JP2004019359A - Natural ground reinforcing method - Google Patents

Natural ground reinforcing method Download PDF

Info

Publication number
JP2004019359A
JP2004019359A JP2002178797A JP2002178797A JP2004019359A JP 2004019359 A JP2004019359 A JP 2004019359A JP 2002178797 A JP2002178797 A JP 2002178797A JP 2002178797 A JP2002178797 A JP 2002178797A JP 2004019359 A JP2004019359 A JP 2004019359A
Authority
JP
Japan
Prior art keywords
tunnel
long
ground
pipe
excavation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002178797A
Other languages
Japanese (ja)
Other versions
JP3834721B2 (en
Inventor
Tetsuji Ogawa
小川 哲司
Kouki Adachi
足達 康軌
Toshinori Gosho
御庄 俊式
Toru Haneuma
羽馬 徹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
KFC Ltd
Original Assignee
Taisei Corp
KFC Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp, KFC Ltd filed Critical Taisei Corp
Priority to JP2002178797A priority Critical patent/JP3834721B2/en
Publication of JP2004019359A publication Critical patent/JP2004019359A/en
Application granted granted Critical
Publication of JP3834721B2 publication Critical patent/JP3834721B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a natural ground reinforcing method allowing the excavation of a tunnel in a short time and at a low cost. <P>SOLUTION: A long-member borepoling method of tunnel includes a process of forming a plurality of drilled holes 13 at a prescribed elevation angle to the axis X of the tunnel along the edge part of a working face 1 of the tunnel; a process of inserting long members 3 each having a recessed part at least at one part in the cross-sectional shape and plastically deformed by increasing the internal pressure of the internal space, into the boreholes 13; and a process of anchoring the long members 3 to the natural ground around the boreholes by force-feeding a fluid into the long members 3 to enlarge the diameters of the long members 3. In this construction method, the anchored long member 3 is put in a single pipe state, so that cutting by a boring machine can be performed along with the excavation of the tunnel. Widening of the tunnel working face is therefore dispensed with to permit shortening of a construction period and cost reduction. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、トンネルの掘削に先立って、切羽前方の地山に補強部材を打設し掘削作業の安定化を図る地山補強工法に関するものである。
【0002】
【従来の技術】
従来より、トンネル構築時における切羽の崩落を防止するために種々の工法が提案されている。その一つとして鏡打ちボルトを使用する工法がある。この工法は、切羽の鏡面から地山内部に向けてFRP等の繊維補強樹脂からなるボルトを打設し、地山を補強するものである。そして、掘進時には打設されたFRPボルトを地山の掘削とともに切断しながら掘り進む。
【0003】
ところが、FRP等で構成された切断可能な繊維補強樹脂ボルトは、鋼製のボルトに比べて剛性が劣るため、打設可能な長さに制限があり、一般的には2〜3mのものしか用いることができない。このため、2〜3m程度掘り進むごとに、鏡面へボルトを打設しなおす必要があり、作業効率が低く、また掘進速度が非常に遅いという問題があった。
【0004】
そこで、これを解決する工法の一つとして、鋼管を用いた注入式長尺先受工法が提案されている。図12に示すように、この工法は、10〜20mの長尺鋼管を用いるものであって、山岳トンネルで用いられるドリルジャンボを使用し、鋼管51内に削孔ロッドを挿入して2重管削孔方式によりトンネル軸線と所定の仰角をなすように削孔と鋼管51挿入とを同時に行うものである。そして、鋼管と削孔ロッドをそれぞれ順次接続して、所定の削孔を形成し削孔ロッドを回収すると、鋼管51内に注入材53を施して鋼管51を削孔内に定着させる。鋼管51が定着すると、掘削機により切羽前方の地山Mを掘削していく。この工法によれば、上記鏡打ちボルトを用いる工法よりトンネル掘削に係る作業効率が高く、高い地山改良効果を得ることができる。
【0005】
【発明が解決しようとする課題】
しかしながら、上記の工法では、注入材53を使用するため安価であるとは言えず、また鋼管51を注入材53により定着させてはじめて地山改良効果が得られるため、施工に長時間を要するという問題がある。また、図12に示すように、この工法では、支保工55と鋼管51とが干渉するのを避けるため、切羽57縁部において鋼管53を打設する部分Tを拡幅しなければならず、このため作業がさらに長期化するとともにコストが高くなるという問題がある。
【0006】
本発明は、上記問題を解決するためになされたものであり、短期間で、しかも低コストで地山の補強を行うことができる地山補強工法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は、上記目的を達成するため、トンネルの掘削に先立ち、前記トンネル切羽の縁部に沿って複数の削孔を前記トンネル軸線と所定の仰角をなして形成する工程と、内部に空間を有するとともに断面形状において少なくとも一箇所に凹入部を備え、前記空間内の圧力を増大させることで前記凹入部が凸形状に塑性変形して拡径する異形管を、前記削孔内に挿入する工程と、前記異形管内に流体を圧送することにより、該異形管を拡径して前記削孔周囲の地山に定着する工程とを備えたことを特徴とする地山補強工法を提供するものである。
【0008】
また、本発明は、トンネルの掘削に先立って、前記トンネル切羽の鏡面に前記トンネル軸線方向に複数の削孔を形成する工程と、内部に空間を有するとともに断面形状において少なくとも一箇所に凹入部を備え、前記空間内の圧力を増大させることで前記凹入部が凸形状に塑性変形して拡径する異形管を、前記削孔内に挿入する工程と、前記異形管内に流体を圧送することにより、該異形管を拡径して前記削孔周囲の地山に定着する工程とを備えたことを特徴とする地山補強工法を提供するものである。
【0009】
【発明の実施の形態】
以下、本発明に係る地山補強工法をトンネルの長尺先受工法に適用した場合の一実施形態について図面を参照しつつ説明する。図1は本実施形態に係る長尺先受工法の概略構成を示す横断面図、図2は図1の縦断面図、図3及び図4は長尺先受工法の施工手順を示す横断面図である。
【0010】
図1及び図2に示すように、一般的な長尺先受工法は、切羽前方の地山Mの掘削に先立ち、複数の長尺部材3を切羽1の縁部に沿ってアーチ状に並ぶ箇所で、かつ各長尺部材3がトンネル軸線方向Xと所定の仰角θをなすように打設することにより地山を補強する工法である。掘削されたトンネル内壁面には支保工5が構築された後、覆工コンクリート7を打設する。以下、本実施形態に係る長尺先受工法の施工手順について詳細に説明する。
【0011】
まず、図3(a)に示すように、トンネル切羽1の鏡面9に鏡面吹付けコンクリート11を施工して鏡面9を一時的におさえ、これに続いて切羽1の縁部に沿って、つまり支保工5の下端面に沿って複数の削孔13を形成する。上記したように、各削孔13はトンネルの軸方向Xに対して所定の仰角θをなして延びるように形成する。なお、削孔13の径は、次に説明する長尺部材3の径より若干大きいものとする。
【0012】
次に、図3(b)に示すように、各削孔13に長尺部材3を挿入する。長尺部材3は、以下のように構成されたものを用いる。すなわち、図5に示すように、約3mの中空の鋼管15(図5(a))を押圧して板状にした後(図5(b))、これを鋼管15の長手方向を軸方向として筒状にした2重管17を形成する(図5(c))。なお、鋼管15は、後述するように内部空間Pに供給される水の圧力によって変形するように、肉厚が2〜3mm程度のものを用いる。また、2重管17を構成する鋼管15の内部空間Pに流体が流入できるように、鋼管15を完全に押しつぶさない程度に板状にする必要がある。このとき、板状となった鋼管15を筒状とすることにより形成される空間が、本発明の凹入部に相当する。
【0013】
