸処理のされたペーパーハニカム材を重ね加圧プレスで荷重を加えハニカム材セルの鋭い端面を工具のように使用しフェノールフォームを切断しハニカム材セルの中に硬質連通気泡フェノールフォームを充填することを手段として吸音の芯層材と使用することを本発明の特徴としている。ハニカム材セルに充填された硬質で連通気泡のフェノールフォームはフェノールフォームの欠陥となる強度不足及び脆さはハニカム材セルで包まれ改善される。実施の形態はハニカム材セルにフェノールフォームが充填され複合化された芯層材をサンドイッチパネルの吸音芯材層として使用することを特徴としパネル表面材の音入射側の面材には入射を妨げない通気性の材料を選択する。フェノールフォームとハニカム材の複合吸音芯材層に30mmの厚みもたせれば音は気泡粒子構造内で減衰し低周波から高周波まで吸音効果がでるので入射側でない面材も従来の概念である音反射面としての通気性のない材料でなく通気性のある材料を選択できるのもスズ理論に基ずく本発明の特徴である。両面からの音吸収ができる。実施の形態を要約すると入射側の吸音面材層・硬質連通気泡のフェノールフォームがハニカム材セルに充填され複合化された吸音芯材層・音反射材又は通気性面材を使用する層の三層構造が接着で一体化されたサンドイッチ構造体とてして使用する。
【0006】
【実施例】
図1は多孔層の粒子構造内に音を導き減衰させる発泡体でスズ理論を実証する吸音層材として発見した密度23kg/m、セルサイズ100ミクロン以下の気泡が開泡された厚さ30mmの硬質連通気泡フェノールフォームがセルサイズ12mm、厚さ30mmの樹脂含浸ペーパーハニカム材のセルの中に充填されてフェノールフォームの弱い強度及び脆さがハニカム材セルの強度で補強及び保護され複合構造体となり使用された芯層材の図である。図2は入射側に使用した通気性のある1.6mmのアルミエキスパドメタル板と芯層材の通気性を妨げないように空気空間を保つため30mm間隔の線状に1.6mmのアルミエキスパンドメタル板の芯層材と接着させる面に接着剤を塗布した図であり芯層材と十分な強度で接着させている。図3は音の入射側でない反射面に使用した1.0mmのアルミ板を芯層材と接着させる接着面の全面に接着剤を塗布し強固に芯層材と接着させ吸音サンドイッチパネルとして完成した図である。
【0007】
【発明の効果】
効果−1 スズ理論を証明する材料発見と効果
発泡体の粒子構造内に音を導き粒子構造全体を振動させ音を運動のエネルギーとして吸収させる。この理論を実証できる適切な材料として密度23kg/mの粒子壁が硬質で粒子構造が連通し粒子サイズが100ミクロン以下の微細な粒子構造を持つフェノールフォーム材に発見した。効果の分かり易い比較として粒子構造が独立気泡の硬質ウレタンフォームと垂直入射吸音率測定方法により比較した所次記の効果が確認された。

