JP2004020371A - Current detector - Google Patents

Current detector Download PDF

Info

Publication number
JP2004020371A
JP2004020371A JP2002175473A JP2002175473A JP2004020371A JP 2004020371 A JP2004020371 A JP 2004020371A JP 2002175473 A JP2002175473 A JP 2002175473A JP 2002175473 A JP2002175473 A JP 2002175473A JP 2004020371 A JP2004020371 A JP 2004020371A
Authority
JP
Japan
Prior art keywords
current
magnetic field
half bridge
electric wire
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002175473A
Other languages
Japanese (ja)
Inventor
Hiroshi Shimamura
嶋村 ▲寛▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002175473A priority Critical patent/JP2004020371A/en
Publication of JP2004020371A publication Critical patent/JP2004020371A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To eliminate an influence of output dispersion in an individual MR element to realize precise current detection. <P>SOLUTION: This current detector is provided with the MR element 3 including the first half bridge constituted to make a magnetic sensing part comprising a ferromagnetic magnetic resistor orthogonal each other to a temperature compensating part, including the second half bridge constituted of a magnetic sensing part and a temperature compensating part in the same manner and arranged to form 45° of angle with respect to the first half bridge, and arranged adjacently to an electric wire 1 in which a current flows, and a bias magnet 5 arranged adjacently to the MR element 3. A magnetic pole direction of the magnet 5 and a longitudinal direction of the ferromagnetic magnetic resistor of the first half bridge are conformed with a current direction in the electric wire. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、バイアス磁界を用い、電線等の電流路に流れる電流が作る磁界の大きさをAMR等の強磁性磁気抵抗素子(以下MR素子)を利用して検出し、検出信号を信号処理回路で処理することによって電線に流れる電流の電流値を検出する電流検出装置に関するものである。
【0002】
【従来の技術】
電線等の電流路に流れる電流を検知する方法は、従来から種々な方法が存在する。その中でも磁気デバイスを用いる従来例としては、コイルを用いる方法、ホールICを用いる方法、MR素子を用いる方法等があるが、代表的な例としてMR素子を用いる従来例(特開平5−223848号公報)について述べる。
【0003】
検知される電流の流れる電線の中心からrの距離をおいた任意の点Pには磁界強度Hを発生し、その磁界強度Hの方向は電線を中心とした円周方向で、向きは電流の流れる方向に右ネジを回転させた時の回転方向である。磁界強度Hは、アンペアの法則から(1)式で表される。
【0004】
【数2】

Figure 2004020371
【0005】
代表的な従来例では、絶縁基板上に強磁性抵抗体のエレメント群を形成し、同じ抵抗値を持つ2つのエレメント群を互いに直交配置した第1のハーフブリッジと第1のハーフブリッジと線対称に配置された同様なハーフブリッジとで形成されたフルブリッジのエレメント群で構成されたMR素子で上記磁界強度Hを検出し、電流検知を行っている。
【0006】
図6に示すように、電線1の電流の流れる方向に対してMR素子3の各エレメント群を45度方向に配置し、バイアス磁界を電流方向に印加する。このように配置することにより、図7に示すMR磁気特性の直線性の良い部分を利用して、電流路の電流によって発生する電流磁界Hの大きさをMR素子の磁気抵抗変化として検出し、電圧に変換するものである。
【0007】
【発明が解決しようとする課題】
電線に流れる電流検知には、非接触では、通常、磁気デバイスが用いられる。パーマロイ、珪素鋼板で磁気回路を構成し、コイル、ホール素子を用いる従来の方式では、磁気回路にコアを用いるので形状的に大きくなり、小型化が困難であるという課題があった。同時にコイル、ホール素子、磁気回路の使用温度範囲での特性変化が大きく、精度の高い磁界検出が困難であるという課題があった。
【0008】
これに比べて、小型化に適しているのはMRの強磁性磁気抵抗素子とSMRの半導体磁気抵抗素子である。しかし、SMRは温度変化に対する特性変化が大きく、且つ素子個々の変化の傾向がばらつくので温度補償には回路が複雑になりコストアップになる。
【0009】
