JP2004019949A - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
JP2004019949A
JP2004019949A JP2002170921A JP2002170921A JP2004019949A JP 2004019949 A JP2004019949 A JP 2004019949A JP 2002170921 A JP2002170921 A JP 2002170921A JP 2002170921 A JP2002170921 A JP 2002170921A JP 2004019949 A JP2004019949 A JP 2004019949A
Authority
JP
Japan
Prior art keywords
temperature
refrigerator
detecting means
refrigerant
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002170921A
Other languages
Japanese (ja)
Inventor
Katsuya Nakai
中井 克也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2002170921A priority Critical patent/JP2004019949A/en
Publication of JP2004019949A publication Critical patent/JP2004019949A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To detect a fitting failure of a coolant temperature detecting means provided in an inlet side and an outlet side of an evaporator forming a refrigeration cycle, or to normally operate the coolant temperature detecting means even if a fitting failure exists. <P>SOLUTION: After closing a power source, when the coolant temperature THin detected by an inlet side temperature sensor reaches a temperature less than the predetermined temperature THse before the coolant temperature THout detected by an outlet side temperature sensor reach it (Y-side in S14), fitting of the temperature sensor is determined normal, and when the outlet side coolant temperature THout reaches a temperature less than the predetermined temperature THse before the inlet side coolant temperature THin reach it (Y-side in S14), fitting of the temperature sensor in reverse connection is determined, and it is informed (S16), and each detected temperature of the inlet side and the outlet side are exchanged each other (S18) for the following control. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は,冷凍サイクルの一部を構成する蒸発器の入口及び出口での冷媒温度検出手段を具備する冷蔵庫に関し,さらには,それら冷媒温度検出手段の取り付け不良を検出する冷蔵庫に関するものである。
【0002】
【従来の技術】
従来,冷蔵庫においては,圧縮機,凝縮器,絞り装置(毛細管等),及び蒸発器等により冷凍サイクルが構成され,蒸発器の入口や出口での冷媒温度を検出する温度センサ(例えば,冷媒の入口及び出口のパイプ温度を検出するサーミスタ等)が設けられて,その検出温度によって各種状態の検知が行われている。
例えば,特開平9−14811号公報(公報1)に示される冷蔵庫は,蒸発器の入口側及び出口側の各冷媒温度の温度差によって冷媒漏れを検出し,冷蔵庫の電源を遮断するものである。これにより,炭化水素系のガス等の可燃性ガスを冷媒として使用する冷蔵庫でガス漏れが検知された場合に,電源を遮断して冷媒への引火・爆発を防止できる。また,特開平8−261610号公報(公報2)に示される冷蔵庫は,蒸発器の出口側の冷媒温度によって蒸発器の除霜完了を検知するものである。
通常,蒸発器の入口側及び出口側に取り付けられる各温度センサは,その取付け作業の統一化(容易化)やコスト低減の面から,同じ部品(サーミスタ等)が用いられる。
【0003】
【発明が解決しようとする課題】
しかしながら,冷蔵庫の生産や修理の段階で同じ温度センサを蒸発器の入口側と出口側とに取り付ける際に,それらの部品が同じで誤認しやすいことからその信号線を入口側と出口側とで逆に接続(逆接続)してしまったり,パイプ等に十分に接触しない状態で取り付けてしまったりといった取付け不良が生じてもそれを検知できないため,前記取付け不良が見過ごされて前述した冷媒漏れ検知や除霜完了検知が正常に動作しないことが生じるという問題点があった。これらが正常に動作しないと,可燃性冷媒の漏れが放置される等の危険や,蒸発器の加熱不足による霜付き量の増大或いは過加熱等による冷却性能の悪化等が生じ得た。特に,前記公報1の図3に示されるように蒸発器の入口及び出口の各パイプが近接している場合には,前記逆接続が生じやすい。また,取付け不良の発生を抑えるために,蒸発器の入口側と出口側とで用いる温度センサの種類を変える,或いはそれぞれ異なる色に着色する等を行うことは,取付けの作業性悪化やコストアップにつながるので好ましくない。
従って,本発明は上記事情に鑑みてなされたものであり,その目的とするところは,冷凍サイクルを構成する蒸発器の入口側及び出口側に設けられる冷媒温度検出手段の取付け不良を検知できる,或いは該取付け不良があっても正常に動作する冷蔵庫を提供することにある。
【0004】
【課題を解決するための手段】
上記目的を達成するために本発明は,冷凍サイクルの一部を構成する蒸発器を具備する冷蔵庫において,前記蒸発器へ流入する冷媒の温度を検出する第1の温度検出手段と,前記蒸発器から流出する冷媒の温度を検出する第2の温度検出手段と,前記第1及び第2の温度検出手段による検出温度に基づいて前記第1及び第2の温度検出手段の取付け不良を検出する不良検出手段と,を具備してなることを特徴とする冷蔵庫として構成されるものである。
これにより,前記蒸発器へ流入する冷媒の温度と同流出する冷媒の温度との相互関係が,前記第1及び第2の温度検出手段が正常に取り付けられているとき(通常のとき)の前記相互関係と異なるか否かよって前記各温度検出手段の取付け不良を検出することが可能となる。
【0005】
前記不良検出手段の一例としては,当該冷蔵庫の電源投入時から所定の設定時間経過後の前記第1及び第2の温度検出手段による検出温度に基づいて取付け不良検出を行うものが考えられる。
一般に冷凍サイクルでは,電源投入後,まず前記蒸発器へ流入する冷媒の温度(即ち,前記第1の温度検出手段による検出温度)が低下し,しばらくして前記蒸発器全体の温度が低下してくると,前記蒸発器から流出する冷媒の温度(即ち,前記第2の温度検出手段による検出温度)も流入側とほぼ同等の温度まで低下して定常運転状態となる。このことから,電源を投入してから前記定常運転状態となる前の所定時間経過後の前記第1及び第2の温度検出手段による検出温度に基づいて(前記第1及び第2の温度検出手段による検出温度の比較によって),2つの前記温度検出手段が正常に取り付けられたかどうかを検出できる。