Figure 2004021246
材料構成は入射側に通気性のある1.6mmアルミエキスパンドメタル板、吸音層は30mmの発泡体、遮断層に1.0mmアルミ板を使用し三層を接着で一体化したパネル。
効果−2 スズ理論の応用
密度23kg/mの硬質で連通気泡粒子構造を持つフェノールフォームは単体では強度が弱く脆いためハニカム材セル構造の中にフェノールフォームを充填し使用する方法を発明しこの充填した複合材の吸音率を確認した所、フェノールフォーム単体以上に吸音性が良くなる効果を確認した。ハニカム材セルを大きな一つの粒子構造と捕らえ、ハニカム材セルの中に硬質で連通気泡粒子構造の微細で多孔質のフェノールフォームが充填されることにより吸音効果は相乗的に良くなる。ハニカム材質による有意差は少ない。
Figure 2004021246
材料構成は音入射側に通気性のある1.6mmアルミエキスパンドメタル板、吸音層は30mmの樹脂含浸セルサイズ12mmペーパーハニカム材とフェノールフォームの複合層、入射反対面の遮断層材に1.0mmのアルミ板を使用し接着で一体化したパネル。
効果−3 スズ理論の実証:吸音層の厚さと吸音率
発泡体の粒子構造内に音を導き粒子構造全体を振動させ音を運動のエネルギーとして吸収させる。このスズ理論に合う材質及び粒子構造であれば吸音層となる粒子構造が一定厚さ層を満たせば音吸収層として十分であろうとの予測が成り立つ。本発見の材料材質によればこの理論予測を下記の実測値により証明された。
Figure 2004021246
材料構成は効果−2の条件で実施。
【図面の簡単な説明】
【図1】粒子気泡構造内に音を導き粒子構造全体を音圧によって振動させ音を運動のエネネギーとして吸収する密度23kg/m、セルサイズが100ミクロンの硬質で気泡が開泡された厚さ30mmの連通気泡フェノールフォームが樹脂含浸のセルサイズ12mmで厚さ30mmのペーパーハニカム材のセルの中に充填、ハニカム材セルで保護されサンドイッチパネルの芯層材となった断面図である。
【図2】音の入射面になる表面に通気性のある1.6mm厚さのアルミエキスパンドメタル板の芯層材と接着する接着面に通気性を妨げないよう接着剤が30mm間隔の通気空間を保った線状に塗布され芯層材と十分な強度で接着した断面図である。
【図3】入射反対面の音反射層に1.0mm厚さのアルミ板を使用し芯層材と接着させる面の全面に接着剤を塗布し音吸収層の厚さ30mmの芯層材と強固に接着させ吸音サンドイッチパネルの形態になった断面図である。
【符号の説明】
1 音吸収の粒子構造を有する厚さ30mmの硬質連通気泡フェノールフォーム
2 セルサイズ121mmの厚さ30mmである樹脂含浸ペーパーハニカム材
3 音入射側に使用する通気性のある厚さ1.6mmのアルミエキスパンドメタル板
4 通気空間を保った30mm間隔の線状に芯層材との接着面に塗布された接着剤
5 音入射反対側に使用した厚さ1.0mmのアルミ板の芯層材と接着する面の全面に塗布した接着剤
6 音入射反対側の反射面に使用した厚さ1.0mmのアルミ板[0001]
TECHNICAL FIELD OF THE INVENTION
Noise reduction is a global issue that is inevitable in the living and working environments. In the living environment, adjacent rooms in detached houses, adjacent rooms in condominiums and adjacent problems, and noise generated from roads, railways, airfields, aircraft, and factories, and in the work environment, it has always been natural to endure workplaces. In 1992, the Ministry of Labor issued a notice of improvement and regulation based on ISO standards. Sound measures are a field that has been escaped with patience in response to water quality, air, energy saving measures, etc. There is an unexplored technical area in terms of technology.
[0002]
[Prior art]
The current technology of sound insulation measures is based on the law of mass, and the measures to increase the weight and reduce the thickness of concrete with thick walls and structures handling lead are considered to be the most effective structures, and are often implemented. In the case of taking measures to reduce the weight, the structure is such that the fiber layer of glass wool or the like and the air layer are combined to take a thickness. In addition, although commercially available sound absorbing materials, synthetic resin foams, asbestos boards, gypsum boards, plywood, and the like are used in construction with an idea structure including experience, the principle does not deviate from the range of the mass law. Therefore, all of the conventional sound insulating wall structures are constructed by on-site construction, and there is no commercially available panel product that is simple and lightweight and has a proven sound absorbing performance.
[0003]
[Problems to be solved by the invention]
Sound absorbers that are lightweight and easy to construct in the field are required in current living and working environment measures. The present invention is not based on the mass law which is the conventional sound insulation theory, but is based on the invention and discovery of a light-weight and simple on-site construction sound insulation structure by practicing and verifying the tin theory described as a new concept. According to tin theory, sound insulation can be obtained even in a lightweight structure by converting sound energy into kinetic energy. In other words, if the appropriate material and particle structure of the foam can be invented or discovered, sound is guided into the cellular particle structure which is a porous layer of the foam, and the whole particle is vibrated by sound pressure, so that sound is absorbed as energy of motion. Will be. An object of the present invention is to find a suitable material and a suitable particle structure in which a foam serves as a sound absorbing layer. If the performance is proved as a standard panel product, it can be provided to the market as a sound absorbing panel that can be constructed by an amateur, not by construction on site construction performed by specialists.