また、SMRは膜面に垂直に入射する磁界は検知するが、膜面の横方向に入射する磁界は検知しないために、SMRによる電流検知は電線表面直近から離れた点での微弱電流磁界を検知することになるため電流磁界検出には不利である。
【0010】
一方、MR(Magnetoresistance)は、膜面に平行方向で、側面に垂直方向に入射する電流磁界を検知し、膜面に垂直方向に入射する磁界は検知しないため、電線表面直近の磁界を検知するには優れている。且つ、温度に対する特性変化がSMRに比べると小さく、素子個々の特性バラツキも小さい。従って、MR素子は、電流検出する素子の1つとして優れた特性を持っている。しかし、MR素子を用いた従来例では、次のような課題があった。
【0011】
▲1▼MR磁気抵抗変化特性は、感度がMR素子個々によりばらつくのでハーフブリッジ出力が個々になり異なる。更にフルブリッジ差動出力なので出力バラツキが拡大する。
【0012】
▲2▼電線表面とMR素子の感磁部との取り付け距離は0.1〜0.2mm程度と小さく、電線表面にMR素子を取り付けた時の取り付けバラツキはMax.10μmとすると、0〜5%の誤差として電流検知精度に影響してくる。通常、MR素子取り付け後、信号処理回路で増幅度の調整を行うが、温度の変化によって増幅度が変化するために高い電流検出精度が得られない。
【0013】
本発明は、MR素子個々の出力バラツキの影響を排除し、精度の良い電流検出が可能である電流検出装置を提供することを目的とする。
【0014】
【課題を解決するための手段】
本発明の請求項1記載の発明は、基板上に同じ抵抗値を持つ強磁性磁気抵抗体よりなり磁界に感磁する感磁部と温度補償を行う補償部を互いに直交させて構成した第1のハーフブリッジと、同様に互いに直交する同じ抵抗値を持つ感磁部と補償部とで構成され、第1のハーフブリッジと45度の角度を持たせて配置した第2のハーフブリッジとを含み電流の流れる電線に近接して配置したMR素子と、このMR素子に近接して配置したバイアス磁石を備え、第1のハーフブリッジの感磁部を構成する抵抗体の長手方向を電線の電流方向に合わせ、バイアス磁石の磁極方向を電流方向に合わせ、バイアス磁界量Hbと電流で発生する磁界Hとの合成磁界Hcを第1、第2のハーフブリッジで検出し、電流供給時の夫々の第1、第2のハーフブリッジの中点出力をv1,v2とすると、電線を流れる電流の大きさは
【0015】
【数3】
Figure 2004020371
【0016】
で表されるように構成したものである。
【0017】
この構成によれば、MR素子の持つ磁気抵抗変化特性のバラツキ要因を減少させ、精度の良い電流検出が可能であるという作用を有する。
【0018】
請求項2記載の発明は、請求項1記載の発明において、強磁性磁気抵抗体に電流を供給する電流源と、第1、第2のハーフブリッジの中点出力v1,v2を処理するためのD/Aコンバータ、演算処理部、A/Dコンバータ、任意数発生器よりなる信号処理回路を設けるように構成されたものである。
【0019】
この構成によれば、検出信号のディジタル信号処理なので回路の経時ドリフト、温度ドリフトの影響を軽減して精度の良い電流検出が可能である。また電線とMR素子面との取り付け距離のバラツキは任意数発生器によって調整できるという作用を有する。
【0020】
請求項3記載の発明は、請求項1記載の発明において、強磁性磁気抵抗体に接続したトリミング抵抗の抵抗値をトリミングによって調整し、通電、無磁界バイアス時における第1と第2のハーフブリッジの中点電圧を等しくするように構成されたものである。
【0021】
この構成によれば、各エレメント群の抵抗値がバラツキのある場合でもハーフブリッジに挿入されたトリミング抵抗の抵抗値を調整することによりハーフブリッジの出力比率を精度良くするという作用を有する。
【0022】
請求項4記載の発明は、請求項2記載の発明において、信号処理回路に線形の温度特性を持つ素子を使い、バイアス磁石の持つ温度特性を補償するように構成されたものである。
【0023】
この構成によれば、バイアス磁石の磁界強度の温度変動特性を補償するためにダイオード等を用いた温度補償回路を使用するものであり、使用温度範囲(−40℃〜125℃)にわたって見かけ上一定のバイアス磁界強度が得られるという作用を有する。
【0024】
請求項5記載の発明は、請求項1記載の発明において、信号処理回路とMR素子とを同一のシリコン基板上に構成されたもので、集積化したものである。
【0025】
この構成によれば、更に小型の電流検出装置を構成できるという作用を有する。
【0026】
【発明の実施の形態】
(実施の形態1)
以下、本発明の電流検出装置の実施の形態1について図を用いて説明する。
【0027】
図1は、本発明の実施の形態1における電流検出装置の概観図、図2はMR素子のパターン配置図、図3は検出信号の信号処理回路のブロック図を示している。図1において、1は検出される電流(I)が流れる電線、2は検出信号を処理する信号処理回路、3は電流磁界を検出するMR素子、4は信号処理回路2とMR素子3をマウントするプリント基板、5はバイアス磁石である。又、図4は本発明のMR膜感磁部でのMR膜電流、MR膜磁化と合成磁界との関係を表す図である。
【0028】
図2において、磁界検知部であるMR素子3は、ガラス、セラミック、シリコン等からなる素子基板6上に強磁性材料を蒸着し、パターニングを行い2つの同じ抵抗値を持つ抵抗体1a,1bを互いに直交するように配置して第1のハーフブリッジを構成し、磁界印加時の中点出力v1が素子基板6の出力端子OUT1に出力される。抵抗体1aで感磁部、抵抗体1bで補償部となすハーフブリッジを構成することにより、中点出力の温度変化による中点電位の変位を防いでいる。また、第1のハーフブリッジと45度の角度をおいて、同様に互いに直交する同じ抵抗値を持つ抵抗体2aで感磁部、抵抗体2bで補償部となす第2のハーフブリッジを素子基板6上に構成し、磁界印加時の中点出力v2が素子基板6の出力端子OUT2に出力される。各エレメント群(抵抗体1a,1b,2a,2b)の抵抗値が不揃いの場合でも、第2のハーフブリッジのリターン側に接続されたトリミング用抵抗7を、無磁界時の2つのハーフブリッジの中点電圧が同じになるようにレーザでトリミングする。これは予めトリミング用抵抗8により第1のハーフブリッジの中心電位を高く設定しておき、トリミングすることで、第2のハーフブリッジの中心電位を高くし第1のハーフブリッジの中心電位と合わせ込むものである。
【0029】