ここで,前記第1及び第2の温度検出手段による各検出温度は,当該冷蔵庫の外気が高いほど低下するのに時間がかかり,外気が低いほど短時間で低下する傾向があるので,これに対応するため,当該冷蔵庫の外気温度を検出する第3の温度検出手段と,前記外気温度に基づいて前記設定時間を設定する時間設定手段と,を具備するものも考えられる。
同様に,前記不良検出手段の他の例として,当該冷蔵庫の電源投入後に前記第1及び第2の温度検出手段による各検出温度がそれぞれ所定の設定冷媒温度に到達する順序又は時間に基づいて取付け不良検出を行うものであってもよい。
【0006】
また,このような温度検出手段の取付け不良検出機能を用いるのは,通常は生産時の動作確認工程やサービスマンによるメンテナンス時等の特別な場合のみと考えられるので,スイッチ等により所定の不良検出モードに設定されている場合にのみ前記不良検出手段による取付け不良検出を行うよう構成してもよい。
さらに,当該冷蔵庫の庫内温度を検出する第4の温度検出手段を具備し,当該冷蔵庫の電源投入時の前記庫内温度が所定の設定庫内温度以上である場合にのみ前記不良検出手段による取付け不良検出を行うよう構成されたものも考えられる。これにより,当該冷蔵庫の庫内が既に冷却された状態で電源が投入された場合等,常温(室温)状態で電源投入されたときと前記各温度検出手段による検出温度の挙動が異なることによって前記各温度検出手段の取付け不良が誤検出されることを防止できる。
【0007】
また,前記不良検出手段により不良が検出された場合に,不良が検出された旨を通知する通知手段を具備するものであれば,前記各温度検出手段の取付け不良があったことを認識できるので,取付け直し等の適切な処置を行うことができる。
さらに,前記不良検出手段により不良が検出された場合に,前記第1及び第2の温度検出手段の各検出温度を相互に入れ替えて当該冷蔵庫を動作させる検出温度入れ替え手段を具備するものであれば,前記第1及び第2の温度検出手段を相互に逆接続してしまった場合でも,取付け直しを行う手間を要することなく以後正常に動作させることが可能となる。
また,前記公報1に示されるように前記第1及び第2の温度検出手段は前記冷媒の漏れ検出に用いられるが,本発明によって前記各温度検出手段の取付け不良に起因する前記冷媒の漏れ検出の誤動作を防止できるので,本発明に係る冷蔵庫に用いられる前記冷媒が可燃性の冷媒である場合には,冷媒漏れが見過ごされる危険が防止できて特に好適である。
【0008】
【発明の実施の形態】
以下添付図面を参照しながら,本発明の実施の形態及び実施例について説明し,本発明の理解に供する。尚,以下の実施の形態及び実施例は,本発明を具体化した一例であって,本発明の技術的範囲を限定する性格のものではない。
ここに,図1は本発明の実施の形態に係る冷蔵庫Xの冷凍室内に設置される主要部の構成を表した図,図2は本発明の実施の形態に係る冷蔵庫Xにおける冷凍サイクルを模式的に表す図,図3は本発明の実施の形態に係る冷蔵庫Xを構成するMPUの概略接続回路を表した図,図4は本発明の実施の形態に係る冷蔵庫Xにおける蒸発器入口及び出口の温度センサの取付け不良検出手順を表すフローチャート,図5は本発明の第1の実施例に係る蒸発器入口及び出口の温度センサの取り付け不良検出手順を表すフローチャート,図6は本発明の第2の実施例に係る蒸発器入口及び出口の温度センサの取付け不良検出手順を表すフローチャートである。
【0009】
まず,図1を用いて,本発明の実施の形態に係る冷蔵庫Xの冷凍室内に設置される主要部の構成について説明する。
本冷蔵庫Xの冷凍室には後述する冷凍サイクルの一部を構成する蒸発器4が設置され,該蒸発器4には,冷媒の流入経路である入口パイプ6と同流出経路である出口パイプ7とが設けられている。さらに,前記入口パイプ6には冷媒を減圧するキャプラリチューブ(毛細管)等の絞り装置3が,前記出口パイプ7には余剰冷媒を蓄積するアキュムレータ5がそれぞれ接続されている。また,前記入口パイプ6表面には前記第1の温度検出手段の一例であるサーミスタ等の温度センサ8が,前記アキュムレータ5表面には前記第2の温度検出手段の一例である同温度センサ9がそれぞれ取り付けられている。これら入口側温度センサ8及び出口側温度センサ9により,前記入口パイプ6及び前記アキュムレータ5の内部を流れる冷媒の温度が検出される。前述したように,通常,これら入口側及び出口側の各温度センサ8,9には同じ温度センサが用いられる。ここで,前記出口側温度センサ9は,前記出口パイプ7に取り付けてもかまわない。これら温度センサ8,9の信号線は,図3に示すように,本冷蔵庫Xの所定の位置に設けられたMPU13に接続され,各検出温度が前記MPU13に取り込まれる。この他にも,前記MPU13には,本冷蔵庫Xの庫内温度(冷蔵庫内或いは冷凍庫内)を検出する庫内温度センサ11,及び本冷蔵庫Xの外気温度を検出する外気温度センサ12が接続され,これらの検出温度も前記MPU13に取り込まれる。さらに,前記MPU13にはブザーやLEDランプ等の通知手段10も接続され,前記各センサ8,9,11,12の検出温度に基づいて,前記MPU13による前記センサ8,9の取付け不良の検出,及び該検出結果に応じた前記通知手段10への信号出力が行われる(前記MPU13が前記不良検出手段の一例)。また,図3に示したもの以外にも,前記MPU13には本冷蔵庫Xを構成する他の機器(後述する圧縮機等)も接続され,それらが前記MPU13により制御される。前記MPU13には,前記取付け不良の検出やその他の制御を実行するための所定のプログラムが記憶されている。
【0010】
次に,図2を用いて,前記冷凍サイクルについて説明する。
冷媒は,圧縮機1により圧縮され,高温・高圧のガス状冷媒となる。このガス状冷媒は,凝縮器2によって放熱されて中温・高圧の液状冷媒となる。さらにこの液状冷媒は,前記絞り装置3によって減圧された後,前記蒸発器4内に流入して蒸発し,低温・低圧の冷媒ガスになる。このとき,前記蒸発器4の周辺から熱を奪うので,前記蒸発器4周辺が冷却される。そして,前記圧縮機1により前記蒸発器4から低温・低圧の冷媒ガスが吸入され,再度圧縮されて前記凝縮器2に送られることにより,冷凍サイクルが構成される。
以上示した冷凍サイクルでは,本冷蔵庫X(の前記圧縮機1)の電源が投入された場合,まず,前記入口パイプ6側の冷媒温度(前記入口側温度センサ8の検出温度,以下,入口側冷媒温度THinという)が低下し,しばらくして前記蒸発器4全体の温度が低下してくると,前記出口パイプ7側(即ち,前記アキュムレータ5側)の冷媒温度(前記出口側温度センサ9の検出温度,以下,出口側冷媒温度THoutという)も入口側とほぼ同等の温度まで低下する。このことから,電源を投入してから所定時間後のTHinとTHoutとの比較や,電源を投入した後,THinとTHoutとがそれぞれ所定温度まで低下する順序或いはその時間等によって前記入口側温度センサ8と前記出口側温度センサ9とが正しく取り付けられたかどうかをチェックすることができる。
【0011】
以下,図4を用いて,前記MPU13による前記入口側及び出口側温度センサ8,9の取付け不良検出の手順について説明する。以下,S1,S2,…は,処理手順(ステップ)の番号を表すものとする。
本冷蔵庫Xの電源が投入されると,前記圧縮機1の動作が開始S1されるとともに,前記MPU13によるタイマーの計時が開始(不図示)される。
ここで,前記各温度センサ8,9が正常に取付けられていれば,前述したように,本冷蔵庫X(の前記圧縮機1)の電源投入後,まず,前記入口側冷媒温度THinが低下(例えば,−25℃未満まで低下)し,次に前記出口側冷媒温度THoutも入口側とほぼ同等の温度まで低下するので,その途中に前記入口側冷媒温度THin<前記出口側冷媒温度THout<所定の設定温度THset(例えば,−20℃)の温度条件を充足する時間帯が存在することになる。これに対し,前記各温度センサ8,9の取付けに不良がある場合(例えば,前記各温度センサ8,9が相互に入れ替わって接続されている,或いは前記各温度センサ8,9と前記入口パイプ6や前記アキュムレータ5との接触不良である等)には,電源投入後の通常の前記時間帯に前記温度条件を充足しないことになる。そこで,このような時間帯を代表する所定の時間T(電源投入後の所定の設定時間T)を予め実機で確認して前記MPU13のプログラムに設定しておく。ここで,前記設定時間Tは,本冷蔵庫Xの外気温度が高いほど長く,低いほど短くなる傾向があるので,前記MPU13により前記外気温度センサ12の検出温度に応じて前記設定時間Tが設定されるよう構成してもよい。
