JP2004015936A - Control device of rotary electric machine for vehicle - Google Patents

Control device of rotary electric machine for vehicle Download PDF

Info

Publication number
JP2004015936A
JP2004015936A JP2002167728A JP2002167728A JP2004015936A JP 2004015936 A JP2004015936 A JP 2004015936A JP 2002167728 A JP2002167728 A JP 2002167728A JP 2002167728 A JP2002167728 A JP 2002167728A JP 2004015936 A JP2004015936 A JP 2004015936A
Authority
JP
Japan
Prior art keywords
electric machine
rotating electric
overvoltage
power
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002167728A
Other languages
Japanese (ja)
Other versions
JP3975126B2 (en
Inventor
Masakazu Nakayama
中山 政和
Seiji Anzai
安西 清治
Keiichi Komurasaki
小紫 啓一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002167728A priority Critical patent/JP3975126B2/en
Publication of JP2004015936A publication Critical patent/JP2004015936A/en
Application granted granted Critical
Publication of JP3975126B2 publication Critical patent/JP3975126B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control device of a rotary electric machine for a vehicle capable of preventing breakage of a circuit device or respective devices by restraining a voltage rise in a generator due to falling-off of a battery. <P>SOLUTION: This control device comprises the rotary electric machine 11 which is coupled to an internal combustion engine and functions as a motor and a generator, a DC power supply 13 which supplies power to the rotary electric machine 11 and is charged by an output of the rotary electric machine 11, and a control means 16 which controls the rotary electric machine 11. The control means 16 includes a command value computing means 1 which supplies a generation power command to the rotary electric machine 11, a power conversion device 4 which is operated as an inverter when the power is supplied to the rotary electric machine 11 and is operated as a rectification device when the DC power 13 is charged from the rotary electric machine 11, and an overvoltage determination means 18 which determines an overvoltage of an output circuit of the rotary electric machine 11. When the overvoltage determination means 18 determines overvoltage, the command value computing means 1 controls the power conversion device 4 so as to place the rotary electric machine 11 into a phase short-circuit condition. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、車両に搭載され、交流発電機および交流電動機として使用される回転電機の制御装置に関するものである。
【0002】
【従来の技術】
車両用内燃機関周辺の省スペース化とコスト低減とを目的として車両に搭載される交流発電機を内燃機関始動用電動機として活用する技術が提案されている。例えば、特開2000−116170号公報にはクローポール型の三相交流発電機を電動機として使用するとき、トルクを充分に得るために、トルク電流指令値に基づいて印可電圧を算出し、印可電圧が飽和状態になったときにトルク電流指令値とは位相の異なる励磁電流を作って印可電圧を変更すると共に、フィードバックされた実トルク電流がトルク電流指令値と一致するように励磁電流を補正する技術が開示されている。
【0003】
この公報を一例とするような、車両用発電機を電動機としても活用するシステムにおいては、電気自動車に使用される電動機の制御システムとは異なり、構成要素の小型・軽量化が重要視されるのが一般的である。例えば、電圧変化を抑制する平滑コンデンサも装置の小型化のために大容量のものが使用できず、そのために、制御装置としての受入可能電力が小さくなってトラブルによる電圧変化量が大きくなり、制御回路に過電圧が印可されて部品の劣化や故障につながることがあった。
【0004】
図11はこのような従来の車両用回転電機の制御装置における構成の一例を示すものである。図11において、指令値演算手段1は内燃機関始動時や加速時にトルク指令値を演算すると共に、回転電機11が発電機として機能するときには発電電力の指令値を演算して出力し、交流電流指令演算手段2は指令値演算手段1からのトルク指令、または、発電電力指令に基づき交流電流の指令値を演算するものである。交流電圧指令演算手段3は交流電流指令演算手段2の指令値に基づいて必要な交流電圧を演算し、電力変換装置4は回転電機11が電動機として機能するときには直流電源13からの直流電力をインバータとして交流電力に変換し、回転電機11が発電機として機能するときには整流装置として交流電力を直流電力に変換するものである。
【0005】
界磁電流指令演算手段5は指令値演算手段1の指令に基づき回転電機11の界磁コイルに必要な界磁電流を演算し、界磁電圧指令演算手段6はこの界磁電流指令値に基づき界磁電圧を演算し、さらに界磁電流制御手段7は界磁電圧指令に基づく界磁電圧を発生して回転電機11の界磁コイルに与える界磁電流を制御するものである。電圧平滑装置8は電力変換装置4が変換する直流電圧の変動を抑制し、電圧検出器9は直流電源13の電圧を検出し、回転速度・回転角演算手段10は回転電機11に設けられた回転検出器12の出力により回転角度と回転速度とを演算する。また、14と15とは制御装置と直流電源13とを接続するコネクタである。
【0006】
内燃機関の始動時には回転電機11は電動機として機能し、指令値演算手段1のトルク指令値による供給電流を交流電流指令演算手段2が演算し、この電流値に対応する供給電圧を交流電圧指令演算手段3が演算して電力変換装置4のスイッチング素子をPWM制御し、回転電機11を三相の同期電動機として内燃機関を始動する。内燃機関が始動した後、回転電機11は三相交流発電機として機能するが、直流電源13の電圧を電圧検出器9が指令値演算手段1にフィードバックすることにより、指令値演算手段1が交流電流指令演算手段2と界磁電流指令演算手段5とに指令を与え、直流電源13の放電量(負荷の量)に対して直流電源13の電圧が所定値になるように発電量を制御する。
【0007】
【発明が解決しようとする課題】
以上の構成を持つ従来の車両用回転電機の制御装置において、回転電機11が発電機として機能中、車両の振動などにより制御装置と直流電源13とを接続するコネクタ14または15のいずれかが外れたり、両コネクタ間に挿入された図示しない遮断器などが解放状態になると、制御回路の充電経路には急激な電圧上昇が発生する。この電圧上昇に対しては、指令値演算手段1が交流電流指令演算手段2と界磁電流指令演算手段5とに指令値を与え、発電電圧を低下させるように動作するが、電圧上昇が急激な場合には制御が追いつかず、大きな過電圧が発生することになる。
【0008】
また、この過電圧は電圧平滑装置8に吸収されるべきものであるが、上記したように電圧平滑装置8が小容量化されているために吸収しきれず、過電圧が制御装置に使用されている回路素子や、直流電源13の負荷として接続されている各装置に印可され、劣化や破損などのトラブルにつながるものであった。
【0009】
この発明は、このような課題を解決するためになされたもので、上記のようなトラブルに対して電圧上昇値を抑制すると共に、電圧上昇時間を短縮することにより、回路素子や各装置の劣化や破損を防止することが可能な車両用回転電機の制御装置を得ることを目的とするものである。
【0010】
【課題を解決するための手段】
この発明に係わる車両用回転電機の制御装置は、内燃機関に結合され、電動機または発電機として機能する回転電機と、回転電機に電力を供給し、回転電機の出力により充電される直流電源と、回転電機を制御する制御手段とを備え、制御手段には、回転電機に電力を供給するときはインバータとして動作し、回転電機から直流電源を充電するときは整流装置として動作する電力変換装置と、回転電機の出力回路の過電圧を判定する過電圧判定手段とが含まれており、過電圧判定手段が過電圧と判定したとき、電力変換装置が回転電機を相短絡状態にするようにしたものである。
【0011】
また、内燃機関に結合され、電動機または発電機として機能する回転電機と、回転電機に電力を供給し、また、回転電機の出力により充電される直流電源と、回転電機を制御する制御手段とを備え、制御手段には、回転電機に対して電流指令を与える交流電流指令演算手段と、回転電機に電力を供給するときはインバータとして動作し、回転電機から直流電源を充電するときは整流装置として動作する電力変換装置と、回転電機の出力回路の過電圧を判定する過電圧判定手段とが含まれており、過電圧判定手段が過電圧と判定したとき、交流電流指令演算手段が電力変換装置を制御して回転電機の電機子コイルに位相制御された弱め界磁電流を供給するようにしたものである。
【0012】
さらに、位相制御された弱め界磁電流が、回転電機を発電機として機能させたとき、トルク発生に寄与しない位相の電流であるようにしたものである。
【0013】
さらにまた、内燃機関に結合され、電動機または発電機として機能する回転電機と、回転電機に電力を供給し、また、回転電機の出力により充電される直流電源と、回転電機を制御する制御手段とを備え、制御手段には、回転電機の界磁電流を制御する界磁電流制御手段と、回転電機の出力回路の過電圧を判定する過電圧判定手段とが含まれており、過電圧判定手段が過電圧と判定したとき、界磁電流制御手段が回転電機に逆方向の界磁を与えるようにしたものである。
【0014】
また、内燃機関に結合され、電動機または発電機として機能する回転電機と、回転電機に電力を供給し、また、回転電機の出力により充電される直流電源と、回転電機を制御する制御手段とを備え、制御手段には、回転電機に電力を供給するときはインバータとして動作し、回転電機から直流電源を充電するときは整流装置として動作する電力変換装置と、回転電機の界磁電流を制御する界磁電流制御手段と、回転電機の出力回路の過電圧を判定する過電圧判定手段とが含まれており、過電圧判定手段が過電圧と判定したとき、界磁電流制御手段が回転電機に逆方向の界磁を与えて消磁すると共に、電力変換装置が回転電機を相短絡状態にするようにしたものである。
【0015】
【発明の実施の形態】
実施の形態1.
図1ないし図4は、この発明の実施の形態1による車両用回転電機の制御装置を説明するもので、図1は、装置の構成を示すブロック図、図2ないし図4は、動作を説明する動作特性図であり、図1において、上記の従来例と同一機能部分には同一符号が付与されている。
【0016】
図1において、回転電機11は内燃機関に直接、または、駆動手段を介して連結され、内燃機関の始動時には電動機として内燃機関を駆動し、内燃機関の始動後には発電機として機能する、例えば、三相の同期機であり、回転電機11の回転速度と回転角度とが回転検出器12により検出される。直流電源13は内燃機関の始動時には回転電機11に電力を供給し、内燃機関の運転中には回転電機11の出力により充電されると共に、車両に搭載された各負荷に電力を供給する車載バッテリである。
【0017】
制御手段16は回転電機11が電動機として機能するときにはトルクを制御すると共に、発電機として機能するときには発電出力を制御するもので、次の各手段から構成されている。まず、指令値演算手段1は内燃機関始動時においては回転電機11のトルク指令値を演算して指令値を出力すると共に、回転電機11が発電機として機能するときには直流電源13の電圧を入力して回転電機11の発電電力を演算し、指令値として出力する。交流電流指令演算手段2は指令値演算手段1からのトルク指令値や発電電力指令値に基づき、回転電機11の電機子コイルに通電する交流電流の指令値を演算し、各相の電流指令値を、Iu*、Iv*、Iw*として出力する。
【0018】
また、交流電圧指令演算手段3は交流電流指令演算手段2の電流指令値に基づき、その電流を得るための各相の必要交流電圧を演算して電圧指令値を、Vu*、Vv*、Vw*として出力し、電力変換装置4はインバータとして電圧指令値に基づくPWM制御を行って回転電機11の電機子コイルに対する三相交流の通電制御をおこなう。また、この電力変換装置4は回転電機11が発電機として機能するときには整流装置として回転電機11の三相交流出力を整流し、直流電源13を充電する。電流検出器17は回転電機11の各相の実電流を検出して交流電流指令演算手段2にフィードバックし、交流電流指令演算手段2が実電流を電流指令値に合致させるように制御する。
【0019】
界磁電流指令演算手段5は指令値演算手段1の出力指令値に基づき、電動機としてのトルクを得るための界磁電流値、または、必要な発電電力を得るための界磁電流値を演算し、界磁電流指令値If*を界磁電圧指令演算手段6に与え、界磁電圧指令演算手段6はこの界磁電流指令値に基づき、界磁電流を得るための界磁電圧指令値Vf*を演算して界磁電流制御手段7に与える。そして、界磁電流制御手段7は直流電源13から電力供給を受け、界磁電圧指令値Vf*に基づき界磁電流を制御して回転電機11の界磁コイルに供給する。
【0020】
電圧平滑装置8は電力変換装置4が変換する直流電圧の変動、特にPWM制御のスイッチング動作に起因する過渡的な電圧変動を抑制するものであり、電圧検出器9は直流電源13の電圧を検出して指令値演算手段1に与え、上記したように回転電機11の発電電力指令値を演算させるものである。回転速度・回転角演算手段10は回転検出器12の出力から回転電機11の回転角度θと回転速度Nmとを演算して回転速度Nmを指令値演算手段1に与え、また、回転角度θを交流電流指令演算手段2、および、交流電圧指令演算手段3に与えて供給電流の位相制御を行う。過電圧判定手段18は電圧検出器9が検出する電圧を入力して電圧が所定の閾値以上であれば過電圧であると判定し、判定結果を後述するように指令値演算手段1と電力変換装置4とに出力する。また、14と15とは制御手段16と直流電源13とを接続するコネクタである。
【0021】
回転電機11の発電動作時においては、回転電機11の出力により直流電源13が充電されると共に、各種の負荷に対して電力が供給される。指令値演算手段1は電圧検出器9の検出する電圧が設定された目標電圧になるように発電電力を指令するもので、目標電圧と検出値との差に基づき発電電力の指令値を演算し、この指令値に基づき交流電流指令演算手段2により交流電流指令が演算され、同時に界磁電流指令演算手段5により界磁電流指令値が演算される。
【0022】
図2は、定常状態における指令値演算手段1の発電制御の状態を示すものである。図の状態は直流電源13の負荷が一定で定常発電を行っている状態を示し、電圧検出器9が検出する電圧を設定範囲に制御するために発電電力指令値は一定値を推移している。実際の走行状態においては負荷の変動があるため、電圧は設定範囲内において変動があり、この電圧を検出して発電電力指令が出力される結果、直流電圧は目標電圧に制御される。
【0023】
このような制御中において、車両の振動などにより制御手段16から直流電源13に至る充電回路が遮断されるような事故が発生した場合、発電電力を吸収していた直流電源13への回路が急に遮断されるため、遮断点から電力変換装置4側の回路には図3の直流電圧特性に示すような急激な電圧上昇が発生し、この電圧上昇は電圧平滑装置8に一部が吸収されるが電圧平滑装置8は容量に限界があるため図3の直流電圧特性に示すA点まで上昇する。この電圧上昇により電圧検出器9から指令値演算手段1にフィードバックがかかり、発電電力指令値と界磁電流指令値との双方が0になり、これにより交流電流指令演算手段2の指令値が0になる。しかし、界磁電流の低下は図の界磁電流特性に示すように時間がかかるため比較的長時間この異常電圧が継続することになる。
【0024】
このような事態に対し、この実施の形態においては電圧が電圧設定範囲の上限値を超える所定の閾値に達すると、あるいは、所定の閾値を超える状態が所定時間継続すると過電圧判定手段18が過電圧であると判定し、判定結果を指令値演算手段1に与え、指令値演算手段1は発電電力指令値と界磁電流指令値とを0に移行させると共に、電力変換装置4にも判定結果を与えて回転電機11を相短絡状態へ移行すべく指令する。電力変換装置4が三相フルブリッジのPWM変換装置を用いている場合には、上アームのスイッチング素子三個を全てオンとして下アームのスイッチング素子三個を全てオフとするか、あるいは、逆に上アーム素子三個をオフとして下アーム素子三個をオンとすることにより回転電機11は相短絡状態になる。
【0025】