プリント基板4にマウントされた温度補償された信号処理回路2はMR素子3の中点出力v1,v2の信号処理を行う。この信号処理回路2は、図3に示すように、A/Dコンバータ11、演算処理回路12、D/Aコンバータ13、任意数発生器14から構成されている。本電流検出装置を電流を検出する電線近傍に取り付けた後、電線に所定電流を流した時に本電流検出装置の出力が所定電圧を得られるように任意の数を発生させ、その値を固定する。
【0030】
本発明の電流磁界検出原理を以下に述べる。
【0031】
電線電流による磁界強度Hは(1)式で表され、図4に示すように磁界強度Hとバイアス磁界Hbとの合成磁界Hcが形成される。従って、検知電流磁界の大きさHは、バイアス磁界を電流の流れる方向に加えた時、図4より次の(2)式から求められる。
【0032】
【数4】
Figure 2004020371
【0033】
電流磁界Hが検出されると、求める電流Iはアンペアの法則で求めた(1)式から(4)式で求められる。
【0034】
【数5】
Figure 2004020371
【0035】
従って、
【0036】
【数6】
Figure 2004020371
【0037】
MR素子3を、第1ハーフブリッジの感磁部の抵抗体長手方向を電線に流れる電流方向に、また、バイアス磁石の磁界方向を、電線に流れる電流方向とは逆方向に(図4)配置する。この時、電流磁界Hとバイアス磁界Hbとの合成磁界HcによってMR膜の磁化Mが影響を受け、MR磁気抵抗が変化する。MR膜に流れる電流と磁化のなす角度をθとすると、第1のハーフブリッジの中点出力v1と第2のハーフブリッジの中点出力v2の変動出力は、夫々次式で表される。
【0038】
【数7】
Figure 2004020371
【0039】
第1ハーフブリッジと第2ハーフブリッジは同一の素子基板6上に近接して配置してあるので、磁気抵抗の変化率、その温度特性は非常に近似しており、a≒bである。従って、使用温度範囲においてA≒Bとなるので、出力比率Dは、D≒v1/v2=cos2θ/sin2θで、図5に示すようにMR素子3の抵抗体に流れる電流と磁化Mとのなす角度θの関数だけで表される。
【0040】
また、MR膜の反磁界の影響を軽減させるために、例えばMR素子を使い、膜幅を30〜50μm程度、膜厚を1μm程度にし、バイアス磁界Hbを30kA/m程度に設定すると、θはθ’にほぼ等しくなりθ≒θ’となる。また、バイアス磁界量Hbは、MR膜の感磁部で検知される最大電流磁界の大きさ以上の磁界量に設定し、θ(θ’)を0〜45度の範囲で検知するように設定されている。
【0041】
従って、MR素子の第1ハーフブリッジの感磁部の抵抗体長手方向を電線電流の流れる方向に合わせておくと、出力比率Dは、合成磁界HcとMR膜に流れる電流がなす角度θ’の関数となる。
【0042】
(4)式からtanθ’(=tanθ)をDで表すと、電流Iが求まる。
【0043】
【数8】
Figure 2004020371
【0044】
tanθ=tとおき、tをDで表すと、
【0045】
【数9】
Figure 2004020371
【0046】
結局、電流の大きさIは、次式(7)で表される。
【0047】
【数10】
Figure 2004020371
【0048】
バイアス磁石5としては、温度変化が小さい特性を有するサマリウム・コバルト磁石を用いる。サマリウム・コバルト磁石の磁界強度の温度変化は、約−0.03%/度で、使用温度範囲(−40〜125℃)に対しては、温度上昇とともにほぼ直線的に磁力は減少する変化を示す。一方、図3に示すように、信号処理回路2の出力部にダイオードを用いた温度補償回路15で、サマリウム・コバルト磁石の磁界強度の温度変化は温度補償することが可能である。
【0049】
ハーフブリッジの出力信号を処理する温度補償された信号処理回路2は、MR素子3に近接して、プリント基板4上に配置されている。信号処理回路2は、図3に示すようにA/Dコンバータ11、演算処理回路12、D/Aコンバータ13、任意数発生器14から構成されている。(7)式に示すKは任意の数で、バイアス磁界強度Hbを含めて、例えば小数点第2位迄の3桁の数で設定することができる。従って、回路が有する経時ドリフト、温度ドリフトの要因を排除する。
【0050】
MR素子3と信号処理回路2を1つのシリコン基板上に構成することにより検出装置全体の大きさが更に小型になるとともに、耐久性に優れた電線電流の検出装置が実現可能である。
【0051】
【発明の効果】
以上のように本発明によれば、MR素子で電流磁界を検出し、ディジタル演算回路を用いて信号処理を行い、また、ダイオードを用いた温度補償回路でバイアス磁石の磁界量の温度変動を補償することによって、広範囲な使用温度(−40〜125℃)範囲に亘って、電線に流れる電流を精度良く電流値の検知が可能である。
【図面の簡単な説明】
【図1】本発明の電流検出装置の概観図
【図2】同装置に使用するMR素子のMRパターン図
【図3】同装置に使用する信号処理回路のブロック図
【図4】同MRパターンの電流磁界、バイアス磁界による合成磁界図
【図5】同MR素子の磁化Mと合成磁界Hcの関係図
【図6】従来の電流検出装置の概念図
【図7】同装置の磁界−電圧関係図
【符号の説明】
1 電流電線
2 信号処理回路
3 MR素子
4 プリント基板
5 バイアス磁石
6 素子基板
7,8 トリミング用抵抗[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention uses a bias magnetic field, detects the magnitude of a magnetic field generated by a current flowing in a current path such as an electric wire using a ferromagnetic magnetoresistive element (hereinafter, MR element) such as an AMR, and outputs a detection signal to a signal processing circuit. The present invention relates to a current detection device that detects a current value of a current flowing through an electric wire by performing the above processing.