[0004]
[Means for Solving the Problems]
In the present invention, as a material for the proof means of the tin theory, the present invention was found and specified in a rigid open- celled phenol foam material having a fine particle structure of a light weight having a density of 30 kg / m 3 or less and a cell size of 100 μm or less . The sound is guided into a fine particle structure having communicating bubbles, and the entire bubble particle is vibrated by sound pressure to absorb the sound as kinetic energy. As a specific premise, a rigid urethane foam with closed cells was taken to compare and organize the difference in the particle structure between the closed cells and the closed cells, and a comparison experiment was performed. It showed a sound absorption coefficient of 4 times in the frequency region and 3 to 4 times in the high frequency region, confirming the significance of the communicating cells and material of the phenol foam. We also tried to search for other foams that have open-cell materials, but they were resilient soft materials and were not suitable as panel cores, so they were removed from the study. It has been described in specialized books that flow resistance per unit area, porosity, bulk modulus of air, and structural factors are important factors that determine the sound absorption characteristics of porous materials. A particle structure that has a fine particle structure of 100 microns or less and has a communicating layer necessary for absorbing sound and has a porous layer has a large flow resistance, and a particle structure with a thin particle wall can contain a lot of air. The material of the thin and light hard phenol and the fine particle structure, which have a structure and a specified particle wall having a density of 30 kg / m 3 or less, have a bubble structure that has the greatest effect particularly on vibration absorption by sound pressure. Conventionally used rigid phenol foams are closed cells and have a density of 40 kg / m 3 or more, and in the low region of the density of 30 kg / m 3 or less specified in the present invention, the strength of the phenol foam material is weak and brittle. The quality was in a range that could not be used for industrial purposes. According to the present invention, the brittleness of rigid phenol foam is utilized as easy cutting, and the sharp phenol foam is easily cut and filled into cells by using the sharp cell end face of the honeycomb material as a tool. Successfully used. As a result, the insufficient strength and brittleness of the rigid phenol foam were solved by the honeycomb material cell structure surrounding the rigid phenol foam. The particle structure of the specified rigid open-cell phenol foam alone has an effect on sound absorption, but filling it into the honeycomb material cell structure further increases the vibration absorption of sound and improves the sound absorption by 10 to 20%. Was done.
[0005]
BEST MODE FOR CARRYING OUT THE INVENTION
A rigid phenol foam with a density of 23 kg / m 3 and a particle size of 100 μm or less was discovered as a material that absorbs the sound that can be realized by the tin theory. The sound absorption effect can be obtained simply by inserting it into a frame that is in contact with the sound source with a bare plate, but it is necessary to integrate the frame with the frame and structure without any gaps for sound insulation. Brittleness is a problem. As a method of use to improve the problem, a 30 mm thick phenol foam having the same dimensions as a phenol foam having a continuous open cell and a 30 mm thick resin-impregnated paper honeycomb material having a cell size of 12 mm are stacked, and a load is applied by a