次に,前記タイマーにより前記設定時間Tの経過がチェック(S2)され,前記設定時間Tの経過が確認されると,前記入口側冷媒温度THin<前記出口側冷媒温度THout<所定の設定温度THset(例えば,−20℃)の温度条件を充足しているか否かが判別される(S3)。ここで,前記温度条件を充足していると判別されると,前記入口側及び出口側温度センサ8,9の取付けは正常であると判断されてS4へ移行し,前記圧縮機1等による通常の冷媒制御動作が継続して実行される。一方,S3において,前記温度条件を充足していないと判別されると,前記各温度センサ8,9の取付けに不具合があるものとして前記通知手段10によりその旨が通知される(S5)。
これにより,例えば,本冷蔵庫Xの生産時における組み立て後の動作確認工程等において,前記各温度センサ8,9の取付け不良をチェックできるので,前記各センサ8,9の取り付け直しを行う等により前記各温度センサ8,9の取付け不良に起因する動作不良の発生を防止できる。特に,炭化水素系のガス等の可燃性ガスを冷媒としている場合には,可燃性冷媒の漏れが放置される等の危険が防止されるので有効である。また,このような温度センサの取付け不良検出機能を用いるのは,通常は生産時の動作確認工程やサービスマンによるメンテナンス時等の特別な場合のみと考えられるので,所定のスイッチ等により不良検出モードに設定されている場合にのみ前述したS2,S3,S5の動作を行わせるよう構成することも考えられる。さらに,例えば本冷蔵庫Xの電源投入後しばらく放置した後,一旦電源を切断してすぐに電源を再投入した場合のように,本冷蔵庫Xの庫内が既に冷却された状態で電源が投入された場合には,電源再投入時から前記設定時間T経過後に前記温度条件を充足しない場合も生じ得るので,電源投入時の前記庫内温度センサ11による検出温度が所定温度以上である場合にのみ前述したS2,S3,S5の動作を行わせるよう構成することも考えられる。また,図4の例では,前記設定時間T経過後の前記温度条件をTHin<THout<THsetとしたが,例えば,前記温度条件をTHin<THset1かつTHout<THset2(THset1<THset2)とする等,前記各センサ8,9の取付け不良があるときに,取付け不良がないときとの差異を検出する条件であれば他の条件としてもかまわない。
【0012】
【実施例】
続いて前記冷蔵庫Xにおける,前記MPU13による前記入口側及び出口側温度センサ8,9の取付け不良検出の手順の他の実施例について説明する。
(第1の実施例)
まず,図5を用いて第1の実施例について説明する。
この第1の実施例では,図4に示した実施形態と同様に,前記冷蔵庫Xの電源が投入されると,前記圧縮機1の動作が開始S11された後,前記出口側冷媒温度THoutが所定の設定冷媒温度TK(例えば,−25℃)未満である(THout<TK)か否かが判別される(S12)。この設定冷媒温度TKとしては,前記各温度センサ8,9が,前記入口パイプ6や前記アキュムレータ5との接触不良がなければ到達するが,該接触不良があるときには到達しない温度を設定する。S12において,THout<TKではないと判別されると,さらに前記入口側冷媒温度THinが前記設定冷媒温度TK未満である(THin<TK)か否かが判別され(S13),THin<TKではないと判別されるとS12へ戻って処理が繰り返される。通常,電源投入後しばらくは,冷媒温度は十分低下していないため,S12→S13→S12の処理が繰り返される。そして,S13において,THin<TKであると判別されると,次に前記出口側冷媒温度THoutを監視し(S14),THout<TKとなった場合(S14のY側)には,まず前記入口側冷媒温度THin,次に前記出口側冷媒温度THoutの順序で前記設定冷媒温度TK未満に低下したことになるので,前記入口側及び出口側温度センサ8,9の取付けは正常であると判断されてS15へ移行し,前記圧縮機1等による通常の冷媒制御動作が継続して実行される。
一方,S12において,前記出口側冷媒温度THout<TKであると判別された場合には,前記入口側冷媒温度THinより先に前記出口側冷媒温度THoutがTK未満に低下したことになるので,前記各温度センサ8,9の取付けに不具合があるものとして前記通知手段10によりその旨が通知される(S16)。
以上示した第1の実施例のように,前記冷蔵庫Xの電源投入後に前記入口側及び出口側温度センサによる各検出温度がそれぞれ所定の設定冷媒温度TKに到達する順序に基づいて取付け不良検出を行うものも本発明の一例である。ここで,図5の処理が,所定のタイムアウト時間のうちに終了しない(S15又はS16に至らない)場合には,前記各温度センサ8,9と前記入口パイプ6や前記アキュムレータ5との接触不良であることが考えられるので,そのような場合にもS16の通知処理に移行するよう構成してもよい。また,図5に示す処理は,前記入口側及び出口側の各冷媒温度THin,THoutが所定の温度TK未満に到達する順序によって前記各温度センサ8,9の取付け不良を検出するものであるが,前記各冷媒温度THin,THoutが所定の温度TK未満に到達する時間をそれぞれ計時し,その時間の長短の比較によって取付け不良を検出するよう構成しても同様の結果が得られる。また,図5に示す例では,前記各冷媒温度THin,THoutについてチェックする到達温度を同一温度TK未満としたが,それぞれ個別に到達温度を設定することも考えられる。
【0013】
(第2の実施例)
次に,図6を用いて前記第1の実施例をさらに応用した例である第2の実施例について説明する。
図6に示す処理は,前述した図5のS16の処理の後に,S17及びS18の新たな処理を加えたものである。即ち,前記入口側冷媒温度THinよりも前記出口側冷媒温度THoutの方が先に前記設定冷媒温度TK未満となった場合(S12のY側)に,前記通知手段10による取付け不良である旨の通知(S16)がなされた後,前記入口側冷媒温度THinを監視し(S17),THin<TKとなった場合(S17のY側)には,まず前記出口側冷媒温度THout,次に前記入口側冷媒温度THinの順序で前記設定冷媒温度TK未満に低下したことになるので,前記入口側温度センサ8と前記出口側温度センサ9とが相互に逆接続されているものとして前記入口側温度センサ8による検出温度を前記出口側冷媒温度THoutとして,前記出口側温度センサ9による検出温度を前記入口側冷媒温度THinとして検出温度相互の入れ替え処理(S18)を行った後にS15へ移行させる。これにより,以後,前記各センサ8,9の検出温度が入れ替えられた状態で前記圧縮機1等による通常の冷媒制御動作が継続して実行される。
以上示した第2の実施例の処理により,前記入口側及び出口側の各温度センサ8,9が相互に逆接続された場合であっても,再度,接続直しを行う手間を必要とせずに正常動作を行わせることが可能となる。しかも,逆接続されていることが前記通知手段10により確認できるので,後のメンテナンス時等に誤った取り扱いをすることも防止できる。このような検出温度の入れ替え処理は,図4に示した実施の形態に対して同様に適用してもかまわない。
【0014】
【発明の効果】
以上説明したように,本発明によれば,冷凍サイクルを構成する蒸発器の入口側及び出口側に設けられる冷媒温度検出手段の検出温度を用いることにより,電源投入後所定時間経過後の前記検出温度や,電源投入後に前記検出温度それぞれが所定温度に到達する順序或いは時間に基づいて,前記冷媒温度検出手段の取付け不良を検出できる。特に,用いる冷媒が可燃性冷媒である場合には,その漏れが放置される等の危険が防止されるので有効である。さらに,前記冷媒温度検出手段の取付け不良が検出された場合に,前記検出温度を蒸発器の入口側と出口側とで相互に入れ替えることにより,前記冷媒温度検出手段が相互に逆接続せれた場合であっても,接続直しをする手間を要することなく冷蔵庫を正常に動作させることが可能となる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る冷蔵庫Xの冷凍室内に設置される主要部の構成を表した図。
【図2】本発明の実施の形態に係る冷蔵庫Xにおける冷凍サイクルを模式的に表した図。
【図3】本発明の実施の形態に係る冷蔵庫Xを構成するMPUの概略接続回路を表した図。
【図4】本発明の実施の形態に係る冷蔵庫Xにおける蒸発器入口及び出口の温度センサの取付け不良検出手順を表すフローチャート。
【図5】本発明の第1の実施例に係る蒸発器入口及び出口の温度センサの取り付け不良検出手順を表すフローチャート。