次に、施工状況に応じて、複数個の2重管17を連結し長尺部材3を構成する。本実施形態では、3本の2重管を連結して約9mの長尺部材3を構成している。図6(a),(b),及び(c)はそれぞれ先頭、中間及び最後尾の2重管17a,17b,17cを示している。同図に示すように、先頭及び中間の2重管17a,17bの後端には雌ネジ付連結スリーブ19が固着されており、中間及び最後尾の2重管17b,17cの先端には、雌ネジ付連結スリーブ19と螺合可能な雄ネジ付連結スリーブ21が固着されている。
【0014】
図7に示すように、雌ネジ付連結スリーブ19は、2重管17の端部が嵌入する嵌入部23と、この嵌入部23と壁部25を介して連結された雌ネジ部27とからなり、壁部25には鋼管の内部空間Pと雌ネジ部27とを連通する流体用の連通孔29が形成されている。一方、図8に示すように、雄ネジ付連結スリーブ21は、2重管17の端部が嵌入する嵌入部31と、この嵌入部31と連通し中空に形成された雄ネジ部33とから構成されている。雄ネジ部33と雌ネジ部27とが螺合した状態では、雄ネジ部33の先端が雌ネジ部27の奥端部まで達しないように構成されており(図7の点線参照)、これにより雄ネジ部33内を流れる流体が、上記連通孔29を介して2重管17の内部空間Pに流入する。また、雄ネジ付連結スリーブ21に固着される2重管17の端部には、内部空間P以外の部分に流体が流入しないように蓋部材34が取り付けられている。
【0015】
また、図6に示すように、先頭の2重管17aの先端にはコーン付きのスリーブ35が固着される一方、最後尾の2重管17cの後端には端部が閉鎖された閉鎖スリーブ37が固着されている。図9に示すように、閉鎖スリーブ37の周壁には、後述する流体注入用の注入口39が形成されている。また、この注入口39に対応して2重管17cの周壁には、上記した内部空間Pと連通する連通孔41が形成されている。
【0016】
そして、施工位置において対応する連結スリーブ19,21を螺合させることで、2重管17を順次連結し長尺部材3を組み立てる。このとき、各2重管17a,17b,17cの内部空間Pは連通し、流体が流入可能となっている。このように構成された長尺部材3が本発明の異形管に相当する。なお、長尺部材3を構成する2重管17の本数は上記した3本に限定されず、施工状況に応じて適宜その本数を決定することができる。すなわち、トンネル内では作業空間に制限があり仮置きができないため、予め長尺部材を準備しておくのではなく、複数の2重管17を準備しておき、作業現場において連結スリーブ等を取り付けた後、長尺部材3を組み立てる。実験では、複数の2重管を連結し20m程度の長さのものまで利用可能であることが確認されている。また、各2重管17の長さも適宜変更可能である。
【0017】
図3に戻って、長尺先受工法の説明を続ける。上記のように構成された長尺部材3を削孔13に挿入すると、これに続いて、閉鎖スリーブ37の注入口39から水等の流体を240〜300kg/cm程度で圧送し、連通孔41を介して内部空間Pに流入させる。これにより、内部空間Pの内圧が増加し、図10に示すように、2重管17は鋼管が元の形状に復元されるように塑性変形して拡径される。2重管17が拡径すると、図3(c)に示すように、長尺部材3は削孔周囲の岩盤を圧縮しながら地山に定着される。
【0018】
こうして、圧縮された岩盤は長尺部材3に摩擦力を供し、地山補強材としての長尺部材3が地山と一体となる形でここに定着され、これにより地山に内圧効果が生じる。その結果、地山が効果的に補強される。さらに、長尺部材3は、2重管17の拡径に伴って、その長さが僅かに短くなるため、長尺部材3が打設された部分の地山をその分だけ軸方向に締め付ける。これにより、地山が変位するのを抑制し、切羽1を安定的に保持することができる。長尺部材3の固定後、2重管17内の流体は排出されるが、2重管17は塑性変形しているため、削孔内壁面に圧着された状態で保持される。
【0019】
すべての削孔13内に長尺部材3を固定すると、これに続いて切羽1を進行させる。すなわち、図示を省略する掘削機により地山Mの掘削を行い、掘削が進行した分だけ抗壁面に吹付コンクリートを施して壁面Sを形成していく。ここで、図3(c)に示すように、長尺部材3の基端部、つまり最後尾の2重管17cの後端部は壁面Sから掘削予定部M側にはみ出した状態となっているが、長尺部材3は拡径されて単管状態になっているため、掘削機により容易に切断することができる。したがって、図4(a)に示すように、長尺部材3の基端部を切断しつつ地山の掘削を進行させることができる。そして、所定の長さが掘削されると、図4(b)に示すように、鏡面吹付けコンクリート11を打設し、新たに創出されたトンネルの壁面Sに支保工5を建て込むとともに吹付けコンクリート(図示省略)を施して壁面Sを形成し、これを繰り返しながらトンネルを形成していく。なお、図3乃至図4は切羽近傍の図のため、覆工コンクリートの図示を省略している。
【0020】
以上のように、本実施形態によれば、内部空間Pを有し内圧の増加により塑性変形して拡径する長尺部材3を削孔13に挿入後、長尺部材3内に流体を圧送することにより長尺部材3を膨張拡径し地山に定着させている。そのため、従来例のような注入材が不要になり、施工コストを低減することができる。しかも注入材の養生を待つことなく、拡径後直ちに地山改良効果を得ることができるため、施工時間を大幅に短縮することが可能となる。また、湧水が存在する場合に注入材を使用すると、注入材が湧水によって流されてその効果を発揮することができないが、本実施形態に係る工法では、そのような湧水の影響を受けることはない。すなわち、この工法は、従来のような補強材の軸力に頼る鏡打ちボルトや補強材を注入材で定着させる注入式長尺先受け工法とは異なり、2重管17の膨張拡径により、これを即時に地山に定着させるとともに地山自体に内圧を生じさせて、簡単且つ効果的に切羽前方の地山の安定化を図ることができるものである。
【0021】
また、上記した長尺部材3は、拡径されて地山に定着された状態で単管となっているため、掘削機により容易に切断することができる。そのため、長尺部材3を切断しつつ地山の掘削を行うことが可能となり、従来例のように支保工との干渉を避けるため、切羽1を拡幅することが不要となる。すなわち、図4(a)に示すように、地山の掘削予定部M内に基端部が配置されるように長尺部材3を打設し、この状態で基端部を切断しつつ前方地山Mの掘削を行うことができる。したがって、施工時間の大幅な短縮化及び施工コストの低減が可能となる。
【0022】
上記実施形態では、切羽1の縁部に長尺部材を打設して地山を補強しているが、図11に示すように、これに加えて切羽1の鏡面9に長尺部材を打設して掘削を行うこともできる。すなわち、切羽の鏡面9に、トンネル軸線と略平行な削孔を形成した後、上記と同一構成の長尺部材(異形管)3を挿入する。続いて、長尺部材3内に流体を導入して拡径することにより削孔周囲の地山に定着する。これにより、地山がさらに安定し、切羽1の崩落をより確実に防止することができる。なお、長尺部材3は膨張して単管状態になっているため、これを切断しつつ前方地山の掘削が可能である。また、上記した長尺先受工法と併用せず、鏡面にのみ長尺部材を打設した後、トンネルの掘削を行うことも可能である。
【0023】
本発明で使用される異形管の構成は、上記実施形態で示したものに限定されるものではなく、種々の態様を採ることができる。すなわち、断面形状において少なくとも一箇所に凹入部を備え、内部空間の圧力を増大することにより凹入部が塑性変形して拡径可能であり、かつ拡径状態で掘削機により切断可能に構成されているものであれば、本発明の地山補強工法に適用することができる。
【0024】
【発明の効果】
以上の説明から明らかなように、本発明によれば、内部に空間を有するとともに断面形状において少なくとも一箇所に凹入部を備えた異形管内に流体を圧送することで、凹入部を凸形状に塑性変形させ、これにより異形管を拡径させて削孔周囲の地山に定着し、地山を補強している。この定着状態において、異形管は内部に空間を形成した状態となっているため、掘削機により容易に切断することが可能となる。そのため、異形管を切断しつつ地山の掘削を行うことができ、従来例のように支保工との干渉を避けるため、切羽を拡幅することが不要となる。例えば、地山の掘削予定部内に基端部が配置されるように異形管を打設し、この状態で、基端部を切断しつつ前方地山の掘削を行うことが可能となる。したがって、施工時間の大幅な短縮化及び施工コストの低減が可能となる。
【0025】
また、トンネルの掘削に先立って、切羽の鏡面にトンネル軸線方向に削孔を形成し、この削孔内に上記と同一構成の異形管を打設することで、上記と同様の効果を得ることができる。
【図面の簡単な説明】
【図1】本発明に係る地山補強工法をトンネルの長尺先受工法に適用した場合の一実施形態を示す横断面図である。
【図2】図1の縦断面図である。
【図3】図1の長尺先受工法の施工手順を示す横断面図である。
【図4】図1の長尺先受工法の施工手順を示す横断面図である。
【図5】図1の長尺先受工法に使用される長尺部材の製造手順を示す図である。
【図6】図1の長尺先受工法に使用される長尺部材を構成する2重管を示す斜視図である。
【図7】図6の2重管に使用される雌ねじ付スリーブを示す断面図である。
【図8】図6の2重管に使用される雄ねじ付スリーブを示す断面図である。
【図9】図6の2重管に使用される閉鎖スリーブを示す断面図である。
【図10】図1の長尺先受工法における長尺部材の圧着工程を示す図である。
【図11】本発明に係る地山補強工法の他の例を示す図である。
【図12】
従来の長尺先受工法を示す横断面図である。
【符号の説明】
1   切羽
3   長尺部材
9   鏡面
13  削孔
P   内部空間(空間)
[0001]
TECHNICAL FIELD OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ground reinforcement method for stabilizing an excavation operation by placing a reinforcing member in a ground in front of a face before excavating a tunnel.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, various construction methods have been proposed to prevent collapse of a face during construction of a tunnel. One of them is a construction method using a mirror bolt. In this method, a bolt made of a fiber reinforced resin such as FRP is driven from the mirror surface of the face to the inside of the ground to reinforce the ground. Then, at the time of excavation, the excavation proceeds while cutting the FRP bolts that have been placed together with the excavation of the ground.
