JP2004020474A - Apparatus and method for inspecting defect in coating - Google Patents

Apparatus and method for inspecting defect in coating Download PDF

Info

Publication number
JP2004020474A
JP2004020474A JP2002178351A JP2002178351A JP2004020474A JP 2004020474 A JP2004020474 A JP 2004020474A JP 2002178351 A JP2002178351 A JP 2002178351A JP 2002178351 A JP2002178351 A JP 2002178351A JP 2004020474 A JP2004020474 A JP 2004020474A
Authority
JP
Japan
Prior art keywords
discharge
coating
tubular member
electrode
defect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002178351A
Other languages
Japanese (ja)
Other versions
JP3909581B2 (en
Inventor
Kazuki Yamashita
山下 和貴
Makoto Mizukami
水上 誠
Setsuo Tomonari
友成 節夫
Kenji Ebihara
蛯原 健治
Yukihiko Yamagata
山形 幸彦
Yoshifumi Koyama
小山 善文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IWAKI COATING KOGYO KK
SANWA HIGH TECH Inc
SANWA HIGH-TECH Inc
Kumamoto Technology and Industry Foundation
Original Assignee
IWAKI COATING KOGYO KK
SANWA HIGH TECH Inc
SANWA HIGH-TECH Inc
Kumamoto Technology and Industry Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IWAKI COATING KOGYO KK, SANWA HIGH TECH Inc, SANWA HIGH-TECH Inc, Kumamoto Technology and Industry Foundation filed Critical IWAKI COATING KOGYO KK
Priority to JP2002178351A priority Critical patent/JP3909581B2/en
Publication of JP2004020474A publication Critical patent/JP2004020474A/en
Application granted granted Critical
Publication of JP3909581B2 publication Critical patent/JP3909581B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus and a method for inspecting defects in a coating for detecting defects in an insulating coating formed on the surface of a specimen without damaging its surface and with ease and certainty regardless of the shape the specimen. <P>SOLUTION: While a voltage is applied across an electrode 30 filled with an electrically conductive liquid 33 on a tubular member 32 made of a solid dielectric, and a tubular body 20 which is the specimen, the liquid 33 is gradually injected into the tubular member 32 from a bottom end 32A so that a water level 33A gradually rises. A changes in current when discharge 80 such as silent discharge, arc discharge, or the like occurs is detected by a current measuring part 50, which outputs a signal S1 representing the change in current. The water level 33A of the liquid 33 is measured by a water level measuring part 60, which outputs a water level signal S2. Based on the signal S1 representing the change in current and the water level signal S2, a locational signal S<SB>L</SB>representing a location of the occurrence of the discharge 80 is generated by a locational signal generating part 70. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、例えば導電性の検査対象物の表面に被着された絶縁性の被膜の欠陥を検査するための被膜欠陥検査装置および被膜欠陥検査方法に係り、特に、いわゆるベローズ管のような伸縮管に好適に用いられる被膜欠陥検査装置および被膜欠陥検査方法に関する。
【0002】
【従来の技術】
金属またはその他の導電性材料からなる管または管状の容器の内側側面に、例えばフッ素樹脂膜のような絶縁膜をコーティング(被覆)してなる製品は、半導体,環境設備,生活設備,食品管理,医療機器などの幅広い分野で、盛んに利用されるようになってきている。
【0003】
このような製品においては、コーティングされた絶縁膜に何らかの原因によってピンホール欠陥のような被覆不良等が生じていると、その部分で絶縁性および被覆性の完全さが損なわれてしまい、その製品が用いられているプラントまたは装置等にプロセス上の欠陥または不調などを生じさせる要因となる場合がある。このため、ピンホール欠陥のような被覆不良を見つけ出すために検査を行うことが極めて重要なものとなっている。
【0004】
そのような被覆不良を検出する技術としては、例えばエナメルレータ法が提案されている。このエナメルレータ法では、検査対象である管または管状の容器の内部に例えば塩化ナトリウム水溶液のような導電性液体を注入し、その中に検出装置の負極側電極を浸漬する一方、管または管状の容器の金属あるいは導電性材料からなる部分には検出装置の正極側電極を接触させる。そして、正極側電極と負極側電極との間に数ボルト程度の電圧を所定時間に亘って印加して、正極側電極と負極側電極との間で導電性液体を介して漏洩電流が流れた場合には、それを検知することによって、管または管状の容器の内側側面にコーティングされた絶縁膜に被覆不良が生じているものと判定する。あるいは、このとき漏洩電流が流れなかった場合には、その検査対象の絶縁膜には被覆不良は生じていないものと判定される。
【0005】
また、他の技術として、金属缶体の内面に、界面活性剤を含有する電解質溶液を介して電極を接触させ、その電極を移動させながら、その電極と金属缶体との間に電圧を印加して、漏洩電流が流れた場合には、それに基づいて、金属缶体の内側側面にコーティングされた絶縁膜に被覆不良が生じているものと判定するという技術が提案されている(特開昭63−44158号公報)。
【0006】
さらに他の技術として、熱硬化性樹脂塗膜または熱可塑性樹脂フィルムなどで内面が被覆されたシームレス金属缶における被覆欠陥を検査するため、検査対象であるシームレス金属缶の内部に導電性ブラシを挿入し、その導電性ブラシと容器との間に800〜1000Vの直流高電圧を印加しながら両者を相対回転し、それらの間に流れる電流値を計測し、その電流値に基づいて、検査対象であるシームレス金属缶における被覆欠陥を検知するという技術が提案されている(特開平6−74941号公報)。
【0007】
また、さらに他の技術として、内側に絶縁膜が被着された金属容器の内部の被覆性を検知するにあたり、検査対象の金属容器の内部に導電性ブラシを挿入して絶縁膜に接触させると共に、その絶縁膜の表面に比抵抗が12MΩ・cm以上16MΩ・cm以下の導電性液体を供給し、金属容器と導電性ブラシとを相対的に回転させることで導電性ブラシによって導電性液体を微粒子化して、その状態で金属容器と導電性ブラシとの間に5V以上30V以下の電圧を印加して、このとき漏洩電流が生じた場合には、それを検知することにより、検査対象の金属容器における被覆欠陥を検知するという技術が提案されている(特開2000−46776公報)。
【0008】
【発明が解決しようとする課題】
このように、従来から、検査対象である管または管状の容器における絶縁膜の被覆材料を検査する技術として、検査対象と電極との間に電解質を介在させ、絶縁膜の被覆不良が生じていた場合には、それに起因した漏洩電流を生じさせることで、その被覆不良の発生を検知するという技術や、導電性ブラシを電極として用いて、その導電性ブラシを検査対象に接触させながら移動させるなどし、その導電性ブラシとピンホール欠陥のような被覆不良の部分との直接的な接触あるいは電解質を介しての接触によって漏洩電流を生じさせることで、その被覆不良の発生を検知するという技術が提案されていた。
【0009】
しかしながら、電解質を用いる技術では、管または管状の容器の内側側面の全面に亘って確実に電解質を行き渡らせなければ正確な検査が困難となるという問題がある。また、電解質液を管または管状の容器の内部に充填あるいは塗布する作業、検査後にその電解質液を完全に除去したり洗浄する作業などが必要となるなど、検査プロセスが煩雑なものとなり、スループットが低いという問題もある。
【0010】
導電性ブラシを用いる技術は、管の形状によっては導電性ブラシを絶縁膜に均一に接触させることが困難であるという問題がある。例えば伸縮管(ベローズ管)のように直線的な円筒状ではなく襞状の複雑な形状の管(これをΩ構造とも呼ぶ)の場合には、導電性ブラシが強く接触する部分と接触しない部分とが生じることとなり、例えば襞の奥まった部分にピンホール欠陥のような微小な欠陥が生じていた場合などには、その欠陥を検知できずに見過ごしてしまう虞がある。
【0011】
また、導電性ブラシや電解質を接触させることに起因して、検査対象の管または管状の容器の内部の表面が傷ついたり材質変化を引き起こす場合もある。さらに、検査後に不純物が残留し、洗浄が必要である。
【0012】
このように、上述のような従来の検査技術によっては、被覆不良の検査を簡易かつ確実に行うことは実質的には困難であった。
【0013】
本発明はかかる問題点に鑑みてなされたもので、その第1の目的は、導電性の検査対象物の表面に被着された絶縁性の被膜の欠陥を、検査対象物の表面を損傷することなく、検査対象物の形状を問わず簡単かつ確実に検出することができるようにした被膜欠陥検査装置および被膜欠陥検査方法を提供することにある。
【0014】
本発明の第2の目的は、被膜に生じた欠陥の位置を検知することができるようにした被膜欠陥検査装置および被膜欠陥検査方法を提供することにある。
【0015】
【課題を解決するための手段】
本発明による被膜欠陥検査装置は、導電性の検査対象物の表面に被着された絶縁性の被膜の欠陥を検査するものであって、固体誘電体により形成された管状部材を有すると共に管状部材の少なくとも一部に導電性液体が充填され、被膜との間に間隙を保ちながら検査対象物の表面に配設される電極と、検査対象物と電極との間に所定の電圧を印加する電圧印加部と、検査対象物の被膜に生じている欠陥に起因して検査対象物と電極との間で放電が発生したことを検知して放電検知信号を出力する放電検知部とを備えたものである。
【0016】
本発明による被膜欠陥検査方法は、導電性の検査対象物の表面に被着された絶縁性の被膜の欠陥を検査するものであって、固体誘電体により形成された管状部材を有すると共に管状部材の少なくとも一部に導電性液体が充填された電極を、被膜との間に間隙を保ちながら管体の表面に配設し、電圧印加部によって、検査対象物と電極との間に所定の電圧を印加し、放電検知部によって、検査対象物の被膜に生じている欠陥に起因して検査対象物と電極との間で放電が発生したことを検知して放電検知信号を出力するようにしたものである。
【0017】
本発明による被膜欠陥検査装置および被膜欠陥検査方法では、検査対象物の表面に電極を配設した状態で、電圧印加部によって、検査対象物と電極との間に所定の電圧を印加すると、両者間の被膜にピンホール欠陥などの欠陥が生じている場合には、その欠陥に起因して無声放電またはアーク放電などの放電が発生し、放電検知部によって、放電検知信号が出力される。これにより、検査対象物の被膜におけるピンホール欠陥などの欠陥の有無が検知される。
【0018】
ここで、本発明にいう「絶縁性の被膜」とは、絶縁性の被膜のみならず非導電性の被膜をも含む。なお、電機材料工学の観点からは、絶縁性と非導電性との区別は必ずしも明確な定義がなされているわけではないが、ここでは、いわゆる絶縁性物質と通常呼ばれている物質あるいは材料の特性を絶縁性と呼び、それよりも比抵抗などの特性としては低抵抗でも、実質的に電気的良導体ではない物質あるいは材料の特性を非導電性と呼ぶものとする。
【0019】
さらに、本発明にいう「誘電体」とは、絶縁物が帯電導体どうしの間にあって、両者の間の電気作用を媒介するとみられるとき、この絶縁物を誘電体という。
【0020】
本発明による被膜欠陥検査装置および被膜欠陥検査方法では、管状部材を、円筒状とし、検査対象物の内側に被着された被膜との間に間隙を保ちながら検査対象物に緩挿することができる。これにより、検査対象物の内側に被着された被膜の欠陥が検査される。
【0021】
また、管状部材を、断面環状で、円筒状の空腔部を有するものとし、検査対象物を、検査対象物の外側に被着された被膜と管状部材との間に間隙を保ちながら管状部材の空腔部に緩挿することができる。これにより、検査対象物の外側に被着された被膜の欠陥が検査される。
【0022】
本発明による被膜欠陥検査装置および被膜欠陥検査方法では、導電性液体が、管状部材内での水位が漸増するように管状部材に徐々に充填されるようにすることが好ましい。また、水位計測部によって、導電性液体の水位を計測して水位信号を出力し、位置信号生成部によって、放電検知信号と水位信号とに基づいて、放電の発生位置を表す位置信号を生成することが好ましい。これにより、検査対象物の被膜におけるピンホール欠陥などの欠陥の有無だけでなく、欠陥の位置も検知される。
【0023】
放電検知部は、具体的には、電流計測部によって、検査対象物と電極との間の電流変化を検知して電流変化を表す信号を放電検知信号として出力するようにすることができる。あるいは、放電検知部は、放電光検知部によって、検査対象物と電極との間の放電光を検知して放電光の発生方向を表す信号を放電検知信号として出力するようにすることができる。
【0024】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照して詳細に説明する。
【0025】
[第1の実施の形態]
図1および図2は、本発明の第1の実施の形態に係る被膜欠陥検査装置の概要構成を表すものである。この被膜欠陥検査装置10は、導電性の検査対象物である管体20の内側に形成された絶縁性の被膜21の欠陥を検査するものである。すなわち、検査対象物である管体20の被膜21に、ピンホール欠陥のような被覆不良または膜欠陥などの欠陥21Aが生じているか否かを判別し、さらに、欠陥21Aがある場合にはその位置を特定する。ここで、本明細書にいう「管体」とは、両端が開放された管のほか、両端のうち一端のみが開放され他方が閉鎖された管状の容器をも含む。
【0026】
管体20は、例えば、金属などからなる円筒形の導電性の管であって、両端が開放端となっている。管体20の長さは例えば20cm以上100cm以下、内径は例えば10cm以上40cm以下の範囲とすることができるが、この範囲に限られるものではない。被膜21は、例えばフッ素樹脂のような絶縁性材料により形成され、管体20の内周側面に均一な膜厚となるようにコーティング(被着)されている。
【0027】
被膜欠陥検査装置10は、電極30,電圧印加部40,電流計測部50,水位計測部60および位置信号生成部70を備えている。電極30は、検査対象物である管体20の表面に配設されている。電極30は、例えば円筒状の管状部材32を有し、被膜21との間に間隙31を保ちながら管体20に緩挿されている。管状部材32には、例えば食塩(NaCl)を溶解した電解液などの導電性液体33が充填されており、導電性液体33の水位33Aによって電極30の長さが決定される。導電性液体33は、被膜欠陥検査装置10において後述の無声放電またはアーク放電などの放電80を発生させることのできる液状物質であれば特に限定されず、例えば食塩などを添加した電解溶液,水銀(Hg)などの導電性金属,金属微粒子を添加した液体,高分子導電性液体,マイクロバブルを含む液体などが挙げられる。管状部材32は、例えばガラス,フッ素樹脂またはセラミックなどの固体誘電体により形成されている。管状部材32の長さは、管体20とほぼ等しいか、あるいは管体20よりもやや長くなっていることが好ましい。
【0028】
管状部材32の両端32A,32Bには、管体20および管状部材32自体を固定するための一対の固定部34A,34Bが設けられている。固定部34Aは、管体20の下端20Aを固定し、固定部34Bは、管体20の上端20Bを固定しており、これにより、管体20は、固定部34A,34Bの間で立設された状態で固定されている。なお、固定部34Bは、管体20の長さに合わせて固定部34Aとの間の距離が適宜変更可能となっていることが好ましい。また、固定部34Bには、管体20の内部を真空排気するための図示しないポンプまたは管体20の内部を真空排気した後に例えばアルゴン(Ar)などの不活性ガスを注入するためのガス供給系などが連結されているようにしてもよい。
【0029】
管状部材32は、固定部34Aを境として金属配管35と接続されている。金属配管35は、導電性液体33を収容するタンク36に達しており、導電性液体33は、タンク36から金属配管35を介して管状部材32に充填される。金属配管35の途中には、導電性液体33の供給量を制御するための弁37が設けられている。この弁37によって、導電性液体33が、水位33Aが漸増するように、管状部材32の下端32Aから上端32Bに向けて、徐々に充填される。
【0030】
電圧印加部40は、管体20と電極30との間に所定の電圧を印加するものであり、交流高電圧を発生する高電圧発生回路41および適宜の配線,端子等を備えている。すなわち、高電圧発生回路41の一方の出力端子42は、配線42Aを介して管体20の外側側面に接続されている。また、高電圧発生回路41の他方の出力端子43は、配線43Aを介して電流計測部50の端子51と接続され、電流計測部50の別の端子52は、配線52Aを介して金属配管35に結線されている。したがって、高電圧発生回路41から出力される交流高電圧は、管体20と電極30との間に印加されることとなる。なお、金属配管35は、全体が金属により形成されている必要はなく、少なくとも配線52Aが結線される部分が金属により形成されていれば足りる。
【0031】
電圧印加部40によって管体20と電極30との間に印加される電圧は、管体20と電極30との間に被膜21が介在していれば無声放電またはアーク放電などを生じないが、管体20と電極30との間に被膜21が介在していなければ、すなわち、被膜21にピンホール欠陥などの欠陥21Aがあれば無声放電またはアーク放電などの放電80を生じるような電圧値であることが好ましく、具体的には、例えば数kV程度とすることができる。
【0032】
無声放電とは、帯電導体の電極の両方または片方の表面を固体誘電体で覆い、交流やパルス電圧を印加して、大気圧付近で生成する放電である。電極間に固体誘電体があるために誘電体バリア放電とも呼ばれる。この放電では、放電ギャップの間に誘電体があるために、放電はアークなどの定常放電に遷移せず、ns程度の短時間継続するパルス性のマイクロ放電が次々と誘電体表面に生じる(『プラズマ工学の基礎』赤碕正則、村岡克紀、渡辺征夫、蛯原健治共著、産業図書)。
【0033】