[0002]
[Prior art]
Various methods exist for detecting a current flowing in a current path such as an electric wire. Among them, as a conventional example using a magnetic device, there are a method using a coil, a method using a Hall IC, a method using an MR element, and the like. As a typical example, a conventional example using an MR element (JP-A-5-223848) Gazette).
[0003]
A magnetic field strength H is generated at an arbitrary point P at a distance r from the center of the wire through which the detected current flows, and the direction of the magnetic field strength H is a circumferential direction around the wire and the direction is the direction of the current. This is the rotation direction when the right screw is rotated in the flowing direction. The magnetic field strength H is expressed by equation (1) from Ampere's law.
[0004]
(Equation 2)
Figure 2004020371
[0005]
In a typical conventional example, a first half-bridge and a first half-bridge, in which an element group of a ferromagnetic resistor is formed on an insulating substrate and two element groups having the same resistance value are arranged orthogonal to each other, are line-symmetrical. The magnetic field intensity H is detected by an MR element composed of a full-bridge element group formed by a similar half-bridge arranged in the same manner as described above, and current detection is performed.
[0006]
As shown in FIG. 6, each element group of the MR element 3 is arranged at a direction of 45 degrees with respect to the direction in which the current of the electric wire 1 flows, and a bias magnetic field is applied in the current direction. With this arrangement, the magnitude of the current magnetic field H generated by the current in the current path is detected as a change in the magnetoresistance of the MR element using the portion of the MR magnetic characteristic having good linearity shown in FIG. It converts to voltage.
[0007]
[Problems to be solved by the invention]
For detecting the current flowing in the electric wire, a magnetic device is usually used in a non-contact manner. In a conventional method in which a magnetic circuit is formed of permalloy and a silicon steel plate and a coil and a Hall element are used, there is a problem that the size is large because the core is used in the magnetic circuit, and it is difficult to reduce the size. At the same time, there is a problem that the characteristics of the coil, the Hall element, and the magnetic circuit change greatly in the operating temperature range, and it is difficult to detect the magnetic field with high accuracy.
[0008]
In contrast, MR ferromagnetic magnetoresistive elements and SMR semiconductor magnetoresistive elements are suitable for miniaturization. However, the SMR has a large characteristic change with respect to a temperature change, and the tendency of the change of each element varies, so that the circuit for the temperature compensation becomes complicated and the cost increases.
[0009]
The SMR detects a magnetic field that is perpendicular to the film surface, but does not detect a magnetic field that is incident on the film surface in the lateral direction. Therefore, current detection by the SMR detects a weak current magnetic field at a point away from the wire surface. This is disadvantageous for detecting a current magnetic field because it is detected.
[0010]
On the other hand, MR (Magnetoresistance) detects a current magnetic field incident in a direction parallel to the film surface and in a direction perpendicular to the side surface, and does not detect a magnetic field incident in a direction perpendicular to the film surface. Is excellent. In addition, the change in characteristics with respect to temperature is smaller than that of SMR, and the characteristics of individual elements are small. Therefore, the MR element has excellent characteristics as one of the elements for current detection. However, the conventional example using the MR element has the following problems.
[0011]
{Circle around (1)} In the MR magnetoresistance change characteristics, since the sensitivity varies depending on the MR element, the half-bridge output differs and differs. Further, since the output is a full-bridge differential output, the output variation increases.
[0012]
{Circle around (2)} The mounting distance between the surface of the electric wire and the magneto-sensitive part of the MR element is as small as about 0.1 to 0.2 mm. If the thickness is 10 μm, the current detection accuracy is affected as an error of 0 to 5%. Normally, after the MR element is mounted, the amplification degree is adjusted by a signal processing circuit. However, a high current detection accuracy cannot be obtained because the amplification degree changes due to a change in temperature.