[0003]
However, cutable fiber reinforced resin bolts made of FRP or the like have a lower rigidity than steel bolts, and thus have a limited length that can be cast. Can not be used. For this reason, it is necessary to re-install the bolt on the mirror surface every time excavation is performed for about 2 to 3 m, and there is a problem that the working efficiency is low and the excavation speed is very slow.
[0004]
Therefore, as one of the construction methods to solve this, an injection type long tip receiving method using a steel pipe has been proposed. As shown in FIG. 12, this method uses a long steel pipe of 10 to 20 m, uses a drill jumbo used in a mountain tunnel, inserts a drilling rod into a steel pipe 51, and forms a double pipe. The drilling and the insertion of the steel pipe 51 are performed simultaneously so as to form a predetermined elevation angle with the tunnel axis by the drilling method. When the steel pipe and the drilling rod are sequentially connected to form a predetermined drilling and the drilling rod is collected, an injection material 53 is applied to the steel pipe 51 to fix the steel pipe 51 in the drilling. When the steel pipe 51 is fixed, the excavator excavates the ground M in front of the face. According to this construction method, the work efficiency related to tunnel excavation is higher than that of the construction method using the mirror bolt, and a high ground improvement effect can be obtained.
[0005]
[Problems to be solved by the invention]
However, in the above-mentioned construction method, it cannot be said that it is inexpensive because the injection material 53 is used, and since the ground improvement effect is obtained only after the steel pipe 51 is fixed with the injection material 53, it takes a long time to construct. There's a problem. In addition, as shown in FIG. 12, in this method, in order to avoid interference between the support 55 and the steel pipe 51, the portion T where the steel pipe 53 is to be cast at the edge of the face 57 must be widened. Therefore, there is a problem that the operation is further lengthened and the cost is increased.
[0006]
The present invention has been made to solve the above-described problem, and has as its object to provide a ground reinforcement method capable of reinforcing ground in a short period of time and at low cost.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a step of forming a plurality of holes at a predetermined elevation angle with the tunnel axis along an edge of the tunnel face before excavating the tunnel, Inserting a deformed pipe having at least one concave portion in the cross-sectional shape and increasing the pressure in the space so that the concave portion is plastically deformed into a convex shape and expanded in diameter. And a step of enlarging the deformed pipe and fixing it to the ground around the drilled hole by pumping a fluid into the deformed pipe to provide a ground reinforcement method. is there.
[0008]
Further, the present invention, prior to excavation of the tunnel, a step of forming a plurality of holes in the mirror surface of the tunnel face in the axial direction of the tunnel, having a space inside and at least one recess in the cross-sectional shape A step of inserting a deformed pipe in which the concave portion is plastically deformed into a convex shape and increased in diameter by increasing the pressure in the space, and inserting the fluid into the drilled hole, and by pumping a fluid into the deformed pipe. A step of expanding the deformed pipe and fixing it to the ground around the drilled hole.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment in a case where the ground reinforcement method according to the present invention is applied to a long precedent receiving method of a tunnel will be described with reference to the drawings. 1 is a cross-sectional view showing a schematic configuration of a long tip receiving method according to the present embodiment, FIG. 2 is a vertical cross-sectional view of FIG. 1, and FIGS. 3 and 4 are cross sections showing construction procedures of the long tip receiving method. FIG.
[0010]
As shown in FIG. 1 and FIG. 2, in a general long tip receiving method, a plurality of long members 3 are arranged in an arch shape along the edge of the face 1 prior to excavation of the ground M in front of the face. This is a method of reinforcing the ground by placing the long members 3 at a location and at a predetermined elevation angle θ with the tunnel axis direction X. After the support 5 is constructed on the excavated tunnel inner wall surface, the lining concrete 7 is poured. Hereinafter, the construction procedure of the long-end receiving method according to the present embodiment will be described in detail.