電流計測部50は、管体20と電極30との間で放電80が発生した場合に管体20から電極30に流れるマイクロ電流を計測する。すなわち、電流計測部50は、放電80が発生した場合に特有の管体20と電極30との間の電流変化を検知してその電流変化を表す信号S1を端子53から出力する。
【0034】
水位計測部60は、例えば超音波センサにより構成されており、導電性液体33の水位33Aを計測して水位信号S2を出力する。水位計測部60は、例えば、管状部材32の直上に設置される。
【0035】
位置信号生成部70は、電流計測部50から電流変化を表す信号S1を、水位計測部60から水位信号S2をそれぞれ受け取る。位置信号生成部70は、これらの信号S1,S2に基づいて、同期演算処理を行うことによって放電80の発生位置を特定し、管体20の長手方向における放電80の発生位置を表す位置信号SL を生成する。
【0036】
次に、この欠陥検査装置の作用について説明する。
【0037】
まず、検査対象物である管体20が立設された状態で、被膜21との間に間隙31を保ちながら管体20に電極30を緩挿し、固定部34A,34Bによって管体20および電極30を固定する。
【0038】
管体20に電極30を緩挿したのち、高電圧発生回路41を動作させ、管体20と電極30との間に例えば数kV程度の交流高電圧を印加する。
【0039】
続いて、弁37を開き、導電性液体33を、タンク36から金属配管35を介して、水位33Aが漸増するように、管状部材32の下端32Aから上端32Bに向けて徐々に充填させていく。これにより、水位33Aの上昇に伴って、放電80が生じる可能性のある位置を、管体20の下端20Aから上端20Bに向かって徐々に移動させていくことができ、放電80の発生を検知するばかりでなく、発生位置の特定も可能となる。
【0040】
導電性液体33を管状部材32に充填するのと同時に、電流計測部50によって管体20から電極30に流れる電流を計測すると共に、水位計測部60によって水位33Aを計測する。
【0041】
管体20の被膜21に欠陥21Aが生じている場合には、導電性液体33の水位33Aが欠陥21Aの高さ位置に達したときに、管体20と電極30との間で放電80が生じる。その放電80が生じる際の電流変化が、電流計測部50によって計測され、その電流変化を表す信号S1が端子53から出力され、位置信号生成部70に入力される。位置信号生成部70では、電流変化を表す信号S1と、この信号S1が出力されたときの水位33Aを表す水位信号S2とを同期演算処理することによって、管体20の長手方向における放電80の発生位置を表す位置信号SL を生成する。この位置信号SL は、位置信号生成部70から図示しないモニタに表示され、あるいは図示しないプリンタに出力されるようにしてもよいことは言うまでもない。
【0042】
管体20の被膜21に欠陥がなく、被膜21の十分な被覆性が達成されている場合には、管体20と電極30との間に例えば数kV程度の交流高電圧をかけつつ、導電性液体33の水位33Aを管体20の下端20Aから上端20Bまで上昇させても、管体20と電極30との間に放電80は生じず、放電80に起因したマイクロ電流による電流変化も電流計測部50で計測されることはない。したがって、このような場合には、被膜21には欠陥がないものと判定することができる。
【0043】
このように本実施の形態では、固体誘電体により形成された円筒状の管状部材32に導電性液体33を充填させた電極30を、被膜21との間に間隙31を保ちつつ管体20に緩挿し、電圧印加部40によって管体20と電極30との間に電圧を印加し、電流計測部50によって、管体20の被膜21に生じている欠陥21Aに起因して管体20と電極30との間に放電80が生じる際の電流変化を検知し、その電流変化を表す信号S1を出力するようにしたので、被膜21の欠陥21Aを簡単かつ確実に検知することができる。また、管体20の形状に関わらず検査可能であり、例えば図3に示したような壁面がベローズ状(襞状)の伸縮管となっている管体22の内側に被着された被膜23であっても、本実施の形態の円筒状の管体20と全く同様の手順で、簡単かつ確実に検査をすることができる。さらに、電解質または導電性ブラシなどは不要であり、検査作業が簡単で、管体20または被膜21を損傷する虞もない。また、検査後に残留不純物がない。
【0044】
また、導電性液体33は、水位33Aが漸増するように管状部材32の下端32Aから徐々に充填されるようにしたので、水位33Aの上昇に伴って、放電80が生じる可能性のある位置を、管体20の下端20Aから上端20Bに向かって徐々に移動させていくことができ、放電80の発生を検知するばかりでなく、発生位置の特定も可能となる。
【0045】
具体的には、水位計測部60によって導電性液体33の水位33Aを計測して水位信号S2を出力し、位置信号生成部70によって、電流計測部50からの電流変化を表す信号S1と水位信号S2とに基づいて、管体20の長手方向における放電80の発生位置を表す位置信号SL を生成するようにしたので、管体20の長手方向における欠陥21Aの位置を特定することが可能となる。
【0046】
[第2の実施の形態]
図4は、本発明の第2の実施の形態に係る被膜欠陥検査装置の概要構成を表したものである。この被膜欠陥検査装置10Aは、前述の電流計測部50を設けず、放電80の放電光81を検知して放電光81の発生方向を表す信号S3を出力する放電光検知部90を備えたことを除き、第1の実施の形態で説明した被膜欠陥検査装置10と同一である。したがって、同一の構成要素には同一の符号を付して、その詳細な説明を省略する。
【0047】
放電光検知部90は、図5に示したように、放電光81を撮影するカメラ91と、このカメラ91によって得られた放電光81の画像データD3を記録する記録部92と、放電光81の画像データD3の画像処理および解析を行う画像解析部93とを有している。
【0048】
画像解析部93は、放電光81の画像データD3をもとに、図6に示したように、管体20の画像120,電極30の画像130および電極30から欠陥21Aへ向かう放電光81の画像181を含む断面の画像100を生成する。画像解析部93は、さらに、画像100において、直交する二本の軸100X,100Yを基準として、放電光81の画像181の方向181Aを求める。画像解析部93は、こうして求めた放電光81の画像181の方向181Aに基づいて、放電光81の発生方向を表す信号S3を出力するものである。
【0049】
なお、放電光検知部90は、固定部34Bがカメラ91による撮影を妨げない材料により形成されていれば、図3に示したように管体20の外部に設置することができる。また、カメラ91のみを放電光検知部90の他の部分から分離して管体20の内部に設置してもよい。さらに、導電性液体33の水位33Aの上昇に伴ってカメラ91を移動させるようにしてもよい。
【0050】
なお、本実施の形態では、電流計測部50(図1)が設けられていないので、高電圧発生部40の端子43は、配線43Aを介して金属配管35に結線されている。
【0051】
次に、この被膜欠陥検査装置10Aの作用について説明する。
【0052】
まず、第1の実施の形態と同様に、被膜21との間に間隙31を保ちながら管体20に電極30を緩挿し、高電圧発生回路41を動作させ、管体20と電極30との間に例えば数kV程度の交流高電圧を印加する。続いて、弁37を開き、導電性液体33を、タンク36から金属配管35を介して、水位33Aが漸増するように、管状部材32の下端32Aから上端32Bに向けて徐々に充填させていく。
【0053】
これと同時に、放電光検知部90によって放電光81の発生を監視すると共に、水位計測部60によって水位33Aを計測する。
【0054】
管体20の被膜21に欠陥21Aが生じている場合には、導電性液体33の水位33Aが欠陥21Aの高さ位置に達したときに、管体20と電極30との間で放電80が生じる。その放電80が生じる際の放電光81が、放電光検知部90のカメラ91によって撮影され、得られた放電光81の画像データD3が記録部92に記録される。画像解析部93は、放電光81の画像データD3を解析し、放電光81の画像181の方向181Aを求め、これに基づいて、電極30から欠陥21Aへ向かう放電光81の発生方向を表す信号S3を出力する。放電光81の発生方向を表す信号S3は、位置信号生成部70に入力される。位置信号生成部70では、放電光81の発生方向を表す信号S3と、この信号S3が出力されたときの水位33Aを表す水位信号S2とを同期演算処理することによって、管体20の長手方向および周方向における放電80の発生位置を表す位置信号SLCを生成する。
【0055】
管体20の被膜21に欠陥がなく、被膜21の十分な被覆性が達成されている場合には、管体20と電極30との間に例えば数kV程度の交流高電圧をかけつつ、導電性液体33の水位33Aを管体20の下端20Aから上端20Bまで上昇させても、管体20と電極30との間に放電80は生じず、放電光81も放電光検知部90で検知されることはない。したがって、このような場合には、被膜21には欠陥がないものと判定することができる。
【0056】
このように本実施の形態では、第1の実施の形態によって得られる効果に加え、放電光検知部90によって、管体20と電極30との間に放電80が生じる際の放電光81を検知して、その放電光81の発生方向を表す信号S3を出力するようにしたので、管体20の周方向における欠陥21Aの位置を特定することが可能となり、欠陥21Aの位置をさらに詳細に特定することができる。
【0057】
以上、実施の形態および変形例を挙げて本発明を説明したが、本発明は上記実施の形態および変形例に限定されるものではなく、種々変形が可能である。例えば、上記各実施の形態では、電流計測部50および放電光検知部90のうちいずれか一方を備えた場合についてそれぞれ説明したが、電流計測部50と放電光検知部90とを両方備えるようにしてもよい。この場合には、位置信号生成部70では、電流変化を表す信号S1と、放電光81の発生方向を表す信号S3と、この信号S3が出力されたときの水位33Aを表す水位信号S2とを同期演算処理することによって、管体20の長手方向および周方向における放電80の発生位置を表す位置信号SLCを生成する。
【0058】
さらに、例えば、上記各実施の形態では、管体20を立設した状態で電極30を緩挿するようにしたが、管体20の設置状態は立設に限られず、横設または斜設としてもよい。
【0059】
また、例えば、上記第2の実施の形態では、放電光81の画像データD3の解析を行う画像解析部93を、放電光検知部90に設けるようにした場合について説明したが、画像解析部93を位置検出部70に設けて、放電光検知部90は、放電光81の画像データD3を位置検出部70に送るようにしてもよい。
【0060】
また、例えば、上記各実施の形態では、管体20は金属により形成されているものとして説明したが、管体20の材質は、金属には限定されず、例えば非金属の導電性材料により形成されていてもよいことはいうまでもない。また、上記実施の形態では、管体20が、両端が開放された管である場合について説明したが、本発明は、両端のうち一端のみが開放され他方が閉鎖された管状の容器についても適用可能である。
【0061】
加えて、上記各実施の形態では、管状部材32を円筒状とし、被膜21との間に間隙31を保ちながら管体20に電極30を緩挿し、管体20の内側に被着された被膜21を検査するようにした場合について説明したが、例えば図7に示したように、断面環状で、円筒状の空腔部232Cを有する管状部材232を用い、例えば図8に示したように、管体220を、管体220の外側に被着された被膜221と管状部材232との間に間隙231を保ちながら管状部材232の空腔部232Cに緩挿するようにしてもよい。このようにすることによって、管体220の外側に被着された被膜221の欠陥221Aを検査することができる。
【0062】
さらに、上記各実施の形態ならびに図7および図8では、検査対象物が管体20である場合を例として説明したが、検査対象物は管体に限られない。例えば、平面または曲面の板状の検査対象物の表面に被着された被膜の欠陥を検査することもできる。この場合には、管状部材を扁平形状のものとし、その幅は検査対象物の幅に合わせて適宜設定することができる。
【0063】
【発明の効果】
以上説明したように請求項1ないし請求項7のいずれか1項に記載の被膜欠陥検査装置または請求項8ないし請求項14のいずれか1項に記載の被膜欠陥検査方法によれば、固体誘電体により形成された管状部材の少なくとも一部に導電性液体を充填させた電極を、被膜との間に間隙を保ちつつ管体の表面に配設し、電圧印加部によって検査対象物と電極との間に電圧を印加し、放電検知部によって、検査対象物の被膜に生じている欠陥に起因して検査対象物と電極との間で放電が発生したことを検知して放電検知信号を出力するようにしたので、被膜の欠陥を簡単かつ確実に検知することができる。また、検査対象物の形状に関わらず検査可能であり、例えば壁面がベローズ状(襞状)の伸縮管となっている管体であっても、円筒状の管体と全く同様の手順で、簡単かつ確実な検査が可能である。さらに、電解質または導電性ブラシなどは不要であり、検査作業が簡単で、管体または被膜を損傷する虞もない。また、検査後に残留不純物がない。
【0064】
特に、請求項4記載の被膜欠陥検査装置または請求項11記載の被膜欠陥検査方法によれば、導電性液体は、管状部材内での水位が漸増するように管状部材に徐々に充填されるようにしたので、水位の上昇に伴って、放電が生じる可能性のある位置を、検査対象物の全体に亘って徐々に移動させていくことができ、放電の発生を検知するばかりでなく、発生位置の特定も可能となる。
【0065】
特に、請求項5記載の被膜欠陥検査装置または請求項12記載の被膜欠陥検査方法によれば、水位計測部によって導電性液体の水位を計測して水位信号を出力し、位置信号生成部によって、放電検知信号と水位信号とに基づいて、放電の発生位置を表す位置信号を生成するようにしたので、欠陥の位置を特定することが可能となる。例えば管体を立設した状態で検査した場合であれば、管体の長手方向における欠陥の位置を特定することが可能となる。
【0066】
加えて、特に、請求項7記載の被膜欠陥検査装置または請求項14記載の被膜欠陥検査方法によれば、放電光検知部によって、放電が生じる際の放電光を検知して、その放電光の発生方向を表す信号を放電検知信号として出力するようにしたので、欠陥の位置をさらに詳細に特定することができる。例えば管体を立設した状態で検査した場合であれば、管体の周方向における欠陥の位置を特定することが可能となる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係る被膜欠陥検査装置の概略構成を表すブロック図である。
【図2】図1に示した放電の発生状態を表す断面図である。
【図3】図1に示した管体の他の例を表す断面図である。
【図4】本発明の第2の実施の形態に係る被膜欠陥検査装置の概略構成を表すブロック図である。
【図5】図4に示した放電光検知部の概略構成を表すブロック図である。
【図6】図5に示した画像解析部における画像解析を説明するための説明図である。
【図7】図1に示した管状部材の変形例を表す断面図である。
【図8】図7に示した管状部材を用いた被膜欠陥検査装置の要部を表す概略構成図である。
【符号の説明】
10,10A…被膜欠陥検査装置、20,22…管体、21…被膜、30…電極、31…間隙、32…管状部材、33…導電性液体、33A…水位、34A,34B…固定部、35…金属配管、36…タンク、37…弁、40…電圧印加部、41…高電圧発生部、42,43,51,52…端子、42A,43A,52A…配線、50…電流計測部、60…水位計測部、70…位置信号生成部、80…放電、81…放電光、90…放電光検知部、91…カメラ、92…記録部、93…画像解析部、100…画像、100X,100Y…軸、120…管体の画像、130…電極の画像、181…放電光の画像、181A…方向
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a film defect inspection apparatus and a film defect inspection method for inspecting, for example, a defect of an insulating film deposited on the surface of a conductive inspection object, and particularly relates to expansion and contraction of a so-called bellows tube. The present invention relates to a film defect inspection apparatus and a film defect inspection method suitably used for a pipe.
[0002]
[Prior art]
Products formed by coating an inner side of a tube or tubular container made of metal or other conductive material with an insulating film such as a fluororesin film are semiconductors, environmental equipment, living equipment, food management, It has been actively used in a wide range of fields such as medical equipment.
[0003]
In such a product, if the coated insulating film has a coating defect such as a pinhole defect due to any cause, the insulating property and the completeness of the coating property are impaired at that portion, and the product is damaged. May cause a process defect or malfunction in a plant or an apparatus in which is used. For this reason, it is extremely important to carry out an inspection to find out a coating defect such as a pinhole defect.
[0004]
As a technique for detecting such a coating defect, for example, an enamellator method has been proposed. In this enamellator method, for example, a conductive liquid such as an aqueous solution of sodium chloride is injected into a tube or a tubular container to be inspected, and the negative electrode of the detection device is immersed in the conductive liquid. The positive electrode of the detection device is brought into contact with a portion of the container made of metal or conductive material. Then, a voltage of about several volts was applied between the positive electrode and the negative electrode for a predetermined time, and a leakage current flowed through the conductive liquid between the positive electrode and the negative electrode. In such a case, by detecting this, it is determined that the insulating film coated on the inner side surface of the tube or the tubular container has a defective coating. Alternatively, if no leakage current flows at this time, it is determined that the insulating film to be inspected has no coating failure.
[0005]