電力変換装置4をこのように動作させることにより、回転電機11の交流端子が一点で短絡された状態と等価になり、そのときの回転速度と界磁電流とで決まる短絡電流が発生する。この短絡電流は、界磁電流が0に近づくに従って小さくなり、回転電機の電機子抵抗によりジュール熱として消費され、電圧の異常上昇を抑制することができる。この特性を示したのが図4であり、o点にて回路の遮断があるとp点にて過電圧判定手段18が過電圧を検出して発電電力指令値を0にすると共に界磁電流を遮断し、また、電力変換装置4を相短絡状態とすることにより、回転電機11には図の交流電流特性に示すような短絡電流が流れ、直流電圧は電圧Bまで上昇した後に短絡電流により低下する。このB点の電圧は図3のA点電圧よりはるかに低い値である。
【0026】
以上のように、この発明の実施の形態1による車両用回転電機の制御装置においては過電圧判定手段18が、電圧が閾値を超えたことを検出して界磁電流を0にすると共に、電力変換装置4を相短絡状態に制御するので、電力変換装置4の素子と回転電機11とには回転速度と界磁電流とにより決まる短絡電流が流れることになり、素子の熱的容量を選定しておく必要があるが、動作と同時に電圧上昇を阻止して速やかに低下させることができ、過電圧に対する保護ができることになる。なお、過電圧判定手段18による過電圧の判定は、ハードウエアでもソフトウエアでも可能であり、また、制御装置16は三相電流と三相電圧の指令を出力する内容にて説明したが、三相/二相変換または、二相/三相変換を用いたベクトル制御にも適用が可能である。
【0027】
実施の形態2.
図5は、この発明の実施の形態2による車両用回転電機の制御装置の構成を示すブロック図、図6は、動作を説明する動作特性図であり、この実施の形態による車両用回転電機の制御装置は、実施の形態1に対し、過電圧判定手段18の過電圧判定結果による制御手段16の制御内容を変えたものであり、図5のブロック図は、図1のブロック図に対して過電圧判定手段18による過電圧判定結果が指令値演算手段1と交流電流指令演算手段2とに与えられるようにしたものであり、それ以外は図1と同様である。
【0028】
過電圧判定手段18が実施の形態1の場合と同様条件にて過電圧と判定した場合、この判定結果は指令値演算手段1と交流電流指令演算手段2とに与えられ、指令値演算手段1は直ちに発電電力指令と界磁電流指令とを0に移行させると共に、交流電流指令演算手段2は弱め界磁電流指令を出力する。この弱め界磁電流は、回転電機11を発電機として動作させた場合にトルク発生に寄与せず、電力発生にも寄与しない電流を、電力変換装置4により位相制御して回転電機11の電機子に与えるものである。
【0029】
図6に示すように、o点にて回路の遮断があり、p点にて過電圧判定手段18が過電圧と判定すると、判定結果が指令値演算手段1と交流電流指令演算手段2とに与えられ、指令値演算手段1は、発電電力指令値と界磁電流指令値とを0に移行させるべく指令を出力すると共に、交流電流指令演算手段2は演算した弱め界磁電流を回転電機11の電機子に通電させる。
【0030】
このように制御することにより、余分な発電電力は回転電機11のジュール熱として消費され、出力電圧は図6の直流電圧に示すようにC点まで上昇した後に低下する。この過電圧の抑制値と持続時間とは弱め界磁の電流量と電流制御の応答性により決まり、実施の形態1の相短絡に対しては応答性が悪く、C点の電圧は図4のB点の電圧より若干高くなるが、実施の形態1の場合のように相短絡電流が流れないので、電力変換装置4のスイッチング素子に対する過電流耐性を考慮する必要がない。
【0031】
実施の形態3.
図7は、この発明の実施の形態3による車両用回転電機の制御装置の構成を示すブロック図、図8は、動作を説明する動作特性図であり、この実施の形態による車両用回転電機の制御装置は、実施の形態1および2に対し、過電圧判定手段18の過電圧判定結果による制御手段16の制御内容を変えたものであり、図7に示すように、過電圧判定手段18による過電圧判定結果が指令値演算手段1と界磁電流制御手段7とに与えられると共に、界磁電流制御手段7が回転電機11に対して逆方向の界磁電圧を印可するようにしたものである。
【0032】
過電圧判定手段18が実施の形態1と同様にして過電圧を判定すると、過電圧判定結果が指令値演算手段1と界磁電流制御手段7とに与えられ、指令値演算手段1は直ちに発電電力指令と界磁電流指令とを0に移行させ、界磁電流制御手段7は界磁電圧の方向を逆転することにより速やかに界磁磁束を立ち下げる。界磁電流制御手段7が界磁電圧の方向を逆転できない構成の場合には、界磁電流の減少は界磁コイルの時定数により決まる時間をかけて徐々に0に近づくが、界磁電流制御手段7が界磁電圧の方向を逆転できる構成とすることにより、界磁磁束を速やかに0にすることができる。図8はこのときの特性を示すもので、発電電力指令値と交流電流指令とを0に移行させると共に、界磁電流を逆励磁により速やかに0とし、直流電圧の上昇を抑制するものである。
【0033】
このように制御し、界磁電流制御手段7を逆励磁可能に構成することにより、異常電圧の立ち上がりを図8の直流電圧特性に示すD点に抑制することができるものであり、界磁電流制御手段7を逆励磁可能に構成する必要があるが、発電電力を直ちに0とするので熱として消費することなく、電力変換装置4や回転電機11の熱的耐性に対する考慮が不必要になるものである。
【0034】
実施の形態4.
図9は、この発明の実施の形態4による車両用回転電機の制御装置の構成を示すブロック図、図10は、動作を説明する動作特性図であり、この実施の形態による車両用回転電機の制御装置は、過電圧判定手段18が過電圧と判定した場合に、実施の形態1と同様に電力変換装置4を相短絡状態とすると共に、実施の形態3と同様に界磁電流制御手段7が回転電機11に対して逆方向の界磁電圧を印可するようにしたものである。
【0035】
過電圧判定手段18が実施の形態1と同様にして過電圧を判定すると、過電圧判定結果は、指令値演算手段1と、界磁電流制御手段7と、電力変換装置4とに与えられる。指令値演算手段1は直ちに発電電力指令と界磁電流指令とを0に移行させると共に、界磁電流制御手段7は界磁電圧の方向を逆転することにより速やかに界磁磁束を立ち下げる。一方、電力変換装置4は、回転電機11を相短絡状態に移行させ、回転電機11の交流端子が一点で短絡された状態とする。
【0036】
図9は、このような制御を行ったときの特性を示すもので、発電電力指令値が0になると共に、界磁電流は逆励磁により速やかに0となり、回転電機11は相短絡の状態となって短絡電流が流れるが、界磁が速やかに立ち下がるので、短絡電流も速やかに減衰する。このように制御することにより、直流電圧は図のE点まで上昇した後に速やかに低下することになり、過電圧を最小限に抑制することができるものである。
【0037】
【発明の効果】
以上に説明したように、この発明による車両用回転電機の制御装置において、請求項1に記載の発明によれば、内燃機関に結合され、電動機または発電機として機能する回転電機と、回転電機に電力を供給し、回転電機の出力により充電される直流電源と、回転電機を制御する制御手段とを備え、制御手段には、回転電機に電力を供給するときはインバータとして動作し、回転電機から直流電源を充電するときは整流装置として動作する電力変換装置と、回転電機の出力回路の過電圧を判定する過電圧判定手段とが含まれており、過電圧判定手段が過電圧と判定したとき、電力変換装置が回転電機を相短絡状態にするようにしたので、回転電機が発電中に車両の振動などにより制御装置と直流電源との間の充電回路に遮断が生じ、急激な電圧の上昇が発生しても、過電圧判定手段がこれを検知して回転電機を相短絡状態に制御する結果、過電圧の最高値を抑制すると共に、速やかに低下させることができ、制御装置に使用する回路素子や、回転電機の負荷を過電圧による劣化や破損などから保護することが可能になるものである。
【0038】
また、請求項2に記載の発明によれば、電動機または発電機として機能する回転電機と、回転電機に電力を供給し、回転電機の出力により充電される直流電源と、回転電機の制御手段とを備え、制御手段には、回転電機に対して電流指令を与える交流電流指令演算手段と、回転電機に電力を供給するときにはインバータとして、回転電機から直流電源を充電するときには整流装置として動作する電力変換装置と、回転電機の出力回路の過電圧を判定する過電圧判定手段とが含まれており、過電圧判定手段が過電圧と判定したとき、交流電流指令演算手段が電力変換装置を制御して回転電機の電機子コイルに位相制御された弱め界磁電流を供給するようにしたので、さらに、請求項3に記載の発明によれば、位相制御された弱め界磁電流が、回転電機を発電機として機能させたときにトルク発生に寄与しない位相の電流であるようにしたので、回転電機の発電中に直流電源が開放され、過電圧状態となっても、弱め界磁電流により電圧を速やかに低下させることができ、制御装置に使用する回路素子や、回転電機の負荷を過電圧による劣化や破損などから保護することが可能になるものである。
【0039】
さらにまた、請求項4に記載の発明によれば、電動機または発電機として機能する回転電機と、回転電機に電力を供給し、また、回転電機の出力により充電される直流電源と、回転電機の制御手段とを備え、制御手段には、回転電機の界磁電流を制御する界磁電流制御手段と、回転電機の出力回路の過電圧を判定する過電圧判定手段とを含み、過電圧判定手段が過電圧と判定したとき、界磁電流制御手段が回転電機に逆方向の界磁電圧を与えて消磁するようにしたので、回転電機の発電中に直流電源が開放され、急激な電圧の上昇が発生しても、回転電機の界磁が遮断された後、残存界磁磁束を打ち消すように界磁電流が通電され、界磁が速やかに消滅する結果、過電圧を抑制すると共に、速やかに低下させることができ、制御装置に使用する回路素子や、回転電機の負荷を過電圧による劣化や破損などから保護することが可能になるものである。
【0040】
また、請求項5に記載の発明によれば、電動機または発電機として機能する回転電機と、回転電機に電力を供給し、また、回転電機の出力により充電される直流電源と、回転電機の制御手段とを備え、制御手段には、回転電機に電力を供給するときはインバータとして、回転電機から直流電源を充電するときは整流装置として動作する電力変換装置と、回転電機の界磁電流を制御する界磁電流制御手段と、回転電機の出力回路の過電圧を判定する過電圧判定手段とを含み、過電圧判定手段が過電圧と判定したとき、界磁電流制御手段が回転電機に逆方向の界磁電圧を与えて消磁すると共に、電力変換装置が回転電機を相短絡状態にするので、回転電機の発電中に直流電源が開放され、急激な電圧の上昇が発生しても、回転電機の界磁が遮断された後、残存界磁磁束を速やかに消滅すると共に、回転電機を相短絡状態に制御する結果、過電圧を最小限にとどめることができ、制御装置に使用する回路素子や、回転電機の負荷を過電圧による劣化や破損などから保護することが可能になるものである。
【図面の簡単な説明】
【図1】この発明の実施の形態1による車両用回転電機の制御装置の構成を示すブロック図である。
【図2】この発明の実施の形態1による車両用回転電機の制御装置の動作を説明する動作特性図である。
【図3】この発明の実施の形態1による車両用回転電機の制御装置の動作を説明する動作特性図である。
【図4】この発明の実施の形態1による車両用回転電機の制御装置の動作を説明する動作特性図である。
【図5】この発明の実施の形態2による車両用回転電機の制御装置の構成を示すブロック図である。
【図6】この発明の実施の形態2による車両用回転電機の制御装置のの動作を説明する動作特性図である。
【図7】この発明の実施の形態3による車両用回転電機の制御装置の構成を示すブロック図である。
【図8】この発明の実施の形態3による車両用回転電機の制御装置の動作を説明する動作特性図である。
【図9】この発明の実施の形態4による車両用回転電機の制御装置の構成を示すブロック図である。
【図10】この発明の実施の形態4による車両用回転電機の制御装置の動作を説明する動作特性図である。
【図11】従来の車両用回転電機の制御装置の構成を示すブロック図である。
【符号の説明】
1 指令値演算手段、2 交流電流指令演算手段、
3 交流電圧指令演算手段、4 電力変換装置、
5 界磁電流指令演算手段、6 界磁電圧指令演算手段、
7 界磁電流制御手段、8 電圧平滑装置、9 電圧検出器、
10 回転速度・角度演算手段、11 回転電機、12 回転検出器、
13 直流電源、14、15 コネクタ、16 制御手段、
17 電流検出器、18 過電圧判定手段。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a control device for a rotating electric machine mounted on a vehicle and used as an AC generator and an AC motor.
[0002]
[Prior art]
A technique has been proposed in which an AC generator mounted on a vehicle is used as a motor for starting the internal combustion engine for the purpose of saving space and reducing costs around the vehicle internal combustion engine. For example, in Japanese Patent Application Laid-Open No. 2000-116170, when a claw-pole type three-phase AC generator is used as a motor, an applied voltage is calculated based on a torque current command value to obtain a sufficient torque, and an applied voltage is calculated. When is saturated, an exciting current having a phase different from the torque current command value is created to change the applied voltage, and the exciting current is corrected so that the actual torque current fed back matches the torque current command value. The technology is disclosed.
[0003]
In a system in which a vehicle generator is also used as an electric motor as in this publication, for example, unlike a control system for an electric motor used in an electric vehicle, a reduction in the size and weight of components is regarded as important. Is common. For example, a large-capacity smoothing capacitor that suppresses voltage changes cannot be used because of the miniaturization of the device. In some cases, overvoltage was applied to the circuit, leading to deterioration or failure of components.
[0004]
FIG. 11 shows an example of a configuration of such a conventional control device for a rotating electric machine for a vehicle. In FIG. 11, a command value calculating means 1 calculates a torque command value at the time of starting or accelerating the internal combustion engine, and calculates and outputs a command value of generated power when the rotating electric machine 11 functions as a generator. The calculating means 2 calculates an AC current command value based on the torque command from the command value calculating means 1 or the generated power command. The AC voltage command calculation means 3 calculates a required AC voltage based on the command value of the AC current command calculation means 2, and the power converter 4 converts the DC power from the DC power supply 13 into an inverter when the rotating electric machine 11 functions as a motor. When the rotating electrical machine 11 functions as a generator, the rectifier converts AC power into DC power.
[0005]
The field current command calculation means 5 calculates a field current required for the field coil of the rotary electric machine 11 based on the command from the command value calculation means 1, and the field voltage command calculation means 6 calculates the field current based on the field current command value. The field voltage is calculated, and the field current control means 7 controls the field current applied to the field coil of the rotating electric machine 11 by generating a field voltage based on the field voltage command. The voltage smoothing device 8 suppresses fluctuation of the DC voltage converted by the power conversion device 4, the voltage detector 9 detects the voltage of the DC power supply 13, and the rotation speed / rotation angle calculation means 10 is provided in the rotating electric machine 11. The rotation angle and the rotation speed are calculated based on the output of the rotation detector 12. Reference numerals 14 and 15 are connectors for connecting the control device and the DC power supply 13.
[0006]
When the internal combustion engine is started, the rotating electric machine 11 functions as an electric motor, the AC current command calculating means 2 calculates a supply current based on the torque command value of the command value calculating means 1, and a supply voltage corresponding to this current value is calculated by an AC voltage command calculation. The means 3 performs the PWM control of the switching element of the power converter 4 by performing a calculation, and starts the internal combustion engine using the rotating electric machine 11 as a three-phase synchronous motor. After the internal combustion engine is started, the rotating electric machine 11 functions as a three-phase AC generator. When the voltage detector 9 feeds back the voltage of the DC power supply 13 to the command value calculating means 1, the command value calculating means 1 A command is given to the current command calculation means 2 and the field current command calculation means 5 to control the amount of power generation so that the voltage of the DC power supply 13 becomes a predetermined value with respect to the discharge amount (load amount) of the DC power supply 13. .
[0007]
[Problems to be solved by the invention]
In the conventional control apparatus for a rotating electric machine for a vehicle having the above configuration, when the rotating electric machine 11 functions as a generator, one of the connectors 14 and 15 connecting the control apparatus and the DC power supply 13 is disconnected due to vibration of the vehicle or the like. If a circuit breaker (not shown) inserted between the two connectors is released, a sharp rise in voltage occurs in the charging path of the control circuit. In response to this voltage rise, the command value calculation means 1 gives a command value to the AC current command calculation means 2 and the field current command calculation means 5 and operates so as to lower the generated voltage. In such a case, the control cannot catch up, and a large overvoltage occurs.
[0008]
The overvoltage should be absorbed by the voltage smoothing device 8. However, as described above, since the capacity of the voltage smoothing device 8 is reduced, it cannot be completely absorbed, and the overvoltage is used in the control device. This is applied to the device and each device connected as a load of the DC power supply 13, which leads to troubles such as deterioration and breakage.
[0009]
The present invention has been made to solve such a problem, and suppresses a voltage rise value for the above-described trouble and shortens a voltage rise time, thereby deteriorating circuit elements and devices. It is an object of the present invention to obtain a control device for a rotating electric machine for a vehicle, which can prevent damage or breakage.
[0010]
[Means for Solving the Problems]
A control device for a rotating electric machine for a vehicle according to the present invention includes a rotating electric machine coupled to an internal combustion engine and functioning as an electric motor or a generator, a DC power supply that supplies power to the rotating electric machine and is charged by an output of the rotating electric machine, Control means for controlling the rotating electric machine, wherein the control means operates as an inverter when supplying power to the rotating electric machine, and operates as a rectifier when charging a DC power supply from the rotating electric machine; Overvoltage determining means for determining an overvoltage of the output circuit of the rotating electric machine is included, and when the overvoltage judging means determines an overvoltage, the power converter causes the rotating electric machine to be in a phase short-circuit state.
[0011]
A rotating electric machine coupled to the internal combustion engine and functioning as an electric motor or a generator; a DC power supply that supplies power to the rotating electric machine and is charged by an output of the rotating electric machine; and a control unit that controls the rotating electric machine. The control means includes an AC current command calculation means for giving a current command to the rotating electric machine, and operates as an inverter when supplying electric power to the rotating electric machine, and as a rectifier when charging a DC power supply from the rotating electric machine. An operating power converter and an overvoltage determining means for determining an overvoltage of the output circuit of the rotating electric machine are included, and when the overvoltage determining means determines an overvoltage, the AC current command calculating means controls the power converter. A phase-controlled field weakening current is supplied to an armature coil of a rotating electrical machine.
[0012]
Further, the phase-controlled field weakening current is a current having a phase that does not contribute to torque generation when the rotating electric machine functions as a generator.
[0013]
Still further, a rotating electric machine coupled to the internal combustion engine and functioning as an electric motor or a generator, a power supply for supplying electric power to the rotating electric machine, and a DC power supply charged by an output of the rotating electric machine, and control means for controlling the rotating electric machine, The control means includes a field current control means for controlling a field current of the rotating electrical machine, and an overvoltage determining means for determining an overvoltage of an output circuit of the rotating electrical machine. When it is determined, the field current control means applies a field in the opposite direction to the rotating electric machine.
[0014]
A rotating electric machine coupled to the internal combustion engine and functioning as an electric motor or a generator; a DC power supply that supplies power to the rotating electric machine and is charged by an output of the rotating electric machine; and a control unit that controls the rotating electric machine. The control means controls an electric power converter that operates as an inverter when supplying electric power to the rotating electric machine and operates as a rectifier when charging a DC power supply from the rotating electric machine, and a field current of the rotating electric machine. Field current control means and overvoltage determination means for determining an overvoltage of the output circuit of the rotating electrical machine are included. When the overvoltage determination means determines that an overvoltage has occurred, the field current control means controls the rotating electrical machine to apply an opposite voltage to the rotating electrical machine. The magnetism is applied to demagnetize, and the power converter causes the rotating electric machine to be in a phase short-circuit state.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiment 1 FIG.
1 to 4 illustrate a control apparatus for a rotating electric machine for a vehicle according to a first embodiment of the present invention. FIG. 1 is a block diagram illustrating a configuration of the apparatus, and FIGS. 2 to 4 illustrate an operation. FIG. 1 shows the same functional parts as those in the above-described conventional example, and the same reference numerals are given in FIG.
[0016]
In FIG. 1, a rotating electric machine 11 is connected to an internal combustion engine directly or via driving means, and drives the internal combustion engine as an electric motor when the internal combustion engine starts, and functions as a generator after the internal combustion engine starts, for example, It is a three-phase synchronous machine, and the rotation detector 12 detects the rotation speed and rotation angle of the rotating electric machine 11. The DC power supply 13 supplies electric power to the rotating electric machine 11 when the internal combustion engine is started, and is charged by the output of the rotating electric machine 11 during operation of the internal combustion engine and supplies electric power to each load mounted on the vehicle. It is.
[0017]
The control means 16 controls torque when the rotating electric machine 11 functions as a motor, and controls power generation output when functioning as a generator. The control means 16 includes the following units. First, the command value calculating means 1 calculates the torque command value of the rotating electric machine 11 at the time of starting the internal combustion engine and outputs the command value, and inputs the voltage of the DC power supply 13 when the rotating electric machine 11 functions as a generator. To calculate the generated power of the rotating electric machine 11 and output it as a command value. The AC current command calculation means 2 calculates a command value of an AC current to be supplied to the armature coil of the rotary electric machine 11 based on the torque command value and the generated power command value from the command value calculation means 1, and calculates a current command value for each phase. Are output as Iu *, Iv *, and Iw *.
[0018]
Further, the AC voltage command calculation means 3 calculates the required AC voltage of each phase for obtaining the current based on the current command value of the AC current command calculation means 2 to obtain the voltage command values Vu *, Vv *, Vw. The power conversion device 4 performs PWM control based on the voltage command value as an inverter, and controls the three-phase alternating current to the armature coil of the rotating electric machine 11. When the rotating electric machine 11 functions as a generator, the power converter 4 rectifies the three-phase AC output of the rotating electric machine 11 and charges the DC power supply 13 as a rectifier. The current detector 17 detects the actual current of each phase of the rotating electric machine 11 and feeds it back to the AC current command calculation means 2, which controls the AC current command calculation means 2 so that the actual current matches the current command value.
[0019]
The field current command calculating means 5 calculates a field current value for obtaining a torque as a motor or a field current value for obtaining a required generated power based on the output command value of the command value calculating means 1. , The field current command value If * is given to the field voltage command calculation means 6, and based on the field current command value, the field voltage command calculation means 6 obtains the field voltage command value Vf * for obtaining the field current. Is given to the field current control means 7. Then, the field current control means 7 receives power supply from the DC power supply 13, controls the field current based on the field voltage command value Vf *, and supplies the field current to the field coil of the rotating electric machine 11.
[0020]
The voltage smoothing device 8 suppresses the fluctuation of the DC voltage converted by the power conversion device 4, particularly the transient voltage fluctuation caused by the switching operation of the PWM control, and the voltage detector 9 detects the voltage of the DC power supply 13. The command value is supplied to the command value calculation means 1 to calculate the generated power command value of the rotating electric machine 11 as described above. The rotation speed / rotation angle calculation means 10 calculates the rotation angle θ and the rotation speed Nm of the rotary electric machine 11 from the output of the rotation detector 12 and gives the rotation speed Nm to the command value calculation means 1. It is supplied to the AC current command calculation means 2 and the AC voltage command calculation means 3 to control the phase of the supply current. The overvoltage judging means 18 inputs the voltage detected by the voltage detector 9 and judges that the voltage is an overvoltage if the voltage is equal to or higher than a predetermined threshold, and judges the judgment result as the command value calculating means 1 and the power converter 4 as described later. And output to Reference numerals 14 and 15 are connectors for connecting the control means 16 and the DC power supply 13.
[0021]
During the power generation operation of the rotating electric machine 11, the DC power supply 13 is charged by the output of the rotating electric machine 11, and power is supplied to various loads. The command value calculating means 1 commands the generated power so that the voltage detected by the voltage detector 9 becomes the set target voltage, and calculates the command value of the generated power based on the difference between the target voltage and the detected value. The AC current command is calculated by the AC current command calculating means 2 based on the command value, and the field current command value is calculated by the field current command calculating means 5 at the same time.
[0022]
FIG. 2 shows a state of power generation control of the command value calculation means 1 in a steady state. The state shown in the figure shows a state in which the load of the DC power supply 13 is constant and constant power generation is being performed. In order to control the voltage detected by the voltage detector 9 within a set range, the generated power command value is constant. . Since the load fluctuates in the actual running state, the voltage fluctuates within the set range. As a result of detecting this voltage and outputting the generated power command, the DC voltage is controlled to the target voltage.
[0023]
During such control, if an accident occurs in which the charging circuit from the control means 16 to the DC power supply 13 is interrupted due to vibration of the vehicle or the like, the circuit to the DC power supply 13 that has absorbed the generated power suddenly changes. As shown in the DC voltage characteristic of FIG. 3, a sharp voltage rise occurs in the circuit on the side of the power converter 4 from the cutoff point, and this voltage rise is partially absorbed by the voltage smoothing device 8. However, since the capacity of the voltage smoothing device 8 is limited, the voltage rises to a point A shown in the DC voltage characteristic of FIG. Due to this voltage increase, feedback is applied from the voltage detector 9 to the command value calculation means 1, and both the generated power command value and the field current command value become 0, whereby the command value of the AC current command calculation means 2 becomes 0. become. However, since the decrease in the field current takes a long time as shown by the field current characteristics in the figure, the abnormal voltage continues for a relatively long time.
[0024]
In this embodiment, when the voltage reaches a predetermined threshold value exceeding the upper limit value of the voltage setting range, or when a state exceeding the predetermined threshold value continues for a predetermined time, the overvoltage determination unit 18 determines that the overvoltage has occurred. It is determined that there is, and the determination result is given to the command value calculation means 1. The command value calculation means 1 shifts the generated power command value and the field current command value to 0, and also gives the determination result to the power conversion device 4. Command to shift the rotating electric machine 11 to the phase short-circuit state. When the power converter 4 uses a three-phase full-bridge PWM converter, all three switching elements of the upper arm are turned on and all three switching elements of the lower arm are turned off, or conversely. By turning off the three upper arm elements and turning on the three lower arm elements, the rotating electric machine 11 is in a phase short-circuit state.
[0025]
By operating the power conversion device 4 in this manner, it becomes equivalent to a state in which the AC terminal of the rotating electric machine 11 is short-circuited at one point, and a short-circuit current determined by the rotation speed and the field current at that time is generated. This short-circuit current becomes smaller as the field current approaches 0, is consumed as Joule heat by the armature resistance of the rotating electric machine, and an abnormal rise in voltage can be suppressed. FIG. 4 shows this characteristic. When the circuit is interrupted at the point o, the overvoltage determining means 18 detects the overvoltage at the point p, sets the generated power command value to 0, and interrupts the field current. In addition, by setting the power converter 4 in a phase short-circuit state, a short-circuit current flows through the rotating electric machine 11 as shown in the AC current characteristic in the figure, and the DC voltage rises to the voltage B and then decreases due to the short-circuit current. . The voltage at the point B is much lower than the voltage at the point A in FIG.
[0026]
As described above, in the control apparatus for a rotating electric machine for a vehicle according to the first embodiment of the present invention, the overvoltage determining means 18 detects that the voltage has exceeded the threshold value, sets the field current to 0, and performs power conversion. Since the device 4 is controlled to be in the phase short-circuit state, a short-circuit current determined by the rotation speed and the field current flows through the element of the power conversion device 4 and the rotating electric machine 11, and the thermal capacity of the element is selected. However, it is possible to prevent the voltage from rising at the same time as the operation, and quickly reduce the voltage, thereby providing protection against overvoltage. The overvoltage determination by the overvoltage determination means 18 can be performed by hardware or software, and the control device 16 has been described as outputting the three-phase current and three-phase voltage commands. The present invention is also applicable to vector control using two-phase conversion or two-phase / three-phase conversion.
[0027]
Embodiment 2 FIG.
FIG. 5 is a block diagram showing a configuration of a control device for a rotating electric machine for a vehicle according to a second embodiment of the present invention. FIG. 6 is an operation characteristic diagram for explaining the operation. The control device is different from the first embodiment in that the control content of the control means 16 based on the overvoltage determination result of the overvoltage determination means 18 is changed. The block diagram of FIG. 5 is different from the block diagram of FIG. The result of the overvoltage determination by the means 18 is given to the command value calculating means 1 and the AC current command calculating means 2, and the rest is the same as FIG.
[0028]
If the overvoltage determining means 18 determines that an overvoltage has occurred under the same conditions as in the first embodiment, this determination result is given to the command value calculating means 1 and the AC current command calculating means 2, and the command value calculating means 1 immediately The generated power command and the field current command are shifted to 0, and the AC current command calculation means 2 outputs a weak field current command. This field weakening current does not contribute to torque generation when the rotating electric machine 11 is operated as a generator, and also does not contribute to electric power generation. To give.
[0029]
As shown in FIG. 6, when the circuit is interrupted at the point o and the overvoltage determination means 18 determines an overvoltage at the point p, the determination result is given to the command value calculation means 1 and the AC current command calculation means 2. The command value calculating means 1 outputs a command to shift the generated power command value and the field current command value to 0, and the AC current command calculating means 2 outputs the calculated weak field current to the electric motor of the rotating electric machine 11. Energize the child.
[0030]
By performing the control in this manner, excess generated power is consumed as Joule heat of the rotating electrical machine 11, and the output voltage decreases after rising to the point C as shown by the DC voltage in FIG. The suppression value and the duration of the overvoltage are determined by the amount of current of the field weakening and the responsiveness of the current control, and the responsiveness is poor with respect to the phase short-circuit of the first embodiment. Although the voltage is slightly higher than the voltage at the point, the phase short-circuit current does not flow as in the first embodiment, so that it is not necessary to consider the overcurrent resistance of the switching element of the power conversion device 4.
[0031]
Embodiment 3 FIG.
FIG. 7 is a block diagram showing a configuration of a control apparatus for a rotating electric machine for a vehicle according to a third embodiment of the present invention, and FIG. 8 is an operation characteristic diagram for explaining the operation. The control device is different from the first and second embodiments in that the control content of the control means 16 based on the overvoltage determination result of the overvoltage determination means 18 is changed. As shown in FIG. Is given to the command value calculation means 1 and the field current control means 7, and the field current control means 7 applies a field voltage in the opposite direction to the rotating electric machine 11.
[0032]
When the overvoltage determination means 18 determines an overvoltage in the same manner as in the first embodiment, the overvoltage determination result is given to the command value calculation means 1 and the field current control means 7, and the command value calculation means 1 immediately receives the generated power command. The field current command is shifted to 0, and the field current control means 7 quickly lowers the field magnetic flux by reversing the direction of the field voltage. If the field current control means 7 cannot reverse the direction of the field voltage, the decrease of the field current gradually approaches 0 over a time determined by the time constant of the field coil. Since the means 7 can reverse the direction of the field voltage, the field magnetic flux can be quickly reduced to zero. FIG. 8 shows the characteristic at this time, in which the generated power command value and the AC current command are shifted to 0, and the field current is quickly set to 0 by reverse excitation to suppress the rise of the DC voltage. .
[0033]
By performing such control and configuring the field current control means 7 to be capable of reverse excitation, the rise of the abnormal voltage can be suppressed to the point D shown in the DC voltage characteristic of FIG. Although it is necessary to configure the control means 7 so as to be capable of reverse excitation, the generated power is immediately set to 0, so that it is not consumed as heat, and it is unnecessary to consider the thermal resistance of the power converter 4 and the rotating electric machine 11. It is.
[0034]
Embodiment 4 FIG.
FIG. 9 is a block diagram showing a configuration of a control device for a rotating electric machine for a vehicle according to a fourth embodiment of the present invention. FIG. 10 is an operation characteristic diagram for explaining the operation. When the overvoltage determination unit 18 determines that the overvoltage has occurred, the control device sets the power conversion device 4 to the phase short-circuit state as in the first embodiment, and rotates the field current control unit 7 as in the third embodiment. A field voltage in a reverse direction is applied to the electric machine 11.
[0035]
When the overvoltage determination unit 18 determines an overvoltage in the same manner as in the first embodiment, the overvoltage determination result is provided to the command value calculation unit 1, the field current control unit 7, and the power converter 4. The command value calculating means 1 immediately shifts the generated power command and the field current command to 0, and the field current control means 7 reverses the direction of the field voltage to quickly lower the field magnetic flux. On the other hand, the power conversion device 4 shifts the rotating electric machine 11 to the phase short-circuit state, so that the AC terminal of the rotating electric machine 11 is short-circuited at one point.
[0036]
FIG. 9 shows the characteristics when such control is performed. The generated electric power command value becomes 0, the field current quickly becomes 0 by reverse excitation, and the rotating electric machine 11 is in a state of phase short-circuit. Although the short-circuit current flows, the short-circuit current rapidly attenuates because the field rapidly falls. By controlling in this way, the DC voltage immediately decreases after rising to the point E in the figure, and the overvoltage can be minimized.
[0037]
【The invention's effect】