【図6】本発明の第2の実施例に係る蒸発器入口及び出口の温度センサの取付け不良検出手順を表すフローチャート。
【符号の説明】
1…圧縮機
2…凝縮器
3…絞り装置(キャプラリチューブ)
4…蒸発器
5…アキュムレータ
6…蒸発器の入口パイプ
7…蒸発器の出口パイプ
8…蒸発器の入口側温度センサ
9…蒸発器の出口側温度センサ
10…通知手段
11…庫内温度センサ
12…外気温度センサ
13…MPU
S1,S2,,…処理手順(ステップ)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a refrigerator having refrigerant temperature detecting means at the inlet and the outlet of an evaporator constituting a part of a refrigeration cycle, and further relates to a refrigerator for detecting a mounting failure of the refrigerant temperature detecting means.
[0002]
[Prior art]
Conventionally, in a refrigerator, a refrigerating cycle is configured by a compressor, a condenser, a throttle device (capillary tube, etc.), an evaporator, and the like, and a temperature sensor (for example, a refrigerant refrigerant) that detects a refrigerant temperature at an inlet or an outlet of the evaporator. Thermistors that detect the inlet and outlet pipe temperatures are provided, and various states are detected based on the detected temperatures.
For example, a refrigerator disclosed in Japanese Patent Application Laid-Open No. 9-14811 (JP-A-9-14811) detects a refrigerant leak based on a temperature difference between respective refrigerant temperatures on an inlet side and an outlet side of an evaporator, and shuts off a power supply of the refrigerator. . Accordingly, when a gas leak is detected in a refrigerator using a combustible gas such as a hydrocarbon-based gas as a refrigerant, the power can be shut off to prevent ignition and explosion of the refrigerant. Further, the refrigerator disclosed in Japanese Patent Application Laid-Open No. 8-261610 (publication 2) detects completion of defrosting of the evaporator based on the refrigerant temperature at the outlet side of the evaporator.
Normally, the same components (thermistors, etc.) are used for the temperature sensors mounted on the inlet and outlet sides of the evaporator, from the viewpoint of unifying (easier) mounting work and reducing costs.
[0003]
[Problems to be solved by the invention]
However, when mounting the same temperature sensor on the inlet and outlet sides of the evaporator during the production and repair of refrigerators, the signal lines are connected between the inlet and outlet sides because those parts are the same and are easily misidentified. If a connection failure occurs, such as a reverse connection (reverse connection) or installation with insufficient contact with a pipe, etc., it cannot be detected. And that the defrosting completion detection does not operate normally. If they do not operate normally, there is a danger that the leakage of the flammable refrigerant may be left, or an increase in the amount of frost due to insufficient heating of the evaporator, or a deterioration in cooling performance due to overheating or the like may occur. In particular, when the pipes at the inlet and the outlet of the evaporator are close to each other as shown in FIG. In addition, changing the type of the temperature sensor used on the inlet side and the outlet side of the evaporator or coloring them in different colors in order to suppress the occurrence of mounting failure deteriorates the workability of mounting and increases the cost. It is not preferable because it leads to
Therefore, the present invention has been made in view of the above circumstances, and an object of the present invention is to detect a defective mounting of refrigerant temperature detecting means provided on an inlet side and an outlet side of an evaporator constituting a refrigeration cycle. Another object of the present invention is to provide a refrigerator that operates normally even if the installation is defective.