As another technique, an electrode is brought into contact with the inner surface of a metal can through an electrolyte solution containing a surfactant, and a voltage is applied between the electrode and the metal can while moving the electrode. Then, when a leakage current flows, a technique has been proposed in which it is determined based on the leakage current that the insulating film coated on the inner side surface of the metal can has a coating defect (see Japanese Unexamined Patent Publication (Kokai) No. Sho-59 (1999)). 63-44158).
[0006]
As another technique, a conductive brush is inserted inside the seamless metal can to be inspected in order to inspect the coating defect in the seamless metal can whose inner surface is coated with a thermosetting resin coating film or a thermoplastic resin film. Then, while applying a high DC voltage of 800 to 1000 V between the conductive brush and the container, the two are relatively rotated, the value of the current flowing between them is measured, and based on the current value, the object to be inspected is measured. A technique of detecting a coating defect in a certain seamless metal can has been proposed (Japanese Patent Laid-Open No. 6-79441).
[0007]
In addition, as still another technique, a conductive brush is inserted into a metal container to be inspected and brought into contact with the insulating film in detecting coverage of the inside of a metal container having an insulating film adhered to the inside. A conductive liquid having a specific resistance of 12 MΩ · cm or more and 16 MΩ · cm or less is supplied to the surface of the insulating film, and the conductive brush is finely divided by the conductive brush by relatively rotating the metal container and the conductive brush. In this state, a voltage of 5 V or more and 30 V or less is applied between the metal container and the conductive brush, and if a leakage current occurs at this time, the leakage current is detected, thereby detecting the metal container to be inspected. There has been proposed a technique for detecting a coating defect in Japanese Patent Application Laid-Open No. 2000-46776.
[0008]
[Problems to be solved by the invention]
As described above, conventionally, as a technique for inspecting a coating material of an insulating film in a tube or a tubular container to be inspected, an electrolyte is interposed between the inspection object and an electrode, and poor coating of the insulating film has occurred. In such a case, a technique to detect the occurrence of the coating failure by generating a leakage current due to this, or using a conductive brush as an electrode and moving the conductive brush while contacting the inspection object, etc. However, there is a technology that detects the occurrence of the coating defect by causing a leakage current due to direct contact between the conductive brush and a defective coating portion such as a pinhole defect or contact through an electrolyte. Had been proposed.
[0009]
However, in the technique using an electrolyte, there is a problem that accurate inspection becomes difficult unless the electrolyte is completely spread over the entire inner side surface of the tube or the tubular container. In addition, the inspection process becomes complicated, such as the work of filling or applying the electrolyte solution into the inside of a tube or a tubular container, the work of completely removing or washing the electrolyte solution after the inspection, and the like. There is also the problem of being low.
[0010]
The technique using the conductive brush has a problem that it is difficult to make the conductive brush uniformly contact the insulating film depending on the shape of the tube. For example, in the case of a tube having a complicated shape, such as a telescopic tube (bellows tube), not a straight cylindrical shape but a pleated shape (this is also called an Ω structure), a portion where the conductive brush makes strong contact and a portion which does not contact For example, when a minute defect such as a pinhole defect occurs in a deep portion of the fold, the defect may not be detected and may be overlooked.
[0011]
In addition, the inner surface of the tube or tubular container to be inspected may be damaged or its material may be changed due to contact with the conductive brush or the electrolyte. Further, impurities remain after the inspection, and cleaning is required.
[0012]
As described above, it has been practically difficult to simply and reliably inspect for a coating defect by the conventional inspection techniques as described above.
[0013]
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and a first object of the present invention is to remove defects in an insulating coating applied to the surface of a conductive test object, thereby damaging the surface of the test object. It is an object of the present invention to provide a coating defect inspection apparatus and a coating defect inspection method which can easily and surely detect the inspection object regardless of the shape of the inspection object.
[0014]
A second object of the present invention is to provide a film defect inspection apparatus and a film defect inspection method capable of detecting a position of a defect generated in a film.
[0015]
[Means for Solving the Problems]
A coating defect inspection apparatus according to the present invention inspects a defect of an insulating coating applied to the surface of a conductive inspection object, and has a tubular member formed of a solid dielectric and a tubular member. A conductive liquid is filled in at least a part of the electrode, an electrode disposed on the surface of the inspection object while maintaining a gap between the coating and the coating, and a voltage for applying a predetermined voltage between the inspection object and the electrode. A device comprising an application unit and a discharge detection unit that detects that a discharge has occurred between the inspection object and the electrode due to a defect occurring in a film of the inspection object and outputs a discharge detection signal. It is.
[0016]
A coating defect inspection method according to the present invention is for inspecting a defect of an insulating coating applied to a surface of a conductive inspection object, and has a tubular member formed of a solid dielectric and a tubular member. An electrode, at least part of which is filled with a conductive liquid, is disposed on the surface of the tube while keeping a gap between the electrode and the coating, and a predetermined voltage is applied between the inspection object and the electrode by a voltage applying unit. The discharge detection unit detects that a discharge has occurred between the test object and the electrode due to a defect occurring in the coating of the test object, and outputs a discharge detection signal. Things.
[0017]
In the film defect inspection apparatus and the film defect inspection method according to the present invention, when a predetermined voltage is applied between the inspection object and the electrode by the voltage applying unit in a state where the electrode is arranged on the surface of the inspection object, When a defect such as a pinhole defect occurs in the intervening film, a discharge such as a silent discharge or an arc discharge occurs due to the defect, and a discharge detection signal is output by the discharge detection unit. Thus, the presence or absence of a defect such as a pinhole defect in the coating of the inspection target is detected.
[0018]
Here, the “insulating film” in the present invention includes not only an insulating film but also a non-conductive film. From the viewpoint of electrical material engineering, the distinction between insulating and non-conductive is not always clearly defined, but here, the so-called insulating material or the material The property is called insulation, and the property of a substance or material that is not a good electrical conductor even though it has a low resistance such as specific resistance is called non-conductive.
[0019]
Further, the term “dielectric” as used in the present invention is referred to as a dielectric when an insulator is present between charged conductors and is supposed to mediate an electrical action between the two.
[0020]
In the film defect inspection apparatus and the film defect inspection method according to the present invention, the tubular member is formed into a cylindrical shape, and the tubular member is slowly inserted into the inspection object while maintaining a gap between the film and the coating applied on the inside of the inspection object. it can. As a result, a defect of the coating applied to the inside of the inspection object is inspected.
[0021]
Further, the tubular member has an annular cross-section and has a cylindrical cavity, and the test object is a tubular member while maintaining a gap between the coating applied to the outside of the test object and the tubular member. Can be loosely inserted into the cavity. As a result, a defect of the coating applied to the outside of the inspection object is inspected.
[0022]