As described above, in the control device for a rotating electric machine for a vehicle according to the present invention, according to the first aspect of the present invention, the rotating electric machine coupled to the internal combustion engine and functioning as an electric motor or a generator; The power supply includes a DC power supply that is charged by an output of the rotating electric machine, and control means for controlling the rotating electric machine.The control means operates as an inverter when supplying power to the rotating electric machine, and operates as an inverter. A power converter that operates as a rectifier when charging the DC power supply; and overvoltage determination means that determines overvoltage of the output circuit of the rotating electric machine. Caused the rotating electric machine to be in a phase short-circuit state, so that the charging circuit between the control device and the DC power supply was interrupted due to vibration of the vehicle during the rotating electric machine was generating power, causing a sudden voltage drop. Even if the rise occurs, the overvoltage determination means detects this and controls the rotating electric machine to the phase short-circuit state, so that the maximum value of the overvoltage can be suppressed and quickly reduced, and the circuit used for the control device is used. This makes it possible to protect the elements and the load of the rotating electric machine from deterioration or damage due to overvoltage.
[0038]
According to the second aspect of the present invention, there is provided a rotating electric machine that functions as a motor or a generator, a DC power supply that supplies power to the rotating electric machine and is charged by an output of the rotating electric machine, and a control unit for the rotating electric machine. The control means includes an AC current command calculation means for giving a current command to the rotating electric machine, and an electric power which operates as an inverter when supplying electric power to the rotating electric machine and operates as a rectifier when charging a DC power supply from the rotating electric machine. A converter, and overvoltage determining means for determining an overvoltage of the output circuit of the rotating electrical machine.When the overvoltage determining means determines that the voltage is overvoltage, the AC current command calculating means controls the power converter to control the rotating electrical machine. Since the phase-controlled field-weakening current is supplied to the armature coil, the phase-controlled field-weakening current further increases the phase-controlled field-weakening current. Since the current is in a phase that does not contribute to torque generation when the electric machine functions as a generator, even if the DC power supply is opened during power generation of the rotating electric machine and an overvoltage occurs, the voltage is reduced by the field weakening current. Can be quickly reduced, and the circuit elements used in the control device and the load of the rotating electric machine can be protected from deterioration or damage due to overvoltage.
[0039]
Still further, according to the invention described in claim 4, a rotating electric machine that functions as a motor or a generator, a DC power supply that supplies power to the rotating electric machine, and is charged by an output of the rotating electric machine, Control means, the control means includes a field current control means for controlling a field current of the rotating electrical machine, and an overvoltage determining means for determining an overvoltage of an output circuit of the rotating electrical machine, wherein the overvoltage determining means determines the overvoltage. When it is determined, the field current control means applies a field voltage in the opposite direction to the rotating electric machine to demagnetize it, so that the DC power supply is opened during power generation of the rotating electric machine, and a sharp rise in voltage occurs. Even after the field of the rotating electric machine is cut off, a field current is applied so as to cancel out the residual field magnetic flux, and the field disappears quickly.As a result, the overvoltage can be suppressed and quickly reduced. Used for control devices And circuit elements and a load of the rotary electric machine can be protected from such degradation or damage caused by overvoltage.
[0040]
According to the fifth aspect of the present invention, a rotating electric machine that functions as a motor or a generator, a DC power supply that supplies power to the rotating electric machine and is charged by an output of the rotating electric machine, and a control of the rotating electric machine A power converter that operates as an inverter when supplying electric power to the rotating electric machine, and operates as a rectifier when charging DC power from the rotating electric machine, and a field current of the rotating electric machine. Field current control means, and overvoltage determination means for determining an overvoltage of the output circuit of the rotating electrical machine. When the overvoltage determination means determines an overvoltage, the field current control means applies a field voltage to the rotating electrical machine in the opposite direction. And the power converter puts the rotating electrical machine in a phase-short state, so that the DC power supply is opened during power generation by the rotating electrical machine, and even if a sudden increase in voltage occurs, the field of the rotating electrical machine is maintained. Cut off After that, the residual field magnetic flux disappears quickly, and the rotating electric machine is controlled to the phase short-circuit state.As a result, the overvoltage can be minimized, and the circuit element used for the control device and the load of the rotating electric machine are overloaded. This makes it possible to protect against deterioration, breakage, etc.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of a control device for a rotating electric machine for a vehicle according to a first embodiment of the present invention.
FIG. 2 is an operation characteristic diagram illustrating an operation of the control device for a rotating electric machine for a vehicle according to Embodiment 1 of the present invention;
FIG. 3 is an operation characteristic diagram illustrating an operation of the control device for the rotating electric machine for a vehicle according to the first embodiment of the present invention;
FIG. 4 is an operation characteristic diagram illustrating an operation of the control device for the rotating electric machine for a vehicle according to the first embodiment of the present invention;
FIG. 5 is a block diagram showing a configuration of a control device for a rotating electric machine for a vehicle according to a second embodiment of the present invention.
FIG. 6 is an operation characteristic diagram illustrating an operation of a control device for a rotating electric machine for a vehicle according to a second embodiment of the present invention;
FIG. 7 is a block diagram showing a configuration of a control device for a rotating electric machine for a vehicle according to a third embodiment of the present invention.
FIG. 8 is an operation characteristic diagram illustrating an operation of a control device for a rotating electric machine for a vehicle according to a third embodiment of the present invention;
FIG. 9 is a block diagram showing a configuration of a control device for a rotating electric machine for a vehicle according to a fourth embodiment of the present invention.
FIG. 10 is an operation characteristic diagram illustrating an operation of a control device for a rotating electric machine for a vehicle according to a fourth embodiment of the present invention.
FIG. 11 is a block diagram showing a configuration of a conventional control device for a rotating electric machine for a vehicle.
[Explanation of symbols]
1 command value calculation means, 2 AC current command calculation means,
3 AC voltage command calculation means, 4 power converter,
5 field current command calculation means, 6 field voltage command calculation means,
7 field current control means, 8 voltage smoothing device, 9 voltage detector,
10 rotation speed / angle calculation means, 11 rotating electric machine, 12 rotation detector,
13 DC power supply, 14, 15 connector, 16 control means,
17 Current detector, 18 Overvoltage determination means.

Claims (5)

内燃機関に結合され、電動機または発電機として機能する回転電機、前記回転電機に電力を供給し、また、前記回転電機の出力により充電される直流電源、前記回転電機を制御する制御手段を備え、前記制御手段には、前記回転電機に電力を供給するときはインバータとして動作し、前記回転電機から前記直流電源を充電するときは整流装置として動作する電力変換装置と、前記回転電機の出力回路の過電圧を判定する過電圧判定手段とが含まれており、前記過電圧判定手段が過電圧と判定したとき、前記電力変換装置が前記回転電機を相短絡状態にすることを特徴とする車両用回転電機の制御装置。A rotating electric machine coupled to the internal combustion engine and functioning as an electric motor or a generator, supplying power to the rotating electric machine, and a DC power source charged by an output of the rotating electric machine; and a control unit for controlling the rotating electric machine, The control unit operates as an inverter when supplying electric power to the rotating electric machine, and operates as a rectifier when charging the DC power supply from the rotating electric machine, and an output circuit of the rotating electric machine. Overvoltage determining means for determining an overvoltage, wherein when the overvoltage determining means determines an overvoltage, the power conversion device sets the rotating electrical machine to a phase short-circuit state, and controls the rotating electrical machine for a vehicle. apparatus. 内燃機関に結合され、電動機または発電機として機能する回転電機、前記回転電機に電力を供給し、また、前記回転電機の出力により充電される直流電源、前記回転電機を制御する制御手段を備え、前記制御手段には、前記回転電機に対して電流指令を与える交流電流指令演算手段と、前記回転電機に電力を供給するときはインバータとして動作し、前記回転電機から前記直流電源を充電するときは整流装置として動作する電力変換装置と、前記回転電機の出力回路の過電圧を判定する過電圧判定手段とが含まれており、前記過電圧判定手段が過電圧と判定したとき、前記交流電流指令演算手段が前記電力変換装置を制御して前記回転電機の電機子コイルに位相制御された弱め界磁電流を供給することを特徴とする車両用回転電機の制御装置。A rotating electric machine coupled to the internal combustion engine and functioning as an electric motor or a generator, supplying power to the rotating electric machine, and a DC power source charged by an output of the rotating electric machine; and a control unit for controlling the rotating electric machine, The control means includes an AC current command calculation means for giving a current command to the rotating electric machine, and operates as an inverter when supplying electric power to the rotating electric machine, and when charging the DC power supply from the rotating electric machine. A power converter that operates as a rectifier, and overvoltage determining means for determining an overvoltage of the output circuit of the rotating electric machine, wherein when the overvoltage determining means determines an overvoltage, the AC current command calculating means includes A controller for a rotating electrical machine for a vehicle, comprising: controlling a power converter to supply a phase-controlled field weakening current to an armature coil of the rotating electrical machine. 前記位相制御された弱め界磁電流が、前記回転電機を発電機として機能させたとき、トルク発生に寄与しない位相の電流であることを特徴とする請求項2に記載の車両用回転電機の制御装置。The control according to claim 2, wherein the phase-controlled field weakening current is a current having a phase that does not contribute to torque generation when the rotating electric machine functions as a generator. apparatus. 内燃機関に結合され、電動機または発電機として機能する回転電機、前記回転電機に電力を供給し、また、前記回転電機の出力により充電される直流電源、前記回転電機を制御する制御手段を備え、前記制御手段には、前記回転電機の界磁電流を制御する界磁電流制御手段と、前記回転電機の出力回路の過電圧を判定する過電圧判定手段とが含まれており、前記過電圧判定手段が過電圧と判定したとき、前記界磁電流制御手段が前記回転電機に逆方向の界磁電圧を与えて消磁することを特徴とする車両用回転電機の制御装置。A rotating electric machine coupled to the internal combustion engine and functioning as an electric motor or a generator, supplying power to the rotating electric machine, and a DC power source charged by an output of the rotating electric machine; and a control unit for controlling the rotating electric machine, The control means includes a field current control means for controlling a field current of the rotating electrical machine, and an overvoltage determining means for determining an overvoltage of an output circuit of the rotating electrical machine, wherein the overvoltage determining means includes an overvoltage Wherein the field current control means applies a field voltage in the opposite direction to the rotating electric machine to demagnetize the rotating electric machine. 内燃機関に結合され、電動機または発電機として機能する回転電機、前記回転電機に電力を供給し、また、前記回転電機の出力により充電される直流電源、前記回転電機を制御する制御手段を備え、前記制御手段には、前記回転電機に電力を供給するときはインバータとして動作し、前記回転電機から前記直流電源を充電するときは整流装置として動作する電力変換装置と、前記回転電機の界磁電流を制御する界磁電流制御手段と、前記回転電機の出力回路の過電圧を判定する過電圧判定手段とが含まれており、前記過電圧判定手段が過電圧と判定したとき、前記界磁電流制御手段が前記回転電機に逆方向の界磁電圧を与えて消磁すると共に、前記電力変換装置が前記回転電機を相短絡状態にすることを特徴とする車両用回転電機の制御装置。A rotating electric machine coupled to the internal combustion engine and functioning as an electric motor or a generator, supplying power to the rotating electric machine, and a DC power source charged by an output of the rotating electric machine; and a control unit for controlling the rotating electric machine, A power converter that operates as an inverter when supplying electric power to the rotating electric machine and operates as a rectifier when charging the DC power supply from the rotating electric machine; and a field current of the rotating electric machine. And an overvoltage determining means for determining an overvoltage of the output circuit of the rotating electric machine, and when the overvoltage determining means determines that an overvoltage has occurred, the field current controlling means A control device for a rotating electric machine for a vehicle, wherein the rotating electric machine is demagnetized by applying a field voltage in a reverse direction, and the power conversion device brings the rotating electric machine into a phase short-circuit state.
JP2002167728A 2002-06-07 2002-06-07 Control device for rotating electrical machine for vehicle Expired - Lifetime JP3975126B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002167728A JP3975126B2 (en) 2002-06-07 2002-06-07 Control device for rotating electrical machine for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002167728A JP3975126B2 (en) 2002-06-07 2002-06-07 Control device for rotating electrical machine for vehicle

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006244117A Division JP4675299B2 (en) 2006-09-08 2006-09-08 Control device for rotating electrical machine for vehicle

Publications (2)

Publication Number Publication Date
JP2004015936A true JP2004015936A (en) 2004-01-15
JP3975126B2 JP3975126B2 (en) 2007-09-12

Family

ID=30434890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002167728A Expired - Lifetime JP3975126B2 (en) 2002-06-07 2002-06-07 Control device for rotating electrical machine for vehicle

Country Status (1)

Country Link
JP (1) JP3975126B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007050815A2 (en) * 2005-10-27 2007-05-03 Continental Automotive Systems Us, Inc. System and method of over voltage control for a power system
JP2008512077A (en) * 2004-08-31 2008-04-17 ヴァレオ エキプマン エレクトリク モトゥール Control and power modules for rotating electrical machines
WO2012063287A1 (en) 2010-11-10 2012-05-18 国産電機株式会社 Control device of rotating electrical machine
JP2012157237A (en) * 2011-01-27 2012-08-16 General Electric Co <Ge> Reduction in generator-sourced fault current contribution
US8841795B2 (en) 2011-04-18 2014-09-23 Denso Corporation On-vehicle generator provided with overvoltage detecting circuit

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008512077A (en) * 2004-08-31 2008-04-17 ヴァレオ エキプマン エレクトリク モトゥール Control and power modules for rotating electrical machines
WO2007050815A2 (en) * 2005-10-27 2007-05-03 Continental Automotive Systems Us, Inc. System and method of over voltage control for a power system
WO2007050815A3 (en) * 2005-10-27 2007-11-15 Siemens Vdo Automotive Corp System and method of over voltage control for a power system
US7750501B2 (en) 2005-10-27 2010-07-06 Continental Automotive Systems Us, Inc. System and method of over voltage control for a power system
WO2012063287A1 (en) 2010-11-10 2012-05-18 国産電機株式会社 Control device of rotating electrical machine
US8810052B2 (en) 2010-11-10 2014-08-19 Kokusan Denki Co., Ltd Control device for rotary electrical machine
JP2012157237A (en) * 2011-01-27 2012-08-16 General Electric Co <Ge> Reduction in generator-sourced fault current contribution
US8841795B2 (en) 2011-04-18 2014-09-23 Denso Corporation On-vehicle generator provided with overvoltage detecting circuit

Also Published As

Publication number Publication date
JP3975126B2 (en) 2007-09-12

Similar Documents

Publication Publication Date Title
JP6296169B2 (en) Inverter control device and vehicle control device
JP4232693B2 (en) Vehicle power generation control system
US6771040B2 (en) Control apparatus and control method of on-vehicle dynamo-electric machine
US10886867B2 (en) Inverter control device
JP5605434B2 (en) Control device for rotating electrical machine
RU2533167C1 (en) Inverter installation and method for inverter installation control method
US8120200B2 (en) Fast response failure mode control methodology for a hybrid vehicle having an electric machine
US6949902B2 (en) Controller of rotating electric machine for vehicle
JP4675299B2 (en) Control device for rotating electrical machine for vehicle
JP2007325388A (en) Control unit for motor, and in-vehicle motor driven system
JP2002034289A (en) Inverter device and its current limitation method
JP2007230298A (en) Control unit for electric four-wheel drive vehicle
JPWO2019066021A1 (en) Inverter control device
JP3333814B2 (en) Hybrid vehicle control device
JP5923365B2 (en) Electric motor output control device
JPH0970195A (en) Motor controller
JP2007189773A (en) Field winding system of ac dynamo-electric machine apparatus
JP4548469B2 (en) Vehicle power generation control device
JP4673539B2 (en) Excitation current controller for three-phase AC generator
JP3975126B2 (en) Control device for rotating electrical machine for vehicle
JPH09247805A (en) Electric car controller
KR20150116843A (en) Method for operating an energy supply unit for an on-board power system of a motorvehicle
CA2714698C (en) Method and system for braking an ac motor
JP2005295626A (en) Drive controller of generator
JP4180983B2 (en) Control device for rotating electrical machine for vehicle

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070618

R151 Written notification of patent or utility model registration

Ref document number: 3975126

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term