JP2004013169A - Variable magnification group in zoom lens, zoom lens, and camera system - Google Patents

Variable magnification group in zoom lens, zoom lens, and camera system Download PDF

Info

Publication number
JP2004013169A
JP2004013169A JP2003290462A JP2003290462A JP2004013169A JP 2004013169 A JP2004013169 A JP 2004013169A JP 2003290462 A JP2003290462 A JP 2003290462A JP 2003290462 A JP2003290462 A JP 2003290462A JP 2004013169 A JP2004013169 A JP 2004013169A
Authority
JP
Japan
Prior art keywords
lens
group
object side
zoom lens
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003290462A
Other languages
Japanese (ja)
Other versions
JP2004013169A5 (en
Inventor
Kazuyasu Ohashi
大橋 和泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2003290462A priority Critical patent/JP2004013169A/en
Publication of JP2004013169A publication Critical patent/JP2004013169A/en
Publication of JP2004013169A5 publication Critical patent/JP2004013169A5/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Lenses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To further miniaturize a zoom lens for use in digital image photographing while maintaining a high performance thereof. <P>SOLUTION: The zoom lens has a first group I which is arranged on the object side and has a negative focal length, a second group II which is arranged on the image side of the first group and has a positive focal length, and a stop S which moves to the object side of the second group together with the second group as as a single body. When the power is varied from a short focus end to a long focus end, the second group moves monotonously from the image side to the object side, and the first group moves so as to compensate the variance of an image surface position due to power variation. A variable magnification group which is constituted as the second group and practically varies the power is constituted of three lenses, that is, a positive lens of which the surface of higher curvature is directed to the object side, a negative lens of which the surface of higher curvature is directed to the image side, and a positive lens. The surface nearest to the object and the surface nearest to the image are aspherical. <P>COPYRIGHT: (C)2004,JPO

Description

 この発明は、ズームレンズにおける変倍群・ズームレンズ・カメラ装置に関する。この発明は、銀塩カメラ等各種の撮影装置、特にデジタルカメラやビデオカメラやデジタル画像撮影機能を持つ情報機器に好適に適用できる。 The present invention relates to a variable power group, a zoom lens, and a camera device in a zoom lens. INDUSTRIAL APPLICABILITY The present invention can be suitably applied to various photographing apparatuses such as a silver halide camera, in particular, a digital camera, a video camera, and an information device having a digital image photographing function.

 デジタル画像の撮影は従来のデジタルカメラのみならず、携帯電話等の携帯情報端末装置にも広がり、ユーザの要望も多岐にわたってきている。中でも、高画質化と小型化とは常にユーザの欲するところであり、各種要望中において占めるウエイトが大きい。このため、撮影レンズとして用いられるズームレンズにも「高性能であることと小型であることとの両立」が求められる。 (4) Digital image capturing has been spread not only to conventional digital cameras but also to portable information terminal devices such as mobile phones, and the demands of users have been diverse. Above all, high image quality and miniaturization are always what the user wants, and the weight occupied in various requests is large. For this reason, a zoom lens used as a photographing lens is also required to be “compatible with high performance and small size”.

 ズームレンズの小型化には、レンズ全長(最も物体側のレンズ面から像面までの距離)の短縮が必要である。さらに、レンズ収納時のコンパクト化を図る所謂「沈胴型」のカメラ装置では、収納時の寸法を小さくするため、ズーミングに際して移動する各群の光軸方向の厚みを減らすことも重要である。 To reduce the size of a zoom lens, it is necessary to reduce the overall length of the lens (the distance from the lens surface closest to the object to the image plane). Furthermore, in a so-called “collapsed” camera device that is compact in housing the lens, it is also important to reduce the thickness of each group that moves during zooming in the optical axis direction in order to reduce the size during housing.

 小型化に適したズームレンズのタイプとして、物体側より順に、負の焦点距離を持つ第1群、正の焦点距離を持つ第2群、正の焦点距離を持つ第3群を配し、第2群の物体側に「第2群と一体に移動する絞り」を有してなり、短焦点端から長焦点端への変倍に際し、第2群が像側から物体側へ単調に移動し、第1群が変倍に伴う像面位置の変動を補正するように移動するものが知られている。 As a zoom lens type suitable for miniaturization, a first group having a negative focal length, a second group having a positive focal length, and a third group having a positive focal length are arranged in order from the object side. The two groups have an “aperture that moves integrally with the second group” on the object side, and the second group moves monotonously from the image side to the object side during zooming from the short focus end to the long focus end. In addition, there is known an image pickup apparatus in which a first lens unit moves so as to correct a change in an image plane position caused by zooming.

 特許文献1は、上記タイプのズームレンズを提案したものとしては最も早く、基本的な構成は全て開示されているが、小型化という面では必ずしも十分ではない。上記タイプのズームレンズを改良し、小型化を進めたものが特許文献2に開示されているが、第2群に非球面を1面しか有していないため、小型化はなお十分ではなく、収差補正も十分とは言いがたい。また、特許文献3は、その実施例3として、第2群に2面の非球面を用いて収差の良好な補正を図ったものを開示しているが、第2群の厚みが大きく、小型化に必ずしも有利ではない。 Patent Document 1 is the earliest proposal of a zoom lens of the above type, and discloses all basic configurations, but is not necessarily sufficient in terms of miniaturization. Patent Literature 2 discloses an improved type of zoom lens of the above type and further downsizing, but since the second group has only one aspherical surface, downsizing is still not sufficient, It is hard to say that aberration correction is sufficient. Patent Document 3 discloses, as Example 3, a lens in which two aspheric surfaces are used in the second lens group to achieve good correction of aberrations. It is not necessarily advantageous for the conversion.

特開平10―039214号公報JP-A-10-039214 特開平11―287953号公報JP-A-11-287953 特開2000―0891102号公報Japanese Patent Application Laid-Open No. 2000-089102

 この発明は、上述した事情に鑑み、デジタル画像撮影に用いられるズームレンズの高性能を維持しつつ、更なる小型化を図ることを課題とする。 In view of the circumstances described above, an object of the present invention is to further reduce the size of a zoom lens used for digital image capturing while maintaining high performance.

 この発明の「ズームレンズにおける変倍群」は、「物体側に配されて負の焦点距離を持つ第1群と、この第1群の像側に配されて正の焦点距離を持つ第2群と、この第2群の物体側に第2群と一体に移動する絞りとを有し、短焦点端から長焦点端への変倍に際し、第2群が像側から物体側へ単調に移動し、第1群が変倍に伴う像面位置の変動を補正するように移動するズームレンズにおいて、第2群として構成され、実質的な変倍を行う変倍群」である。 The "magnifying lens unit in the zoom lens" of the present invention includes a "first unit disposed on the object side and having a negative focal length, and a second unit disposed on the image side of the first unit and having a positive focal length. A second lens group, and a stop which moves integrally with the second lens group on the object side of the second lens group. When zooming from the short focal length end to the long focal length edge, the second lens unit monotonously moves from the image side to the object side. A zoom lens unit that moves and the first lens unit moves so as to correct a change in the image plane position caused by zooming, and is configured as a second lens unit and performs substantial zooming. "

 請求項1記載の変倍群は、以下の如き特徴を有する。 
 即ち、第2群として構成される変倍群は、物体側から順に、物体側に曲率の大きな面を向けた正レンズ、像側に曲率の大きな面を向けた負レンズ、正レンズの3枚を配して構成され、最も物体側の面と最も像側の面が非球面である。
The variable power group according to claim 1 has the following features.
That is, the zooming unit configured as the second unit includes, in order from the object side, a positive lens having a surface with a large curvature directed to the object side, a negative lens having a surface with a large curvature directed to the image side, and a positive lens. And the most object side surface and the most image side surface are aspherical surfaces.

 この請求項1記載の変倍群は、光軸方向の厚み:Lと最大像高:Y’とが、条件:
 (1) 1.0<(L/Y’)<2.5
を満足することが好ましい(請求項2)。
Zooming group of claim 1, wherein the optical axis direction of the thickness: L 2 and the maximum image height: Y 'and although the conditions:
(1) 1.0 <(L 2 /Y′)<2.5
Is preferably satisfied (claim 2).

 請求項1または2記載の変倍群は、最も像側の正レンズの、物体側および像側の面の曲率半径をそれぞれR31およびR32とするとき、これらが条件:
 (2) ―0.4<(R31+R32)/(R31―R32)<0.0
を満足することが好ましい(請求項3)。なお、この場合、像側の面は非球面であるので、上記曲率半径:R32は近軸曲率半径である。
Claim 1 or 2 zooming groups described, the positive lens on the most image side, when the radius of curvature of the object side and the image side and R 31 and R 32 respectively, these conditions:
(2) -0.4 <(R 31 + R 32) / (R 31 -R 32) <0.0
Is preferably satisfied (claim 3). In this case, since the image-side surface is an aspherical surface, the radius of curvature: R32 is a paraxial radius of curvature.

 上記請求項1または2または3記載の変倍群においては、最も物体側の正レンズと、これに続く負レンズとを接合して接合レンズとすることも(請求項4)、3枚のレンズを互いに独立したレンズとすることもできる(請求項5)。 In the zooming unit according to claim 1, 2, 3 or 4, the positive lens closest to the object and the negative lens following it are cemented to form a cemented lens (claim 4). Can be independent lenses from each other (claim 5).

 請求項6記載の変倍群は、以下の如き特徴を有する。 
 即ち、第2群として構成されて実質的な変倍を行う変倍群は、最も物体側の面と最も像側の面が非球面で、光軸方向の厚み:L、最大像高:Y’が、条件:
 (1)  1.0<(L/Y’)<2.5
を満足する。
The zooming unit according to claim 6 has the following features.
That is, in the zooming unit configured as the second unit and performing a substantial zooming, the surface closest to the object side and the surface closest to the image side are aspherical, the thickness in the optical axis direction: L 2 , and the maximum image height: Y 'is the condition:
(1) 1.0 <(L 2 /Y′)<2.5
To be satisfied.

 請求項6記載の変倍群は、物体側から順に、物体側に曲率の大きな面を向けた正レンズ、像側に曲率の大きな面を向けた負レンズ、正レンズ、正レンズの4枚を配して構成される4枚構成のものとすることができる(請求項7)。この場合、変倍群を構成する4枚のレンズは、互いに独立していても良いが、「最も物体側の正レンズと、これに続く負レンズを接合レンズとして一体化」することもできる(請求項8)。 The zooming unit according to claim 6 includes, in order from the object side, a positive lens having a surface with a large curvature toward the object side, a negative lens having a surface with a large curvature toward the image side, a positive lens, and a positive lens. It is possible to adopt a four-sheet configuration constituted by arranging them. In this case, the four lenses constituting the zooming unit may be independent of each other, but it is also possible to "integrate the positive lens closest to the object side and the subsequent negative lens as a cemented lens" ( Claim 8).

 この発明のズームレンズは「物体側に配されて負の焦点距離を持つ第1群と、この第1群の像側に配されて正の焦点距離を持つ第2群と、この第2群の物体側に第2群と一体に移動する絞りを有してなり、短焦点端から長焦点端への変倍に際し、第2群が像側から物体側へ単調に移動して実質的な変倍を行い、第1群が変倍に伴う像面位置の変動を補正するように移動するズームレンズ」であって、第2群として、上記請求項1〜8の任意の1に記載の変倍群を用いたことを特徴とする(請求項9)。 The zoom lens according to the present invention includes a first group disposed on the object side and having a negative focal length, a second group disposed on the image side of the first group and having a positive focal length, and a second group disposed on the image side of the first group. The second lens unit is monotonously moved from the image side to the object side during zooming from the short focal length end to the long focal length end. 9. The zoom lens according to claim 1, wherein the zoom lens is configured to perform zooming, and the first lens unit moves so as to correct a change in the image plane position caused by zooming. A zooming group is used (claim 9).

 請求項9記載のズームレンズにおける第1群は「物体側から順に、像側に曲率の大きな面を向けた少なくとも1枚の負レンズ、物体側に曲率の大きな面を向けた少なくとも1枚の正レンズを配し、物体側に配された1枚以上の負レンズのうちで、最も像側に位置する負レンズの像側の面を非球面とした」構成とすることができる(請求項10)。 The first group of the zoom lens according to claim 9, wherein, in order from the object side, at least one negative lens having a surface having a large curvature toward the image side and at least one positive lens having a surface having a large curvature toward the object side. A lens is arranged, and among the one or more negative lenses arranged on the object side, the image-side surface of the negative lens positioned closest to the image is made aspherical. ).

 この請求項10記載のズームレンズにおける第1群を「物体側から順に、物体側に凸面を向けた負メニスカスレンズ、像側に曲率の大きな面を向けた負レンズ、物体側に曲率の大きな面を向けた正レンズを配してなる3枚構成」とし、物体側から第2番目に配される負レンズの像側の面を非球面とすることができる(請求項11)。この場合、第1群の最も物体側に配された負メニスカスレンズの焦点距離:fL1、第1群の物体側から2番目に配された負レンズの焦点距離:fL2が、条件:
 (3) 0.7<(fL1/fL2)<2.0
を満足することが好ましい(請求項12)。
11. The zoom lens according to claim 10, wherein the first lens unit includes, in order from the object side, a negative meniscus lens having a convex surface facing the object side, a negative lens having a surface having a large curvature toward the image side, and a surface having a large curvature toward the object side. , And the image-side surface of the negative lens arranged second from the object side can be made aspherical (claim 11). In this case, the focal length of the negative meniscus lens disposed closest to the object side in the first group: f L1 , and the focal length of the negative lens disposed second from the object side in the first group: f L2, are the conditions:
(3) 0.7 <(f L1 / f L2 ) <2.0
Is preferably satisfied (claim 12).