In the film defect inspection apparatus and the film defect inspection method according to the present invention, it is preferable that the conductive liquid is gradually filled in the tubular member so that the water level in the tubular member gradually increases. In addition, the water level measurement unit measures the water level of the conductive liquid and outputs a water level signal, and the position signal generation unit generates a position signal indicating the position where the discharge occurs based on the discharge detection signal and the water level signal. Is preferred. Thus, not only the presence or absence of a defect such as a pinhole defect in the coating of the inspection object, but also the position of the defect is detected.
[0023]
Specifically, the discharge detection unit can detect a current change between the inspection object and the electrode by the current measurement unit and output a signal indicating the current change as a discharge detection signal. Alternatively, the discharge detection unit can detect the discharge light between the inspection object and the electrode by the discharge light detection unit, and output a signal indicating a direction in which the discharge light is generated as a discharge detection signal.
[0024]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0025]
[First Embodiment]
FIG. 1 and FIG. 2 show a schematic configuration of a film defect inspection apparatus according to a first embodiment of the present invention. The coating defect inspection apparatus 10 inspects a defect of an insulating coating 21 formed inside a tube 20 which is a conductive inspection target. That is, it is determined whether or not a defect 21A such as a coating defect such as a pinhole defect or a film defect has occurred in the coating 21 of the tube 20 to be inspected. Identify the location. Here, the term "tube" as used in the present specification includes not only a tube having both ends opened but also a tubular container in which only one end is opened and the other is closed.
[0026]
The tube 20 is, for example, a cylindrical conductive tube made of metal or the like, and both ends are open ends. The length of the tube 20 may be, for example, in a range of 20 cm to 100 cm, and the inner diameter may be in a range of, for example, 10 cm to 40 cm, but is not limited to this range. The coating 21 is formed of, for example, an insulating material such as a fluororesin, and is coated (coated) on the inner peripheral side surface of the tube 20 so as to have a uniform thickness.
[0027]
The coating defect inspection apparatus 10 includes an electrode 30, a voltage application unit 40, a current measurement unit 50, a water level measurement unit 60, and a position signal generation unit 70. The electrode 30 is provided on the surface of the tube 20 that is the inspection target. The electrode 30 has, for example, a cylindrical tubular member 32, and is loosely inserted into the tube 20 while maintaining a gap 31 between the electrode 30 and the coating 21. The tubular member 32 is filled with a conductive liquid 33 such as an electrolytic solution in which salt (NaCl) is dissolved, and the length of the electrode 30 is determined by the water level 33A of the conductive liquid 33. The conductive liquid 33 is not particularly limited as long as it is a liquid substance capable of generating a discharge 80 such as a silent discharge or an arc discharge described later in the film defect inspection apparatus 10. For example, an electrolytic solution containing salt or the like, mercury ( Hg) and other liquids, liquids containing fine metal particles, polymer conductive liquids, and liquids containing microbubbles. The tubular member 32 is formed of a solid dielectric such as glass, fluororesin, or ceramic. Preferably, the length of the tubular member 32 is substantially equal to or slightly longer than the tube 20.
[0028]
At both ends 32A and 32B of the tubular member 32, a pair of fixing portions 34A and 34B for fixing the tubular body 20 and the tubular member 32 itself are provided. The fixing portion 34A fixes the lower end 20A of the tube 20, and the fixing portion 34B fixes the upper end 20B of the tube 20, whereby the tube 20 stands upright between the fixing portions 34A and 34B. It is fixed in the state where it was done. In addition, it is preferable that the distance between the fixing portion 34B and the fixing portion 34A can be appropriately changed according to the length of the tube 20. A pump (not shown) for evacuating the inside of the tube 20 or a gas supply for injecting an inert gas such as argon (Ar) after evacuating the inside of the tube 20 is supplied to the fixing portion 34B. A system or the like may be connected.
[0029]
The tubular member 32 is connected to the metal pipe 35 with the fixing portion 34A as a boundary. The metal pipe 35 reaches a tank 36 containing the conductive liquid 33, and the conductive liquid 33 is filled into the tubular member 32 from the tank 36 via the metal pipe 35. A valve 37 for controlling the supply amount of the conductive liquid 33 is provided in the middle of the metal pipe 35. The valve 37 gradually fills the conductive liquid 33 from the lower end 32A to the upper end 32B of the tubular member 32 so that the water level 33A gradually increases.
[0030]
The voltage application unit 40 applies a predetermined voltage between the tube 20 and the electrode 30, and includes a high voltage generation circuit 41 that generates an AC high voltage, and appropriate wiring and terminals. That is, one output terminal 42 of the high voltage generation circuit 41 is connected to the outer side surface of the tube 20 via the wiring 42A. The other output terminal 43 of the high voltage generation circuit 41 is connected to a terminal 51 of the current measuring unit 50 via a wiring 43A, and another terminal 52 of the current measuring unit 50 is connected to a metal pipe 35 via a wiring 52A. Is connected to Therefore, the AC high voltage output from the high voltage generation circuit 41 is applied between the tube 20 and the electrode 30. The metal pipe 35 does not need to be entirely formed of metal, and it is sufficient that at least a portion where the wiring 52A is connected is formed of metal.
[0031]
The voltage applied between the tube 20 and the electrode 30 by the voltage applying unit 40 does not generate a silent discharge or an arc discharge if the coating 21 is interposed between the tube 20 and the electrode 30. If the coating 21 is not interposed between the tube 20 and the electrode 30, that is, if the coating 21 has a defect 21A such as a pinhole defect, a voltage value that generates a discharge 80 such as a silent discharge or an arc discharge. Preferably, it is, for example, about several kV.
[0032]
Silent discharge is discharge generated by covering both or one surface of the electrodes of a charged conductor with a solid dielectric and applying an alternating current or a pulse voltage near atmospheric pressure. It is also called a dielectric barrier discharge because there is a solid dielectric between the electrodes. In this discharge, since there is a dielectric between the discharge gaps, the discharge does not transition to a steady discharge such as an arc, and pulsed microdischarges that last for a short time of about ns are successively generated on the dielectric surface (“ Basics of Plasma Engineering ”, written by Masanori Akasaki, Katsunori Muraoka, Masao Watanabe, and Kenji Ebihara, Industrial Books).
[0033]
The current measuring unit 50 measures a microcurrent flowing from the tube 20 to the electrode 30 when a discharge 80 occurs between the tube 20 and the electrode 30. That is, the current measuring unit 50 detects a specific current change between the tube 20 and the electrode 30 when the discharge 80 occurs, and outputs a signal S1 representing the current change from the terminal 53.
[0034]
The water level measurement unit 60 is configured by, for example, an ultrasonic sensor, measures the water level 33A of the conductive liquid 33, and outputs a water level signal S2. The water level measuring unit 60 is installed, for example, immediately above the tubular member 32.
[0035]
The position signal generating unit 70 receives a signal S1 representing a current change from the current measuring unit 50 and a water level signal S2 from the water level measuring unit 60, respectively. The position signal generation unit 70 specifies a position where the discharge 80 is generated by performing a synchronous calculation process based on these signals S1 and S2, and a position signal S representing the position where the discharge 80 is generated in the longitudinal direction of the tube 20. L Generate
[0036]
Next, the operation of the defect inspection apparatus will be described.
[0037]
First, in a state where the tube 20 to be inspected is set up, the electrode 30 is loosely inserted into the tube 20 while maintaining the gap 31 between the tube 21 and the tube 20 and the electrode by the fixing portions 34A and 34B. Fix 30.
[0038]
After the electrode 30 is loosely inserted into the tube 20, the high voltage generating circuit 41 is operated, and an AC high voltage of, for example, about several kV is applied between the tube 20 and the electrode 30.
[0039]
Subsequently, the valve 37 is opened, and the conductive liquid 33 is gradually filled from the lower end 32A of the tubular member 32 toward the upper end 32B from the tank 36 via the metal pipe 35 so that the water level 33A gradually increases. . Thereby, the position where the discharge 80 may occur can be gradually moved from the lower end 20A to the upper end 20B of the tubular body 20 with the rise of the water level 33A, and the occurrence of the discharge 80 is detected. In addition to this, the generation position can be specified.