pressure press to the honeycomb. The feature of the present invention is to use the sharp end face of the material cell as a tool to cut the phenol foam and fill the honeycomb material cell with the rigid open-cell phenol foam as a means of sound absorbing core layer material. I have. The rigid and open-celled phenol foam filled in the honeycomb material cell is improved in insufficient strength and brittleness, which are defects of the phenol foam, by being wrapped in the honeycomb material cell. The embodiment is characterized in that a honeycomb core cell is filled with phenol foam and a composite core layer material is used as a sound-absorbing core layer of a sandwich panel. Choose no breathable material. If the phenol foam / honeycomb composite sound-absorbing core layer has a thickness of 30 mm, the sound is attenuated in the bubble particle structure and has a sound absorbing effect from low frequency to high frequency. A feature of the present invention based on the tin theory is that a material having air permeability can be selected instead of a material having no air permeability as a surface. Can absorb sound from both sides. In summary of the embodiment, three layers of the sound absorbing core material layer and the sound reflecting core material or the sound reflecting material or the air-permeable surface material are formed by filling the honeycomb material cell with the sound absorbing surface material layer on the incident side and the phenol foam of the hard open cells in the honeycomb material cell. It is used as a sandwich structure in which a layer structure is integrated by bonding.
[0006]
【Example】
Fig. 1 shows a foam that guides and attenuates sound in the particle structure of the porous layer. A sound absorbing layer material that demonstrates the tin theory was found to have a density of 23 kg / m 3 and a thickness of 30 mm in which bubbles with a cell size of 100 microns or less were opened. Is filled into cells of resin-impregnated paper honeycomb material having a cell size of 12 mm and a thickness of 30 mm, and the weakness and brittleness of the phenol foam are reinforced and protected by the strength of the honeycomb material cells to form a composite structure. It is a figure of the core layer material used next. FIG. 2 shows a 1.6 mm aluminum expanded metal plate having a permeability of 1.6 mm used on the incident side and a 1.6 mm aluminum expanded line in 30 mm intervals in order to keep the air space so as not to hinder the ventilation of the core layer material. FIG. 4 is a diagram in which an adhesive is applied to a surface of the metal plate to be bonded to the core layer material, and the metal plate is bonded to the core layer material with sufficient strength. FIG. 3 shows a sound-absorbing sandwich panel in which a 1.0 mm aluminum plate used for the reflection surface other than the sound incident side is adhered to the core layer material, and an adhesive is applied to the entire surface of the adhesion surface and firmly adheres to the core layer material. FIG.
[0007]
【The invention's effect】
Effect-1 Discovery of a material that proves the tin theory and effect The sound is guided into the particle structure of the foam, and the entire particle structure is vibrated to absorb the sound as kinetic energy. As a suitable material that can prove this theory, a phenol foam material having a fine particle structure with a hard particle wall having a density of 23 kg / m 3, a continuous particle structure and a particle size of 100 μm or less was discovered. As an easy-to-understand comparison, the following effect was confirmed by comparing rigid urethane foam having a closed cell structure with a normal incidence sound absorption coefficient measurement method.
Figure 2004021246
The material composition is a panel in which three layers are integrated by bonding using a 1.6 mm aluminum expanded metal plate with air permeability on the incident side, a 30 mm foam body for the sound absorbing layer, and a 1.0 mm aluminum plate for the blocking layer.