[0011]
First, as shown in FIG. 3 (a), a mirror surface sprayed concrete 11 is applied to the mirror surface 9 of the tunnel face 1 to temporarily hold the mirror surface 9, and subsequently, along the edge of the face 1, A plurality of holes 13 are formed along the lower end surface of the support 5. As described above, each hole 13 is formed so as to extend at a predetermined elevation angle θ with respect to the axial direction X of the tunnel. The diameter of the hole 13 is slightly larger than the diameter of the long member 3 described below.
[0012]
Next, as shown in FIG. 3B, the long member 3 is inserted into each of the holes 13. The long member 3 has the following configuration. That is, as shown in FIG. 5, a hollow steel pipe 15 (FIG. 5 (a)) of about 3 m is pressed into a plate shape (FIG. 5 (b)). To form a cylindrical double tube 17 (FIG. 5C). The steel pipe 15 has a thickness of about 2 to 3 mm so as to be deformed by the pressure of water supplied to the internal space P as described later. Further, the steel pipe 15 needs to be formed in a plate shape so as not to be completely crushed so that the fluid can flow into the internal space P of the steel pipe 15 constituting the double pipe 17. At this time, the space formed by making the plate-shaped steel pipe 15 into a cylindrical shape corresponds to the concave portion of the present invention.
[0013]
Next, a plurality of double pipes 17 are connected to form the long member 3 according to the construction situation. In the present embodiment, the long member 3 of about 9 m is formed by connecting three double pipes. FIGS. 6A, 6B, and 6C show the first, middle, and last double tubes 17a, 17b, and 17c, respectively. As shown in the figure, a connection sleeve 19 with a female thread is fixed to the rear ends of the first and middle double tubes 17a, 17b, and the front ends of the middle and last double tubes 17b, 17c are A connection sleeve 21 with a male thread that can be screwed with the connection sleeve 19 with a female thread is fixed.
[0014]
As shown in FIG. 7, the connection sleeve 19 with a female thread includes a fitting part 23 into which the end of the double pipe 17 fits, and a female thread part 27 connected to the fitting part 23 via the wall part 25. In the wall portion 25, a communication hole 29 for fluid which connects the internal space P of the steel pipe and the female screw portion 27 is formed. On the other hand, as shown in FIG. 8, the connecting sleeve 21 with the male thread includes a fitting part 31 into which the end of the double pipe 17 is fitted, and a male screw part 33 which is communicated with the fitting part 31 and is formed hollow. It is configured. When the male screw portion 33 and the female screw portion 27 are screwed together, the distal end of the male screw portion 33 is configured not to reach the deep end portion of the female screw portion 27 (see the dotted line in FIG. 7). As a result, the fluid flowing in the male screw portion 33 flows into the internal space P of the double pipe 17 through the communication hole 29. Further, a lid member 34 is attached to an end of the double pipe 17 fixed to the coupling sleeve 21 with a male thread so that fluid does not flow into a portion other than the internal space P.
[0015]
As shown in FIG. 6, a sleeve 35 with a cone is fixed to the leading end of the leading double tube 17a, and a closed sleeve whose end is closed to the rear end of the trailing double tube 17c. 37 is fixed. As shown in FIG. 9, an inlet 39 for injecting a fluid to be described later is formed on the peripheral wall of the closing sleeve 37. In addition, a communication hole 41 communicating with the above-mentioned internal space P is formed in the peripheral wall of the double pipe 17c corresponding to the injection port 39.
[0016]
Then, by screwing the corresponding connection sleeves 19 and 21 at the construction position, the double pipes 17 are sequentially connected to assemble the long member 3. At this time, the internal spaces P of the double pipes 17a, 17b, 17c communicate with each other, so that fluid can flow in. The elongated member 3 configured as described above corresponds to the deformed pipe of the present invention. In addition, the number of the double pipes 17 constituting the long member 3 is not limited to the above-mentioned three, and the number can be appropriately determined according to the construction situation. That is, since the working space is limited in the tunnel and cannot be temporarily placed, a plurality of double pipes 17 are prepared instead of preparing a long member in advance, and a connecting sleeve or the like is attached at a work site. After that, the long member 3 is assembled. In experiments, it has been confirmed that a plurality of double pipes can be connected and used up to a length of about 20 m. Further, the length of each double pipe 17 can also be changed as appropriate.