[0040]
At the same time that the tubular member 32 is filled with the conductive liquid 33, the current flowing from the tube 20 to the electrode 30 is measured by the current measuring unit 50, and the water level 33A is measured by the water level measuring unit 60.
[0041]
When the defect 21A is generated in the coating 21 of the tube 20, when the water level 33A of the conductive liquid 33 reaches the height of the defect 21A, a discharge 80 is generated between the tube 20 and the electrode 30. Occurs. The change in current when the discharge 80 occurs is measured by the current measurement unit 50, and a signal S1 representing the change in current is output from the terminal 53 and input to the position signal generation unit 70. The position signal generation unit 70 performs a synchronous operation on the signal S1 representing the current change and the water level signal S2 representing the water level 33A when the signal S1 is output, so that the discharge 80 in the longitudinal direction of the tube 20 is generated. Position signal S indicating occurrence position L Generate This position signal S L May be displayed on the monitor (not shown) from the position signal generator 70 or output to a printer (not shown).
[0042]
When the coating 21 of the tubular body 20 has no defect and sufficient coverage of the coating 21 is achieved, the conductive high voltage is applied between the tubular body 20 and the electrode 30 while applying, for example, an AC high voltage of about several kV. Even when the water level 33A of the ionic liquid 33 is raised from the lower end 20A to the upper end 20B of the tube 20, no discharge 80 occurs between the tube 20 and the electrode 30, and the current change due to the microcurrent caused by the discharge 80 It is not measured by the measuring unit 50. Therefore, in such a case, it can be determined that the coating 21 has no defect.
[0043]
As described above, in the present embodiment, the electrode 30 in which the conductive liquid 33 is filled in the cylindrical tubular member 32 formed of the solid dielectric is attached to the tubular body 20 while maintaining the gap 31 between the coating 21 and the tubular member 32. Slowly inserted, a voltage is applied between the tube 20 and the electrode 30 by the voltage applying unit 40, and the current measuring unit 50 causes the tube 20 and the electrode to be caused by a defect 21 </ b> A occurring in the coating 21 of the tube 20. Since the current change when the discharge 80 is generated between the current sensor 30 and the output 30 is detected and the signal S1 indicating the current change is output, the defect 21A of the coating film 21 can be easily and reliably detected. In addition, it is possible to inspect regardless of the shape of the tube 20, and for example, a coating film 23 is applied to the inside of the tube 22 having a bellows-like (folded) telescopic tube as shown in FIG. Even in this case, the inspection can be performed simply and reliably by the exactly same procedure as that of the cylindrical tube 20 of the present embodiment. Furthermore, no electrolyte or conductive brush is required, the inspection work is simple, and there is no risk of damaging the tube 20 or the coating 21. Further, there is no residual impurity after the inspection.
[0044]
In addition, since the conductive liquid 33 is gradually filled from the lower end 32A of the tubular member 32 so that the water level 33A gradually increases, the position where the discharge 80 may occur with the rise of the water level 33A is determined. The tube 20 can be gradually moved from the lower end 20A to the upper end 20B, so that not only the occurrence of the discharge 80 can be detected but also the position of the discharge 80 can be specified.
[0045]
Specifically, the water level measurement unit 60 measures the water level 33A of the conductive liquid 33 and outputs a water level signal S2, and the position signal generation unit 70 and the signal S1 indicating the current change from the current measurement unit 50 and the water level signal Based on S2, a position signal S representing a position where the discharge 80 is generated in the longitudinal direction of the tube body 20. L Is generated, the position of the defect 21A in the longitudinal direction of the tube 20 can be specified.
[0046]
[Second embodiment]
FIG. 4 shows a schematic configuration of a film defect inspection apparatus according to a second embodiment of the present invention. The film defect inspection apparatus 10A includes a discharge light detection unit 90 that detects the discharge light 81 of the discharge 80 and outputs a signal S3 indicating a direction in which the discharge light 81 is generated, without providing the above-described current measurement unit 50. Except for this, it is the same as the film defect inspection apparatus 10 described in the first embodiment. Therefore, the same components are denoted by the same reference numerals, and detailed description thereof will be omitted.
[0047]
As shown in FIG. 5, the discharge light detection unit 90 includes a camera 91 that captures the discharge light 81, a recording unit 92 that records image data D3 of the discharge light 81 obtained by the camera 91, and a discharge light 81. And an image analysis unit 93 that performs image processing and analysis of the image data D3.
[0048]
Based on the image data D3 of the discharge light 81, the image analysis unit 93 generates the image 120 of the tube 20, the image 130 of the electrode 30, and the discharge light 81 traveling from the electrode 30 to the defect 21A, as shown in FIG. A cross-sectional image 100 including the image 181 is generated. The image analysis unit 93 further obtains the direction 181A of the discharge light 81 in the image 181 based on the two orthogonal axes 100X and 100Y in the image 100. The image analysis unit 93 outputs a signal S3 indicating the direction in which the discharge light 81 is generated, based on the direction 181A of the image 181 of the discharge light 81 thus obtained.
[0049]
Note that the discharge light detection unit 90 can be installed outside the tube body 20 as shown in FIG. 3 if the fixing unit 34B is formed of a material that does not hinder shooting by the camera 91. Alternatively, only the camera 91 may be installed inside the tube 20 separately from the other parts of the discharge light detection unit 90. Further, the camera 91 may be moved as the water level 33A of the conductive liquid 33 rises.
[0050]
In the present embodiment, since the current measuring unit 50 (FIG. 1) is not provided, the terminal 43 of the high-voltage generating unit 40 is connected to the metal pipe 35 via the wiring 43A.
[0051]
Next, the operation of the film defect inspection apparatus 10A will be described.
[0052]
First, similarly to the first embodiment, the electrode 30 is loosely inserted into the tube 20 while maintaining the gap 31 between the film 21 and the high voltage generation circuit 41 is operated, and the connection between the tube 20 and the electrode 30 is made. During this time, for example, an AC high voltage of about several kV is applied. Subsequently, the valve 37 is opened, and the conductive liquid 33 is gradually filled from the lower end 32A of the tubular member 32 toward the upper end 32B from the tank 36 via the metal pipe 35 so that the water level 33A gradually increases. .
[0053]
At the same time, the generation of the discharge light 81 is monitored by the discharge light detection unit 90, and the water level 33A is measured by the water level measurement unit 60.
[0054]
When the defect 21A is generated in the coating 21 of the tube 20, when the water level 33A of the conductive liquid 33 reaches the height of the defect 21A, a discharge 80 is generated between the tube 20 and the electrode 30. Occurs. The discharge light 81 when the discharge 80 occurs is photographed by the camera 91 of the discharge light detection unit 90, and the obtained image data D3 of the discharge light 81 is recorded in the recording unit 92. The image analysis unit 93 analyzes the image data D3 of the discharge light 81 to determine the direction 181A of the image 181 of the discharge light 81, and based on this, a signal indicating the direction in which the discharge light 81 is generated from the electrode 30 toward the defect 21A. Output S3. The signal S3 indicating the direction in which the discharge light 81 is generated is input to the position signal generator 70. The position signal generation unit 70 performs a synchronous operation process on the signal S3 indicating the generation direction of the discharge light 81 and the water level signal S2 indicating the water level 33A when the signal S3 is output, so that the longitudinal direction of the tube 20 is And a position signal S indicating a position where the discharge 80 is generated in the circumferential direction. LC Generate
[0055]
When the coating 21 of the tubular body 20 has no defect and sufficient coverage of the coating 21 is achieved, the conductive high voltage is applied between the tubular body 20 and the electrode 30 while applying, for example, an AC high voltage of about several kV. Even when the water level 33A of the ionic liquid 33 is raised from the lower end 20A to the upper end 20B of the tube 20, no discharge 80 occurs between the tube 20 and the electrode 30, and the discharge light 81 is also detected by the discharge light detection unit 90. Never. Therefore, in such a case, it can be determined that the coating 21 has no defect.