 また、上記請求項10記載のズームレンズにおける第1群を「物体側から順に、物体側に凸面を向けた負メニスカスレンズ、物体側に曲率の大きな面を向けた正レンズを配してなる2枚構成」とし、上記負メニスカスレンズの像側の面を非球面とすることができる(請求項13)。 In the zoom lens according to the tenth aspect, the first lens unit may include, in order from the object side, a negative meniscus lens having a convex surface facing the object side, and a positive lens having a surface with a large curvature facing the object side. And the image-side surface of the negative meniscus lens can be aspherical.

 上記請求項9〜13記載のズームレンズは、全系の構成レンズ枚数を8枚以下とすることが好ましい(請求項14)。 In the zoom lens described in any one of the ninth to thirteenth aspects, it is preferable that the number of constituent lenses of the entire system be eight or less (claim 14).

 この発明のカメラ装置は「撮影用ズームレンズ」として、上記請求項9〜14の任意の1に記載のズームレンズを有することを特徴とする(請求項15)。 
 この請求項16記載のカメラ装置は「撮影用ズームレンズが沈胴式に収納される」構成とすることができる(請求項16)。
The camera device according to the present invention is characterized in that the camera device includes the zoom lens according to any one of claims 9 to 14 as a "photographing zoom lens" (claim 15).
The camera device according to the sixteenth aspect may be configured such that the photographing zoom lens is stored in a retractable manner (claim 16).

 請求項15または16記載のカメラ装置は「撮影画像をデジタル情報とする機能」を有することができ(請求項17)、この場合、ズームレンズによる像を受光する受光素子は200万画素以上のものであることができる(請求項18)。 The camera device according to claim 15 or 16 can have a "function of converting a captured image into digital information" (claim 17). In this case, the light receiving element for receiving an image by the zoom lens has 2 million pixels or more. (Claim 18).

 上記請求項17、18記載のカメラ装置は「携帯情報端末装置」であることができる(請求項19)。 (4) The camera device according to claims 17 and 18 can be a “portable information terminal device” (claim 19).

 物体側から順に負・正・正の3群で構成されるズームレンズでは一般に、短焦点端から長焦点端への変倍に際し、第2群が像側から物体側へと単調に移動し、第1群が変倍に伴う像面位置の変動を補正するように移動する。変倍機能の大半は第2群が担っており、第3群は主として像面から射出瞳を遠ざける機能を付与されている。 Generally, in a zoom lens composed of three groups of negative, positive and positive in order from the object side, upon zooming from the short focal end to the long focal end, the second group moves monotonously from the image side to the object side, The first lens unit is moved so as to correct a change in the image plane position caused by zooming. Most of the zooming function is performed by the second group, and the third group is mainly provided with a function of keeping the exit pupil away from the image plane.

 各種収差が少なく、解像力の高いズームレンズを実現するためには、変倍による収差変動を小さく抑えねばならないが、特に実質的な変倍を行う変倍群、即ち「主たる変倍群」である第2群は、変倍範囲全域において良好に収差補正されている必要がある。 In order to realize a zoom lens with a small amount of various aberrations and a high resolution, it is necessary to suppress aberration fluctuations due to zooming to a small extent, but in particular, a zooming group that performs substantial zooming, that is, a “main zooming group”. The second lens group needs to be well corrected for aberrations throughout the zoom range.

 第2群の収差の良好な補正は基本的には、第2群を構成するレンズ枚数を増やすことにより可能であるが、構成レンズ枚数の増加は、第2群の「光軸方向の厚みの増大」につながり、十分な小型化を達成できず、コストの増大も招来する。 Good correction of the aberration of the second group can be basically performed by increasing the number of lenses constituting the second group. In addition, it is not possible to achieve sufficient miniaturization, which leads to an increase in cost.

 そこで、請求項1〜5記載の発明では、主たる変倍群たる第2群を、物体側から順に、物体側に曲率の大きな面を向けた正レンズ、像側に曲率の大きな面を向けた負レンズ、正レンズを配した3枚構成とし、第2群の最も物体側の面と、最も像側の面とを非球面とした。 Therefore, in the first to fifth aspects of the present invention, the second lens unit, which is a main zooming unit, is arranged in order from the object side to a positive lens having a surface with a large curvature toward the object side, and a surface having a large curvature to the image side. The negative lens and the positive lens are arranged in a three-element configuration, and the most object-side surface and the most image-side surface of the second group are aspherical.

 即ち、第2群をトリプレットタイプとし「色収差補正と像面湾曲補正を両立できる最小構成枚数」とすることで小型化を実現した上で、2面の非球面を用いて自由度の高い収差補正を行い、高性能化を実現している。 That is, the second lens unit is of a triplet type and has a "minimum number of components that can achieve both chromatic aberration correction and field curvature correction" to achieve miniaturization, and has a high degree of freedom in aberration correction using two aspheric surfaces. To achieve higher performance.

 第2群の最も物体側の面は「絞りの近傍」にあるため、軸上と軸外の光束が殆ど分離せずに通り、この面に設けた非球面は、主として球面収差やコマ収差の補正に寄与する。第2群の最も像側の面は、絞りから離れているため、軸上と軸外の光束がある程度分離して通る。したがって、この面に設けた非球面は、非点収差等の補正に寄与する。 Since the surface closest to the object side of the second group is "near the stop", the on-axis and off-axis light beams pass through with little separation, and the aspherical surface provided on this surface mainly has spherical aberration and coma. Contributes to correction. Since the most image side surface of the second group is far from the stop, on-axis and off-axis light beams pass through with some separation. Therefore, the aspherical surface provided on this surface contributes to correction of astigmatism and the like.

 このように、2面の非球面を「最も物体側の面と、最も像側の面」に用い、それぞれの非球面がもたらす効果を異ならせることにより、単色収差の補正の自由度を飛躍的に増大させることができ、枚数の少ないトリプレットの構成でも、色収差を含めた各種収差の十分な補正を行うことが可能となる。 As described above, the two aspherical surfaces are used as the “most object-side surface and the most image-side surface”, and the effects brought by the respective aspherical surfaces are made different, so that the degree of freedom in correcting monochromatic aberration is dramatically increased. Therefore, it is possible to sufficiently correct various aberrations including chromatic aberration even with a triplet configuration having a small number of sheets.

 請求項1記載の発明では、第2群は3枚構成であるので小型化に良く適合するが、さらなる小型化を達成するためには、条件(1)が満足されることが好ましい。パラメータ:L2/Y’が上限値の2.5以上になると、第2群の光軸方向の厚みが増大して十分な小型化を達成できなくなる。逆に、パラメータ:L2/Y’が下限値の1.0以下になると、第2群の「最も像側の面」が絞りに近付き、上記「非点収差等の補正」を行うための非球面の効果を十分に発揮できず、非点収差等の各種の収差の補正が困難となる。 According to the first aspect of the present invention, the second lens unit has a three-piece configuration, so that it is well suited for miniaturization. However, in order to achieve further miniaturization, it is preferable that the condition (1) be satisfied. When the parameter: L 2 / Y ′ exceeds the upper limit of 2.5 or more, the thickness of the second lens unit in the optical axis direction increases, and it is impossible to achieve sufficient miniaturization. Conversely, when the parameter: L 2 / Y ′ is equal to or less than the lower limit of 1.0, the “most image-side surface” of the second group approaches the stop, and the above-described “correction of astigmatism and the like” is performed. The effect of the aspherical surface cannot be sufficiently exerted, and it becomes difficult to correct various aberrations such as astigmatism.

 第2群を上記の如き「3枚構成」とする場合、条件(2)よりも狭い条件:
 (1’)  1.0<(L/Y’)<2.0
を満足することにより、さらなる小型化を実現することが可能になる。
When the second lens unit has the “three-sheet configuration” as described above, conditions narrower than condition (2):
(1 ′) 1.0 <(L 2 /Y′)<2.0
By satisfying the above, it is possible to further reduce the size.

 第2群の構成をトリプレットタイプとすると、第2群の最も物体側の正レンズの、物体側の面(非球面)と、これに続く負レンズの像側の面とが「互いに大きく収差をやりとりする」ことになる。このため、この2つのレンズの組み付け誤差(偏心等)が結像性能に与える影響が大きくなりがちである。 If the configuration of the second group is a triplet type, the object-side surface (aspherical surface) of the positive lens closest to the object side in the second group and the image-side surface of the negative lens that follows the “nearly aberrations”. To interact. " For this reason, the assembling error (eccentricity or the like) of the two lenses tends to greatly affect the imaging performance.

 この点については、これら2つのレンズを接合することにより、組み付け誤差自体を小さく抑えることが可能である(請求項4)。 Regarding this point, by assembling these two lenses, the assembly error itself can be suppressed (claim 4).

 しかし、請求項1記載の発明では、第2群の最も像側の正レンズにも非球面が採用され、この最も像側の正レンズの組み付け誤差が結像性能に与える影響も大きい。第2群の「最も像側の正レンズ」の組み付け誤差による結像性能への影響を小さく抑えるには、条件(2)を満足させるのが良い。 However, in the first aspect of the present invention, the aspherical surface is also used for the most image-side positive lens in the second group, and the assembling error of the most image-side positive lens greatly affects the imaging performance. In order to minimize the influence on the imaging performance due to the assembling error of the “positive lens closest to the image side” of the second group, it is preferable to satisfy the condition (2).

 条件(2)は、第2群の最も像側の正レンズの「物体側の面と像側の面(非球面)で、収差のやりとりを可及的に完結」させ、他のレンズとの位置関係がシビアにならないようにするためのものである。 The condition (2) is to allow “exchange of aberrations as complete as possible on the object-side surface and the image-side surface (aspheric surface)” of the positive lens closest to the image side in the second group, and This is to prevent the positional relationship from becoming severe.

 パラメータ:(R31+R32)/(R31―R32)が上限値の0.0以上になると、最も像側の正レンズの、像側の面で発生する収差が、物体側の面で発生する収差よりも大きくなり、下限値の―0.4以下になると、物体側の面で発生する収差が像側の面で発生する収差よりも大きくなって、どちらにしても「他のレンズ面との収差のやりとり」が増えるため、この(第2群の最も像側の)正レンズの組み付け誤差による結像性能への影響が大きくなる。 Parameter: When (R 31 + R 32 ) / (R 31 -R 32 ) is equal to or more than the upper limit of 0.0, the aberration occurring on the image side of the most image side positive lens is reduced on the object side. If the aberration becomes larger than the lower limit of −0.4 or less, the aberration generated on the object side surface becomes larger than the aberration generated on the image side surface. Since the “exchange of aberrations with the surface” increases, the assembling error of the positive lens closest to the image side in the second group greatly affects the imaging performance.

 上記の如く、請求項1〜5記載の発明では第2群は3枚構成であるが、上記の条件(1)を満足させると、条件(1)が、第2群のサイズを制限するので、3枚構成以外の構成で第2群を構成しても、高性能と小型化の要請を満足させることができる。 As described above, in the first to fifth aspects of the present invention, the second lens unit has a three-lens structure. However, when the above condition (1) is satisfied, the condition (1) limits the size of the second lens unit. Even if the second group is configured with a configuration other than the three-layer configuration, it is possible to satisfy the demand for high performance and miniaturization.

 即ち、この場合、請求項7、8記載の変倍群のように、物体側から順に、物体側に曲率の大きな面を向けた正レンズ、像側に曲率の大きな面を向けた負レンズ、正レンズ、正レンズの4枚を配して構成される4枚構成のものとすることができ、「最も物体側の正レンズと、これに続く負レンズを接合レンズとして一体化」することもできる。 That is, in this case, as in the zooming units according to claims 7 and 8, a positive lens having a surface having a large curvature toward the object side, a negative lens having a surface having a large curvature facing the image side, in order from the object side, It can be a four-lens configuration composed of four positive lenses and four positive lenses, and "the positive lens closest to the object side and the following negative lens can be integrated as a cemented lens". it can.

 請求項9記載のズームレンズは上述の如く、変倍群として請求項1〜8の任意の1に記載の変倍群を使用するものであるが、ズームレンズにおける各収差の「より良好な補正」のためには、請求項10記載の発明におけるように、第1群を「物体側から順に、像側に曲率の大きな面を向けた少なくとも1枚の負レンズと、物体側に曲率の大きな面を向けた少なくとも1枚の正レンズを有し、物体側に配された1枚以上の負レンズのうちで、最も像側に位置する負レンズの像側の面を非球面とする」のが良い。 As described above, the zoom lens according to the ninth aspect uses the zooming group according to any one of the first to eighth aspects as a zooming group. As described in the invention according to claim 10, the first unit includes, in order from the object side, at least one negative lens having a surface having a large curvature toward the image side and a lens having a large curvature toward the object side. It has at least one positive lens with its surface facing, and among the one or more negative lenses disposed on the object side, the image-side surface of the negative lens located closest to the image side is an aspheric surface. " Is good.

 第1群を、このような構成とすることにより「像面湾曲を小さくする」ことができ、「軸外光線の屈折角が大きな面」を非球面とすることにより、特に短焦点端における歪曲収差を抑制することが可能となる。 By making the first lens unit have such a configuration, it is possible to “reduce the curvature of field”, and to make the “surface having a large angle of refraction of off-axis rays” an aspherical surface, especially at the short focal length end. Aberration can be suppressed.