[0013]
SUMMARY OF THE INVENTION It is an object of the present invention to provide a current detecting device which can eliminate the influence of the output variation of each MR element and detect current with high accuracy.
[0014]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided a first magnetic sensor comprising a ferromagnetic magnetoresistive element having the same resistance value on a substrate, wherein a magnetic sensing part for sensing a magnetic field and a compensating part for performing temperature compensation are arranged orthogonal to each other. And a second half bridge, which is composed of a magneto-sensitive part and a compensating part having the same resistance and also orthogonal to each other, and arranged at an angle of 45 degrees with the first half bridge. An MR element disposed close to an electric wire through which a current flows, and a bias magnet disposed close to the MR element, wherein a longitudinal direction of a resistor constituting a magnetic sensing portion of the first half bridge is defined by a current direction of the electric wire. , The direction of the magnetic pole of the bias magnet is aligned with the direction of the current, the combined magnetic field Hc of the bias magnetic field amount Hb and the magnetic field H generated by the current is detected by the first and second half bridges, and 1, the second half-bristle When the midpoint output di and v1, v2, the magnitude of the current flowing through the wire [0015]
[Equation 3]
Figure 2004020371
[0016]
It is configured as represented by.
[0017]
According to this configuration, it is possible to reduce a variation factor of the magnetoresistive change characteristic of the MR element and to perform an accurate current detection.
[0018]
According to a second aspect of the present invention, in the first aspect, a current source for supplying a current to the ferromagnetic magneto-resistor and a midpoint output v1, v2 of the first and second half bridges are processed. A signal processing circuit including a D / A converter, an arithmetic processing unit, an A / D converter, and an arbitrary number of generators is provided.
[0019]
According to this configuration, since the detection signal is digital signal processing, it is possible to reduce the influence of the drift over time and the temperature drift of the circuit and to perform accurate current detection. Also, there is an effect that the variation in the attachment distance between the electric wire and the MR element surface can be adjusted by an arbitrary number of generators.
[0020]
According to a third aspect of the present invention, in the first aspect of the invention, the resistance value of the trimming resistor connected to the ferromagnetic magneto-resistor is adjusted by trimming, and the first and second half bridges when energized and without a magnetic field bias. Are configured to make the midpoint voltages equal.
[0021]
According to this configuration, even when the resistance value of each element group varies, there is an effect that the output ratio of the half bridge is accurately adjusted by adjusting the resistance value of the trimming resistor inserted into the half bridge.
[0022]
According to a fourth aspect of the present invention, in the second aspect, an element having a linear temperature characteristic is used in the signal processing circuit, and the temperature characteristic of the bias magnet is compensated.
[0023]
According to this configuration, a temperature compensating circuit using a diode or the like is used to compensate for the temperature fluctuation characteristic of the magnetic field strength of the bias magnet, and is apparently constant over the operating temperature range (−40 ° C. to 125 ° C.). Is obtained.
[0024]
According to a fifth aspect of the present invention, in the first aspect of the present invention, the signal processing circuit and the MR element are formed on the same silicon substrate and are integrated.
[0025]
According to this configuration, there is an effect that a more compact current detection device can be configured.
[0026]
BEST MODE FOR CARRYING OUT THE INVENTION
(Embodiment 1)
Hereinafter, a first embodiment of the current detection device of the present invention will be described with reference to the drawings.
[0027]
FIG. 1 is a schematic view of a current detection device according to Embodiment 1 of the present invention, FIG. 2 is a pattern layout of an MR element, and FIG. 3 is a block diagram of a signal processing circuit for a detection signal. In FIG. 1, reference numeral 1 denotes an electric wire through which a detected current (I) flows, 2 denotes a signal processing circuit for processing a detection signal, 3 denotes an MR element for detecting a current magnetic field, and 4 denotes a signal processing circuit 2 and an MR element 3 mounted. The printed circuit board 5 is a bias magnet. FIG. 4 is a diagram showing the relationship between the MR film current, the MR film magnetization, and the combined magnetic field in the MR film magnetic sensing part of the present invention.
[0028]
In FIG. 2, an MR element 3 serving as a magnetic field detecting unit is formed by depositing a ferromagnetic material on an element substrate 6 made of glass, ceramic, silicon, or the like, patterning the same, and forming two resistors 1a and 1b having the same resistance value. The first half bridges are arranged so as to be orthogonal to each other, and the midpoint output v1 when a magnetic field is applied is output to the output terminal OUT1 of the element substrate 6. By forming a half bridge that forms a magnetic sensing part by the resistor 1a and a compensating part by the resistor 1b, displacement of the midpoint potential due to a temperature change of the midpoint output is prevented. Also, a second half bridge, which forms a magnetic sensing part with a resistor 2a and a compensating part with a resistor 2b, which are similarly orthogonal to each other and have the same resistance at an angle of 45 degrees with respect to the first half bridge, is used as an element substrate. 6 and a midpoint output v2 when a magnetic field is applied is output to an output terminal OUT2 of the element substrate 6. Even when the resistance values of the element groups (resistors 1a, 1b, 2a, 2b) are not uniform, the trimming resistor 7 connected to the return side of the second half bridge is connected to the two half bridges in the absence of a magnetic field. The laser is trimmed so that the midpoint voltage becomes the same. This is because the center potential of the first half bridge is set high by the trimming resistor 8 in advance, and the center potential of the second half bridge is increased by trimming to match the center potential of the first half bridge. It is a thing.
[0029]
The temperature-compensated signal processing circuit 2 mounted on the printed circuit board 4 performs signal processing on the midpoint outputs v1 and v2 of the MR element 3. The signal processing circuit 2 includes an A / D converter 11, an arithmetic processing circuit 12, a D / A converter 13, and an arbitrary number generator 14, as shown in FIG. After installing the current detection device near the electric wire for detecting the current, an arbitrary number is generated so that the output of the current detection device can obtain a predetermined voltage when a predetermined current is applied to the electric wire, and the value is fixed. .
[0030]
The current magnetic field detection principle of the present invention will be described below.
[0031]
The magnetic field strength H due to the electric wire current is expressed by the equation (1), and a combined magnetic field Hc of the magnetic field strength H and the bias magnetic field Hb is formed as shown in FIG. Therefore, the magnitude H of the detected current magnetic field can be obtained from the following equation (2) from FIG. 4 when the bias magnetic field is applied in the direction in which the current flows.
[0032]
(Equation 4)
Figure 2004020371
[0033]
When the current magnetic field H is detected, the current I to be obtained can be obtained from the equations (1) to (4) obtained by Ampere's law.
[0034]
(Equation 5)
Figure 2004020371
[0035]
Therefore,
[0036]
(Equation 6)
Figure 2004020371
[0037]
The MR element 3 is arranged in the direction of the current flowing through the electric wire in the longitudinal direction of the resistor of the magnetosensitive portion of the first half bridge, and the direction of the magnetic field of the bias magnet is opposite to the direction of the current flowing in the electric wire (FIG. 4). I do. At this time, the magnetization M of the MR film is affected by the combined magnetic field Hc of the current magnetic field H and the bias magnetic field Hb, and the MR magnetoresistance changes. Assuming that the angle between the current flowing in the MR film and the magnetization is θ, the fluctuation output of the midpoint output v1 of the first half bridge and the midpoint output v2 of the second half bridge are expressed by the following equations, respectively.
[0038]
(Equation 7)
Figure 2004020371
[0039]
Since the first half bridge and the second half bridge are arranged close to each other on the same element substrate 6, the rate of change of the magnetoresistance and the temperature characteristics thereof are very close, and a ≒ b. Therefore, since A ≒ B in the operating temperature range, the output ratio D is D ≒ v1 / v2 = cos2θ / sin2θ, and the current flowing through the resistor of the MR element 3 and the magnetization M are formed as shown in FIG. It is expressed only by a function of the angle θ.
[0040]
Further, in order to reduce the influence of the demagnetizing field of the MR film, for example, using an MR element, setting the film width to about 30 to 50 μm, setting the film thickness to about 1 μm, and setting the bias magnetic field Hb to about 30 kA / m, θ becomes θ ′ is almost equal to θ ′. Also, the bias magnetic field amount Hb is set to a magnetic field amount equal to or larger than the maximum current magnetic field detected by the magnetically sensitive portion of the MR film, and θ (θ ′) is set to be detected in the range of 0 to 45 degrees. Have been.
[0041]
Therefore, if the longitudinal direction of the resistor of the magneto-sensitive portion of the first half bridge of the MR element is set to the direction in which the electric wire current flows, the output ratio D becomes the angle θ ′ between the combined magnetic field Hc and the current flowing in the MR film. Function.
[0042]
When tan θ ′ (= tan θ) is represented by D from the equation (4), the current I is obtained.
[0043]
(Equation 8)
Figure 2004020371
[0044]
When tan θ = t and t is represented by D,
[0045]
(Equation 9)
Figure 2004020371
[0046]
After all, the magnitude I of the current is expressed by the following equation (7).
[0047]
(Equation 10)
Figure 2004020371
[0048]
As the bias magnet 5, a samarium-cobalt magnet having a small temperature change characteristic is used. The temperature change of the magnetic field strength of the samarium-cobalt magnet is about -0.03% / degree. For the operating temperature range (-40 to 125 ° C), the magnetic force decreases almost linearly with the temperature rise. Show. On the other hand, as shown in FIG. 3, the temperature change of the magnetic field intensity of the samarium-cobalt magnet can be temperature-compensated by the temperature compensating circuit 15 using a diode at the output of the signal processing circuit 2.
[0049]
The temperature-compensated signal processing circuit 2 for processing the output signal of the half-bridge is arranged on the printed circuit board 4 close to the MR element 3. The signal processing circuit 2 includes an A / D converter 11, an arithmetic processing circuit 12, a D / A converter 13, and an arbitrary number generator 14, as shown in FIG. K shown in the equation (7) is an arbitrary number, and can be set to, for example, a three-digit number up to the second decimal place including the bias magnetic field strength Hb. Therefore, the factors of the drift with time and the temperature drift which the circuit has are eliminated.