[0056]
As described above, in the present embodiment, in addition to the effects obtained by the first embodiment, the discharge light detecting unit 90 detects the discharge light 81 when the discharge 80 occurs between the tube 20 and the electrode 30. Then, since the signal S3 indicating the direction in which the discharge light 81 is generated is output, the position of the defect 21A in the circumferential direction of the tube 20 can be specified, and the position of the defect 21A can be specified in more detail. can do.
[0057]
As described above, the present invention has been described with reference to the embodiment and the modification. However, the present invention is not limited to the embodiment and the modification, and various modifications are possible. For example, in each of the above embodiments, the case where one of the current measurement unit 50 and the discharge light detection unit 90 is provided has been described. However, both the current measurement unit 50 and the discharge light detection unit 90 are provided. You may. In this case, the position signal generator 70 converts the signal S1 representing the current change, the signal S3 representing the direction in which the discharge light 81 is generated, and the water level signal S2 representing the water level 33A when the signal S3 is output. By performing the synchronous calculation processing, the position signal S representing the position where the discharge 80 is generated in the longitudinal direction and the circumferential direction of the tubular body 20 is obtained. LC Generate
[0058]
Further, for example, in each of the above-described embodiments, the electrode 30 is loosely inserted in a state where the tube 20 is erected, but the installation state of the tube 20 is not limited to the upright state, and may be set horizontally or obliquely. Is also good.
[0059]
Further, for example, in the above-described second embodiment, a case has been described in which the image analysis unit 93 that analyzes the image data D3 of the discharge light 81 is provided in the discharge light detection unit 90. May be provided in the position detection unit 70, and the discharge light detection unit 90 may send the image data D3 of the discharge light 81 to the position detection unit 70.
[0060]
Further, for example, in each of the above embodiments, the tube 20 is described as being formed of metal, but the material of the tube 20 is not limited to metal, and may be formed of, for example, a nonmetallic conductive material. It goes without saying that it may be done. Further, in the above-described embodiment, the case where the tube body 20 is a tube whose both ends are open has been described. However, the present invention is also applied to a tubular container in which only one end of both ends is open and the other is closed. It is possible.
[0061]
In addition, in each of the above embodiments, the tubular member 32 is formed in a cylindrical shape, the electrode 30 is loosely inserted into the tubular body 20 while maintaining the gap 31 between the tubular member 32 and the tubular body 32. Although the case where 21 is inspected has been described, for example, as shown in FIG. 7, a tubular member 232 having an annular cross section and having a cylindrical cavity portion 232C is used, for example, as shown in FIG. The tube 220 may be loosely inserted into the cavity 232C of the tubular member 232 while maintaining the gap 231 between the coating 221 applied to the outside of the tube 220 and the tubular member 232. By doing so, the defect 221A of the coating 221 applied to the outside of the tube 220 can be inspected.
[0062]
Further, in each of the above-described embodiments and FIGS. 7 and 8, the case where the inspection target is the tube 20 has been described as an example, but the inspection target is not limited to the tube. For example, it is also possible to inspect a coating applied to the surface of a flat or curved plate-like inspection object for defects. In this case, the tubular member has a flat shape, and the width can be appropriately set according to the width of the inspection object.
[0063]
【The invention's effect】
As described above, according to the film defect inspection apparatus according to any one of claims 1 to 7 or the film defect inspection method according to any one of claims 8 to 14, a solid dielectric material is used. An electrode in which at least a part of the tubular member formed by the body is filled with the conductive liquid is disposed on the surface of the tubular body while maintaining a gap between the coating and the test object and the electrode by the voltage applying unit. A voltage is applied between the electrodes, and the discharge detector detects that a discharge has occurred between the inspection object and the electrode due to a defect in the coating on the inspection object, and outputs a discharge detection signal. Therefore, it is possible to easily and reliably detect a defect in the coating. In addition, the inspection can be performed regardless of the shape of the inspection object. For example, even if the wall is a bellows-shaped (folded) telescopic tube, the procedure is exactly the same as that of the cylindrical tube. Simple and reliable inspection is possible. Furthermore, no electrolyte or conductive brush is required, the inspection work is simple, and there is no risk of damaging the tube or the coating. Further, there is no residual impurity after the inspection.
[0064]
In particular, according to the film defect inspection apparatus according to claim 4 or the film defect inspection method according to claim 11, the conductive liquid is gradually filled in the tubular member so that the water level in the tubular member gradually increases. As the water level rises, the position where a discharge may occur can be gradually moved over the entire inspection object, and it is not only possible to detect the occurrence of the discharge but also to detect the occurrence of the discharge. The position can also be specified.
[0065]
In particular, according to the film defect inspection apparatus according to claim 5 or the film defect inspection method according to claim 12, the water level of the conductive liquid is measured by the water level measurement unit, and a water level signal is output. Since the position signal indicating the position where the discharge occurs is generated based on the discharge detection signal and the water level signal, the position of the defect can be specified. For example, if the inspection is performed in a state where the tube is erected, it is possible to specify the position of the defect in the longitudinal direction of the tube.
[0066]
In addition, in particular, according to the film defect inspection apparatus according to claim 7 or the film defect inspection method according to claim 14, the discharge light detection unit detects discharge light when a discharge occurs, and detects the discharge light. Since the signal indicating the generation direction is output as the discharge detection signal, the position of the defect can be specified in more detail. For example, if the inspection is performed in a state where the tube is erected, it is possible to specify the position of the defect in the circumferential direction of the tube.
[Brief description of the drawings]
FIG. 1 is a block diagram illustrating a schematic configuration of a film defect inspection apparatus according to a first embodiment of the present invention.
FIG. 2 is a cross-sectional view illustrating a state of occurrence of a discharge illustrated in FIG.
FIG. 3 is a cross-sectional view illustrating another example of the tube illustrated in FIG.
FIG. 4 is a block diagram illustrating a schematic configuration of a film defect inspection apparatus according to a second embodiment of the present invention.
FIG. 5 is a block diagram illustrating a schematic configuration of a discharge light detection unit illustrated in FIG.
FIG. 6 is an explanatory diagram for explaining image analysis in the image analysis unit shown in FIG. 5;
FIG. 7 is a sectional view showing a modification of the tubular member shown in FIG.
8 is a schematic configuration diagram illustrating a main part of a film defect inspection apparatus using the tubular member illustrated in FIG.
[Explanation of symbols]
10, 10A: film defect inspection device, 20, 22: tubular body, 21: coating, 30: electrode, 31: gap, 32: tubular member, 33: conductive liquid, 33A: water level, 34A, 34B: fixed part, 35 metal pipe, 36 tank, 37 valve, 40 voltage applying section, 41 high voltage generating section, 42, 43, 51, 52 terminal, 42A, 43A, 52A wiring, 50 current measuring section Reference numeral 60: water level measurement unit, 70: position signal generation unit, 80: discharge, 81: discharge light, 90: discharge light detection unit, 91: camera, 92: recording unit, 93: image analysis unit, 100: image, 100X, 100Y ... axis, 120 ... tube image, 130 ... electrode image, 181 ... discharge light image, 181A ... direction