 この場合、請求項11記載のズームレンズのように、第1群を「物体側から順に、物体側に凸面を向けた負メニスカスレンズ、像側に曲率の大きな面を向けた負レンズ、物体側に曲率の大きな面を向けた正レンズを配してなる3枚構成とし、物体側から第2番目に配される負レンズの像側の面を非球面」とし、請求項12記載の発明のように、条件(3)を満足させることにより、上記非球面の形成誤差による結像性能への影響を小さくし、非球面の効果を有効に発揮させることが可能になる。 In this case, as in the zoom lens according to the eleventh aspect, the first lens unit includes, in order from the object side, a negative meniscus lens having a convex surface facing the object side, a negative lens having a surface with a large curvature facing the image side, and an object side. 13. The image forming apparatus according to claim 12, wherein a three-element configuration is provided in which a positive lens having a surface with a large curvature is disposed, and the image-side surface of the negative lens disposed second from the object side is an aspherical surface. As described above, by satisfying the condition (3), it is possible to reduce the influence on the imaging performance due to the formation error of the aspherical surface, and to effectively exert the effect of the aspherical surface.

 即ち、条件(3)において、パラメータ:(fL1/fL2)は、第1群における2枚の負レンズの「パワーの比」を表すが、このパラメータが上限値:2.0以上になると、非球面を有する2番目の負レンズのパワーが強くなり、非球面の製作誤差による結像性能への影響が大きくなる他、レンズ中心と周辺の肉厚差が大きくなって、このレンズを成型(モールド)により作成する場合の難度が高くなってしまう。一方、パラメータ:(fL1/fL2)が下限値の0.7以下になると、非球面を有する2番目の負レンズのパワーが弱くなり、像側の面における軸外光線の屈折角が小さくなるため、非球面の効果が薄れてしまう。 That is, in the condition (3), the parameter: (f L1 / f L2 ) represents the “power ratio” of the two negative lenses in the first group. The power of the second negative lens having an aspherical surface becomes stronger, the effect on the imaging performance due to the manufacturing error of the aspherical surface becomes larger, and the thickness difference between the lens center and the periphery becomes larger, so this lens is molded. (Mold) increases the difficulty. On the other hand, when the parameter: (f L1 / f L2 ) is equal to or less than the lower limit of 0.7, the power of the second negative lens having an aspheric surface becomes weak, and the refraction angle of the off-axis ray on the image-side surface becomes small. Therefore, the effect of the aspherical surface is weakened.

 なお、より好ましくは、条件(3)よりも更に狭い、以下の条件:
 (3’) 0.7<(fL1/fL2)<1.5
を満足することが好ましい。
More preferably, the following conditions are further narrower than the condition (3):
(3 ′) 0.7 <(f L1 / f L2 ) <1.5
Is preferably satisfied.

 また、上記請求項13記載のズームレンズのように、第1群を「物体側から順に、物体側に凸面を向けた負メニスカスレンズ、物体側に曲率の大きな面を向けた正レンズを配してなる2枚構成」とし、負メニスカスレンズの像側の面を非球面とすることができ、第1群をこのような2枚構成とすることにより、より簡単な構成で小型化に有利となる。また、上記請求項11、12記載のズームレンズのように、第1群を3枚構成とする場合は「収差補正能力が高まるため、広画角化に有利」である。 Further, as in the zoom lens according to the thirteenth aspect, the first group includes, in order from the object side, a negative meniscus lens having a convex surface facing the object side, and a positive lens having a surface having a large curvature facing the object side. And the image-side surface of the negative meniscus lens can be made aspherical. By making the first group such a two-element configuration, it is advantageous for downsizing with a simpler configuration. Become. In the case where the first lens unit includes three lenses, as in the zoom lens according to the eleventh and twelfth aspects, it is advantageous for widening the angle of view because aberration correction capability is enhanced.

 主たる変倍群である第2群の像側に、正の屈折力を持つ第3群を配することもでき、この場合「物体側に曲率の大きな面を向けた正レンズで構成し、少なくとも1面を非球面とする」を有することにより、第3群の厚みを最小限に抑えつつ、非点収差等の軸外収差をより良好に補正することができる。 A third lens unit having a positive refractive power can be disposed on the image side of the second lens unit, which is the main zooming unit. In this case, the third lens unit is composed of a positive lens having a surface with a large curvature directed to the object side. Having one surface as aspherical surface "makes it possible to better correct off-axis aberrations such as astigmatism while minimizing the thickness of the third lens unit.

 この場合、第3群は、変倍に際して固定としても良いが、「少量移動させることにより、収差補正の自由度を増加させる」ことができる。 In this case, the third lens unit may be fixed at the time of zooming, but it is possible to “increase the degree of freedom of aberration correction by moving a small amount”.

 以上に説明したように、この発明によれば新規な、ズームレンズにおける変倍群、ズームレンズ、カメラ装置を実現できる。 
 この発明の変倍群は、光軸方向の厚みが有効に縮小されているので、ズームレンズをコンパクト化でき、特に、沈胴型のカメラ装置における収納時の寸法を有効に小さくできる。
As described above, according to the present invention, a novel zooming group, zoom lens, and camera device in a zoom lens can be realized.
In the variable magnification unit according to the present invention, the thickness in the optical axis direction is effectively reduced, so that the zoom lens can be made compact, and in particular, the dimensions of the retractable camera device when stored can be effectively reduced.

 また、この発明のズームレンズは、デジタル画像撮影に要求される高性能を維持しつつ、従来のものよりも更なる小型化を図ることが可能であり、この発明のズームレンズを用いるカメラ装置は、小型で且つ高性能に実現可能である。 Further, the zoom lens of the present invention can achieve further miniaturization compared with the conventional one while maintaining the high performance required for digital image shooting. , And can be realized with small size and high performance.

 以下に、この発明のズームレンズの具体的な数値実施例を示す。 
 各実施例とも、収差は十分に補正され、200万画素〜300万画素の受光素子への対応が可能となっている。この発明のようにズームレンズを構成することで、十分な小型化を達成しながら非常に良好な像性能を確保し得ることが実施例により明らかである。
Hereinafter, specific numerical examples of the zoom lens according to the present invention will be described.
In each embodiment, the aberration is sufficiently corrected, and it is possible to cope with a light receiving element having 2 to 3 million pixels. It is clear from the examples that by configuring the zoom lens as in the present invention, it is possible to secure a very good image performance while achieving a sufficient miniaturization.

 各実施例は「物体側に配されて負の焦点距離を持つ第1群と、この第1群の像側に配されて正の焦点距離を持つ第2群と、この第2群の物体側に第2群と一体に移動する絞りとを有し、短焦点端から長焦点端への変倍に際し、第2群が像側から物体側へ単調に移動し、第1群が変倍に伴う像面位置の変動を補正するように移動するズームレンズ」に関するものであるが、第2群の像側に、正の屈折力を持つ第3群が配されている。 Each embodiment is described as follows: "a first lens group disposed on the object side and having a negative focal length, a second lens group disposed on the image side of the first lens group having a positive focal length, and an object belonging to the second group. The second lens unit moves monotonously from the image side to the object side when zooming from the short focal length end to the long focal length edge, and the first lens unit zooms. , A third lens unit having a positive refractive power is arranged on the image side of the second lens unit.

 実施例における記号の意味は以下の通りである.
 f:全系の焦点距離
 F:Fナンバ
 ω:半画角
 R:曲率半径
 D:面間隔
 Nd:屈折率
 νd:アッベ数
 K:非球面の円錐定数
 A4:4次の非球面係数
 A6:6次の非球面係数
 A8:8次の非球面係数
 A10:10次の非球面係数
 A12:12次の非球面係数
 A14:14次の非球面係数
 A16:16次の非球面係数
 A18:18次の非球面係数
 非球面は、近軸曲率半径の逆数(近軸曲率)をC(=1/R)、光軸からの高さをH、光軸方向のデプスをXとして、上記円錐定数、非球面係数を用いて、周知の以下の式で定義される.
  X=CH2/[1+√{1-(1+K)C2H2}]
    +A4・H4+A6・H6+A8・H8+A10・H10+A12・H12+A14・H14+A16・H16+A18・H18
 なお、非球面を採用した面には、面番号に「*印」を付す。 
 また、長さの次元を持つ量の単位は「mm」である。
The meanings of the symbols in the examples are as follows.
f: focal length of the whole system F: F number ω: half angle of view R: radius of curvature D: surface interval Nd: refractive index νd: Abbe number K: aspherical conical constant A 4 : fourth-order aspherical coefficient A 6 : 6th order aspherical coefficient A 8 : 8th order aspherical coefficient A 10 : 10th order aspherical coefficient A 12 : 12th order aspherical coefficient A 14 : 14th order aspherical coefficient A 16 : 16th order aspherical coefficient Spherical coefficient A 18 : 18th order aspherical coefficient Aspherical surface is the reciprocal of the paraxial radius of curvature (paraxial curvature) C (= 1 / R), the height from the optical axis is H, and the depth in the optical axis direction is X is defined by the following well-known equation using the above conical constant and aspheric coefficient.
X = CH 2 / [1 + √ {1- (1 + K) C 2 H 2 }]
+ A 4 · H 4 + A 6 · H 6 + A 8 · H 8 + A 10 · H 10 + A 12 · H 12 + A 14 · H 14 + A 16 · H 16 + A 18 · H 18
In addition, "*" is attached to the surface number of the surface adopting the aspherical surface.
The unit of the quantity having the dimension of length is “mm”.

 f = 4.33〜10.28,F = 2.73〜4.10,ω = 40.29〜18.97
面番号    R    D     Nd    νd    備考
 01    40.685  1.00   1.77250  49.62   第1レンズ
 02     7.403  0.95 
 03    14.152  1.00   1.74330  49.33   第2レンズ
 04*    4.479  1.41 
 05     8.729  2.01   1.72825  28.32   第3レンズ
 06     ∞   可変(A) 
 07     絞り  1.00 
 08*    5.652  3.87   1.74400  44.90   第4レンズ
 09    -14.306  0.80   1.80518  25.46   第5レンズ
 10     5.615  0.35 
 11    11.620  1.55   1.63854  55.45   第6レンズ
 12*   -13.784  可変(B) 
 13*    13.554  1.65   1.48749  70.44   第7レンズ
 14    -98.025  可変(C) 
 15     ∞   3.25   1.51680  64.20   各種フィルタ
 16     ∞  
 第1〜第3レンズが第1群を構成し、第4〜第6レンズが第2群を構成し、第7レンズが第3群を構成する。第2群における第4レンズと第5レンズは接合レンズである。
f = 4.33 to 10.28, F = 2.73 to 4.10, ω = 40.29 to 18.97
Surface number R D Nd νd Remarks 01 40.685 1.00 1.77250 49.62 First lens 02 7.403 0.95
03 14.152 1.00 1.74330 49.33 Second lens 04 * 4.479 1.41
05 8.729 2.01 1.72825 28.32 Third lens 06 可 変 Variable (A)
07 Aperture 1.00
08 * 5.652 3.87 1.74400 44.90 4th lens 09 -14.306 0.80 1.80518 25.46 5th lens 10 5.615 0.35
11 11.620 1.55 1.63854 55.45 6th lens 12 * -13.784 Variable (B)
13 * 13.554 1.65 1.48749 70.44 7th lens 14 -98.025 Variable (C)
15 ∞ 3.25 1.51680 64.20 Various filters 16 ∞
The first to third lenses form a first group, the fourth to sixth lenses form a second group, and the seventh lens forms a third group. The fourth lens and the fifth lens in the second group are cemented lenses.

 非球面
 第4面
 K=0.0,A4=-1.37618×10-3,A6=-5.03401×10-5,A8= 1.57384×10-6
 A10=-2.30976×10-7,A12=-3.26464×10-9,A14= 4.00882×10-10
 A16= 1.97709×10-11,A18=-1.97909×10-12
 第8面
 K= 0.0,A4=-3.10301×10-4,A6=-9.60865×10-6,A8= 1.38603×10-6
 A10=-1.17724×10-7
 第12面
 K= 0.0,A4= 4.87200×10-4,A6= 4.48027×10-5,A8=-1.67451×10-6
 A10= 4.32123×10-7
 第13面
 K= 0.0,A4=-2.44272×10-4,A6= 2.13490×10-5,A8=-1.60140×10-6
 A10= 5.24693×10-8
 可変量
    短焦点端  中間焦点距離  長焦点端
    f=4.33    f=6.64    f=10.28
 A   11.640    5.480     1.400
 B    1.440    4.890     10.180
 C    3.096    2.892     2.559
 条件式数値
 (L2/Y’)=1.88
 (R31+R32)/(R31-R32)=-0.085
 (fL1/fL2)=1.29                    。
Aspheric fourth surface K = 0.0, A 4 = -1.37618 × 10 -3 , A 6 = -5.03401 × 10 -5 , A 8 = 1.57384 × 10 -6 ,
A 10 = -2.30976 × 10 -7 , A 12 = -3.26464 × 10 -9 , A 14 = 4.00882 × 10 -10 ,
A 16 = 1.97709 × 10 -11 , A 18 = -1.97909 × 10 -12
Eighth surface K = 0.0, A 4 = -3.10301 × 10 -4 , A 6 = -9.60865 × 10 -6 , A 8 = 1.38603 × 10 -6 ,
A 10 = -1.17724 × 10 -7
The twelfth surface K = 0.0, A 4 = 4.87200 × 10 -4 , A 6 = 4.48027 × 10 -5 , A 8 = -1.67451 × 10 -6 ,
A 10 = 4.32123 × 10 -7
13th surface K = 0.0, A 4 = -2.44272 × 10 -4 , A 6 = 2.13490 × 10 -5 , A 8 = -1.60 140 × 10 -6 ,
A 10 = 5.24693 × 10 -8
Variable amount Short focal length Intermediate focal length Long focal length f = 4.33 f = 6.64 f = 10.28
A 11.640 5.480 1.400
B 1.440 4.890 10.180
C 3.096 2.892 2.559
Numerical values in conditional expressions (L 2 /Y')=1.88
(R 31 + R 32 ) / (R 31 -R 32 ) =-0.085
(f L1 / f L2 ) = 1.29.