[0017]
Returning to FIG. 3, the description of the long receiving method is continued. When the long member 3 configured as described above is inserted into the hole 13, subsequently, a fluid such as water is pumped at a pressure of about 240 to 300 kg / cm 2 from the inlet 39 of the closing sleeve 37 to form the communication hole. The gas flows into the internal space P via the air inlet 41. As a result, the internal pressure of the internal space P increases, and as shown in FIG. 10, the double pipe 17 is plastically deformed and expanded so that the steel pipe is restored to its original shape. When the diameter of the double pipe 17 is increased, as shown in FIG. 3C, the long member 3 is fixed to the ground while compressing the rock around the hole.
[0018]
In this way, the compressed rock mass provides frictional force to the long member 3, and the long member 3 as the ground reinforcement material is fixed here in a form integral with the ground, whereby an internal pressure effect is generated in the ground. . As a result, the ground is effectively reinforced. Further, since the length of the long member 3 is slightly shortened as the diameter of the double pipe 17 increases, the ground at the portion where the long member 3 is cast is axially tightened by that much. . Accordingly, displacement of the ground can be suppressed, and the face 1 can be stably held. After the elongate member 3 is fixed, the fluid in the double pipe 17 is discharged. However, since the double pipe 17 is plastically deformed, it is held in a state of being pressed against the inner wall surface of the hole.
[0019]
When the long member 3 is fixed in all the holes 13, the cutting face 1 is subsequently advanced. In other words, excavation of the ground M is performed by an excavator (not shown), and spray wall concrete is applied to the anti-wall surface as much as the excavation proceeds to form the wall surface S. Here, as shown in FIG. 3C, the base end of the long member 3, that is, the rear end of the rearmost double pipe 17 c protrudes from the wall surface S to the portion M to be excavated. However, since the long member 3 is expanded into a single pipe state, it can be easily cut by an excavator. Therefore, as shown in FIG. 4A, excavation of the ground can be advanced while cutting the base end of the long member 3. Then, when a predetermined length is excavated, as shown in FIG. 4 (b), a mirror-surface sprayed concrete 11 is poured, and the support 5 is erected on the newly created wall surface S of the tunnel and blown. The wall S is formed by applying concrete (not shown), and a tunnel is formed by repeating this. FIGS. 3 and 4 do not show the lining concrete because they are views near the face.
[0020]
As described above, according to the present embodiment, after inserting the long member 3 having the internal space P, which is plastically deformed and increased in diameter by the increase of the internal pressure into the hole 13, the fluid is pumped into the long member 3. By doing so, the long member 3 expands and expands and is fixed to the ground. Therefore, an injection material as in the conventional example becomes unnecessary, and the construction cost can be reduced. Moreover, since the ground improvement effect can be obtained immediately after the diameter expansion without waiting for the curing of the injection material, the construction time can be significantly reduced. In addition, if an injection material is used when spring water is present, the injection material is washed away by the spring water and cannot exert its effect, but the construction method according to the present embodiment reduces the influence of such spring water. I will not receive it. In other words, this method is different from the conventional injection-type long front receiving method of fixing a reinforcing bolt with an injection material such as a mirrored bolt relying on the axial force of the reinforcement, and expanding and expanding the double pipe 17, This is immediately fixed to the ground and the internal pressure is generated in the ground itself, whereby the ground in front of the face can be easily and effectively stabilized.
[0021]
Moreover, since the above-mentioned long member 3 is formed into a single pipe in a state where it is expanded and fixed to the ground, it can be easily cut by an excavator. Therefore, it becomes possible to excavate the ground while cutting the long member 3, and it is not necessary to widen the face 1 in order to avoid interference with the support work as in the conventional example. That is, as shown in FIG. 4 (a), the long member 3 is cast in such a manner that the base end is disposed in the excavated portion M of the ground, and in this state, the base end is cut while the front end is cut. Excavation of the ground M can be performed. Therefore, it is possible to greatly reduce the construction time and the construction cost.
[0022]
In the above-described embodiment, a long member is cast on the edge of the face 1 to reinforce the ground. However, as shown in FIG. It can also be installed and excavated. That is, after forming a hole substantially parallel to the tunnel axis on the mirror surface 9 of the face, the long member (deformed pipe) 3 having the same configuration as above is inserted. Subsequently, a fluid is introduced into the long member 3 to expand the diameter of the long member 3 so that the long member 3 is fixed to the ground around the hole. Thereby, the ground is further stabilized, and the collapse of the face 1 can be more reliably prevented. In addition, since the long member 3 is expanded and is in a single pipe state, it is possible to excavate the ground in front while cutting it. Further, it is also possible to excavate a tunnel after placing a long member only on a mirror surface without using the above-mentioned long tip receiving method.
[0023]
The configuration of the deformed tube used in the present invention is not limited to the configuration shown in the above embodiment, but can take various forms. That is, the cross-sectional shape is provided with a recess at at least one place, the recess is plastically deformed by increasing the pressure of the internal space, the diameter can be expanded, and the excavator can be cut in the expanded state. If it is, it can be applied to the ground reinforcement method of the present invention.
[0024]
【The invention's effect】
As is apparent from the above description, according to the present invention, the recess is formed into a convex shape by pumping a fluid into a deformed pipe having a space therein and having at least one recess in the cross-sectional shape. This deforms the deformed pipe, thereby expanding the diameter of the deformed pipe and fixing it to the ground around the drilled hole, thereby reinforcing the ground. In this fixing state, since the deformed pipe has a space formed therein, it can be easily cut by the excavator. Therefore, it is possible to excavate the ground while cutting the deformed pipe, and it is not necessary to widen the face in order to avoid interference with the support work as in the conventional example. For example, it is possible to cast a deformed pipe such that the base end is disposed in the excavation portion of the ground, and in this state, it is possible to excavate the ground in front while cutting the base end. Therefore, it is possible to greatly reduce the construction time and the construction cost.
[0025]
In addition, prior to the excavation of the tunnel, the same effect as described above can be obtained by forming a drilled hole in the mirror surface of the face in the axial direction of the tunnel and placing a deformed pipe having the same configuration as above into the drilled hole. Can be.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an embodiment in which a ground reinforcement method according to the present invention is applied to a long precedent receiving method of a tunnel.
FIG. 2 is a longitudinal sectional view of FIG.
FIG. 3 is a cross-sectional view showing a construction procedure of the long tip receiving method shown in FIG.
FIG. 4 is a cross-sectional view showing a construction procedure of the long tip receiving method of FIG. 1;
FIG. 5 is a diagram showing a manufacturing procedure of a long member used in the long tip receiving method of FIG. 1;
FIG. 6 is a perspective view showing a double pipe constituting a long member used in the long receiving method shown in FIG. 1;
FIG. 7 is a sectional view showing a female threaded sleeve used for the double pipe of FIG. 6;
FIG. 8 is a sectional view showing a sleeve with an external thread used for the double pipe of FIG. 6;
FIG. 9 is a sectional view showing a closing sleeve used in the double pipe of FIG. 6;
FIG. 10 is a view showing a crimping step of a long member in the long point receiving method of FIG. 1;
FIG. 11 is a diagram showing another example of the ground reinforcement method according to the present invention.
FIG.
It is a cross-sectional view which shows the conventional long tip receiving method.
[Explanation of symbols]
Reference Signs List 1 face 3 long member 9 mirror surface 13 drill hole P internal space (space)

Claims (2)

トンネルの掘削に先立ち、前記トンネル切羽の縁部に沿って複数の削孔を前記トンネル軸線と所定の仰角をなして形成する工程と、
内部に空間を有するとともに断面形状において少なくとも一箇所に凹入部を備え、前記空間内の圧力を増大させることで前記凹入部が凸形状に塑性変形して拡径する異形管を、前記削孔内に挿入する工程と、
前記異形管内に流体を圧送することにより、該異形管を拡径して前記削孔周囲の地山に定着する工程と
を備えたことを特徴とする地山補強工法。
Prior to excavation of the tunnel, forming a plurality of holes along the edge of the tunnel face at a predetermined elevation angle with the tunnel axis,
A deformed pipe having a space inside and having at least one recess in the cross-sectional shape, and increasing the pressure in the space, the recess is plastically deformed into a convex shape and the diameter of the deformed pipe is increased in the drilled hole. Inserting into the
A step of expanding the diameter of the deformed pipe and fixing it to the ground around the drilled hole by pumping a fluid into the deformed pipe.
トンネルの掘削に先立って、前記トンネル切羽の鏡面に前記トンネル軸線方向に複数の削孔を形成する工程と、
内部に空間を有するとともに断面形状において少なくとも一箇所に凹入部を備え、前記空間内の圧力を増大させることで前記凹入部が凸形状に塑性変形して拡径する異形管を、前記削孔内に挿入する工程と、
前記異形管内に流体を圧送することにより、該異形管を拡径して前記削孔周囲の地山に定着する工程と
を備えたことを特徴とする地山補強工法。
Prior to excavation of the tunnel, forming a plurality of holes in the mirror surface of the tunnel face in the tunnel axis direction,
A deformed pipe having a space inside and having at least one recess in the cross-sectional shape, and increasing the pressure in the space, the recess is plastically deformed into a convex shape and the diameter of the deformed pipe is increased in the drilled hole. Inserting into the
A step of expanding the diameter of the deformed pipe and fixing it to the ground around the drilled hole by pumping a fluid into the deformed pipe.
JP2002178797A 2002-06-19 2002-06-19 Ground reinforcement method Expired - Lifetime JP3834721B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002178797A JP3834721B2 (en) 2002-06-19 2002-06-19 Ground reinforcement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002178797A JP3834721B2 (en) 2002-06-19 2002-06-19 Ground reinforcement method