Claims (14)

導電性の検査対象物の表面に被着された絶縁性の被膜の欠陥を検査する被膜欠陥検査装置であって、
固体誘電体により形成された管状部材を有すると共に前記管状部材の少なくとも一部に導電性液体が充填され、前記被膜との間に間隙を保ちながら前記検査対象物の表面に配設される電極と、
前記検査対象物と前記電極との間に所定の電圧を印加する電圧印加部と、
前記検査対象物の前記被膜に生じている欠陥に起因して前記検査対象物と前記電極との間で放電が発生したことを検知して放電検知信号を出力する放電検知部と
を備えたことを特徴とする被膜欠陥検査装置。
A film defect inspection apparatus for inspecting a defect of an insulating film deposited on a surface of a conductive inspection object,
An electrode having a tubular member formed of a solid dielectric and having at least a part of the tubular member filled with a conductive liquid, and an electrode disposed on the surface of the inspection object while maintaining a gap between the coating and the coating. ,
A voltage applying unit that applies a predetermined voltage between the inspection object and the electrode,
A discharge detection unit that detects that a discharge has occurred between the test object and the electrode due to a defect occurring in the coating of the test object and outputs a discharge detection signal. A film defect inspection device characterized by the following.
前記管状部材は、円筒状であり、
前記検査対象物の内側に被着された前記被膜との間に間隙を保ちながら前記検査対象物に緩挿される
ことを特徴とする請求項1記載の被膜欠陥検査装置。
The tubular member is cylindrical,
2. The coating defect inspection apparatus according to claim 1, wherein the coating defect inspection apparatus is loosely inserted into the inspection target while maintaining a gap between the coating and the coating applied inside the inspection target.
前記管状部材は、断面環状で、円筒状の空腔部を有し、
前記検査対象物は、前記検査対象物の外側に被着された前記被膜と前記管状部材との間に間隙を保ちながら前記管状部材の空腔部に緩挿される
ことを特徴とする請求項1記載の被膜欠陥検査装置。
The tubular member has an annular cross section and a cylindrical cavity,
2. The inspection object is loosely inserted into a cavity of the tubular member while maintaining a gap between the coating applied to the outside of the inspection object and the tubular member. The coating defect inspection apparatus according to the above.
前記導電性液体は、前記管状部材内での水位が漸増するように前記管状部材に徐々に充填される
ことを特徴とする請求項1ないし請求項3記載の被膜欠陥検査装置。
4. The film defect inspection apparatus according to claim 1, wherein the conductive liquid is gradually filled in the tubular member so that a water level in the tubular member gradually increases.
前記導電性液体の水位を計測して水位信号を出力する水位計測部と、
前記放電検知信号と前記水位信号とに基づいて、前記放電の発生位置を表す位置信号を生成する位置信号生成部と
を備えたことを特徴とする請求項1ないし請求項4記載の被膜欠陥検査装置。
A water level measurement unit that measures the water level of the conductive liquid and outputs a water level signal,
The coating defect inspection according to claim 1, further comprising: a position signal generation unit configured to generate a position signal indicating a position where the discharge occurs based on the discharge detection signal and the water level signal. apparatus.
前記放電検知部は、
前記検査対象物と前記電極との間の電流変化を検知して前記電流変化を表す信号を前記放電検知信号として出力する電流計測部を備えた
ことを特徴とする請求項1ないし請求項5記載の被膜欠陥検査装置。
The discharge detector,
6. A current measuring unit for detecting a current change between the inspection object and the electrode and outputting a signal representing the current change as the discharge detection signal. Film defect inspection equipment.
前記放電検知部は、
前記検査対象物と前記電極との間の放電光を検知して前記放電光の発生方向を表す信号を前記放電検知信号として出力する放電光検知部を備えた
ことを特徴とする請求項1ないし請求項6記載の被膜欠陥検査装置。
The discharge detector,
A discharge light detection unit that detects discharge light between the inspection object and the electrode and outputs a signal indicating a direction in which the discharge light is generated as the discharge detection signal. The coating defect inspection apparatus according to claim 6.
導電性の検査対象物の表面に被着された絶縁性の被膜の欠陥を検査する被膜欠陥検査方法であって、
固体誘電体により形成された管状部材を有すると共に前記管状部材の少なくとも一部に導電性液体が充填された電極を、前記被膜との間に間隙を保ちながら前記管体の表面に配設し、
電圧印加部によって、前記検査対象物と前記電極との間に所定の電圧を印加し、
放電検知部によって、前記検査対象物の前記被膜に生じている欠陥に起因して前記検査対象物と前記電極との間で放電が発生したことを検知して放電検知信号を出力する
ことを特徴とする被膜欠陥検査方法。
A film defect inspection method for inspecting a defect of an insulating film deposited on a surface of a conductive inspection object,
An electrode having a tubular member formed of a solid dielectric and having at least a portion of the tubular member filled with a conductive liquid, disposed on the surface of the tube while maintaining a gap between the coating and the electrode,
A voltage applying unit applies a predetermined voltage between the inspection object and the electrode,
The discharge detection unit detects that a discharge has occurred between the inspection object and the electrode due to a defect occurring in the coating of the inspection object, and outputs a discharge detection signal. Film defect inspection method.
前記管状部材として円筒状の管状部材を用い、
前記管状部材を、前記検査対象物の内側に被着された前記被膜との間に間隙を保ちながら前記検査対象物に緩挿する
ことを特徴とする請求項8記載の被膜欠陥検査方法。
Using a cylindrical tubular member as the tubular member,
9. The coating defect inspection method according to claim 8, wherein the tubular member is loosely inserted into the inspection target while maintaining a gap between the tubular member and the coating applied inside the inspection target.
前記管状部材として、断面環状で、円筒状の空腔部を有する管状部材を用い、
前記検査対象物を、前記検査対象物の外側に被着された前記被膜と前記管状部材との間に間隙を保ちながら前記管状部材の空腔部に緩挿する
ことを特徴とする請求項8記載の被膜欠陥検査方法。
As the tubular member, a tubular member having an annular cross section and a cylindrical cavity is used,
9. The inspection object is loosely inserted into a cavity of the tubular member while maintaining a gap between the coating applied to the outside of the inspection object and the tubular member. The coating defect inspection method described in the above.
前記導電性液体を、前記管状部材内での水位が漸増するように前記管状部材に徐々に充填する
ことを特徴とする請求項8ないし請求項10記載の被膜欠陥検査方法。
The coating defect inspection method according to claim 8, wherein the conductive liquid is gradually filled in the tubular member so that a water level in the tubular member gradually increases.
水位計測部によって、前記導電性液体の水位を計測して水位信号を出力し、
前記放電検知部によって、前記放電検知信号と前記水位信号とに基づいて、前記放電の発生位置を表す位置信号を生成する
ことを特徴とする請求項8ないし請求項11記載の被膜欠陥検査方法。
By a water level measurement unit, measures the water level of the conductive liquid and outputs a water level signal,
The coating defect inspection method according to claim 8, wherein the discharge detection unit generates a position signal indicating a position where the discharge occurs based on the discharge detection signal and the water level signal.
前記放電検知部において、電流計測部によって、前記検査対象物と前記電極との間の電流変化を検知して前記電流変化を表す信号を前記放電検知信号として出力する
ことを特徴とする請求項8ないし請求項12記載の被膜欠陥検査方法。
9. The discharge detecting section, wherein a current change between the test object and the electrode is detected by a current measuring section, and a signal representing the current change is output as the discharge detection signal. 13. A method for inspecting a coating defect according to claim 12.
前記放電検知部において、放電光検知部によって、前記検査対象物と前記電極との間の放電光を検知して前記放電光の発生方向を表す信号を前記放電検知信号として出力する
ことを特徴とする請求項8ないし請求項13記載の被膜欠陥検査方法。
In the discharge detection unit, a discharge light detection unit detects discharge light between the inspection object and the electrode, and outputs a signal indicating a direction in which the discharge light is generated as the discharge detection signal. 14. The method according to claim 8, wherein the defect is inspected.
JP2002178351A 2002-06-19 2002-06-19 Film defect inspection apparatus and film defect inspection method Expired - Fee Related JP3909581B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002178351A JP3909581B2 (en) 2002-06-19 2002-06-19 Film defect inspection apparatus and film defect inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002178351A JP3909581B2 (en) 2002-06-19 2002-06-19 Film defect inspection apparatus and film defect inspection method