 f = 4.33〜10.28,F = 2.71〜4.06,ω = 40.30〜18.94
面番号    R    D     Nd    νd    備考 
 01    42.748  1.00   1.77250  49.62   第1レンズ
 02     7.443  0.89 
 03    13.728  1.00   1.74330  49.33   第2レンズ
 04*    4.394  1.50 
 05     8.857  2.00   1.72825  28.32   第3レンズ
 06     ∞  可変(A) 
 07     絞り  1.00 
 08*    5.337  2.41   1.74400  44.90   第4レンズ
 09   -198.170  0.52 
 10    -42.607  0.88   1.80518  25.46   第5レンズ
 11     4.924  0.21  
 12     6.330  2.51   1.51680  64.20   第6レンズ
 13*   -12.158  可変(B) 
 14*    13.923  1.68   1.48749  70.44   第7レンズ
 15   -117.275  可変(C) 
 16     ∞   3.25   1.51680  64.20   各種フィルタ
 17     ∞ 
 第1〜第3レンズが第1群を構成し、第4〜第6レンズが第2群を構成し、第7レンズが第3群を構成する。
f = 4.33 to 10.28, F = 2.71 to 4.06, ω = 40.30 to 18.94
Surface number R D Nd νd Remarks
01 42.748 1.00 1.77250 49.62 First lens 02 7.443 0.89
03 13.728 1.00 1.74330 49.33 Second lens 04 * 4.394 1.50
05 8.857 2.00 1.72825 28.32 Third lens 06 可 変 Variable (A)
07 Aperture 1.00
08 * 5.337 2.41 1.74400 44.90 4th lens 09 -198.170 0.52
10 -42.607 0.88 1.80518 25.46 Fifth lens 11 4.924 0.21
12 6.330 2.51 1.51680 64.20 6th lens 13 * -12.158 Variable (B)
14 * 13.923 1.68 1.48749 70.44 7th lens 15 -117.275 Variable (C)
16 ∞ 3.25 1.51680 64.20 Various filters 17 ∞
The first to third lenses form a first group, the fourth to sixth lenses form a second group, and the seventh lens forms a third group.

 非球面
 第4面
 K= 0.0,A4=-1.42635×10-3,A6=-6.33122×10-5,A8 = 2.18856×10-6
 A10=-1.81517×10-7、A12=-1.54734×10-9,A14= 5.33510×10-10
 A16= 7.16118×10-11,A18=-4.28124×10-12
 第8面
 K= 0.0,A4=-2.71616×10-4,A6=-1.37281×10-5,A8= 2.07664×10-6
 A10=-1.81165×10-7
 第13面
 K= 0.0,A4= 9.17882×10-4,A6= 5.21195×10-5,A8=-1.05410×10-6
 A10= 3.21835×10-7
 第14面
 K= 0.0,A4=-2.69023×10-4,A6= 3.06885×10-5,A8=-2.70949×10-6
 A10= 9.24380×10-8
 可変量
    短焦点端   中間焦点距離   長焦点端
    f=4.33    f=6.64      f=10.28
 A   11.680    5.480       1.400
 B    1.440    4.850       10.180
 C    3.044    2.873       2.528
 条件式数値
 (L2 /Y’) = 1.87
 (R31+R32) / (R31-R32) =-0.315
 (fL1/fL2) = 1.30                      。
Aspheric fourth surface K = 0.0, A 4 = -1.42635 × 10 -3 , A 6 = -6.33122 × 10 -5 , A 8 = 2.18856 × 10 -6 ,
A 10 = -1.81517 × 10 -7 , A 12 = -1.54734 × 10 -9 , A 14 = 5.33510 × 10 -10 ,
A 16 = 7.16118 × 10 -11 , A 18 = -4.28124 × 10 -12
8th surface K = 0.0, A 4 = -2.71616 × 10 -4 , A 6 = -1.37281 × 10 -5 , A 8 = 2.07664 × 10 -6 ,
A 10 = -1.81165 × 10 -7
Surface 13 K = 0.0, A 4 = 9.17882 × 10 -4 , A 6 = 5.21195 × 10 -5 , A 8 = -1.05410 × 10 -6 ,
A 10 = 3.21835 × 10 -7
14th surface K = 0.0, A 4 = -2.69023 × 10 -4 , A 6 = 3.06885 × 10 -5 , A 8 = -2.70949 × 10 -6 ,
A 10 = 9.24380 × 10 -8
Variable amount Short focal length Intermediate focal length Long focal length f = 4.33 f = 6.64 f = 10.28
A 11.680 5.480 1.400
B 1.440 4.850 10.180
C 3.044 2.873 2.528
Numerical values in conditional expressions (L 2 / Y ') = 1.87
(R 31 + R 32 ) / (R 31 -R 32 ) =-0.315
(f L1 / f L2 ) = 1.30.

 f = 4.33〜10.28,F = 2.67〜4.03,ω = 40.31〜18.96
面番号    R    D    Nd    νd    備考
 01    52.284  1.00  1.77250  49.62   第1レンズ
 02     7.548  0.90 
 03    14.553  1.00  1.74330  49.33   第2レンズ 
 04*    4.429  1.45 
 05     9.086  2.11  1.72825  28.32   第3レンズ
 06   -123.655  可変(A) 
 07    絞り   1.00  
 08*    5.316  2.25  1.74400  44.90   第4レンズ
 09   -545.787  0.47  
 10    -38.991  1.18  1.80518  25.46   第5レンズ
 11     4.987  0.19 
 12     6.737  2.27  1.51680  64.20   第6レンズ
 13*   -11.295  可変(B) 
 14*    13.622  1.73  1.48749  70.44   第7レンズ
 15    -75.425  可変(C) 
 16    ∞    3.25  1.51680  64.20   各種フィルタ
 17    ∞ 
 第1〜第3レンズが第1群を構成し、第4〜第6レンズが第2群を構成し、第7レンズが第3群を構成する。
f = 4.33 to 10.28, F = 2.67 to 4.03, ω = 40.31 to 18.96
Surface number R D Nd νd Remarks 01 52.284 1.00 1.77250 49.62 First lens 02 7.548 0.90
03 14.553 1.00 1.74330 49.33 Second lens
04 * 4.429 1.45
05 9.086 2.11 1.72825 28.32 Third lens 06 -123.655 Variable (A)
07 Aperture 1.00
08 * 5.316 2.25 1.74400 44.90 4th lens 09 -545.787 0.47
10 -38.991 1.18 1.80518 25.46 Fifth lens 11 4.987 0.19
12 6.737 2.27 1.51680 64.20 6th lens 13 * -11.295 Variable (B)
14 * 13.622 1.73 1.48749 70.44 7th lens 15 -75.425 Variable (C)
16 ∞ 3.25 1.51680 64.20 Various filters 17 ∞
The first to third lenses form a first group, the fourth to sixth lenses form a second group, and the seventh lens forms a third group.

 非球面
 第4面
 K= 0.0,A4=-1.52225×10-3,A6=-4.90276×10-5,A8=-3.89047×10-7
 A10= 1.40729×10-7,A12=-3.52907×10-8,A14= 1.18808×10-9
 A16= 5.42840×10-11,A18=-3.71221×10-12
 第8面
 K= 0.0,A4=-2.57172×10-4,A6=-1.36917×10-5,A8= 2.21542×10-6
 A10=-1.81900×10-7
 第13面
 K= 0.0,A4= 8.29889×10-4,A6= 4.54452×10-5,A8=-2.92852×10-7
 A10= 3.36336×10-7
 第14面
 K= 0.0,A4=-2.39053×10-4,A6= 2.27231×10-5,A8=-1.86944×10-6
 A10= 6.13185×10-8
 可変量
     短焦点端   中間焦点距離   長焦点端
     f=4.33     f=6.64      f=10.28
 A    11.600     5.420      1.380
 B     1.440     5.040      10.700
 C     3.191     2.996      2.556
 条件式数値
 (L2 / Y' ) = 1.82
 (R31+R32) / (R31-R32) =-0.253
 (fL1/fL2) = 1.29                       。
Aspheric fourth surface K = 0.0, A 4 = -1.52225 × 10 -3 , A 6 = -4.90276 × 10 -5 , A 8 = -3.89047 × 10 -7 ,
A 10 = 1.40729 × 10 -7 , A 12 = -3.52907 × 10 -8 , A 14 = 1.18808 × 10 -9 ,
A 16 = 5.42840 × 10 -11 , A 18 = -3.71221 × 10 -12
Eighth surface K = 0.0, A 4 = -2.57172 × 10 -4 , A 6 = -1.36917 × 10 -5 , A 8 = 2.21542 × 10 -6 ,
A 10 = -1.81900 × 10 -7
Surface 13 K = 0.0, A 4 = 8.29889 × 10 -4 , A 6 = 4.54452 × 10 -5 , A 8 = -2.92852 × 10 -7 ,
A 10 = 3.36336 × 10 -7
Surface 14 K = 0.0, A 4 = -2.39053 × 10 -4 , A 6 = 2.27231 × 10 -5 , A 8 = -1.86944 × 10 -6 ,
A 10 = 6.13185 × 10 -8
Variable amount Short focal length Intermediate focal length Long focal length f = 4.33 f = 6.64 f = 10.28
A 11.600 5.420 1.380
B 1.440 5.040 10.700
C 3.191 2.996 2.556
Numerical values in conditional expressions (L 2 / Y ') = 1.82
(R 31 + R 32) / (R 31 -R 32) = -0.253
(f L1 / f L2 ) = 1.29.

 f = 4.33〜10.30,F = 2.71〜4.04,ω = 40.29〜18.95
面番号    R    D    Nd    νd    備考
 01    29.129  1.00  1.77250  49.62   第1レンズ
 02     6.828  1.16 
 03    16.225  1.00  1.74330  49.33   第2レンズ
 04*    4.651  1.47  
 05     9.174  2.39  1.74077  27.76   第3レンズ
 06     ∞   可変(A) 
 07     絞り  1.00 
 08*    5.233  2.76  1.72342  37.99   第4レンズ
 09    -19.253  0.16 
 10    -13.695  0.80  1.80518  25.46   第5レンズ
 11     4.961  0.18 
 12     6.324  2.98  1.51680  64.20   第6レンズ
 13*   -10.432  可変(B) 
 14*    13.397  1.60  1.48749  70.44   第7レンズ
 15    153.379  可変(C) 
 16      ∞   3.25  1.51680  64.20   各種フィルタ
 17     ∞ 
 第1〜第3レンズが第1群を構成し、第4〜第6レンズが第2群を構成し、第7レンズが第3群を構成する。
f = 4.33 to 10.30, F = 2.71 to 4.04, ω = 40.29 to 18.95
Surface number R D Nd νd Remarks 01 29.129 1.00 1.77250 49.62 First lens 02 6.828 1.16
03 16.225 1.00 1.74330 49.33 Second lens 04 * 4.651 1.47
05 9.174 2.39 1.74077 27.76 Third lens 06 可 変 Variable (A)
07 Aperture 1.00
08 * 5.233 2.76 1.72342 37.99 4th lens 09 -19.253 0.16
10 -13.695 0.80 1.80518 25.46 Fifth lens 11 4.961 0.18
12 6.324 2.98 1.51680 64.20 6th lens 13 * -10.432 Variable (B)
14 * 13.397 1.60 1.48749 70.44 7th lens 15 153.379 Variable (C)
16 ∞ 3.25 1.51680 64.20 Various filters 17 ∞
The first to third lenses form a first group, the fourth to sixth lenses form a second group, and the seventh lens forms a third group.

 非球面
 第4面
 K= 0.0,A4=-1.27929×10-3,A6=-4.75375×10-5,A8= 1.78640×10-6
 A10=-2.09707×10-7,A12= -3.99557×10-9,A14= 8.29203×10-10
 A16=-2.46067×10-11,A18= -3.28212×10-13
 第8面
 K= 0.0,A4=-2.23927×10-4,A6=-9.69866×10-6,A8= 1.89347×10-6
 A10=-1.43145×10-7
 第13面
 K= 0.0,A4= 8.10959×10-4,A6= 4.46654×10-5,A8=-1.33415×10-6
 A10= 3.10407×10-7
 第14面
 K= 0.0,A4=-2.22347×10-4,A6= 2.09486×10-5,A8=-1.79477×10-6
 A10= 6.32978×10-8
 可変量
    短焦点端   中間焦点距離   長焦点端
     f=4.33    f=6.64      f=10.30
 A    11.700    5.410      1.300
 B     1.450    5.040      10.740
 C     3.520    3.254      2.651
 条件式数値
 (L2/Y') = 1.97
 (R31+R32) / (R31-R32) = -0.245
 (fL1/fL2) = 1.29                   。
Aspheric fourth surface K = 0.0, A 4 = -1.27929 × 10 -3 , A 6 = -4.75375 × 10 -5 , A 8 = 1.78640 × 10 -6 ,
A 10 = -2.09707 × 10 -7 , A 12 = -3.99557 × 10 -9 , A 14 = 8.29203 × 10 -10 ,
A 16 = -2.46067 × 10 -11 , A 18 = -3.28212 × 10 -13
8th surface K = 0.0, A 4 = -2.23927 × 10 -4 , A 6 = -9.69866 × 10 -6 , A 8 = 1.89347 × 10 -6 ,
A 10 = -1.43145 × 10 -7
Surface 13 K = 0.0, A 4 = 8.10959 × 10 -4 , A 6 = 4.46654 × 10 -5 , A 8 = -1.33415 × 10 -6 ,
A 10 = 3.10407 × 10 -7
Surface 14 K = 0.0, A 4 = −2.222347 × 10 −4 , A 6 = 2.09486 × 10 −5 , A 8 = −1.79477 × 10 −6 ,
A 10 = 6.32978 × 10 -8
Variable amount Short focal length Intermediate focal length Long focal length f = 4.33 f = 6.64 f = 10.30
A 11.700 5.410 1.300
B 1.450 5.040 10.740
C 3.520 3.254 2.651
Numerical values in conditional expressions (L 2 / Y ') = 1.97
(R 31 + R 32 ) / (R 31 -R 32 ) = -0.245
(f L1 / f L2 ) = 1.29.