[0004]
[Means for Solving the Problems]
In order to achieve the above object, the present invention relates to a refrigerator having an evaporator constituting a part of a refrigeration cycle, wherein first temperature detecting means for detecting a temperature of a refrigerant flowing into the evaporator; A second temperature detecting means for detecting the temperature of the refrigerant flowing out of the apparatus, and a failure for detecting a mounting failure of the first and second temperature detecting means based on the temperatures detected by the first and second temperature detecting means. And a detecting means.
Thereby, the correlation between the temperature of the refrigerant flowing into the evaporator and the temperature of the refrigerant flowing out of the evaporator is determined by the above-mentioned condition when the first and second temperature detecting means are normally attached (in a normal state). It is possible to detect a defective mounting of each of the temperature detecting means depending on whether or not they are different from each other.
[0005]
As an example of the defect detecting means, a method of detecting a mounting defect based on the temperatures detected by the first and second temperature detecting means after a lapse of a predetermined set time from when the refrigerator is turned on may be considered.
Generally, in the refrigerating cycle, after the power is turned on, first, the temperature of the refrigerant flowing into the evaporator (that is, the temperature detected by the first temperature detecting means) decreases, and after a while, the temperature of the entire evaporator decreases. Then, the temperature of the refrigerant flowing out of the evaporator (that is, the temperature detected by the second temperature detecting means) is reduced to a temperature substantially equal to the temperature on the inflow side, and a steady operation state is set. From this, based on the temperatures detected by the first and second temperature detecting means after a lapse of a predetermined time from when the power is turned on and before the steady operation state is established (the first and second temperature detecting means). ), It can be detected whether or not the two temperature detecting means are normally attached.
Here, the temperatures detected by the first and second temperature detecting means tend to decrease as the outside air of the refrigerator is high, and decrease in a short time as the outside air is low. In order to cope with the problem, a refrigerator including third temperature detecting means for detecting the outside air temperature of the refrigerator and time setting means for setting the set time based on the outside air temperature may be considered.
Similarly, as another example of the defect detecting means, the defect detecting means may be attached based on the order or time at which each of the detected temperatures by the first and second temperature detecting means reaches a predetermined set refrigerant temperature after the refrigerator is turned on. It may perform a defect detection.
[0006]
In addition, the use of such a temperature detecting means installation failure detection function is usually considered only in a special case such as an operation confirmation step during production or during maintenance by a serviceman. A configuration may be adopted in which the mounting failure detection by the failure detecting means is performed only when the mode is set.
Further, a fourth temperature detecting means for detecting the temperature inside the refrigerator is provided, and the failure detecting means is used only when the temperature inside the refrigerator when the power of the refrigerator is turned on is equal to or higher than a predetermined temperature inside the refrigerator. It is also conceivable that the apparatus is configured to detect a mounting failure. Accordingly, when the power is turned on in a state where the inside of the refrigerator has already been cooled, the behavior of the temperature detected by each of the temperature detecting means differs from that when the power is turned on in a normal temperature (room temperature) state. It is possible to prevent erroneous detection of a mounting failure of each temperature detecting means.
[0007]
In addition, if a defect is detected by the defect detecting means, and if there is a notifying means for notifying that a defect has been detected, it is possible to recognize that there is a mounting failure of each of the temperature detecting means. Appropriate measures such as re-installation can be performed.
Furthermore, if a defect is detected by the defect detecting means, the apparatus is provided with a detecting temperature replacing means for operating the refrigerator by replacing the respective detected temperatures of the first and second temperature detecting means with each other. Even if the first and second temperature detecting means are reversely connected to each other, normal operation can be performed thereafter without requiring the trouble of reattachment.
Further, as shown in the above publication 1, the first and second temperature detecting means are used for detecting the leakage of the refrigerant, but according to the present invention, the detection of the leakage of the refrigerant due to the mounting failure of each of the temperature detecting means is performed. Therefore, when the refrigerant used in the refrigerator according to the present invention is a flammable refrigerant, the danger of overlooking refrigerant leakage can be prevented, which is particularly preferable.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments and examples of the present invention will be described with reference to the accompanying drawings to provide an understanding of the present invention. The following embodiments and examples are mere examples embodying the present invention, and do not limit the technical scope of the present invention.
Here, FIG. 1 is a diagram showing a configuration of a main part installed in a freezer compartment of the refrigerator X according to the embodiment of the present invention, and FIG. 2 is a schematic diagram of a refrigeration cycle in the refrigerator X according to the embodiment of the present invention. FIG. 3 is a diagram schematically showing a connection circuit of an MPU forming the refrigerator X according to the embodiment of the present invention, and FIG. 4 is an evaporator inlet and outlet of the refrigerator X according to the embodiment of the present invention. 5 is a flowchart showing a procedure for detecting a defective installation of the temperature sensor of FIG. 5, FIG. 5 is a flowchart showing a procedure of detecting a defective installation of the temperature sensor at the inlet and the outlet of the evaporator according to the first embodiment of the present invention, and FIG. It is a flowchart showing the installation failure detection procedure of the temperature sensor of the evaporator entrance and exit which concerns on Example.
[0009]
First, a configuration of a main part installed in a freezer compartment of a refrigerator X according to an embodiment of the present invention will be described with reference to FIG.
An evaporator 4 constituting a part of a refrigeration cycle described later is installed in a freezing compartment of the refrigerator X. The evaporator 4 has an inlet pipe 6 as a refrigerant inflow path and an outlet pipe 7 as the same outflow path. Are provided. Further, a throttle device 3 such as a capillary tube (capillary tube) for reducing the pressure of the refrigerant is connected to the inlet pipe 6, and an accumulator 5 for accumulating excess refrigerant is connected to the outlet pipe 7. A temperature sensor 8 such as a thermistor as an example of the first temperature detecting means is provided on the surface of the inlet pipe 6, and a temperature sensor 9 as an example of the second temperature detecting means is provided on the surface of the accumulator 5. Each is attached. The temperature of the refrigerant flowing through the inlet pipe 6 and the inside of the accumulator 5 is detected by the inlet-side temperature sensor 8 and the outlet-side temperature sensor 9. As described above, usually, the same temperature sensor is used for each of the temperature sensors 8 and 9 on the inlet side and the outlet side. Here, the outlet-side temperature sensor 9 may be attached to the outlet pipe 7. As shown in FIG. 3, the signal lines of the temperature sensors 8 and 9 are connected to an MPU 13 provided at a predetermined position of the refrigerator X, and the detected temperatures are taken into the MPU 13. In addition, the MPU 13 is connected to an internal temperature sensor 11 for detecting the internal temperature of the refrigerator X (in the refrigerator or the freezer) and an external air temperature sensor 12 for detecting the external temperature of the refrigerator X. , These detected temperatures are also taken into the MPU 13. Further, the MPU 13 is also connected with a notifying means 10 such as a buzzer or an LED lamp, and based on the temperature detected by each of the sensors 8, 9, 11, and 12, the MPU 13 detects the mounting failure of the sensors 8, 9 and Then, a signal is output to the notifying unit 10 according to the detection result (the MPU 13 is an example of the defect detecting unit). In addition to the components shown in FIG. 3, other devices (compressors and the like to be described later) constituting the refrigerator X are also connected to the MPU 13 and are controlled by the MPU 13. The MPU 13 stores a predetermined program for detecting the mounting failure and performing other controls.
[0010]
Next, the refrigeration cycle will be described with reference to FIG.
The refrigerant is compressed by the compressor 1 and becomes a high-temperature and high-pressure gaseous refrigerant. The gaseous refrigerant is radiated by the condenser 2 to become a medium-temperature / high-pressure liquid refrigerant. Further, the liquid refrigerant is decompressed by the expansion device 3, and then flows into the evaporator 4 and evaporates to be a low-temperature and low-pressure refrigerant gas. At this time, heat is removed from the periphery of the evaporator 4, so that the periphery of the evaporator 4 is cooled. Then, a low-temperature and low-pressure refrigerant gas is sucked from the evaporator 4 by the compressor 1, compressed again, and sent to the condenser 2, thereby forming a refrigeration cycle.
In the refrigeration cycle described above, when the power of the refrigerator X (the compressor 1) is turned on, first, the refrigerant temperature at the inlet pipe 6 side (the temperature detected by the inlet side temperature sensor 8, hereinafter referred to as the inlet side). When the temperature of the entire evaporator 4 decreases after a while, the refrigerant temperature at the outlet pipe 7 side (that is, the accumulator 5 side) (the temperature of the outlet side temperature sensor 9) is reduced. The detected temperature, hereinafter referred to as the outlet-side refrigerant temperature THout) also decreases to a temperature substantially equal to that at the inlet side. Accordingly, the inlet-side temperature sensor is compared with a comparison between THin and THout a predetermined time after the power is turned on, or in an order in which THin and THout respectively decrease to a predetermined temperature after the power is turned on or the time. It can be checked whether the outlet temperature sensor 8 and the outlet-side temperature sensor 9 are correctly mounted.
[0011]
Hereinafter, the procedure of detecting the mounting failure of the inlet and outlet temperature sensors 8 and 9 by the MPU 13 will be described with reference to FIG. Hereinafter, S1, S2,... Represent the numbers of the processing procedures (steps).
When the power of the refrigerator X is turned on, the operation of the compressor 1 is started S1 and the MPU 13 starts counting time of a timer (not shown).
Here, if the temperature sensors 8 and 9 are normally mounted, as described above, after the power of the refrigerator X (the compressor 1) is turned on, first, the inlet-side refrigerant temperature THin decreases ( For example, the temperature decreases below -25 ° C.), and then the outlet-side refrigerant temperature THout also decreases to a temperature substantially equal to that of the inlet-side refrigerant, so that the inlet-side refrigerant temperature THin <the outlet-side refrigerant temperature THout <predetermined midway. The time zone that satisfies the temperature condition of the set temperature THset (for example, −20 ° C.) exists. On the other hand, if the temperature sensors 8 and 9 are not properly attached (for example, the temperature sensors 8 and 9 are connected alternately or the temperature sensors 8 and 9 are connected to the inlet pipe). 6 or poor contact with the accumulator 5, etc.), the temperature condition is not satisfied in the normal time period after the power is turned on. Therefore, a predetermined time T (predetermined set time T after turning on the power) representative of such a time zone is confirmed by an actual machine in advance and set in the program of the MPU 13. Here, the set time T tends to be longer as the outside air temperature of the refrigerator X is higher and shorter as the outside air temperature is lower. Therefore, the set time T is set by the MPU 13 in accordance with the temperature detected by the outside air temperature sensor 12. You may comprise so that it may be.
Next, the elapse of the set time T is checked by the timer (S2), and when the elapse of the set time T is confirmed, the inlet-side refrigerant temperature THin <the outlet-side refrigerant temperature THout <the predetermined set temperature THset. It is determined whether the temperature condition (for example, −20 ° C.) is satisfied (S3). If it is determined that the temperature condition is satisfied, it is determined that the inlet and outlet temperature sensors 8 and 9 are properly mounted, and the process proceeds to S4. Is continuously performed. On the other hand, if it is determined in S3 that the temperature condition is not satisfied, the notifying means 10 notifies that the temperature sensors 8 and 9 are not properly attached (S5).
Thereby, for example, in the operation check step after assembly in the production of the refrigerator X, it is possible to check the mounting failure of the temperature sensors 8 and 9, so that the mounting of the sensors 8 and 9 is performed by re-attaching the sensors 8 and 9. It is possible to prevent the occurrence of an operation failure due to a mounting failure of each of the temperature sensors 8 and 9. In particular, when a flammable gas such as a hydrocarbon-based gas is used as the refrigerant, the danger of leaving the flammable refrigerant leaking is prevented, which is effective. In addition, since the use of such a temperature sensor mounting defect detection function is considered to be normally used only in a special case such as an operation check process during production or during maintenance by a serviceman, the defect detection mode is set by a predetermined switch or the like. It is also conceivable to configure so that the operations of S2, S3, and S5 described above are performed only when is set to. Further, for example, after the power of the refrigerator X is left for a while, the power is turned on while the inside of the refrigerator X is already cooled, as in the case where the power is once turned off and then turned on again immediately. In such a case, the temperature condition may not be satisfied after the lapse of the set time T from the time when the power is turned on again. Therefore, only when the temperature detected by the internal temperature sensor 11 at the time of turning on the power is equal to or higher than a predetermined temperature. It is also conceivable to configure so that the operations of S2, S3, and S5 described above are performed. In the example of FIG. 4, the temperature condition after the lapse of the set time T is THin <THout <THset. However, for example, the temperature condition is THin <THset1 and THout <THset2 (THset1 <THset2). Other conditions may be used as long as there is a condition for detecting a difference between when the sensors 8 and 9 are improperly mounted and when there is no improper mounting.
[0012]
【Example】
Next, a description will be given of another embodiment of the procedure for detecting the mounting failure of the inlet-side and outlet-side temperature sensors 8, 9 by the MPU 13 in the refrigerator X.
(First embodiment)
First, a first embodiment will be described with reference to FIG.
In the first embodiment, similarly to the embodiment shown in FIG. 4, when the power of the refrigerator X is turned on, the operation of the compressor 1 is started S11, and then the outlet side refrigerant temperature THout is reduced. It is determined whether or not the temperature is lower than a predetermined set refrigerant temperature TK (for example, −25 ° C.) (THout <TK) (S12). As the set refrigerant temperature TK, a temperature is set at which the temperature sensors 8 and 9 reach when there is no contact failure with the inlet pipe 6 and the accumulator 5, but do not reach when there is a contact failure. If it is determined in S12 that THout <TK is not satisfied, it is further determined whether or not the inlet-side refrigerant temperature THin is lower than the set refrigerant temperature TK (THin <TK) (S13), and THin <TK is not satisfied. Is determined, the process returns to S12 and the process is repeated. Normally, for a while after the power is turned on, the temperature of the refrigerant is not sufficiently reduced, so that the processing of S12 → S13 → S12 is repeated. If it is determined in S13 that THin <TK, then the outlet-side refrigerant temperature THout is monitored (S14), and if THout <TK (Y side of S14), first, the inlet-side refrigerant temperature THout is monitored. Since the refrigerant temperature drops below the set refrigerant temperature TK in the order of the side refrigerant temperature THin and then the outlet side refrigerant temperature THout, it is determined that the mounting of the inlet side and outlet side temperature sensors 8 and 9 is normal. Then, the process proceeds to S15, and the normal refrigerant control operation by the compressor 1 and the like is continuously executed.
On the other hand, if it is determined in S12 that the outlet-side refrigerant temperature THout <TK, the outlet-side refrigerant temperature THout has dropped below TK before the inlet-side refrigerant temperature THin. The notifying means 10 notifies that the temperature sensors 8 and 9 are not properly attached (S16).
As in the first embodiment described above, after the power of the refrigerator X is turned on, the installation failure detection is performed based on the order in which the respective detected temperatures by the inlet and outlet temperature sensors reach the predetermined set refrigerant temperature TK, respectively. Performing is also an example of the present invention. Here, if the processing of FIG. 5 is not completed within a predetermined time-out period (it does not reach S15 or S16), contact failure between each of the temperature sensors 8, 9 and the inlet pipe 6 or the accumulator 5 is poor. In such a case, the process may shift to the notification process in S16. The process shown in FIG. 5 is for detecting the mounting failure of each of the temperature sensors 8 and 9 in the order in which the refrigerant temperatures THin and THout on the inlet side and the outlet side reach lower than a predetermined temperature TK. The same result can be obtained by measuring the time when each of the refrigerant temperatures THin, THout reaches the predetermined temperature TK, and detecting a defective installation by comparing the length of the time. Further, in the example shown in FIG. 5, the ultimate temperature checked for each of the refrigerant temperatures THin and THout is set to be lower than the same temperature TK, but it is also possible to set the ultimate temperature individually.
[0013]
(Second embodiment)
Next, a second embodiment, which is an example in which the first embodiment is further applied, will be described with reference to FIG.
The processing shown in FIG. 6 is obtained by adding new processing of S17 and S18 after the processing of S16 in FIG. 5 described above. That is, when the outlet-side refrigerant temperature THout becomes lower than the set refrigerant temperature TK earlier than the inlet-side refrigerant temperature THin (Y side of S12), it is determined that the mounting by the notification means 10 is defective. After the notification (S16) is made, the inlet-side refrigerant temperature THin is monitored (S17), and if THin <TK (Y side of S17), first, the outlet-side refrigerant temperature THout, and then the inlet Since the refrigerant temperature drops below the set refrigerant temperature TK in the order of the refrigerant side temperature THin, it is assumed that the inlet side temperature sensor 8 and the outlet side temperature sensor 9 are reversely connected to each other. 8 is replaced by the outlet-side coolant temperature THout, and the detected temperature by the outlet-side temperature sensor 9 is replaced by the inlet-side coolant temperature THin. After the management (S18) shifts to S15. As a result, the normal refrigerant control operation by the compressor 1 and the like is continuously performed with the detected temperatures of the sensors 8 and 9 interchanged.
By the processing of the second embodiment described above, even if the temperature sensors 8 and 9 on the inlet side and the outlet side are reversely connected to each other, there is no need to perform the work of reconnecting again. Normal operation can be performed. In addition, since the connection is reversed, it can be confirmed by the notifying means 10, so that erroneous handling at the time of later maintenance or the like can be prevented. Such a replacement process of the detected temperature may be similarly applied to the embodiment shown in FIG.
[0014]
【The invention's effect】
As described above, according to the present invention, by using the detected temperatures of the refrigerant temperature detecting means provided on the inlet side and the outlet side of the evaporator constituting the refrigeration cycle, the detection after a predetermined time elapses after the power is turned on. A defective mounting of the refrigerant temperature detecting means can be detected based on a temperature or an order or a time when each of the detected temperatures reaches a predetermined temperature after the power is turned on. In particular, when the refrigerant to be used is a flammable refrigerant, it is effective because a danger of leaving the leakage is avoided. Further, when the defective temperature of the refrigerant temperature detecting means is detected, the detected temperature is exchanged between the inlet side and the outlet side of the evaporator so that the refrigerant temperature detecting means is reversely connected to each other. Even in this case, the refrigerator can be operated normally without the trouble of reconnecting.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of a main part installed in a freezer compartment of a refrigerator X according to an embodiment of the present invention.
FIG. 2 is a diagram schematically illustrating a refrigeration cycle in the refrigerator X according to the embodiment of the present invention.
FIG. 3 is a diagram showing a schematic connection circuit of an MPU constituting the refrigerator X according to the embodiment of the present invention.
FIG. 4 is a flowchart illustrating a procedure for detecting a mounting failure of a temperature sensor at an inlet and an outlet of an evaporator in the refrigerator X according to the embodiment of the present invention.
FIG. 5 is a flowchart showing a procedure for detecting a mounting failure of the temperature sensors at the inlet and outlet of the evaporator according to the first embodiment of the present invention.