Publications (2)

Publication Number Publication Date
JP2004020474A true JP2004020474A (en) 2004-01-22
JP3909581B2 JP3909581B2 (en) 2007-04-25

Family

ID=31176097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002178351A Expired - Fee Related JP3909581B2 (en) 2002-06-19 2002-06-19 Film defect inspection apparatus and film defect inspection method

Country Status (1)

Country Link
JP (1) JP3909581B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018032710A (en) * 2016-08-24 2018-03-01 トヨタ自動車株式会社 Method for inspecting heat sink, inspection device and manufacturing method
CN115508415A (en) * 2022-09-16 2022-12-23 山东科技大学 Microcrack detection device based on conductive liquid spraying structure
US12018672B2 (en) 2020-04-02 2024-06-25 Idex Health And Science Llc Precision volumetric pump with a bellows hermetic seal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018032710A (en) * 2016-08-24 2018-03-01 トヨタ自動車株式会社 Method for inspecting heat sink, inspection device and manufacturing method
US12018672B2 (en) 2020-04-02 2024-06-25 Idex Health And Science Llc Precision volumetric pump with a bellows hermetic seal
CN115508415A (en) * 2022-09-16 2022-12-23 山东科技大学 Microcrack detection device based on conductive liquid spraying structure

Also Published As

Publication number Publication date
JP3909581B2 (en) 2007-04-25

Similar Documents

Publication Publication Date Title
JP7056998B2 (en) Systems and methods for AC-DC high voltage leak detection
JP4369963B2 (en) Inspecting method of insulator for spark plug
US11693057B2 (en) Battery leak test device and methods
KR20030030035A (en) Capacitor insulation resistance measuring method and insulation resistance measuring instrument
US11486816B2 (en) Corrosion measurement device
JP3909581B2 (en) Film defect inspection apparatus and film defect inspection method
JP3704053B2 (en) In-pipe film defect inspection apparatus and in-pipe film defect inspection method
JPS62180282A (en) Nondestructive inspecting method for defect in insulation of low-pressure rotary machine
JP2018041928A (en) Process liquid supply device and operation method of process liquid supply device and storage medium
JP2002372509A (en) Method and device for inspecting leakage of sealed vessel
JPS59195140A (en) Method and device for measuring airtightness of vessel
JP2009198322A (en) Method, apparatus and system for seal inspection
JP2011028931A (en) Battery insulation testing device
CN112255509A (en) System and method for detecting insulation defect of equipment based on low-temperature plasma
JPH11237430A (en) Partial discharge measurement apparatus
JP2009111207A (en) Inspecting method of aluminum electrolytic capacitor, and apparatus thereof
JP2836097B2 (en) Defect detection device and detection method
JPS62121344A (en) Defect detecting device
KR200176966Y1 (en) Liquid coating device
JPH0427855A (en) Apparatus and method for detecting defect
JPH08211008A (en) Method and device for measuring corrosion resistance
JP2004317525A (en) Method and apparatus for inspecting insulating coating of coil
JP2002260533A (en) Inspection method of breakdown voltage between stempins
JPH087108B2 (en) Container airtightness measuring method and apparatus and container conveying method
JP2007225927A (en) Method for setting vapor cleaning condition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050606

A977 Report on retrieval

Effective date: 20061215

Free format text: JAPANESE INTERMEDIATE CODE: A971007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070117

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20100202

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100202

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110202

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110202

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120202

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120202

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120202

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20130202

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140202

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees