JP2004018889A - Elliptic nanocrystal magnetic material - Google Patents

Elliptic nanocrystal magnetic material Download PDF

Info

Publication number
JP2004018889A
JP2004018889A JP2002172093A JP2002172093A JP2004018889A JP 2004018889 A JP2004018889 A JP 2004018889A JP 2002172093 A JP2002172093 A JP 2002172093A JP 2002172093 A JP2002172093 A JP 2002172093A JP 2004018889 A JP2004018889 A JP 2004018889A
Authority
JP
Japan
Prior art keywords
microns
magnetic powder
magnetic
soft magnetic
magnetic alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002172093A
Other languages
Japanese (ja)
Inventor
Yoshinobu Nogi
野木 栄信
Hiroshi Watanabe
渡辺 洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2002172093A priority Critical patent/JP2004018889A/en
Publication of JP2004018889A publication Critical patent/JP2004018889A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve the magnetic properties of soft magnetic alloy powder, particularly that of nanocrystal magnetic powder and amorphous magnetic powder. <P>SOLUTION: The nanocrystal magnetic material or amorphous magnetic material has an elliptic shape. The material has the maximum thickness of ≤5 microns, a major axis of 20 to 500 microns and a minor axis of 10 to 200 microns, and the ratio of the vertical size/horizontal size is 1.0 to 4.0. The material has satisfactory soft magnetic properties represented by coercive force and saturation magnetization properties. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【産業上の利用分野】
本発明は、特に良好な軟磁気特性を有するFe基軟磁性合金粉末およびその製造方法に関する。
【0002】
【従来の技術】
従来から、軟磁気特性に優れた合金としては、非晶質合金、ナノ結晶磁性材料が知られており、形状加工が容易な粉末への適応が図られている。たとえば、特開平5−335129、特開平11−269509にて、Fe基軟磁性合金リボンを粉砕した軟磁性合金粉末粉末の提案がなされいるが、磁性体の形状が扁平ではあるが、一定な形状でないため、必ずしも磁気特性が満足できなかった。
【0003】
一方、Fe−Si−Al合金粉末としては、特開平11−32982にて磁性粉の形状のアスペクト比を上げた圧粉磁心の提案があるが、アトマイズ法で得られた磁性粉を更に、ボールミルを使用して扁平化処理をするため、この方法も一定な形状を得ることが困難であり、磁気特性に問題があった。
【0004】
一方、扁平形状の金属粉末の製造方法としては、特開平7−166212で金属溶湯をアトマイズし、微細な液滴にし、金属回転冷却体に衝突させる方法の提案がなされており、磁性材料への適応も提案されてはいるが、必ずしも十分な磁気特性が得られていないのが、現状であった。
【0005】
【発明が解決しようとする課題】
本発明は軟磁性合金粉末の磁気特性向上、その中でも特に、ナノ結晶磁性粉末、非晶質磁性粉末の磁気特性向上することを課題とする。
【0006】
【課題を解決するための手段】
本発明は、ナノ結晶磁性粉末および非晶質磁性粉末の磁性粉の形状に関して、鋭意検討した結果、磁性粉の楕円状の形状が磁気特性の向上の効果があることを見出し、本発明に到達した。
【0007】
すなわち、本発明は、構造がナノ結晶磁性材料、非晶質磁性材料であって、形状が楕円状であり、最大厚みが5ミクロン以下、長径が20〜500ミクロン、短径が10〜200ミクロンであり、縦径/横径=1.0〜4.0であることを特徴とし、保磁力、飽和磁化に代表される軟磁気特性が優れた磁性粉である。
【0008】
本発明に用いられる磁性粉の形状は、丸みを帯びた楕円状であって、角張った形状では無い。その寸法は長径方向の寸法が20〜500ミクロン、短径方向の寸法が10〜200ミクロン、長径/短径=1.0〜4.0であって、厚みが5ミクロン以下のものが良い。
【0009】
本発明に用いられるナノ結晶磁性材料は組織が粒径100nm以下のナノ結晶粒を主成分とする磁性材料であり、非晶質合金を結晶温度以下で熱処理し、ナノ結晶粒を析出させることで得られる。ナノ結晶磁性材料の組成としては、ナノ結晶磁性材料として代表的なFe−Cu−Nb−Si−Bでもよいが、最も望ましくは、一般式(Fe1−xMx)100−a−b−c−dSiaAlbBcM’d(式中、MはCo及び/又はNi、M’はNb、Mo、Zr、W、Ta、Hf、Ti、V、Cr、Mn、Y、Pd、Ru、Ga、Ge、C、Pから選ばれる1種類以上の元素を表わす。xは原子比を、a、b、c、dは原子%を示し、それぞれ0≦x≦0.5、0≦a≦24、1≦b≦20、4≦c≦30、0≦d≦10を満たすものとする)で表わされる組成が望ましい。
【0010】
一方、同じく本発明に用いられる非晶質磁性材料は、熱処理後も非晶質構造を維持しており、非晶質磁性材料の組成としては、一般式(Fe1−xMx)100−a−b−cSiaBbM’c(式中、MはCo及び/又はNi、M’はNb、Mo、Zr、W、Ta、Hf、Ti、V、Cr、Mn、Y、Pd、Ru、Ga、Ge、C、Pから選ばれる1種類以上の元素を表わす。xは原子比を、a、b、cは原子%を示し、それぞれ0≦x<1、0≦a≦24、4≦b≦30、0≦c≦10を満たすものとする)が望ましい。
【0011】
【発明の実施の形態】
本発明に用いられる磁性粉の形状は、丸みを帯びた楕円状であって、角張った形状では無い。その寸法は長径方向の寸法が20〜500ミクロン、短径方向の寸法が10〜200ミクロン、長径/短径=1.0〜4.0であって、厚みが5ミクロン以下のものが良い。更に望ましくは、寸法は長径方向の寸法が50〜200ミクロン、短径方向の寸法が15〜60ミクロン、長径/短径=1.3〜3.5であって、厚みが3ミクロン以下のものが好ましい。
【0012】
本発明の磁性粉の製造方法であるが、特開平7−166212に基づいた方法で作製された。すなわち、磁性粉組成の合金を高周波溶解炉で溶湯とし、溶解炉の底に取り付けたノズルを通して溶湯を流下させ、ノズル先に取り付けたガスアトマイズ部より高圧ガスで溶湯を微粒化し、更にこの微粒化させた溶湯を金属の回転冷却体に衝突させ、楕円状扁平磁性粉を作製する。この時、合金の組成により溶湯の粘度が変化し、粘度が高すぎると、粒径が大きくなりすぎて、前記形状の楕円状扁平磁性粉が得られ無い。また、粘度が低すぎると、粒径が小さくなりすぎて、前記形状の楕円状扁平磁性粉が得られ無い。前記形状の楕円状扁平磁性粉を得るのに最も適した組成は、(Fe1−xMx)100−a−b−c−dSiaAlbBcM’d(式中、MはCo及び/又はNi、M’はNb、Mo、Zr、W、Ta、Hf、Ti、V、Cr、Mn、Y、Pd、Ru、Ga、Ge、C、Pから選ばれる1種類以上の元素を表わす。xは原子比を、a、b、c、dは原子%を示し、それぞれ0≦x≦0.5、0≦a≦24、1≦b≦20、4≦c≦30、0≦d≦10を満たすものとする)で表される組成、または、一般式(Fe1−xMx)100−a−b−cSiaBbM’c(式中、MはCo及び/又はNi、M’はNb、Mo、Zr、W、Ta、Hf、Ti、V、Cr、Mn、Y、Pd、Ru、Ga、Ge、C、Pから選ばれる1種類以上の元素を表わす。xは原子比を、a、b、cは原子%を示し、それぞれ0≦x<1、0≦a≦24、4≦b≦30、0≦c≦10を満たすものとする)で表される組成であった。
【0013】
軟磁気特性向上のためには、磁性粉の100%が楕円状偏平磁性粉であることが望ましいが、角張った燐片状の形状の磁性粉や球状の磁性粉など楕円状磁性粉異なる形状の磁性粉との混合物でも良い。
【0014】
【実施例】(実施例1) Fe66NiSi14AlNbの合金を高周波溶解炉で1300℃の溶湯とし、溶解炉の底に取り付けたノズルを通して溶湯を流下させ、ノズル先に取り付けたガスアトマイズ部より75kg/cm2の高圧ガスで溶湯を微粒化し、更にこの微粒化させた溶湯をロール径190mm、円錐角度80度、回転数7200rpmの回転冷却体に衝突させ、Fe66NiSi14AlNb(at%)の組成を有する長径200ミクロン、短径60ミクロン、厚み2ミクロンの楕円状扁平磁性粉を作製した。作製した磁性粉を550℃で1時間、窒素ガス雰囲気中で熱処理した。図1、図2に作製した磁性粉の熱処理前後のX線回折の結果を示す。図1より熱処理前の磁性粉は典型的な非晶質のハローパターンを示し、完全な非晶質であることが明らかになった。また図2より熱処理後の磁性粉はナノ結晶化しており、ピーク幅よりほぼ20nmのナノ結晶が析出していることが明らかになった。図3に熱処理後の楕円状扁平ナノ結晶磁性粉の電子顕微鏡(SEM)写真を示す。
【0015】
得られたナノ結晶磁性粉の保磁力(Hc)、飽和磁化(Ms)の磁化測定を行なった。表1に測定結果を示す。なお、保磁力(Hc)、飽和磁化(Ms)の測定は振動試料型磁力計にて行なった。本発明の楕円状扁平磁性粉は優れた軟磁気特性を示していることがわかる。
(比較例1)実施例1と同一組成であり片ロール法で作製されたリボンを粉砕して得られた燐片状磁性粉の磁化測定結果を比較例1として表1に示す。実施例1と比べ、保磁力、飽和磁化特性に劣っていることがわかる。
【0016】
(実施例2)実施例1と同様に合金を高周波溶解炉で1300℃の溶湯とし、溶解炉の底に取り付けたノズルを通して溶湯を流下させ、ノズル先に取り付けたガスアトマイズ部より75kg/cm2の高圧ガスで溶湯を微粒化し、更にこの微粒化させた溶湯をロール径190mm、円錐角度80度、回転数7200rpmの回転冷却体に衝突させ、Co66FeNi14Si15(at%)の組成を有する長径50ミクロン、短径30ミクロン、厚み3ミクロンの楕円状扁平磁性粉を作製した。作製した磁性粉を380℃で1時間、窒素ガス雰囲気中で熱処理した。図4、図5に作製した磁性粉の熱処理前後のX線回折の結果を示す。図4、図5より熱処理前の磁性粉は典型的な非晶質のハローパターンを示し、熱処理前後に拘わらず、完全な非晶質であることが明らかになった。
【0017】
得られた非晶質磁性粉の保磁力(Hc)、飽和磁化(Ms)の磁化測定を行なった。表1に測定結果を併せて示す。本発明の非晶質楕円状扁平磁性粉は優れた軟磁気特性を示していることがわかる。
(比較例2)比較例1と同様、実施例2と同一組成のリボンを粉砕し、燐片型の磁性粉の測定結果を比較例2として表1に示す。実施例2と比べ、保磁力、飽和磁化特性に劣っていることがわかる。
(実施例3) 実施例1と同様に合金を高周波溶解炉で1300℃の溶湯とし、溶解炉の底に取り付けたノズルを通して溶湯を流下させ、ノズル先に取り付けたガスアトマイズ部より75kg/cm2の高圧ガスで溶湯を微粒化し、更にこの微粒化させた溶湯をロール径190mm、円錐角度80度、回転数7200rpmの回転冷却体に衝突させ、Fe78Si12(at%)の組成を有する長径150ミクロン、短径60ミクロン、厚み2ミクロンの楕円状扁平磁性粉を作製した。作製した磁性粉を400℃で1時間、窒素ガス雰囲気中で熱処理した。作製した磁性粉の熱処理前後のX線回折を測定した結果、実施例2の場合と同様に、熱処理前の磁性粉は典型的な非晶質のハローパターンを示し、熱処理前後に拘わらず、完全な非晶質であることが明らかになった。
【0018】
得られた非晶質磁性粉の保磁力(Hc)、飽和磁化(Ms)の磁化測定を行なった。表1に測定結果を併せて示す。本発明の楕円状扁平非晶質磁性粉は優れた軟磁気特性を示していることがわかる。
(比較例3) 比較例1と同様、実施例3と同一組成のリボンを粉砕し、燐片型の磁性粉の測定結果を比較例3として表1に示す。実施例3と比べ、保磁力、飽和磁化特性に劣っていることがわかる。
【0019】
【表1】

Figure 2004018889
【0020】
【発明の効果】
本発明は軟磁性合金粉末を楕円状偏平ナノ結晶磁性粉とすることにより、優れた磁気特性を有するナノ結晶磁性粉末、非晶質磁性粉末を提供することができた。
【図面の簡単な説明】
【図1】本発明に係る熱処理前の楕円状扁平ナノ結晶磁性粉のX線回折図形である。
【図2】本発明に係る熱処理後の楕円状扁平ナノ結晶軟磁性合金のX線回折図形である。
【図3】本発明に係る熱処理後の楕円状扁平ナノ結晶軟磁性合金の電子顕微鏡(SEM)写真である。
【図4】本発明に係る熱処理前の楕円状扁平非晶質磁性粉のX線回折図形である。
【図5】本発明に係る熱処理後の楕円状扁平非晶質軟磁性合金のX線回折図形である。[0001]
[Industrial applications]
The present invention relates to an Fe-based soft magnetic alloy powder having particularly good soft magnetic properties and a method for producing the same.
[0002]
[Prior art]
Conventionally, amorphous alloys and nanocrystalline magnetic materials have been known as alloys having excellent soft magnetic properties, and their application to powders that can be easily processed has been attempted. For example, in Japanese Patent Application Laid-Open Nos. Hei 5-335129 and Hei 11-269509, soft magnetic alloy powders obtained by pulverizing an Fe-based soft magnetic alloy ribbon are proposed. Therefore, the magnetic properties could not always be satisfied.
[0003]
On the other hand, as an Fe-Si-Al alloy powder, there is a proposal in JP-A-11-32982 of a dust core with an increased aspect ratio of the shape of the magnetic powder. However, the magnetic powder obtained by the atomizing method is further subjected to ball milling. In this method, it is difficult to obtain a uniform shape, and there is a problem in magnetic characteristics.
[0004]
On the other hand, as a method of manufacturing a flat metal powder, a method of atomizing a molten metal into fine droplets and colliding with a metal rotary cooling body has been proposed in JP-A-7-166212. Although adaptation has been proposed, at present, sufficient magnetic properties have not been obtained.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to improve the magnetic properties of soft magnetic alloy powders, and particularly to improve the magnetic properties of nanocrystalline magnetic powders and amorphous magnetic powders.
[0006]
[Means for Solving the Problems]
The present invention has conducted intensive studies on the shapes of the magnetic powders of the nanocrystalline magnetic powder and the amorphous magnetic powder, and has found that the elliptical shape of the magnetic powder has the effect of improving the magnetic properties, and has reached the present invention. did.
[0007]
That is, the present invention relates to a nanocrystalline magnetic material and an amorphous magnetic material having an elliptical shape, a maximum thickness of 5 microns or less, a major axis of 20 to 500 microns, and a minor axis of 10 to 200 microns. Wherein the ratio of longitudinal diameter / horizontal diameter is 1.0 to 4.0, and is a magnetic powder excellent in soft magnetic properties represented by coercive force and saturation magnetization.
[0008]
The shape of the magnetic powder used in the present invention is a rounded ellipse, not an angular shape. The size is preferably 20 to 500 microns in the major axis direction, 10 to 200 microns in the minor axis direction, 1.0 to 4.0 in the major axis / minor axis, and 5 microns or less in thickness.
[0009]
The nanocrystalline magnetic material used in the present invention is a magnetic material mainly composed of nanocrystalline grains having a grain size of 100 nm or less, and is obtained by heat-treating an amorphous alloy at a crystalline temperature or less to precipitate nanocrystalline grains. can get. The composition of the nanocrystalline magnetic material may be Fe—Cu—Nb—Si—B, which is a typical nanocrystalline magnetic material, but is most preferably the general formula (Fe1-xMx) 100-abc-dSiaAlbBcM. 'd (where M is Co and / or Ni, M' is Nb, Mo, Zr, W, Ta, Hf, Ti, V, Cr, Mn, Y, Pd, Ru, Ga, Ge, C, P X represents an atomic ratio, a, b, c, and d represent atomic%, and 0 ≦ x ≦ 0.5, 0 ≦ a ≦ 24, and 1 ≦ b ≦ 20, respectively. 4 ≦ c ≦ 30 and 0 ≦ d ≦ 10).
[0010]
On the other hand, the amorphous magnetic material also used in the present invention maintains an amorphous structure after the heat treatment, and the composition of the amorphous magnetic material is represented by the general formula (Fe1-xMx) 100-ab -CSiaBbM'c (where M is Co and / or Ni, M 'is Nb, Mo, Zr, W, Ta, Hf, Ti, V, Cr, Mn, Y, Pd, Ru, Ga, Ge, C , P. At least x represents an atomic ratio, a, b, and c represent atomic%, and 0 ≦ x <1, 0 ≦ a ≦ 24, 4 ≦ b ≦ 30, 0 ≦ c ≦ 10).
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
The shape of the magnetic powder used in the present invention is a rounded ellipse, not an angular shape. The size is preferably 20 to 500 microns in the major axis direction, 10 to 200 microns in the minor axis direction, 1.0 to 4.0 in the major axis / minor axis, and 5 microns or less in thickness. More preferably, the dimension in the major axis direction is 50 to 200 microns, the dimension in the minor axis direction is 15 to 60 microns, and the major axis / minor axis is 1.3 to 3.5, and the thickness is 3 microns or less. Is preferred.
[0012]
The method for producing the magnetic powder of the present invention was produced by a method based on JP-A-7-166212. That is, an alloy having a magnetic powder composition is melted in a high-frequency melting furnace, the molten metal is allowed to flow down through a nozzle attached to the bottom of the melting furnace, and the molten metal is atomized with a high-pressure gas from a gas atomizing section attached to the nozzle tip, and further atomized. The molten metal is made to collide with a metal rotating cooling body to produce elliptical flat magnetic powder. At this time, the viscosity of the molten metal changes depending on the composition of the alloy. If the viscosity is too high, the particle size becomes too large, and the elliptical flat magnetic powder having the above-mentioned shape cannot be obtained. On the other hand, if the viscosity is too low, the particle size becomes too small, and an elliptical flat magnetic powder having the above-mentioned shape cannot be obtained. The composition most suitable for obtaining the elliptical flat magnetic powder having the above-mentioned shape is (Fe1-xMx) 100-abc-dSiaAlbBcM'd (where M is Co and / or Ni, and M 'is Nb , Mo, Zr, W, Ta, Hf, Ti, V, Cr, Mn, Y, Pd, Ru, Ga, Ge, C, P, where x represents the atomic ratio and a , B, c, and d represent atomic% and satisfy 0 ≦ x ≦ 0.5, 0 ≦ a ≦ 24, 1 ≦ b ≦ 20, 4 ≦ c ≦ 30, and 0 ≦ d ≦ 10, respectively. Or a general formula (Fe1-xMx) 100-ab-cSiaBbM'c (where M is Co and / or Ni, M 'is Nb, Mo, Zr, W, Ta, Hf , Ti, V, Cr, Mn, Y, Pd, Ru, Ga, Ge, C, P. x represents an atomic ratio, a, b, and c represent atomic%, and satisfy 0 ≦ x <1, 0 ≦ a ≦ 24, 4 ≦ b ≦ 30, and 0 ≦ c ≦ 10, respectively. Composition.
[0013]
In order to improve the soft magnetic properties, it is desirable that 100% of the magnetic powder is elliptical flat magnetic powder, but it is preferable that the elliptical magnetic powder having a different shape such as angular flaky magnetic powder or spherical magnetic powder. A mixture with magnetic powder may be used.
[0014]
EXAMPLES Example 1 An alloy of Fe 66 Ni 4 Si 14 B 9 Al 4 Nb 3 was melted at 1300 ° C. in a high-frequency melting furnace, and the molten metal was allowed to flow down through a nozzle attached to the bottom of the melting furnace. The molten metal is atomized with a high-pressure gas of 75 kg / cm 2 from a gas atomizing part attached to the furnace, and the atomized molten metal is caused to collide with a rotating cooling body having a roll diameter of 190 mm, a cone angle of 80 degrees, and a rotation speed of 7,200 rpm, to obtain Fe 66 Ni 4 An elliptic flat magnetic powder having a composition of Si 14 B 9 Al 4 Nb 3 (at%) having a major axis of 200 μm, a minor axis of 60 μm, and a thickness of 2 μm was prepared. The produced magnetic powder was heat-treated at 550 ° C. for 1 hour in a nitrogen gas atmosphere. FIGS. 1 and 2 show the results of X-ray diffraction before and after the heat treatment of the prepared magnetic powder. FIG. 1 shows that the magnetic powder before the heat treatment showed a typical amorphous halo pattern and was completely amorphous. FIG. 2 also revealed that the magnetic powder after the heat treatment was nanocrystallized, and nanocrystals having a peak width of about 20 nm were precipitated. FIG. 3 shows an electron microscope (SEM) photograph of the elliptical flat nanocrystalline magnetic powder after the heat treatment.
[0015]
The coercive force (Hc) and saturation magnetization (Ms) of the obtained nanocrystalline magnetic powder were measured. Table 1 shows the measurement results. The coercive force (Hc) and the saturation magnetization (Ms) were measured using a vibrating sample magnetometer. It can be seen that the elliptical flat magnetic powder of the present invention has excellent soft magnetic properties.
Comparative Example 1 Table 1 shows the results of magnetization measurement of flaky magnetic powder obtained by pulverizing a ribbon produced by the one-roll method and having the same composition as in Example 1. It can be seen that the coercive force and the saturation magnetization characteristics are inferior to Example 1.
[0016]
(Example 2) In the same manner as in Example 1, the alloy was melted at 1300 ° C in a high-frequency melting furnace, the molten metal was allowed to flow down through a nozzle attached to the bottom of the melting furnace, and a high pressure of 75 kg / cm2 was applied from a gas atomizing section attached to the nozzle tip. The melt is atomized by gas, and the atomized melt is impinged on a rotary cooling body having a roll diameter of 190 mm, a cone angle of 80 degrees, and a rotation speed of 7,200 rpm, to obtain Co 66 Fe 4 Ni 1 B 14 Si 15 (at%). An elliptical flat magnetic powder having a composition having a major axis of 50 microns, a minor axis of 30 microns and a thickness of 3 microns was prepared. The produced magnetic powder was heat-treated at 380 ° C. for 1 hour in a nitrogen gas atmosphere. 4 and 5 show the results of X-ray diffraction before and after the heat treatment of the prepared magnetic powder. 4 and 5, the magnetic powder before the heat treatment showed a typical amorphous halo pattern, and it became clear that the magnetic powder was completely amorphous before and after the heat treatment.
[0017]
The coercive force (Hc) and saturation magnetization (Ms) of the obtained amorphous magnetic powder were measured. Table 1 also shows the measurement results. It can be seen that the amorphous elliptical flat magnetic powder of the present invention has excellent soft magnetic properties.
(Comparative Example 2) As in Comparative Example 1, a ribbon having the same composition as in Example 2 was pulverized, and the measurement results of the scale-shaped magnetic powder are shown in Table 1 as Comparative Example 2. It can be seen that the coercive force and the saturation magnetization characteristics are inferior to Example 2.
(Example 3) An alloy was melted at 1300 ° C in a high-frequency melting furnace in the same manner as in Example 1, and the molten metal was allowed to flow down through a nozzle attached to the bottom of the melting furnace, and a high pressure of 75 kg / cm2 was applied from a gas atomizing section attached to the nozzle tip. The melt is atomized by gas, and the atomized melt is collided with a rotary cooling body having a roll diameter of 190 mm, a cone angle of 80 degrees, and a rotation speed of 7,200 rpm, and a long diameter having a composition of Fe 78 Si 9 B 12 (at%). An elliptical flat magnetic powder having a size of 150 microns, a short diameter of 60 microns and a thickness of 2 microns was prepared. The produced magnetic powder was heat-treated at 400 ° C. for 1 hour in a nitrogen gas atmosphere. As a result of measuring the X-ray diffraction of the prepared magnetic powder before and after the heat treatment, the magnetic powder before the heat treatment showed a typical amorphous halo pattern as in the case of Example 2, and the magnetic powder before and after the heat treatment was completely removed. It became clear that it was amorphous.
[0018]
The coercive force (Hc) and saturation magnetization (Ms) of the obtained amorphous magnetic powder were measured. Table 1 also shows the measurement results. It can be seen that the elliptical flat amorphous magnetic powder of the present invention has excellent soft magnetic properties.
Comparative Example 3 As in Comparative Example 1, a ribbon having the same composition as in Example 3 was pulverized, and the measurement results of the scale-shaped magnetic powder are shown in Table 1 as Comparative Example 3. It can be seen that the coercive force and the saturation magnetization characteristics are inferior to Example 3.
[0019]
[Table 1]
Figure 2004018889
[0020]
【The invention's effect】
The present invention can provide a nanocrystalline magnetic powder and an amorphous magnetic powder having excellent magnetic properties by using a soft magnetic alloy powder as an elliptical flat nanocrystalline magnetic powder.
[Brief description of the drawings]
FIG. 1 is an X-ray diffraction pattern of an elliptical flat nanocrystalline magnetic powder before heat treatment according to the present invention.
FIG. 2 is an X-ray diffraction pattern of an elliptical flat nanocrystalline soft magnetic alloy after heat treatment according to the present invention.
FIG. 3 is an electron microscope (SEM) photograph of an elliptical flat nanocrystalline soft magnetic alloy after heat treatment according to the present invention.
FIG. 4 is an X-ray diffraction pattern of the elliptical flat amorphous magnetic powder before heat treatment according to the present invention.
FIG. 5 is an X-ray diffraction pattern of an elliptical flat amorphous soft magnetic alloy after heat treatment according to the present invention.

Claims (4)

Fe基軟磁性合金粉末であり、形状が楕円状であり、最大厚みが5ミクロン以下、長径が20〜500ミクロン、短径が10〜200ミクロンであり、縦径/横径=1.0〜4.0であることを特徴とし、特徴組織が100nm以下のナノ結晶粒を含むことを特徴とする軟磁性合金粉末。Fe-based soft magnetic alloy powder having an elliptical shape, a maximum thickness of 5 microns or less, a major axis of 20 to 500 microns, a minor axis of 10 to 200 microns, and a longitudinal / horizontal diameter of 1.0 to 1.0 A soft magnetic alloy powder, wherein the soft magnetic alloy powder has a nanostructure of 100 nm or less. 一般式(Fe1−xMx)100−a−b−c−dSiaAlbBcM’d(式中、MはCo及び/又はNi、M’はNb、Mo、Zr、W、Ta、Hf、Ti、V、Cr、Mn、Y、Pd、Ru、Ga、Ge、C、Pから選ばれる1種類以上の元素を表わす。xは原子比を、a、b、c、dは原子%を示し、それぞれ0≦x≦0.5、0≦a≦24、1≦b≦20、4≦c≦30、0≦d≦10を満たすものとする)で表わされることを特徴とするFe基軟磁性合金粉末であり、形状が楕円状であり、最大厚みが5ミクロン以下、長径が20〜500ミクロン、短径が10〜200ミクロンであり、縦径/横径=1.0〜4.0であることを特徴とし、特徴組織が100nm以下のナノ結晶粒を含むことを請求項1記載の軟磁性合金粉末。General formula (Fe1-xMx) 100-abc-dSiaAlbBcM'd (where M is Co and / or Ni, M 'is Nb, Mo, Zr, W, Ta, Hf, Ti, V, Cr , Mn, Y, Pd, Ru, Ga, Ge, C, P, represents one or more types of elements, x represents an atomic ratio, a, b, c, and d represent atomic%, and 0 ≦ x each. ≤ 0.5, 0 ≤ a ≤ 24, 1 ≤ b ≤ 20, 4 ≤ c ≤ 30, and 0 ≤ d ≤ 10). The shape is elliptical, the maximum thickness is 5 microns or less, the major axis is 20 to 500 microns, the minor axis is 10 to 200 microns, and the vertical / horizontal diameter is 1.0 to 4.0. The soft magnetic alloy powder according to claim 1, wherein the characteristic structure includes nanocrystal grains of 100 nm or less. Fe系またはCo系磁性合金からなり、形状が楕円状であり、最大厚みが5ミクロン以下、長径が20〜500ミクロン、短径が10〜200ミクロンであり、縦径/横径=1.0〜4.0であることを特徴とし、非晶質構造を含むことを特徴とする軟磁性合金粉末。It is made of a Fe-based or Co-based magnetic alloy, has an elliptical shape, a maximum thickness of 5 μm or less, a major axis of 20 to 500 μm, a minor axis of 10 to 200 μm, and a longitudinal / lateral diameter = 1.0. A soft magnetic alloy powder characterized by having an amorphous structure. 一般式(Fe1−xMx)100−a−b−cSiaBbM’c(式中、MはCo及び/又はNi、M’はNb、Mo、Zr、W、Ta、Hf、Ti、V、Cr、Mn、Y、Pd、Ru、Ga、Ge、C、Pから選ばれる1種類以上の元素を表わす。xは原子比を、a、b、cは原子%を示し、それぞれ0≦x<1、0≦a≦24、4≦b≦30、0≦c≦10を満たすものとする)で表されることを特徴とするFe系またはCo系磁性合金からなり、形状が楕円状であり、最大厚みが5ミクロン以下、長径が20〜500ミクロン、短径が10〜200ミクロンであり、縦径/横径=1.0〜4.0であることを特徴とし、非晶質構造を含むことを特徴とする請求項3記載の軟磁性合金粉末。General formula (Fe1-xMx) 100-ab-cSiaBbM'c (where M is Co and / or Ni, M 'is Nb, Mo, Zr, W, Ta, Hf, Ti, V, Cr, Mn , Y, Pd, Ru, Ga, Ge, C, P, represents one or more elements, x represents an atomic ratio, a, b, c represents an atomic%, and 0 ≦ x <1, 0, respectively. ≤ a ≤ 24, 4 ≤ b ≤ 30, and 0 ≤ c ≤ 10). Fe-based or Co-based magnetic alloy, having an elliptical shape and a maximum thickness Is 5 microns or less, the major axis is 20 to 500 microns, the minor axis is 10 to 200 microns, and the longitudinal diameter / horizontal diameter is 1.0 to 4.0, including an amorphous structure. The soft magnetic alloy powder according to claim 3, characterized in that:
JP2002172093A 2002-06-12 2002-06-12 Elliptic nanocrystal magnetic material Pending JP2004018889A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002172093A JP2004018889A (en) 2002-06-12 2002-06-12 Elliptic nanocrystal magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002172093A JP2004018889A (en) 2002-06-12 2002-06-12 Elliptic nanocrystal magnetic material

Publications (1)

Publication Number Publication Date
JP2004018889A true JP2004018889A (en) 2004-01-22

Family

ID=31171745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002172093A Pending JP2004018889A (en) 2002-06-12 2002-06-12 Elliptic nanocrystal magnetic material

Country Status (1)

Country Link
JP (1) JP2004018889A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008007346A2 (en) * 2006-07-12 2008-01-17 Vacuumschmelze Gmbh & Co. Kg Method for the production of powder composite cores and powder composite core
KR100795878B1 (en) * 2006-10-16 2008-01-21 김준기 A mulberry vinegar containing calcium bamboo salt and the method thereof
KR100814586B1 (en) * 2007-01-02 2008-03-17 이영희 Method for preparing vinerar using banana and apple
CN102360667A (en) * 2011-10-24 2012-02-22 南京信息工程大学 Amorphous nanocrystalline soft magnetic magneto-sensitive composite material for sensing and preparation method thereof
WO2016121950A1 (en) * 2015-01-30 2016-08-04 株式会社村田製作所 Magnetic powder and production method thereof, magnetic core and production method thereof, coil component and motor

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008007346A2 (en) * 2006-07-12 2008-01-17 Vacuumschmelze Gmbh & Co. Kg Method for the production of powder composite cores and powder composite core
WO2008007346A3 (en) * 2006-07-12 2008-03-13 Vacuumschmelze Gmbh & Co Kg Method for the production of powder composite cores and powder composite core
GB2454823A (en) * 2006-07-12 2009-05-20 Vacuumschmelze Gmbh & Co Kg Method for the production of powder composite cores and powder composite core
GB2454823B (en) * 2006-07-12 2012-03-14 Vacuumschmelze Gmbh & Co Kg Method for the production of powder composite cores and powder composite core
US8216393B2 (en) 2006-07-12 2012-07-10 Vacuumschmelze Gmbh & Co. Kg Method for the production of powder composite cores and powder composite core
KR100795878B1 (en) * 2006-10-16 2008-01-21 김준기 A mulberry vinegar containing calcium bamboo salt and the method thereof
KR100814586B1 (en) * 2007-01-02 2008-03-17 이영희 Method for preparing vinerar using banana and apple
CN102360667A (en) * 2011-10-24 2012-02-22 南京信息工程大学 Amorphous nanocrystalline soft magnetic magneto-sensitive composite material for sensing and preparation method thereof
CN102360667B (en) * 2011-10-24 2013-11-13 南京信息工程大学 Amorphous nanocrystalline soft magnetic magneto-sensitive composite material for sensing and preparation method thereof
WO2016121950A1 (en) * 2015-01-30 2016-08-04 株式会社村田製作所 Magnetic powder and production method thereof, magnetic core and production method thereof, coil component and motor
JPWO2016121950A1 (en) * 2015-01-30 2017-12-21 株式会社村田製作所 Magnetic powder and manufacturing method thereof, magnetic core and manufacturing method thereof, coil component, and motor
US10767249B2 (en) 2015-01-30 2020-09-08 Murata Manufacturing Co., Ltd. Magnetic powder and production method thereof, magnetic core and production method thereof, coil component and motor

Similar Documents

Publication Publication Date Title
JP6705549B2 (en) Crystalline Fe-based alloy powder, method for producing the same, and magnetic core
JP3772967B2 (en) Method for producing magnetic metal powder
JP6088192B2 (en) Manufacturing method of dust core
JP5305126B2 (en) Soft magnetic powder, method of manufacturing a dust core, dust core, and magnetic component
CN114284022A (en) Soft magnetic alloy and magnetic component
JP6558887B2 (en) Soft magnetic alloys and magnetic parts
JP5395984B1 (en) Method for producing αFe nanocrystal dispersed amorphous sprayed coating
JP4055709B2 (en) Manufacturing method of nanocomposite magnet by atomizing method
CN111128504A (en) Soft magnetic alloy powder, dust core, magnetic component, and electronic device
JP2702757B2 (en) Flat Fe-based soft magnetic alloy fine powder and method for producing the same
JPH0851010A (en) Green compact of soft magnetic alloy, production method thereof and coating powder therefor
JP6648856B2 (en) Fe-based alloy, crystalline Fe-based alloy atomized powder, and magnetic core
JP2004018889A (en) Elliptic nanocrystal magnetic material
JP2004063798A (en) Magnetic composite material
JPH0448005A (en) Fe base soft magnetic alloy powder and manufacture thereof and powder compact magnetic core with the same
KR20160071619A (en) Method for manufacturing fe-based superalloy
WO2022209497A1 (en) Soft magnetic powder and magnetic core
Djellal et al. Influence of Pr6O11 addition on structural and magnetic properties of mechanically alloyed Fe65Co35 nanoparticles
JP7419127B2 (en) Powder magnetic core and its manufacturing method
JP2001207202A (en) Method for producing metallic bulk material having high coercive force and metallic bulk material and target material produced thereby
Shengen et al. High magnetic performance NdFe10. 5Mo1. 5N x prepared by mechanical alloying
JP2004179270A (en) Magnetic composite material for antenna tag
Jiawei et al. Fabrication and Soft Magnetic Properties of Fe81. 3Si4B10P4Cu0. 7 Amorphous Powders by Using the Spinning-water Atomization Process
CN114086089A (en) Method for manufacturing Fe-based nanocrystalline alloy powder and Fe-based amorphous alloy
JP2000345308A (en) Amorphous soft magnetic alloy sintered body, amorphous soft magnetic alloy magnetic core and production of amorphous soft magnetic alloy sintered body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050614

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051018