Effect-2 Application of Tin Theory A phenol foam having a rigid and open-celled particle structure with a density of 23 kg / m 3 is weak and brittle when used alone, and a method of filling and using phenol foam in a honeycomb material cell structure was invented. When the sound absorption coefficient of the filled composite material was confirmed, it was confirmed that the sound absorbing property was improved more than that of the phenol foam alone. The honeycomb material cell is regarded as one large particle structure, and the sound absorbing effect is synergistically improved by filling the honeycomb material cell with a fine and porous phenol foam having a hard and open-celled particle structure. There is little significant difference depending on the honeycomb material.
Figure 2004021246
The material composition is a 1.6 mm aluminum expanded metal plate with air permeability on the sound incident side, the sound absorbing layer is a 30 mm resin impregnated cell size 12 mm, a composite layer of paper honeycomb material and phenol foam, and a 1.0 mm thick cut-off layer material on the opposite side of the incidence. A panel that is integrated by bonding using an aluminum plate.
Effect-3 Demonstration of tin theory: sound absorption layer thickness and sound absorption coefficient Sound is guided into the particle structure of the foam, and the entire particle structure is vibrated to absorb the sound as energy of motion. It is predicted that if the material and the particle structure conform to the tin theory, if the particle structure serving as the sound absorbing layer satisfies a certain thickness layer, the sound absorbing layer will be sufficient. According to the discovered material, this theoretical prediction was proved by the following measured values.
Figure 2004021246
The material composition was implemented under the condition of Effect-2.
[Brief description of the drawings]
FIG. 1 shows a thickness of 23 kg / m 3 , a cell size of 100 μm, which is a rigid cell with a density of 23 kg / m 3 and a cell size of 100 μm, in which sound is guided into a particle bubble structure and the whole particle structure is vibrated by sound pressure to absorb sound as energy of movement. FIG. 4 is a cross-sectional view of a 30 mm thick open-cell phenol foam filled in a resin-impregnated paper honeycomb material cell having a cell size of 12 mm and a thickness of 30 mm and protected by the honeycomb material cell to form a core layer material of a sandwich panel.
FIG. 2 is a diagram showing a ventilation space having a gap of 30 mm so as not to impede ventilation on a bonding surface which is bonded to a core layer material of a 1.6 mm-thick aluminum expanded metal plate having ventilation on a surface to be a sound incident surface. FIG. 4 is a cross-sectional view of a linear coating applied to the core layer material with sufficient strength.
FIG. 3 shows the use of a 1.0 mm-thick aluminum plate for the sound reflection layer on the opposite side of the incidence, application of an adhesive over the entire surface to be adhered to the core layer material, and a 30 mm-thick core layer material for the sound absorption layer. It is sectional drawing in the form of the sound-absorbing sandwich panel made to adhere firmly.
[Explanation of symbols]
1 30 mm thick rigid open-cell phenol foam having a sound-absorbing particle structure 2 resin-impregnated paper honeycomb material having a cell size of 121 mm and a thickness of 30 mm 3 air-permeable 1.6 mm thick aluminum used on the sound incident side Expanded metal plate 4 Adhesive applied to the bonding surface with the core layer material in a 30 mm-spaced line keeping the ventilation space 5 Adhesion to the 1.0 mm thick aluminum plate core layer material used on the side opposite to the sound incidence Adhesive 6 applied to the entire surface to be treated. 1.0 mm thick aluminum plate used on the reflection surface on the opposite side of the sound incidence.