FIG. 6 is a flowchart illustrating a procedure for detecting a mounting failure of a temperature sensor at an inlet and an outlet of an evaporator according to a second embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Compressor 2 ... Condenser 3 ... Throttle device (capillary tube)
4 evaporator 5 accumulator 6 evaporator inlet pipe 7 evaporator outlet pipe 8 evaporator inlet-side temperature sensor 9 evaporator outlet-side temperature sensor 10 notification means 11 internal temperature sensor 12 … Outside air temperature sensor 13… MPU
S1, S2, ... processing procedure (step)

Claims (9)

冷凍サイクルの一部を構成する蒸発器を具備する冷蔵庫において,
前記蒸発器へ流入する冷媒の温度を検出する第1の温度検出手段と,
前記蒸発器から流出する冷媒の温度を検出する第2の温度検出手段と,
前記第1及び第2の温度検出手段による検出温度に基づいて前記第1及び第2の温度検出手段の取付け不良を検出する不良検出手段と,
を具備してなることを特徴とする冷蔵庫。
In a refrigerator provided with an evaporator constituting a part of a refrigeration cycle,
First temperature detecting means for detecting the temperature of the refrigerant flowing into the evaporator;
Second temperature detecting means for detecting the temperature of the refrigerant flowing out of the evaporator;
Failure detection means for detecting a mounting failure of the first and second temperature detection means based on the temperature detected by the first and second temperature detection means;
A refrigerator comprising:
前記不良検出手段が,当該冷蔵庫の電源投入時から所定の設定時間経過後の前記第1及び第2の温度検出手段による検出温度に基づいて取付け不良検出を行うものである請求項1に記載の冷蔵庫。2. The defective detecting means according to claim 1, wherein said defective detecting means detects a defective mounting based on the temperature detected by said first and second temperature detecting means after a lapse of a predetermined set time from when the refrigerator is turned on. refrigerator. 当該冷蔵庫の外気温度を検出する第3の温度検出手段と,
前記外気温度に基づいて前記設定時間を設定する時間設定手段と,を具備してなる請求項2に記載の冷蔵庫。
Third temperature detecting means for detecting the outside air temperature of the refrigerator;
3. The refrigerator according to claim 2, further comprising time setting means for setting the set time based on the outside air temperature.
前記不良検出手段が,当該冷蔵庫の電源投入後に前記第1及び第2の温度検出手段による各検出温度がそれぞれ所定の設定冷媒温度に到達する順序又は時間に基づいて取付け不良検出を行うものである請求項1に記載の冷蔵庫。The defect detecting means detects a mounting defect based on an order or time when the respective detected temperatures by the first and second temperature detecting means reach predetermined set refrigerant temperatures after the refrigerator is turned on. The refrigerator according to claim 1. 所定の不良検出モードに設定されている場合にのみ前記不良検出手段による取付け不良検出を行うよう構成されてなる請求項1〜4のいずれかに記載の冷蔵庫。The refrigerator according to any one of claims 1 to 4, wherein the refrigerator is configured to detect an installation failure only when the failure detection mode is set to a predetermined failure detection mode. 当該冷蔵庫の庫内温度を検出する第4の温度検出手段を具備し,
当該冷蔵庫の電源投入時の前記庫内温度が所定の設定庫内温度以上である場合にのみ前記不良検出手段による取付け不良検出を行うよう構成されてなる請求項1〜5のいずれかに記載の冷蔵庫。
A fourth temperature detecting means for detecting a temperature inside the refrigerator;
The refrigerator according to any one of claims 1 to 5, wherein the refrigerator is configured to detect a mounting failure only when the refrigerator internal temperature at the time of turning on the refrigerator is equal to or higher than a predetermined preset refrigerator internal temperature. refrigerator.
前記不良検出手段により不良が検出された場合に,不良が検出された旨を通知する通知手段を具備してなる請求項1〜6のいずれかに記載の冷蔵庫。The refrigerator according to any one of claims 1 to 6, further comprising a notification unit that notifies that a failure has been detected when the failure detection unit detects a failure. 前記不良検出手段により不良が検出された場合に,前記第1及び第2の温度検出手段の各検出温度を相互に入れ替えて当該冷蔵庫を動作させる検出温度入れ替え手段を具備してなる請求項1〜7のいずれかに記載の冷蔵庫。The apparatus according to claim 1, further comprising: a detection temperature switching unit for operating the refrigerator by replacing the respective detection temperatures of the first and second temperature detection units with each other when a defect is detected by the defect detection unit. 8. The refrigerator according to any one of 7 above. 前記冷媒が可燃性の冷媒である請求項1〜8のいずれかに記載の冷蔵庫。The refrigerator according to any one of claims 1 to 8, wherein the refrigerant is a combustible refrigerant.
JP2002170921A 2002-06-12 2002-06-12 Refrigerator Pending JP2004019949A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002170921A JP2004019949A (en) 2002-06-12 2002-06-12 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002170921A JP2004019949A (en) 2002-06-12 2002-06-12 Refrigerator

Publications (1)

Publication Number Publication Date
JP2004019949A true JP2004019949A (en) 2004-01-22

Family

ID=31170912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002170921A Pending JP2004019949A (en) 2002-06-12 2002-06-12 Refrigerator

Country Status (1)

Country Link
JP (1) JP2004019949A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008157098A (en) * 2006-12-22 2008-07-10 Toyota Motor Corp Diagnostic system for exhaust emission control system
CN103175376A (en) * 2013-03-29 2013-06-26 合肥美的荣事达电冰箱有限公司 Self-adaption on-off control method for refrigerator compartments
CN111189296A (en) * 2020-01-14 2020-05-22 合肥美的电冰箱有限公司 Control method of refrigeration system, refrigeration equipment and storage medium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008157098A (en) * 2006-12-22 2008-07-10 Toyota Motor Corp Diagnostic system for exhaust emission control system
CN103175376A (en) * 2013-03-29 2013-06-26 合肥美的荣事达电冰箱有限公司 Self-adaption on-off control method for refrigerator compartments
CN111189296A (en) * 2020-01-14 2020-05-22 合肥美的电冰箱有限公司 Control method of refrigeration system, refrigeration equipment and storage medium

Similar Documents

Publication Publication Date Title
US11015828B2 (en) Refrigeration system with utilization unit leak detection
JP5249821B2 (en) Refrigeration apparatus and refrigerant leakage detection method for refrigeration apparatus
WO2013038704A1 (en) Air conditioner
WO2016159152A1 (en) Indoor air conditioning unit
JP5976333B2 (en) Air conditioner and four-way valve control method for air conditioner
KR100857598B1 (en) Method for sensing leakage of refrigerant in airconditioner
JP6381824B2 (en) Refrigeration cycle equipment
JP2009222272A (en) Refrigerating device
JP2015045487A (en) Air conditioner
JP2012078065A (en) Air conditioner
JP2008082654A (en) Failure diagnostic method for refrigerating device, and refrigerating device
RU2409794C1 (en) Refrigerator
AU2013275605B2 (en) Refrigerating Device
CN110173816A (en) A kind of detection method and detection device of air-conditioning refrigerant leakage
CN112361541B (en) Expansion valve control method for multi-split air conditioning system
JP6621277B2 (en) Refrigeration equipment
JP2008267621A (en) Air conditioner
JP2018009768A (en) Refrigeration system
JP2004019949A (en) Refrigerator
US11774151B1 (en) Heat pump reversing valve fault detection system
JP5217531B2 (en) Air conditioning apparatus and control method thereof
JP2018091502A (en) Refrigeration device
JP2012026590A (en) Refrigerating apparatus
JP6621275B2 (en) Refrigeration equipment
JP2004019950A (en) Refrigerator