[0050]
By configuring the MR element 3 and the signal processing circuit 2 on one silicon substrate, the size of the entire detection device can be further reduced, and a wire current detection device with excellent durability can be realized.
[0051]
【The invention's effect】
As described above, according to the present invention, a current magnetic field is detected by an MR element, signal processing is performed by using a digital arithmetic circuit, and temperature fluctuation of a magnetic field amount of a bias magnet is compensated by a temperature compensation circuit using a diode. By doing so, it is possible to accurately detect the current flowing through the electric wire over a wide range of operating temperature (−40 to 125 ° C.).
[Brief description of the drawings]
FIG. 1 is a schematic view of a current detection device according to the present invention. FIG. 2 is an MR pattern diagram of an MR element used in the device. FIG. 3 is a block diagram of a signal processing circuit used in the device. FIG. FIG. 5 is a diagram showing the relationship between the magnetization M of the MR element and the resultant magnetic field Hc. FIG. 6 is a conceptual diagram of a conventional current detecting device. FIG. 7 is a magnetic field-voltage relationship of the device. Figure [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Current wire 2 Signal processing circuit 3 MR element 4 Printed circuit board 5 Bias magnet 6 Element board 7, 8 Trimming resistance

Claims (5)

基板上に同じ抵抗値を持つ強磁性磁気抵抗体よりなり磁界に感磁する感磁部と温度補償を行う補償部を互いに直交させて構成した第1のハーフブリッジと、同様に互いに直交する同じ抵抗値を持つ感磁部と補償部とで構成され、第1のハーフブリッジと45度の角度を持たせて配置した第2のハーフブリッジを含み電流の流れる電線に近接して配置したMR素子と、このMR素子に近接して配置したバイアス磁石とを備え、第1のハーフブリッジの感磁部を構成する抵抗体の長手方向を電線の電流方向に合わせ、バイアス磁石の磁極方向を電流方向に合わせ、バイアス磁界量Hbと電流で発生する磁界Hとの合成磁界Hcを第1、第2のハーフブリッジで検出し、電流供給時の夫々のハーフブリッジの中点出力をv1,v2とすると、電線を流れる電流の大きさは
Figure 2004020371
で表されることを特徴とする電流検出装置。
A first half bridge composed of a ferromagnetic magnetoresistive element having the same resistance value on a substrate and having a magnetic sensing part sensitive to a magnetic field and a compensating part for performing temperature compensation orthogonal to each other, and the same half orthogonal to each other. An MR element comprising a magnetic sensing part having a resistance value and a compensating part, including a second half bridge arranged at an angle of 45 degrees with the first half bridge, and arranged close to an electric wire through which current flows. And a bias magnet disposed in close proximity to the MR element. The longitudinal direction of the resistor constituting the magneto-sensitive part of the first half bridge is aligned with the current direction of the electric wire, and the magnetic pole direction of the bias magnet is set in the current direction. When the combined magnetic field Hc of the bias magnetic field amount Hb and the magnetic field H generated by the current is detected by the first and second half bridges, and the midpoint outputs of the respective half bridges at the time of current supply are v1 and v2. , Electric wire Magnitude of the current is
Figure 2004020371
A current detection device characterized by the following.
強磁性磁気抵抗体に電流を供給する電流源と、第1、第2のハーフブリッジの中点出力v1,v2を処理するためのD/Aコンバータ、演算処理部、A/Dコンバータ、任意数発生器よりなる信号処理回路を設けた請求項1記載の電流検出装置。A current source for supplying a current to the ferromagnetic magneto-resistive element, a D / A converter for processing midpoint outputs v1 and v2 of the first and second half bridges, an arithmetic processing unit, an A / D converter, and an arbitrary number 2. The current detection device according to claim 1, further comprising a signal processing circuit including a generator. 強磁性磁気抵抗体に接続したトリミング抵抗の抵抗値をトリミングによって調整し、通電、無磁界バイアス時における第1と第2のハーフブリッジの中点電圧を等しくするように構成した請求項1記載の電流検出装置。2. The device according to claim 1, wherein the resistance value of the trimming resistor connected to the ferromagnetic magnetoresistor is adjusted by trimming so that the midpoint voltages of the first and second half bridges are equal during energization and no magnetic field bias. Current detector. 信号処理回路の出力部に温度特性を持つ素子を使い、バイアス磁石の持つ温度特性を補償するように構成した請求項2記載の電流検出装置。3. The current detection device according to claim 2, wherein an element having a temperature characteristic is used for an output part of the signal processing circuit, and the temperature characteristic of the bias magnet is compensated. 信号処理回路とMR素子とを同一のシリコン基板上に構成した請求項2記載の電流検出装置。3. The current detection device according to claim 2, wherein the signal processing circuit and the MR element are formed on the same silicon substrate.