Claims (3)

密度30kg/m以下でセルサイズ100ミクロン以下の硬質で微細な粒子構造を有し気泡が独立気泡でなく開泡された連通気泡のフェノールフォームを使用しフェノールフォームの強度不足及び脆さを補うため同一寸法形状のアルミ・ペーパー・セラミックス質等のハニカム材をフェノールフォームに重ね機械加圧プレスにより荷重をかけハニカム材の鋭い端面を工具のように使用しフェノールフォームを切断しながらハニカム材セルの中に充填し複合化された吸音芯層材を音吸収目的とした芯層材に使用することを特徴とし、ハニカム材セルに充填されたフェノールフォームの100ミクロン以下の多孔層となっている微細な粒子構造内に音を導き粒子構造全体を音圧によって振動させ運動のエネルギーとして音を吸収させることを手段とした音入射側に通気性のある面材を使用し通気性を妨げないように接着剤が塗布され芯層材に接着された層、芯層材となるハニカム材セルに硬質連通気泡フェノールフォームが充填された吸音層、入射反対面に通気性のない音遮断材料を使用し接着さた面材層からなる三層構造が接着で一体化された吸音サンドイッチ構造体。A phenol foam having a rigid and fine particle structure with a density of 30 kg / m 3 or less and a cell size of 100 μm or less and having open cells rather than closed cells is used to compensate for insufficient strength and brittleness of the phenol foam. Therefore, a honeycomb material such as aluminum paper, ceramics, etc. of the same dimensions and shape is placed on a phenol foam, a load is applied by a mechanical pressure press, and the sharp end face of the honeycomb material is used like a tool to cut the phenol foam while cutting the phenol foam. It is characterized in that the sound absorbing core layer material filled and compounded therein is used as a core layer material for the purpose of sound absorption, and a phenol foam filled in a honeycomb material cell is a porous layer of 100 μm or less. Is to introduce sound into a natural particle structure, vibrate the entire particle structure with sound pressure, and absorb sound as kinetic energy. A layer that is coated with an adhesive so that air permeability is not hindered by using a permeable face material on the sound entrance side as a step, a layer bonded to the core layer material, and a phenol hard-connected cell to the honeycomb material cell that becomes the core layer material A sound-absorbing sandwich structure in which a three-layer structure consisting of a sound-absorbing layer filled with a foam and a facing material layer bonded to a surface opposite to the incident side using a sound-insulating material having no air permeability is integrated by bonding. 密度30kg/m以下でセルサイズ100ミクロン以下の硬質で微細な粒子構造を有し気泡が独立気泡でなく開泡された連通気泡のフェノールフォームを使用しフェノールフォームの強度不足及び脆さを補うため同一寸法形状のアルミ・ペーパー・セラミックス質等のハニカム材をフェノールフォームに重ね機械加圧プレスにより荷重をかけハニカム材の鋭い端面を工具のように使用しフェノールフォームを切断しながらハニカム材セルの中に充填し複合化された吸音芯層材を音吸収目的とした芯層材に使用することを特徴とし、ハニカム材セルに充填されたフェノールフォームの100ミクロン以下の多孔層となっている微細な粒子構造内に音を導き粒子構造全体を音圧によって振動させ運動のエネルギーとして音を吸収させることを手段としたサンドイッチパネルの音の入射する両側の二面に通気性のある材料を使用し面材の通気性を妨げないよう接着剤が塗布された層、芯層材となるハニカム材セルに硬質連通気泡フェノールフォームが充填された吸音層の三層構造が接着で一体化された吸音サンドイッチ構造体。A phenol foam having a rigid and fine particle structure with a density of 30 kg / m 3 or less and a cell size of 100 μm or less and having open cells rather than closed cells is used to compensate for insufficient strength and brittleness of the phenol foam. Therefore, a honeycomb material such as aluminum paper, ceramics, etc. of the same dimensions and shape is placed on a phenol foam, a load is applied by a mechanical pressure press, and the sharp end face of the honeycomb material is used like a tool to cut the phenol foam while cutting the phenol foam. It is characterized in that the sound absorbing core layer material filled and compounded therein is used as a core layer material for the purpose of sound absorption, and a phenol foam filled in a honeycomb material cell is a porous layer of 100 μm or less. Is to introduce sound into a natural particle structure, vibrate the entire particle structure with sound pressure, and absorb sound as kinetic energy. A layer of air-permeable material is used on both sides of the sandwich panel where sound enters, and a layer of adhesive is applied so as not to hinder the air permeability of the face material. A sound-absorbing sandwich structure in which a three-layer structure of a sound-absorbing layer filled with open-cell phenol foam is integrated by bonding. 密度30kg/m以下でセルサイズ100ミクロン以下の硬質で微細な粒子構造を有し気泡が独立気泡でなく開泡された連通気泡のフェノールフォームを使用しフェノールフォームの多孔層となっている粒子構造内に音を導き気泡粒子構造の全体を音圧によって振動させ運動のエネルギーとして音を吸収させる芯層材として硬質連通気泡フェノールフォームを使用することを特徴として、音入射側の面は通気性の材料と気泡構造がむきだしの硬質連通気泡フェノーフオーム板で構成され入射側面の入射性を妨げないようシール、脱落防止等の施工手段が施され音吸収構造体として硬質連通気泡フェノールフォームが使用された構造躯体及びパネル構造体。Particles having a hard and fine particle structure with a density of 30 kg / m 3 or less and a cell size of 100 μm or less and having a porous layer of phenol foam using open-cell phenol foam in which bubbles are not closed cells but are opened. It is characterized by the use of hard communicating phenol foam as a core layer material that guides sound into the structure and vibrates the entire bubble particle structure by sound pressure and absorbs sound as kinetic energy. The material and the cell structure are made of a bare, rigid, open-cell phenolic foam plate that is sealed and prevented from falling off so as not to impede the light incidence on the entrance side. Structural frame and panel structure.
JP2002208912A 2002-06-14 2002-06-14 Sound-absorption structure by specification of particle structure of foamed body Pending JP2004021246A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002208912A JP2004021246A (en) 2002-06-14 2002-06-14 Sound-absorption structure by specification of particle structure of foamed body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002208912A JP2004021246A (en) 2002-06-14 2002-06-14 Sound-absorption structure by specification of particle structure of foamed body

Publications (2)

Publication Number Publication Date
JP2004021246A true JP2004021246A (en) 2004-01-22
JP2004021246A5 JP2004021246A5 (en) 2004-11-04

Family

ID=31184318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002208912A Pending JP2004021246A (en) 2002-06-14 2002-06-14 Sound-absorption structure by specification of particle structure of foamed body

Country Status (1)

Country Link
JP (1) JP2004021246A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005247235A (en) * 2004-03-08 2005-09-15 Kawaju Gifu Engineering Kk Noise absorbing panel for high-speed railway vehicle
WO2006069951A1 (en) * 2004-12-23 2006-07-06 Pelzer Acoustic Products Gmbh Porous lateral sound absorber provided with a local air gap
CN102407545A (en) * 2010-09-26 2012-04-11 王林林 Bamboo composite plate of honeycomb-shaped middle layer and preparation method thereof
JP2013043446A (en) * 2011-08-26 2013-03-04 Keizo Fujita Method for producing honeycomb panel, and honeycomb panel with use of the method
JP2016108764A (en) * 2014-12-03 2016-06-20 ニッコープランニング株式会社 Soundproof panel
JP2017107214A (en) * 2016-12-25 2017-06-15 株式会社 静科 Method for manufacturing sound absorbing and insulating panel, and structure
JP2017193897A (en) * 2016-04-21 2017-10-26 吉野石膏株式会社 Sound-absorbing board, installation method of sound-absorbing board
KR20180106976A (en) * 2017-03-17 2018-10-01 칼 프로이덴베르크 카게 Sound-absorbing textile composite
JP2018154113A (en) * 2017-03-17 2018-10-04 カール・フロイデンベルク・カー・ゲー Sound-absorbing textile composite
CN108838398A (en) * 2018-07-09 2018-11-20 珠海中科先进技术研究院有限公司 A kind of foamed aluminium Kagome honeycomb sandwich structure material and the preparation method and application thereof
CN112242131A (en) * 2020-12-01 2021-01-19 中国科学院化学研究所 Bubble acoustic metamaterial

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005247235A (en) * 2004-03-08 2005-09-15 Kawaju Gifu Engineering Kk Noise absorbing panel for high-speed railway vehicle
WO2006069951A1 (en) * 2004-12-23 2006-07-06 Pelzer Acoustic Products Gmbh Porous lateral sound absorber provided with a local air gap
CN102407545A (en) * 2010-09-26 2012-04-11 王林林 Bamboo composite plate of honeycomb-shaped middle layer and preparation method thereof
JP2013043446A (en) * 2011-08-26 2013-03-04 Keizo Fujita Method for producing honeycomb panel, and honeycomb panel with use of the method
JP2016108764A (en) * 2014-12-03 2016-06-20 ニッコープランニング株式会社 Soundproof panel
JP2017193897A (en) * 2016-04-21 2017-10-26 吉野石膏株式会社 Sound-absorbing board, installation method of sound-absorbing board
JP2017107214A (en) * 2016-12-25 2017-06-15 株式会社 静科 Method for manufacturing sound absorbing and insulating panel, and structure
JP2018154113A (en) * 2017-03-17 2018-10-04 カール・フロイデンベルク・カー・ゲー Sound-absorbing textile composite
KR20180106976A (en) * 2017-03-17 2018-10-01 칼 프로이덴베르크 카게 Sound-absorbing textile composite
CN108625039A (en) * 2017-03-17 2018-10-09 科德宝两合公司 The composite material for weaving that can be absorbed sound
KR20200039640A (en) * 2017-03-17 2020-04-16 칼 프로이덴베르크 카게 Sound-absorbing textile composite
KR102115163B1 (en) 2017-03-17 2020-05-26 칼 프로이덴베르크 카게 Sound-absorbing textile composite
KR102128879B1 (en) * 2017-03-17 2020-07-01 칼 프로이덴베르크 카게 Sound-absorbing textile composite
US10789931B2 (en) 2017-03-17 2020-09-29 Carl Freudenberg Kg Sound-absorbing textile composite
US10825439B2 (en) 2017-03-17 2020-11-03 Carl Freudenberg Kg Sound-absorbing textile composite
CN108625039B (en) * 2017-03-17 2022-01-28 科德宝两合公司 Sound-absorbing textile composite material
CN108838398A (en) * 2018-07-09 2018-11-20 珠海中科先进技术研究院有限公司 A kind of foamed aluminium Kagome honeycomb sandwich structure material and the preparation method and application thereof
CN112242131A (en) * 2020-12-01 2021-01-19 中国科学院化学研究所 Bubble acoustic metamaterial

Similar Documents

Publication Publication Date Title
US20170132999A1 (en) Sound attenuation
JP2004126487A (en) Sound absorbing structure having honeycomb material layer made of composite structure layer of air layer and foam layer
JP2004021246A (en) Sound-absorption structure by specification of particle structure of foamed body
CN1754201B (en) Sound-absorbing structure using thin film
JP4418862B2 (en) Sandwich panel
JP4972711B2 (en) Honeycomb panel laminate and box-like structure
CN205529956U (en) Broadband sound absorption cell board
CN212053322U (en) Sound insulation wall structure
JP2004027788A (en) Sound-absorbing panel structure with air space in foam-filled honeycomb material layer
JP2004021246A5 (en)
JP2004009726A (en) Method for manufacturing moisture absorbing and acoustic sandwich panel
JP4362579B2 (en) Water-resistant sound-absorbing panel material
CN210658813U (en) Low-frequency broadband sound insulation light wood structure wall
JP6002915B2 (en) Housing wall sound absorbing and insulating structure and mounting structure
JP2011026815A (en) Sound absorption panel
JP6065345B2 (en) Manufacturing method and structure of sound absorbing and insulating panel
CN101540166A (en) Foamed aluminium plate
JP6558617B1 (en) Sound absorption and insulation honeycomb panel
AU2008288674B2 (en) An acoustic panel
JP2008203542A (en) Sound absorbing body
JP2015132743A (en) Upside-improved translucent-type film vibration sound absorption/insulation wall
KR101911790B1 (en) Laminate for sound insulation
CN202008829U (en) Multipurpose broadband sound absorber module
CN216860777U (en) Multilayer composite damping sound insulation board
CN217974862U (en) Composite sound absorption and insulation board

Legal Events

Date Code Title Description
A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20040615

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060310

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20061205