 f = 4.33〜10.28,F = 2.70〜4.03,ω = 40.29〜18.97
面番号    R    D    Nd    νd    備考
 01    26.338  1.00  1.77250  49.62   第1レンズ
 02     5.957  1.15  
 03    11.354  1.00  1.74330  49.33   第2レンズ
 04*    4.800  1.68 
 05     9.326  1.89  1.74077  27.76   第3レンズ
 06    76.543  可変(A) 
 07     絞り  1.00  
 08*    5.240  2.97  1.72342  37.99   第4レンズ
 09    -17.637  0.20 
 10    -11.727  0.81  1.80518  25.46   第5レンズ
 11     5.109  0.17 
 12     6.368  2.50  1.51680  64.20   第6レンズ
 13*   -10.112  可変(B) 
 14*    13.474  1.60  1.48749  70.44   第7レンズ
 15    164.596  可変(C) 
 16     ∞   3.25  1.51680  64.20   各種フィルタ
 17     ∞ 
 第1〜第3レンズが第1群を構成し、第4〜第6レンズが第2群を構成し、第7レンズが第3群を構成する。
f = 4.33 to 10.28, F = 2.70 to 4.03, ω = 40.29 to 18.97
Surface number R D Nd νd Remarks 01 26.338 1.00 1.77250 49.62 First lens 02 5.957 1.15
03 11.354 1.00 1.74330 49.33 Second lens 04 * 4.800 1.68
05 9.326 1.89 1.74077 27.76 Third lens 06 76.543 Variable (A)
07 Aperture 1.00
08 * 5.240 2.97 1.72342 37.99 4th lens 09 -17.637 0.20
10 -11.727 0.81 1.80518 25.46 Fifth lens 11 5.109 0.17
12 6.368 2.50 1.51680 64.20 6th lens 13 * -10.112 Variable (B)
14 * 13.474 1.60 1.48749 70.44 7th lens 15 164.596 Variable (C)
16 ∞ 3.25 1.51680 64.20 Various filters 17 ∞
The first to third lenses form a first group, the fourth to sixth lenses form a second group, and the seventh lens forms a third group.

 非球面
 第4面
 K= 0.0,A4=-1.18340×10-3,A6=-5.15513×10-5,A8 = 2.55275×10-6
 A10 =-2.44284×10-7,A12=-3.45686×10-9,A14= 1.00396×10-9
 A16=-4.09624×10-11,A18= 2.60442×10-13
 第8面
 K= 0.0,A4=-2.06641×10-4,A6=-6.64406×10-6,A8= 1.79604×10-6
 A10=-1.27500×10-7
 第13面
 K= 0.0,A4= 1.00672×10-3,A6= 5.77600×10-5,A8=-1.35110×10-6
 A10= 4.73799×10-7
 第14面
 K= 0.0,A4=-2.40787×10-4,A6= 3.74236×10-5,A8=-3.77197×10-6
 A10= 1.38975×10-7
 可変量
     短焦点端   中間焦点距離   長焦点端
     f=4.33     f=6.64     f=10.28
 A    11.840     5.630     1.530
 B     1.660     5.160     10.570
 C     3.306     3.072     2.665
 条件式数値
 (L2/Y') = 1.90
 (R31+R32) / (R31-R32) = -0.227
 (fL1/fL2) = 0.851                  。
Aspherical fourth surface K = 0.0, A 4 = -1.18340 × 10 -3 , A 6 = -5.15513 × 10 -5 , A 8 = 2.55275 × 10 -6 ,
A 10 = -2.44284 × 10 -7 , A 12 = -3.45686 × 10 -9 , A 14 = 1.00396 × 10 -9 ,
A 16 = -4.09624 × 10 -11 , A 18 = 2.60442 × 10 -13
8th surface K = 0.0, A 4 = -2.06641 × 10 -4 , A 6 = -6.64406 × 10 -6 , A 8 = 1.79604 × 10 -6 ,
A 10 = -1.27500 × 10 -7
Surface 13 K = 0.0, A 4 = 1.00672 × 10 -3 , A 6 = 5.77600 × 10 -5 , A 8 = -1.35110 × 10 -6 ,
A 10 = 4.73799 × 10 -7
Surface 14 K = 0.0, A 4 = -2.40787 × 10 -4 , A 6 = 3.74236 × 10 -5 , A 8 = -3.77197 × 10 -6 ,
A 10 = 1.38975 × 10 -7
Variable amount Short focal length Intermediate focal length Long focal length f = 4.33 f = 6.64 f = 10.28
A 11.840 5.630 1.530
B 1.660 5.160 10.570
C 3.306 3.072 2.665
Numerical values in conditional expressions (L 2 / Y ') = 1.90
(R 31 + R 32 ) / (R 31 -R 32 ) = -0.227
(f L1 / f L2) = 0.851.

 f = 4.33〜10.28,F = 2.75〜4.08,ω = 40.30〜19.03
面番号    R    D    Nd    νd    備考
 01    18.512  1.00  1.77250  49.62   第1レンズ
 02     6.948  0.99 
 03    13.261  1.00  1.74330  49.33   第2レンズ
 04*    4.130  1.63 
 05     7.992  1.76  1.84666  23.78   第3レンズ
 06    21.770  可変(A) 
 07     絞り  1.00 
 08*    5.666  3.23  1.72342  37.99   第4レンズ
 09    -10.575  0.80  1.80518  25.46   第5レンズ
 10     5.648  0.31 
 11    11.807  1.70  1.51680  64.20   第6レンズ
 12    -11.807  0.10 
 13     ∞   1.34  1.51680  64.20   第7レンズ
 14*   -15.216  可変(B) 
 15*    11.050  1.64  1.48749  70.44   第8レンズ
 16    47.539  可変(C) 
 17     ∞   3.25  1.51680  64.20   各種フィルタ
 18     ∞ 
 第1〜第3レンズが第1群を構成し、第4〜第7レンズが第2群を構成し、第8レンズが第3群を構成する。第2群における第4レンズと第5レンズは接合レンズである。
f = 4.33 to 10.28, F = 2.75 to 4.08, ω = 40.30 to 19.03
Surface number R D Nd νd Remarks 01 18.512 1.00 1.77250 49.62 First lens 02 6.948 0.99
03 13.261 1.00 1.74330 49.33 Second lens 04 * 4.130 1.63
05 7.992 1.76 1.84666 23.78 Third lens 06 21.770 Variable (A)
07 Aperture 1.00
08 * 5.666 3.23 1.72342 37.99 4th lens 09 -10.575 0.80 1.80518 25.46 5th lens 10 5.648 0.31
11 11.807 1.70 1.51680 64.20 6th lens 12 -11.807 0.10
13 ∞ 1.34 1.51680 64.20 7th lens 14 * -15.216 Variable (B)
15 * 11.050 1.64 1.48749 70.44 8th lens 16 47.539 Variable (C)
17 ∞ 3.25 1.51680 64.20 Various filters 18 ∞
The first to third lenses form a first group, the fourth to seventh lenses form a second group, and the eighth lens forms a third group. The fourth lens and the fifth lens in the second group are cemented lenses.

 非球面
 第4面
 K= 0.0,A4=-1.36732×10-3,A6=-6.93407×10-5,A8=-7.84082×10-7
 A10= 2.83825×10-7,A12=-5.78120×10-8,A14=-7.22128×10-10
 A16= 4.13152×10-10,A18=-1.85992×10-11
 第8面
 K= 0.0,A4=-4.08236×10-4,A6=-7.50989×10-6,A8= 7.45071×10-7
 A10=-9.85596×10-8
 第14面
 K= 0.0,A4= 6.16408×10-5,A6= 4.52472×10-6,A8= 2.22316×10-7
 A10=-1.94698×10-8
 第15面
 K= 0.0,A4=-2.44412×10-4,A6= 1.88531×10-5,A8=-1.48017×10-6
 A10= 4.92294×10-8
 可変量
     短焦点端   中間焦点距離   長焦点端
     f=4.33     f=6.64     f=10.28
 A   10.380      5.120      1.400
 B    1.450      5.600      10.980
 C    3.442      2.939      2.873
 条件式数値
 (L2/Y') = 2.14
 (fL1/fL2) = 1.77                    。
Aspherical fourth surface K = 0.0, A 4 = -1.36732 × 10 -3 , A 6 = -6.93407 × 10 -5 , A 8 = -7.84082 × 10 -7 ,
A 10 = 2.83825 × 10 -7 , A 12 = -5.78 120 × 10 -8 , A 14 = -7.22 128 × 10 -10 ,
A 16 = 4.13152 × 10 -10 , A 18 = -1.85992 × 10 -11
Eighth surface K = 0.0, A 4 = -4.08236 × 10 -4 , A 6 = -7.50989 × 10 -6 , A 8 = 7.45071 × 10 -7 ,
A 10 = -9.85596 × 10 -8
Surface 14 K = 0.0, A 4 = 6.16408 × 10 -5 , A 6 = 4.52472 × 10 -6 , A 8 = 2.22316 × 10 -7 ,
A 10 = -1.94698 × 10 -8
Fifteenth surface K = 0.0, A 4 = -2.44412 × 10 -4, A 6 = 1.88531 × 10 -5, A 8 = -1.48017 × 10 -6,
A 10 = 4.92294 × 10 -8
Variable amount Short focal length Intermediate focal length Long focal length f = 4.33 f = 6.64 f = 10.28
A 10.380 5.120 1.400
B 1.450 5.600 10.980
C 3.442 2.939 2.873
Numerical values in conditional expressions (L 2 / Y ') = 2.14
(f L1 / f L2 ) = 1.77.

 f = 4.33〜10.18,F = 2.73〜4.00,ω = 40.30〜19.19
面番号    R    D    Nd    νd    備考
 01    29.593  1.25  1.77250  49.62   第1レンズ
 02     7.058  1.20 
 03    17.247  1.10  1.74330  49.33   第2レンズ
 04*    4.563  1.30  
 05     8.485  2.16  1.72825  28.32   第3レンズ
 06     ∞  可変(A) 
 07     絞り   1.00 
 08*    5.283  2.61  1.72342  37.99   第4レンズ
 09    -20.081  0.29 
 10    -12.075  0.81  1.80518  25.46   第5レンズ
 11     5.253  0.31  
 12     8.812  1.35  1.58913  61.25   第6レンズ
 13    20.251  0.10 
 14    12.502  1.73  1.48749  70.44   第7レンズ
 15*    -8.992  可変(B) 
 16*    13.337  1.65  1.48749  70.44   第8レンズ
 17    463.779  可変(C) 
 18     ∞   3.25  1.51680  64.20   各種フィルタ
 19     ∞ 
 第1〜第3レンズが第1群を構成し、第4〜第7レンズが第2群を構成し、第8レンズが第3群を構成する。
f = 4.33 to 10.18, F = 2.73 to 4.00, ω = 40.30 to 19.19
Surface number R D Nd νd Remarks 01 29.593 1.25 1.77250 49.62 First lens 02 7.058 1.20
03 17.247 1.10 1.74330 49.33 Second lens 04 * 4.563 1.30
05 8.485 2.16 1.72825 28.32 Third lens 06 可 変 Variable (A)
07 Aperture 1.00
08 * 5.283 2.61 1.72342 37.99 4th lens 09 -20.081 0.29
10 -12.075 0.81 1.80518 25.46 Fifth lens 11 5.253 0.31
12 8.812 1.35 1.58913 61.25 6th lens 13 20.251 0.10
14 12.502 1.73 1.48749 70.44 7th lens 15 * -8.992 Variable (B)
16 * 13.337 1.65 1.48749 70.44 8th lens 17 463.779 Variable (C)
18 ∞ 3.25 1.51680 64.20 Various filters 19 ∞
The first to third lenses form a first group, the fourth to seventh lenses form a second group, and the eighth lens forms a third group.

 非球面
 第4面
 K= 0.0,A4=-1.29720×10-3,A6=-5.09824×10-5,A8= 1.81023×10-6
 A10=-2.10769×10-7,A12=-4.76553×10-9,A14= 8.28677×10-10
 A16=-2.46190×10-11,A18=-4.19978×10-13
 第8面
 K= 0.0,A4=-1.98718×10-4,A6=-947779×10-6,A8= 2.05528×10-6
 A10=-1.77908×10-7
 第15面
 K= 0.0,A4= 5.86592×10-4,A6 = 3.85335×10-5,A8=-2.22078×10-6
 A10= 1.73297×10-7
 第16面
 K= 0.0,A4=-1.97840×10-4,A6= 1.55183×10-5,A8=-1.27195×10-6
 A10= 4.39912×10-8
 可変量
     短焦点端   中間焦点距離   長焦点端
     f=4.33     f=6.63     f=10.18
 A    11.860     5.530     1.400
 B     1.450     5.230     10.810
 C     3.570     3.241     2.731
 条件式数値
 (L2/Y') = 2.06
 (fL1/fL2) = 1.42                   。
Aspherical fourth surface K = 0.0, A 4 = -1.29720 × 10 -3 , A 6 = -5.09824 × 10 -5 , A 8 = 1.81023 × 10 -6 ,
A 10 = -2.10769 × 10 -7 , A 12 = -4.76553 × 10 -9 , A 14 = 8.28677 × 10 -10 ,
A 16 = -2.46190 × 10 -11 , A 18 = -4.19978 × 10 -13
8th surface K = 0.0, A 4 = -1.98718 × 10 -4 , A 6 = -947779 × 10 -6 , A 8 = 2.05528 × 10 -6 ,
A 10 = -1.77908 × 10 -7
Fifteenth surface K = 0.0, A 4 = 5.86592 × 10 -4 , A 6 = 3.85335 × 10 -5 , A 8 = -2.22078 × 10 -6 ,
A 10 = 1.73297 × 10 -7
16th surface K = 0.0, A 4 = -1.97840 × 10 -4 , A 6 = 1.55183 × 10 -5 , A 8 = -1.27195 × 10 -6 ,
A 10 = 4.39912 × 10 -8
Variable amount Short focal length Intermediate focal length Long focal length f = 4.33 f = 6.63 f = 10.18
A 11.860 5.530 1.400
B 1.450 5.230 10.810
C 3.570 3.241 2.731
Numerical values in conditional expressions (L 2 / Y ') = 2.06
( fL1 / fL2 ) = 1.42.

 f = 5.46〜10.29,F = 2.76〜3.64,ω = 33.92〜19.03
面番号    R    D    Nd    νd    備考
 01    128.673  1.00  1.80610  40.74   第1レンズ
 02*    4.108  1.50 
 03     8.797  1.75  1.84666  23.78   第2レンズ
 04    56.875  可変(A) 
 05     絞り  1.00 
 06*    5.276  2.39  1.72342  37.99   第3レンズ
 07    -16.390  0.23 
 08    -10.483  0.80  1.80518  25.46   第4レンズ
 09     5.803  0.21 
 10     7.974  2.29  1.51680  64.20   第5レンズ
 11*    -9.846  可変(B) 
 12*    13.220  1.55  1.48749  70.44   第6レンズ
 13    132.376  可変(C) 
 14     ∞   3.25  1.51680   4.20   各種フィルタ
 15     ∞ 
 第1、第2レンズが第1群を構成し、第3〜第5レンズが第2群を構成し、第6レンズが第3群を構成する。
f = 5.46 to 10.29, F = 2.76 to 3.64, ω = 33.92 to 19.03
Surface number R D Nd νd Remarks 01 128.673 1.00 1.80610 40.74 First lens 02 * 4.108 1.50
03 8.797 1.75 1.84666 23.78 Second lens 04 56.875 Variable (A)
05 Aperture 1.00
06 * 5.276 2.39 1.72342 37.99 Third lens 07 -16.390 0.23
08 -10.483 0.80 1.80518 25.46 4th lens 09 5.803 0.21
10 7.974 2.29 1.51680 64.20 Fifth lens 11 * -9.846 Variable (B)
12 * 13.220 1.55 1.48749 70.44 6th lens 13 132.376 Variable (C)
14 ∞ 3.25 1.51680 4.20 Various filters 15 ∞
The first and second lenses form a first group, the third to fifth lenses form a second group, and the sixth lens forms a third group.

 非球面
 第2面
 K= 0.0,A4=-1.41341×10-3,A6=-8.23203×10-5,A8= 3.51562×10-6
 A10=-4.08043×10-7,A12=-2.02424×10-8,A14= 1.46185×10-9
 A16 = 8.49258×10-11,A18=-8.85489×10-12
 第6面
 K= 0.0,A4=-1.06275×10-4,A6= 7.68066×10-6,A8= 1.00953×10-6
 A10= -4.21879×10-8
 第11面
 K= 0.0,A4= 9.01094×10-4,A6= 6.60691×10-5,A8= -4.27954×10-7
 A10= 5.21148×10-7
 第12面
 K= 0.0,A4=-3.07368×10-4,A6= 2.58407×10-5,A8=-1.98853×10-6
 A10= 6.58622×10-8
 可変量
     短焦点端   中間焦点距離   長焦点端
     f=5.46     f=7.50     f=10.29
 A    10.010     5.730     2.280
 B     1.460     4.390     7.200
 C     4.540     4.367     4.954
 条件式数値
 (L2/Y') = 1.69
 (R31+R32) / (R31-R32) = -0.105                。
Aspherical second surface K = 0.0, A 4 = -1.41341 × 10 -3 , A 6 = -8.23203 × 10 -5 , A 8 = 3.51562 × 10 -6 ,
A 10 = -4.08043 × 10 -7 , A 12 = -2.02424 × 10 -8 , A 14 = 1.46185 × 10 -9 ,
A 16 = 8.49258 × 10 -11 , A 18 = -8.85489 × 10 -12
6th surface K = 0.0, A 4 = -1.06275 × 10 -4 , A 6 = 7.68066 × 10 -6 , A 8 = 1.00953 × 10 -6 ,
A 10 = -4.21879 × 10 -8
The eleventh surface K = 0.0, A 4 = 9.01094 × 10 -4 , A 6 = 6.60691 × 10 -5 , A 8 = -4.27954 × 10 -7 ,
A 10 = 5.21148 × 10 -7
The twelfth surface K = 0.0, A 4 = -3.07368 × 10 -4 , A 6 = 2.58407 × 10 -5 , A 8 = -1.98853 × 10 -6 ,
A 10 = 6.58622 × 10 -8
Variable amount Short focal length Intermediate focal length Long focal length f = 5.46 f = 7.50 f = 10.29
A 10.010 5.730 2.280
B 1.460 4.390 7.200
C 4.540 4.367 4.954
Numerical values in conditional expressions (L 2 / Y ') = 1.69
(R 31 + R 32) / (R 31 -R 32) = -0.105.

 図1〜図8に順次、上記実施例1〜8のズームレンズの「短焦点端におけるレンズ配置」と、長焦点端への変倍に伴う各群の移動の様子を矢印で示す。これらの図において、「I」は第1群、「II」は第2群、「III」は第3群を示し、「S」は絞り、「F」は各種フィルタを示している。各実施例とも「収差補正の自由度を増加させる」ために、変倍に際して、第3群IIIを少量移動させる構成としている。 {Circle around (1)} FIG. 1 to FIG. 8 sequentially show the “lens arrangement at the short focal length end” of the zoom lenses of Examples 1 to 8 and the movement of each group with zooming to the long focal length end with arrows. In these figures, “I” indicates the first group, “II” indicates the second group, “III” indicates the third group, “S” indicates the aperture, and “F” indicates various filters. In each embodiment, in order to “increase the degree of freedom of aberration correction”, the third unit III is moved by a small amount during zooming.

 実施例1に関する、短焦点端、中間焦点距離、長焦点端における収差曲線図を図9〜図11に順次示す。実施例2に関する、短焦点端、中間焦点距離、長焦点端における収差曲線図を図12〜図14に順次示す。 FIGS. 9 to 11 show aberration curves at the short focal length end, the intermediate focal length, and the long focal length end according to the first embodiment. 12 to 14 sequentially show aberration curves at the short focal length end, the intermediate focal length, and the long focal length end according to the second embodiment.

 実施例3に関する、短焦点端、中間焦点距離、長焦点端における収差曲線図を図15〜図17に順次示す。実施例4に関する、短焦点端、中間焦点距離、長焦点端における収差曲線図を図18〜図20に順次示す。 FIGS. 15 to 17 sequentially show aberration curves at the short focal length end, the intermediate focal length, and the long focal length end according to the third embodiment. 18 to 20 sequentially show aberration curve diagrams at the short focal length end, the intermediate focal length, and the long focal length end according to the fourth embodiment.

 実施例5に関する、短焦点端、中間焦点距離、長焦点端における収差曲線図を図21〜図23に順次示す。実施例6に関する、短焦点端、中間焦点距離、長焦点端における収差曲線図を図24〜図26に順次示す。 FIGS. 21 to 23 show aberration curve diagrams at the short focal length end, the intermediate focal length, and the long focal length end according to the fifth embodiment. Aberration curves at the short focal length end, the intermediate focal length, and the long focal length end in Example 6 are shown sequentially in FIGS.

 実施例7に関する、短焦点端、中間焦点距離、長焦点端における収差曲線図を図27〜図29に順次示す。実施例8に関する、短焦点端、中間焦点距離、長焦点端における収差曲線図を図30〜図32に順次示す。 FIGS. 27 to 29 sequentially show aberration curve diagrams at the short focal length end, the intermediate focal length, and the long focal length end according to the seventh embodiment. 30 to 32 sequentially show aberration curve diagrams at the short focal length end, the intermediate focal length, and the long focal length end according to the eighth embodiment.

 各収差曲線図において、球面収差の図中の破線は正弦条件を表す。また、非点収差の図中の実線はサジタル、破線はメリディオナルを表す。「Y'」は最大像高であり、単位は「mm」である。また、球面収差・非点収差・歪曲収差の図における横軸の単位も「mm」である。各実施例とも、短焦点端・中間焦点距離・長焦点端において、収差が良好に補正され、性能良好である。 に お い て In each aberration curve diagram, the broken line in the spherical aberration diagram indicates a sine condition. The solid line in the figure of astigmatism represents sagittal, and the broken line represents meridional. “Y ′” is the maximum image height, and the unit is “mm”. The unit of the horizontal axis in the figures of spherical aberration, astigmatism, and distortion is also “mm”. In each of the embodiments, aberrations are satisfactorily corrected at the short focal length end, the intermediate focal length, and the long focal length end, and the performance is good.

 上記実施例1〜8のうちで、実施例1〜5および実施例8のズームレンズにおける第2群IIは、物体側に配されて負の焦点距離を持つ第1群Iと、この第1群Iの像側に配されて正の焦点距離を持つ第2群IIと、この第2群IIの物体側に第2群IIと一体に移動する絞りSとを有し、短焦点端から長焦点端への変倍に際し、第2群IIが像側から物体側へ単調に移動し、第1群Iが変倍に伴う像面位置の変動を補正するように移動するズームレンズにおいて、第2群IIとして構成されて実質的な変倍を行う変倍群であって、物体側から順に、物体側に曲率の大きな面を向けた正レンズ、像側に曲率の大きな面を向けた負レンズ、正レンズの3枚を配して構成され、最も物体側の面と最も像側の面が非球面である(請求項1)。 Among the above Examples 1 to 8, the second group II in the zoom lenses of Examples 1 to 5 and Example 8 includes a first group I disposed on the object side and having a negative focal length, A second group II having a positive focal length disposed on the image side of the group I, and a stop S that moves integrally with the second group II on the object side of the second group II; In a zoom lens in which the second unit II moves monotonously from the image side to the object side upon zooming to the long focal end and the first unit I moves so as to correct a change in the image plane position due to zooming, This is a zooming unit configured as a second unit II to perform substantial zooming, in which, in order from the object side, a positive lens having a surface with a large curvature directed to the object side, and a surface having a large curvature directed to the image side. The negative lens and the positive lens are arranged, and the most object-side surface and the most image-side surface are aspherical.

 そして、実施例1〜5および実施例8のズームレンズの第2群IIは、光軸方向の厚み:L、最大像高:Y’が、条件:
 (1) 1.0<(L/Y’)<2.5
を満足し(請求項2)、最も像側の正レンズの、物体側および像側の面の曲率半径をそれぞれR31およびR32とするとき、これらが条件:
 (2) ―0.4<(R31+R32)/(R31―R32)<0.0
を満足する(請求項3)。
In the second group II of the zoom lenses of Examples 1 to 5 and Example 8, the thickness in the optical axis direction: L 2 , and the maximum image height: Y ′ are obtained under the following conditions:
(1) 1.0 <(L 2 /Y′)<2.5
Satisfied (Claim 2), the positive lens on the most image side, when the radius of curvature of the object side and the image side and R 31 and R 32 respectively, these conditions:
(2) -0.4 <(R 31 + R 32) / (R 31 -R 32) <0.0
Is satisfied (claim 3).

 また、実施例1のズームレンズの第2群IIでは、最も物体側の正レンズ(第4レンズ)と、これに続く負レンズ(第5レンズ)とが接合された接合レンズであり(請求項4)、実施例2〜5、実施例8のズームレンズの第2群IIでは、3枚のレンズが互いに独立したレンズである(請求項5)。 The second lens group II of the zoom lens according to the first embodiment is a cemented lens in which a positive lens closest to the object side (fourth lens) and a negative lens (fifth lens) subsequent thereto are cemented. 4) In the second group II of the zoom lenses of Examples 2 to 5 and Example 8, three lenses are independent of each other (claim 5).

 実施例6および7のズームレンズの第2群IIは、物体側に配されて負の焦点距離を持つ第1群Iと、この第1群Iの像側に配されて正の焦点距離を持つ第2群IIと、この第2群IIの物体側に第2群と一体に移動する絞りSとを有し、短焦点端から長焦点端への変倍に際し、第2群IIが像側から物体側へ単調に移動し、第1群Iが変倍に伴う像面位置の変動を補正するように移動するズームレンズにおいて、第2群IIとして構成されて実質的な変倍を行う変倍群であって、最も物体側の面と最も像側の面が非球面で、光軸方向の厚み:L、最大像高:Y’が、条件:
 (1)  1.0<(L/Y’)<2.5
を満足し(請求項6)、物体側から順に、物体側に曲率の大きな面を向けた正レンズ(第4レンズ)、像側に曲率の大きな面を向けた負レンズ(第5レンズ)、正レンズ(第6レンズ)、正レンズ(第7レンズ)の4枚を配して構成され(請求項7)、実施例6では、最も物体側の正レンズ(第4レンズ)と、これに続く負レンズ(第5レンズ)が接合レンズとして一体化され(請求項8)ている。
The second group II of the zoom lenses according to Examples 6 and 7 includes a first group I disposed on the object side and having a negative focal length, and a first lens group disposed on the image side of the first group I and having a positive focal length. A second lens unit having a second lens group II, and an aperture stop S that moves integrally with the second lens group on the object side of the second lens group II. A zoom lens that moves monotonously from the lens side to the object side and moves so that the first lens unit I corrects a change in the image plane position accompanying zooming is configured as a second lens unit II and performs substantial zooming. In the variable power group, the surface closest to the object side and the surface closest to the image side are aspherical surfaces, the thickness in the optical axis direction: L 2 , and the maximum image height: Y ′,
(1) 1.0 <(L 2 /Y′)<2.5
(Claim 6), in order from the object side, a positive lens (fourth lens) having a surface with a large curvature on the object side, a negative lens (fifth lens) having a surface with a large curvature on the image side, Four lenses, a positive lens (sixth lens) and a positive lens (seventh lens), are arranged (claim 7). In the sixth embodiment, the most object-side positive lens (fourth lens) and The following negative lens (fifth lens) is integrated as a cemented lens (claim 8).