Publications (2)

Publication Number Publication Date
JP2004019359A true JP2004019359A (en) 2004-01-22
JP3834721B2 JP3834721B2 (en) 2006-10-18

Family

ID=31176411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002178797A Expired - Lifetime JP3834721B2 (en) 2002-06-19 2002-06-19 Ground reinforcement method

Country Status (1)

Country Link
JP (1) JP3834721B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009057803A (en) * 2007-09-03 2009-03-19 Okumura Corp Tunnel boring method
JP2009057804A (en) * 2007-09-03 2009-03-19 Okumura Corp Tunnel boring method
JP2010501046A (en) * 2006-08-17 2010-01-14 アトラス・コプコ・エムエイアイ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Friction tube anchor and its expansion adapter
JP2012077509A (en) * 2010-10-01 2012-04-19 Kajima Corp Expansion steel pipe lock bolt, manufacturing method thereof, and natural ground reinforcing method
KR101671806B1 (en) * 2016-03-24 2016-11-02 함정아 Construction method for tunneling

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010501046A (en) * 2006-08-17 2010-01-14 アトラス・コプコ・エムエイアイ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Friction tube anchor and its expansion adapter
JP2009057803A (en) * 2007-09-03 2009-03-19 Okumura Corp Tunnel boring method
JP2009057804A (en) * 2007-09-03 2009-03-19 Okumura Corp Tunnel boring method
JP4714928B2 (en) * 2007-09-03 2011-07-06 株式会社奥村組 Tunnel excavation method
JP2012077509A (en) * 2010-10-01 2012-04-19 Kajima Corp Expansion steel pipe lock bolt, manufacturing method thereof, and natural ground reinforcing method
KR101671806B1 (en) * 2016-03-24 2016-11-02 함정아 Construction method for tunneling

Also Published As

Publication number Publication date
JP3834721B2 (en) 2006-10-18

Similar Documents

Publication Publication Date Title
JP4288331B2 (en) Rock bolt and supporting method using the same
KR20170087786A (en) Reinforcement method of Tunnel
JP2006526718A (en) Rock bolt
JP2009041335A (en) Repair method for existing lining object
JP3493014B2 (en) Tunnel widening method
JP2004019359A (en) Natural ground reinforcing method
CN110529047A (en) A kind of self-advancing type pipe canopy drilling tool excavated for tunnel soft rock
JP5401182B2 (en) How to install inflatable rock bolts
CN110645033A (en) Device and method for deep grouting in sandy cobble stratum shield construction tunnel
JP2017150264A (en) Hollow self-drilling lock bolt reinforcement method using steel expansion-type packer
KR20050079166A (en) Support-pipe using method of soil nailing
JP2011021401A (en) Self-drilling anchor and earth and sand ground reinforcement method using the same
KR100498536B1 (en) Method for costructing anchors under the ground using high pressure grouting
KR20150035122A (en) Drill Root Pile And Construction Method Thereof
JP3851590B2 (en) Preceding ground mountain consolidation method using self-drilling bolt and FRP bolt
KR20170028291A (en) Soil-nailing structure with a pipe-type CFT tube
JP2001323461A (en) Drill bit and method of installing rod steel member or anchor tension steel
KR101018890B1 (en) Grouting method utilizing anchor apparatus for direct-boring
JP2003184499A (en) Large diameter lock bolt anchor for natural ground reinforcement
JP3996530B2 (en) Excavator with tube installation method for ground stabilization, tunnel tip receiving method and hole bending correction function
JP2002242581A (en) Tunnel excavating method
JP2000204899A (en) Self-drilling anchor
JP4256861B2 (en) Diameter-expanding jig and non-open-cut pipe burying method using the same
JP4246344B2 (en) Tunnel long steel pipe tip receiving method
JP2004124459A (en) Pipe type lock bolt

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050301

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20051216

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20060111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060710

R150 Certificate of patent or registration of utility model

Ref document number: 3834721

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130804

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term