JP2002175473A 2002-06-17 2002-06-17 Current detector Pending JP2004020371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002175473A JP2004020371A (en) 2002-06-17 2002-06-17 Current detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002175473A JP2004020371A (en) 2002-06-17 2002-06-17 Current detector

Publications (1)

Publication Number Publication Date
JP2004020371A true JP2004020371A (en) 2004-01-22

Family

ID=31174108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002175473A Pending JP2004020371A (en) 2002-06-17 2002-06-17 Current detector

Country Status (1)

Country Link
JP (1) JP2004020371A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006285688A (en) * 2005-03-31 2006-10-19 Yamaha Corp Method and device for diagnosing failure of manufacturing facility
JP2007155399A (en) * 2005-12-01 2007-06-21 Tokai Rika Co Ltd Current sensor and current value calculation system having the same
JP2007198905A (en) * 2006-01-26 2007-08-09 Denso Corp Current sensor
JP2012150084A (en) * 2011-01-21 2012-08-09 Panasonic Corp Power measuring device
JP2014529733A (en) * 2011-08-18 2014-11-13 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Apparatus element state monitoring apparatus and apparatus element state monitoring method
JP2015179043A (en) * 2014-03-19 2015-10-08 株式会社デンソー current sensor
US9678129B2 (en) 2011-08-18 2017-06-13 Siemens Aktiengesellschaft Device and method for monitoring the state of a system component
JP2018185315A (en) * 2013-04-01 2018-11-22 公立大学法人大阪市立大学 Sensor element having temperature compensation function, and magnetic sensor and electric power measuring apparatus using the same
WO2020054112A1 (en) * 2018-09-12 2020-03-19 アルプスアルパイン株式会社 Magnetic sensor and current sensor
JP2021165698A (en) * 2020-04-08 2021-10-14 Tdk株式会社 Magnetic sensor, magnetic sensor type encoder, and lens position detection device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006285688A (en) * 2005-03-31 2006-10-19 Yamaha Corp Method and device for diagnosing failure of manufacturing facility
JP2007155399A (en) * 2005-12-01 2007-06-21 Tokai Rika Co Ltd Current sensor and current value calculation system having the same
JP2007198905A (en) * 2006-01-26 2007-08-09 Denso Corp Current sensor
JP4710626B2 (en) * 2006-01-26 2011-06-29 株式会社デンソー Current sensor
JP2012150084A (en) * 2011-01-21 2012-08-09 Panasonic Corp Power measuring device
JP2014529733A (en) * 2011-08-18 2014-11-13 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Apparatus element state monitoring apparatus and apparatus element state monitoring method
US9678129B2 (en) 2011-08-18 2017-06-13 Siemens Aktiengesellschaft Device and method for monitoring the state of a system component
JP2018185315A (en) * 2013-04-01 2018-11-22 公立大学法人大阪市立大学 Sensor element having temperature compensation function, and magnetic sensor and electric power measuring apparatus using the same
JP2015179043A (en) * 2014-03-19 2015-10-08 株式会社デンソー current sensor
WO2020054112A1 (en) * 2018-09-12 2020-03-19 アルプスアルパイン株式会社 Magnetic sensor and current sensor
JPWO2020054112A1 (en) * 2018-09-12 2021-08-30 アルプスアルパイン株式会社 Magnetic sensor and current sensor
JP7096349B2 (en) 2018-09-12 2022-07-05 アルプスアルパイン株式会社 Magnetic sensor and current sensor
JP2021165698A (en) * 2020-04-08 2021-10-14 Tdk株式会社 Magnetic sensor, magnetic sensor type encoder, and lens position detection device
JP7215454B2 (en) 2020-04-08 2023-01-31 Tdk株式会社 Magnetic sensors, magnetic encoders and lens position detectors

Similar Documents

Publication Publication Date Title
JP4360998B2 (en) Current sensor
JP4466487B2 (en) Magnetic sensor and current sensor
JP5654455B2 (en) Gear speed detection method and gear speed detection device
US7583073B2 (en) Core-less current sensor
JP4105142B2 (en) Current sensor
US6175296B1 (en) Potentiometer provided with giant magnetoresistive effect elements
EP1907797B1 (en) Asymmetrical amr wheatstone bridge layout for position sensor
WO2011043193A1 (en) Magnetic balance current sensor
JP4894040B2 (en) Magnetic sensor
US7891102B2 (en) Nanowire magnetic compass and position sensor
JPWO2010143666A1 (en) Magnetic balanced current sensor
CN113203885B (en) Current sensor, magnetic sensor and circuit
CN111308154A (en) Current sensor
JP2011501153A (en) Matching of GMR sensors at the bridge
JP3487452B2 (en) Magnetic detector
CN109307793A (en) The correcting device and current sensor of deviation estimating device and method, Magnetic Sensor
JP2004020371A (en) Current detector
JP6132085B2 (en) Magnetic detector
JP5227527B2 (en) Magnetic detection sensor
US6014023A (en) High resolution magnetoresistance sensing device with accurate placement of inducing and detecting elements
JP5173472B2 (en) Magnetic field calibration method
JP2013167562A (en) Magnetic detector
US7019607B2 (en) Precision non-contact digital switch
JP2019219294A (en) Magnetic sensor
JPH04282481A (en) Magnetoelectric converter