 従って、実施例1〜8の各ズームレンズは、物体側に配されて負の焦点距離を持つ第1群I、この第1群Iの像側に配されて正の焦点距離を持つ第2群IIと、この第2群IIの物体側に第2群と一体に移動する絞りSとを有し、短焦点端から長焦点端への変倍に際し、第2群IIが像側から物体側へ単調に移動して実質的な変倍を行い、第1群Iが変倍に伴う像面位置の変動を補正するように移動するズームレンズにおいて、第2群IIとして、請求項1〜8の何れかに記載の変倍群を用いたものである(請求項9)。 Accordingly, each of the zoom lenses according to the first to eighth embodiments is disposed on the object side and has a first lens unit I having a negative focal length, and the second lens unit disposed on the image side of the first lens unit I and having a positive focal length. A second lens group; and a stop S which moves integrally with the second lens group on the object side of the second lens group. When zooming from the short focal length end to the long focal length end, the second lens group is moved from the image side to the object side. The zoom lens according to claim 1, wherein the first lens unit moves monotonously to the side to perform substantial zooming, and the first lens unit moves to correct a change in image plane position caused by zooming. A zooming group according to any one of claims 8 to 9 (claim 9).

 実施例1〜8のズームレンズはまた、第1群Iが、物体側から順に、像側に曲率の大きな面を向けた少なくとも1枚の負レンズ、物体側に曲率の大きな面を向けた少なくとも1枚の正レンズを配してなり、上記少なくとも1枚の負レンズの、最も像側の面が非球面である(請求項10)。 In the zoom lenses of the first to eighth embodiments, the first unit I includes at least one negative lens having a surface having a large curvature directed to the image side and at least a negative lens having a surface having a large curvature directed to the object side. One positive lens is provided, and the surface of the at least one negative lens closest to the image is an aspherical surface.

 実施例1〜7のズームレンズは、第1群Iが、物体側から順に、物体側に凸面を向けた負メニスカスレンズ(第1レンズ)、像側に曲率の大きな面を向けた負レンズ(第2レンズ)、物体側に曲率の大きな面を向けた正レンズ(第3レンズ)を配してなる3枚構成であって、像側に曲率の大きな面を向けた負レンズの像側の面(第4面)が非球面であり(請求項11)、第1群Iの最も物体側に配された負メニスカスレンズ(第1レンズ)の焦点距離:fL1、第1群の物体側から2番目に配された負レンズ(第2レンズ)の焦点距離:fL2が、条件:
 (3) 0.7<(fL1/fL2)<2.0
を満足する(請求項12)。
In the zoom lenses of Examples 1 to 7, the first unit I includes, in order from the object side, a negative meniscus lens (first lens) having a convex surface facing the object side, and a negative lens having a surface with a large curvature facing the image side ( A second lens) and a positive lens (third lens) having a surface with a large curvature directed to the object side, and an image side of a negative lens having a surface with a large curvature directed to the image side. The surface (fourth surface) is an aspheric surface (claim 11), the focal length of the negative meniscus lens (first lens) disposed closest to the object side of the first group I: f L1 , the object side of the first group The focal length: f L2 of the negative lens (second lens) disposed second from the following condition:
(3) 0.7 <(f L1 / f L2 ) <2.0
Is satisfied (claim 12).

 実施例8のズームレンズの第1群Iは、物体側から順に、物体側に凸面を向けた負メニスカスレンズ(第1レンズ)、物体側に曲率の大きな面を向けた正レンズ(第2レンズ)を配してなる2枚構成であり、負メニスカスレンズの像側の面(第2面)が非球面である(請求項13)。 The first unit I of the zoom lens according to Example 8 includes, in order from the object side, a negative meniscus lens (first lens) having a convex surface facing the object side, and a positive lens (second lens) having a surface having a large curvature facing the object side. ) Are arranged, and the image-side surface (second surface) of the negative meniscus lens is an aspheric surface.

 実施例1〜8の各ズームレンズとも、物体側に曲率の大きな面を向けた正レンズにより構成され、少なくとも1面の非球面(物体側面)を有する「正の屈折力を持つ第3群III」を有し、実施例1〜8の各ズームレンズとも、全系の構成レンズ枚数が8枚以下(実施例1〜5において7枚構成、実施例6、7において8枚構成、実施例8において6枚構成)である(請求項14)。 Each of the zoom lenses of Examples 1 to 8 is composed of a positive lens having a surface with a large curvature directed to the object side, and has at least one aspherical surface (object side surface). In each of the zoom lenses of Examples 1 to 8, the number of constituent lenses of the entire system is eight or less (seven lenses in Examples 1 to 5, eight lenses in Examples 6 and 7, and Example 8). (6 sheets).

 図33は、この発明の「カメラ装置」の実施の1形態を説明するための図である。図33(a)は正面側と上部面とを示す図、図33(c)は背面側を示す図である。カメラ装置30は、撮影レンズ31として、上に説明した請求項9〜14の任意の1に記載のズームレンズ(実施例1〜8の適宜のもの)を「撮影用ズームレンズ」として有する(請求項15)。 FIG. 33 is a view for explaining an embodiment of the “camera device” of the present invention. FIG. 33A is a diagram showing a front side and an upper surface, and FIG. 33C is a diagram showing a rear side. The camera device 30 has the zoom lens according to any one of claims 9 to 14 (appropriate ones in Examples 1 to 8) as a “photographing zoom lens” as the photographing lens 31 (claim). Item 15).

 図33(a)において、符号32はフラッシュ、符号33はファインダを示す。ズームレバー34とシャッタボタン35は、本体の上面側に配置されている。図33(b)は撮影レンズ31の使用状態を示す図である。撮影レンズ31は、使用されないときは、図33(a)に示すように、カメラ装置本体に「沈胴式」に収納される(請求項16)。ズームレンズの上記各実施例とも、レンズ枚数が6〜8枚と少なく、第2群の厚さが小さいので、沈胴式に収納すると、薄いカメラ本体内に収納できる。 In FIG. 33 (a), reference numeral 32 denotes a flash, and reference numeral 33 denotes a finder. The zoom lever 34 and the shutter button 35 are arranged on the upper surface side of the main body. FIG. 33B is a diagram illustrating a use state of the photographing lens 31. When the taking lens 31 is not used, as shown in FIG. 33 (a), the taking lens 31 is stored in a retractable manner in the camera apparatus main body (claim 16). In each of the above embodiments of the zoom lens, the number of lenses is as small as 6 to 8 and the thickness of the second group is small. Therefore, if the zoom lens is retracted, it can be stored in a thin camera body.

 図33(c)に示すように、電源スイッチ35、操作ボタン37、液晶モニタ38はカメラ装置本体の背面側に配置され、通信カード用スロット39Aと、メモリカードスロット39Bは、本体側面に配置されている。 As shown in FIG. 33C, the power switch 35, the operation button 37, and the liquid crystal monitor 38 are arranged on the back side of the camera device main body, and the communication card slot 39A and the memory card slot 39B are arranged on the side of the main body. ing.

 図34は、カメラ装置の「システム構造」を示す図である。カメラ装置30は形態情報端末装置である(請求項19)。図34に示すように、カメラ装置は、撮影レンズ31と受光素子(エリアセンサ)45を有し、撮影レンズ31によって形成される撮影対象物の像を受光素子45によって読取るように構成され、受光素子45からの出力は中央演算装置40の制御を受ける信号処理装置42によって処理されてデジタル情報に変換される。即ち、カメラ装置30は「撮影画像をデジタル情報とする機能」を有している(請求項17)。 FIG. 34 is a diagram showing the “system structure” of the camera device. The camera device 30 is a form information terminal device. As shown in FIG. 34, the camera device includes a photographing lens 31 and a light receiving element (area sensor) 45, and is configured to read an image of a photographing target formed by the photographing lens 31 by the light receiving element 45. The output from the element 45 is processed by the signal processing device 42 under the control of the central processing unit 40 and converted into digital information. That is, the camera device 30 has a "function of converting a captured image into digital information" (claim 17).

 信号処理装置42によってデジタル化された画像情報は、中央演算装置40の制御を受ける画像処理装置41において所定の画像処理を受けた後、半導体メモリ44(前記メモリカードスロット39Bにセットされる)に記録される。液晶モニタ38には、撮影中の画像を表示することもできるし、半導体メモリ44に記録されている画像を表示することもできる。また、半導体メモリ44に記録した画像は、通信カード43等(前記通信カードスロット39Aにセットされる)を使用して外部へ送信することも可能である。 The image information digitized by the signal processing device 42 is subjected to predetermined image processing in an image processing device 41 controlled by the central processing unit 40 and then stored in a semiconductor memory 44 (set in the memory card slot 39B). Be recorded. On the liquid crystal monitor 38, an image being photographed can be displayed, and an image recorded in the semiconductor memory 44 can be displayed. Further, the image recorded in the semiconductor memory 44 can be transmitted to the outside by using the communication card 43 or the like (set in the communication card slot 39A).

 図33(a)に示すように、撮影レンズ31はカメラ装置30の携帯時には「沈胴状態」にあり、ユーザが電源スイッチ36を操作して電源を入れると、図33(b)に示すように鏡胴が繰り出される。このとき、鏡胴内部でズームレンズの各群は、例えば「短焦点端の配置」となっており、ズームレバー34を操作することで各群の配置が変化して長焦点端への変倍を行うことができる。このとき、ファインダ33も撮影レンズの画角変化に連動して変倍する。 As shown in FIG. 33A, the taking lens 31 is in the “collapsed state” when the camera device 30 is carried, and when the user operates the power switch 36 to turn on the power, as shown in FIG. The lens barrel is extended. At this time, each group of the zoom lens in the lens barrel has, for example, the “short focus end arrangement”, and by operating the zoom lever 34, the arrangement of each group changes to change the magnification to the long focal end. It can be performed. At this time, the viewfinder 33 also changes magnification in conjunction with a change in the angle of view of the photographing lens.

 シャッタボタン35の「半押し」によりフォーカシングがなされる。フォーカシングは、第1群または第3群の移動、もしくは、受光素子の移動によって行うことができる。シャッタボタン35を、半押し状態からさらに押し込むと撮影がなされ、その後は上記の画像情報処理が実行される。 「Focusing is performed by“ half pressing ”of the shutter button 35. Focusing can be performed by moving the first group or the third group, or by moving the light receiving element. When the shutter button 35 is further depressed from the half-pressed state, shooting is performed, and thereafter, the above-described image information processing is executed.

 半導体メモリ44に記録した画像を、液晶モニタ38に表示したり、通信カード43等を使用して外部へ送信する場合は、操作ボタン37の操作により行なう。撮影レンズ31として、実施例1〜8の任意のものを使用すると、これらは性能良好であるので、受光素子45として、200万画素〜300万画素クラスのものを使用した高画質で小型のカメラ装置を実現できる(請求項18)。  (4) When displaying the image recorded in the semiconductor memory 44 on the liquid crystal monitor 38 or transmitting the image to the outside using the communication card 43 or the like, the operation of the operation button 37 is performed. If any one of Examples 1 to 8 is used as the taking lens 31, since these have good performance, a high-quality and small-sized camera using a light receiving element 45 having a class of 2 to 3 million pixels is used. The device can be realized (claim 18).

実施例1のズームレンズの短焦点端におけるレンズ配置と、変倍に伴う各群の移動を示す図である。FIG. 4 is a diagram illustrating a lens arrangement at a short focal length end of the zoom lens according to the first embodiment and movement of each unit due to zooming. 実施例2のズームレンズの短焦点端におけるレンズ配置と、変倍に伴う各群の移動を示す図である。FIG. 7 is a diagram illustrating a lens arrangement at a short focal length end of a zoom lens according to a second embodiment and movement of each unit due to zooming. 実施例3のズームレンズの短焦点端におけるレンズ配置と、変倍に伴う各群の移動を示す図である。FIG. 14 is a diagram illustrating a lens arrangement at a short focal length end of a zoom lens according to a third embodiment and movement of each unit due to zooming. 実施例4のズームレンズの短焦点端におけるレンズ配置と、変倍に伴う各群の移動を示す図である。FIG. 14 is a diagram illustrating a lens arrangement at a short focal length end of a zoom lens according to a fourth embodiment and movement of each unit due to zooming. 実施例5のズームレンズの短焦点端におけるレンズ配置と、変倍に伴う各群の移動を示す図である。FIG. 14 is a diagram illustrating a lens arrangement at a short focal length end of a zoom lens according to a fifth embodiment and movement of each unit due to zooming. 実施例6のズームレンズの短焦点端におけるレンズ配置と、変倍に伴う各群の移動を示す図である。FIG. 14 is a diagram illustrating a lens arrangement at a short focal length end of a zoom lens according to a sixth embodiment and movement of each unit due to zooming. 実施例7のズームレンズの短焦点端におけるレンズ配置と、変倍に伴う各群の移動を示す図である。FIG. 14 is a diagram illustrating a lens arrangement at a short focal length end of a zoom lens according to a seventh embodiment and movement of each unit due to zooming. 実施例8のズームレンズの短焦点端におけるレンズ配置と、変倍に伴う各群の移動を示す図である。FIG. 14 is a diagram illustrating a lens arrangement at a short focal length end of a zoom lens according to an eighth embodiment and movement of each unit due to zooming. 実施例1のズームレンズの短焦点端における収差曲線図である。FIG. 3 is an aberration curve diagram at the short focal length end of the zoom lens according to the first embodiment. 実施例1のズームレンズの中間焦点距離における収差曲線図である。FIG. 5 is an aberration curve diagram at an intermediate focal length of the zoom lens according to the first embodiment. 実施例1のズームレンズの長焦点端における収差曲線図である。FIG. 3 is an aberration curve diagram at the long focal end of the zoom lens according to the first embodiment. 実施例2のズームレンズの短焦点端における収差曲線図である。FIG. 10 is an aberration curve diagram at the short focal length end of the zoom lens according to the second embodiment. 実施例2のズームレンズの中間焦点距離における収差曲線図である。FIG. 9 is an aberration curve diagram at an intermediate focal length of the zoom lens according to the second embodiment. 実施例2のズームレンズの長焦点端における収差曲線図である。FIG. 10 is an aberration curve diagram at a long focal end of a zoom lens according to a second embodiment. 実施例3のズームレンズの短焦点端における収差曲線図である。FIG. 10 is an aberration curve diagram at the short focal length end of the zoom lens according to the third embodiment. 実施例3のズームレンズの中間焦点距離における収差曲線図である。FIG. 13 is an aberration curve diagram at an intermediate focal length of the zoom lens according to the third embodiment. 実施例3のズームレンズの長焦点端における収差曲線図である。FIG. 10 is an aberration curve diagram at a long focal end of a zoom lens according to a third embodiment. 実施例4のズームレンズの短焦点端における収差曲線図である。FIG. 14 is an aberration curve diagram at the short focal length end of the zoom lens according to the fourth embodiment. 実施例4のズームレンズの中間焦点距離における収差曲線図である。FIG. 14 is an aberration curve diagram at an intermediate focal length of the zoom lens according to the fourth embodiment. 実施例4のズームレンズの長焦点端における収差曲線図である。FIG. 14 is an aberration curve diagram at a long focal end of a zoom lens according to a fourth embodiment. 実施例5のズームレンズの短焦点端における収差曲線図である。FIG. 14 is an aberration curve diagram at the short focal length end of the zoom lens according to Example 5; 実施例5のズームレンズの中間焦点距離における収差曲線図である。FIG. 14 is an aberration curve diagram at an intermediate focal length of the zoom lens according to the fifth embodiment. 実施例5のズームレンズの長焦点端における収差曲線図である。FIG. 14 is an aberration curve diagram at a long focal end of a zoom lens according to a fifth embodiment. 実施例6のズームレンズの短焦点端における収差曲線図である。FIG. 14 is an aberration curve diagram at the short focal length end of the zoom lens according to the sixth embodiment. 実施例6のズームレンズの中間焦点距離における収差曲線図である。FIG. 14 is an aberration curve diagram at an intermediate focal length of the zoom lens according to the sixth embodiment. 実施例6のズームレンズの長焦点端における収差曲線図である。FIG. 15 is an aberration curve diagram at a long focal end of a zoom lens according to a sixth embodiment. 実施例7のズームレンズの短焦点端における収差曲線図である。FIG. 15 is an aberration curve diagram at the short focal length end of the zoom lens according to Example 7; 実施例7のズームレンズの中間焦点距離における収差曲線図である。FIG. 14 is an aberration curve diagram at an intermediate focal length of the zoom lens according to Example 7; 実施例7のズームレンズの長焦点端における収差曲線図である。FIG. 14 is an aberration curve diagram at the long focal end of the zoom lens according to a seventh embodiment. 実施例8のズームレンズの短焦点端における収差曲線図である。FIG. 18 is an aberration curve diagram at the short focal length end of the zoom lens according to Example 8; 実施例8のズームレンズの中間焦点距離における収差曲線図である。FIG. 14 is an aberration curve diagram at an intermediate focal length of the zoom lens according to Example 8; 実施例8のズームレンズの長焦点端における収差曲線図である。FIG. 18 is an aberration curve diagram at the long focal end of the zoom lens according to an eighth embodiment. カメラ装置の実施の1形態を説明するための図である。It is a figure for explaining one Embodiment of a camera device. 図33の実施の形態のシステム構成を説明するための図である。34 is a diagram for describing a system configuration according to the embodiment of FIG. 33. FIG.

符号の説明Explanation of reference numerals

 I    第1群
 II   第2群
 III  第3群
 S    絞り
I First group II Second group III Third group S Aperture

Claims (19)

 物体側に配されて負の焦点距離を持つ第1群と、この第1群の像側に配されて正の焦点距離を持つ第2群と、この第2群の物体側に上記第2群と一体に移動する絞りとを有し、短焦点端から長焦点端への変倍に際し、第2群が像側から物体側へ単調に移動し、第1群が変倍に伴う像面位置の変動を補正するように移動するズームレンズにおいて、
 第2群として構成されて実質的な変倍を行う変倍群であって、
 物体側から順に、物体側に曲率の大きな面を向けた正レンズ、像側に曲率の大きな面を向けた負レンズ、正レンズの3枚を配して構成され、最も物体側の面と最も像側の面が非球面であることを特徴とする、ズームレンズにおける変倍群。
A first group arranged on the object side and having a negative focal length, a second group arranged on the image side of the first group and having a positive focal length, and the second group arranged on the object side of the second group. An aperture that moves integrally with the lens group, and when zooming from the short focal length end to the long focal length edge, the second lens unit moves monotonously from the image side to the object side, and the first lens unit moves along with the image plane. In a zoom lens that moves so as to correct position fluctuations,
A zooming group configured as a second group and performing substantial zooming,
In order from the object side, a positive lens with a surface with a large curvature facing the object side, a negative lens with a surface with a large curvature facing the image side, and a positive lens are arranged. A variable power unit in a zoom lens, wherein an image-side surface is an aspheric surface.
 請求項1記載の変倍群において、
 光軸方向の厚み:L、最大像高:Y’が、条件:
 (1) 1.0<(L/Y’)<2.5
を満足することを特徴とする、ズームレンズにおける変倍群。
In the variable power group according to claim 1,
Thickness in the optical axis direction: L 2 , maximum image height: Y ′, conditions:
(1) 1.0 <(L 2 /Y′)<2.5
A zooming group in a zoom lens, characterized by satisfying the following.
 請求項1または2記載の変倍群において、
 最も像側の正レンズの、物体側および像側の面の曲率半径をそれぞれR31およびR32とするとき、これらが条件:
 (2) ―0.4<(R31+R32)/(R31―R32)<0.0
を満足することを特徴とする、ズームレンズの変倍群。
In the variable power group according to claim 1 or 2,
Most image side of the positive lens, when the radius of curvature of the object side and the image side and R 31 and R 32 respectively, these conditions:
(2) -0.4 <(R 31 + R 32) / (R 31 -R 32) <0.0
A zooming lens group for a zoom lens, characterized by satisfying the following conditions.
 請求項1または2または3記載の変倍群において、
 最も物体側の正レンズと、これに続く負レンズとが接合された接合レンズであることを特徴とする、ズームレンズの変倍群。
In the variable power group according to claim 1, 2 or 3,
A zooming lens unit for a zoom lens, comprising a cemented lens in which a positive lens closest to the object side and a negative lens following this are cemented.
 請求項1または2または3記載の変倍群において、
 3枚のレンズが互いに独立したレンズであることを特徴とする、ズームレンズにおける変倍群。
In the variable power group according to claim 1, 2 or 3,
A zooming group in a zoom lens, wherein the three lenses are independent of each other.
 物体側に配されて負の焦点距離を持つ第1群と、この第1群の像側に配されて正の焦点距離を持つ第2群と、この第2群の物体側に第2群と一体に移動する絞りとを有し、短焦点端から長焦点端への変倍に際し、第2群が像側から物体側へ単調に移動し、第1群が変倍に伴う像面位置の変動を補正するように移動するズームレンズにおいて、
 第2群として構成されて実質的な変倍を行う変倍群であって、
 最も物体側の面と最も像側の面が非球面で、光軸方向の厚み:L、最大像高:Y’が、条件:
 (1)  1.0<(L/Y’)<2.5
を満足することを特徴とする、ズームレンズにおける変倍群。
A first group arranged on the object side and having a negative focal length, a second group arranged on the image side of the first group and having a positive focal length, and a second group arranged on the object side of the second group The second unit moves monotonously from the image side to the object side when zooming from the short focal length end to the long focal length edge, and the first lens unit moves with zooming. In a zoom lens that moves so as to correct the fluctuation of
A zooming group configured as a second group and performing substantial zooming,
The surface closest to the object side and the surface closest to the image side are aspherical surfaces, and the thickness in the optical axis direction: L 2 , and the maximum image height: Y ′.
(1) 1.0 <(L 2 /Y′)<2.5
A zooming group in a zoom lens, characterized by satisfying the following.
 請求項6記載の変倍群において、
 物体側から順に、物体側に曲率の大きな面を向けた正レンズ、像側に曲率の大きな面を向けた負レンズ、正レンズ、正レンズの4枚を配して構成されることを特徴とする、ズームレンズにおける変倍群。
In the variable power group according to claim 6,
In order from the object side, a positive lens having a surface with a large curvature facing the object side, a negative lens having a surface with a large curvature facing the image side, a positive lens, and a positive lens are arranged. Zooming group in a zoom lens.
 請求項6または7記載の変倍群において、
 最も物体側の正レンズと、これに続く負レンズが接合レンズとして一体化されたことを特徴とする、ズームレンズにおける変倍群。
In the zooming group according to claim 6 or 7,
A zooming group in a zoom lens, wherein a positive lens closest to the object side and a negative lens following the lens are integrated as a cemented lens.
 物体側に配されて負の焦点距離を持つ第1群と、この第1群の像側に配されて正の焦点距離を持つ第2群と、この第2群の物体側に第2群と一体に移動する絞りとを有し、短焦点端から長焦点端への変倍に際し、第2群が像側から物体側へ単調に移動して実質的な変倍を行い、第1群が変倍に伴う像面位置の変動を補正するように移動するズームレンズにおいて、
 第2群として、請求項1〜8の任意の1に記載の変倍群を用いたことを特徴とするズームレンズ。
A first group arranged on the object side and having a negative focal length, a second group arranged on the image side of the first group and having a positive focal length, and a second group arranged on the object side of the second group A second unit that monotonously moves from the image side to the object side to perform substantial zooming during zooming from the short focal length end to the long focal length edge; In a zoom lens that moves so as to correct the change in the image plane position due to zooming,
A zoom lens, wherein the zooming group according to any one of claims 1 to 8 is used as the second group.
 請求項9記載のズームレンズにおいて、
 第1群が、物体側から順に、像側に曲率の大きな面を向けた少なくとも1枚の負レンズ、物体側に曲率の大きな面を向けた少なくとも1枚の正レンズを配してなり、上記少なくとも1枚の負レンズの、最も像側の面が非球面であることを特徴とするズームレンズ。
The zoom lens according to claim 9,
The first group includes, in order from the object side, at least one negative lens having a surface having a large curvature directed to the image side, and at least one positive lens having a surface having a large curvature directed to the object side. A zoom lens, wherein at least one negative lens has an aspherical surface closest to the image.
 請求項10記載のズームレンズにおいて、
 第1群が、物体側から順に、物体側に凸面を向けた負メニスカスレンズ、像側に曲率の大きな面を向けた負レンズ、物体側に曲率の大きな面を向けた正レンズを配してなる3枚構成であって、
 上記像側に曲率の大きな面を向けた負レンズの像側の面が非球面であることを特徴とするズームレンズ。
The zoom lens according to claim 10,
The first group includes, in order from the object side, a negative meniscus lens having a convex surface facing the object side, a negative lens having a large curvature surface facing the image side, and a positive lens having a large curvature surface facing the object side. Three-piece configuration,
A zoom lens, wherein the image-side surface of the negative lens having a surface with a large curvature directed to the image side is an aspheric surface.
 請求項11記載のズームレンズにおいて、
 第1群の最も物体側に配された負メニスカスレンズの焦点距離:fL1、第1群の物体側から2番目に配された負レンズの焦点距離:fL2が、条件:
 (3) 0.7<(fL1/fL2)<2.0
を満足することを特徴とするズームレンズ。
The zoom lens according to claim 11,
The focal length of the negative meniscus lens disposed closest to the object side in the first group: f L1 , and the focal length of the negative lens disposed second from the object side in the first group: f L2 is given by the following conditions:
(3) 0.7 <(f L1 / f L2 ) <2.0
A zoom lens characterized by satisfying the following.
 請求項10記載のズームレンズにおいて、
 第1群が、物体側から順に、物体側に凸面を向けた負メニスカスレンズ、物体側に曲率の大きな面を向けた正レンズを配してなる2枚構成であり、
 上記負メニスカスレンズの像側の面が非球面であることを特徴とするズームレンズ。
The zoom lens according to claim 10,
The first group has a two-element configuration in which, in order from the object side, a negative meniscus lens having a convex surface facing the object side, and a positive lens having a surface having a large curvature facing the object side.
A zoom lens, wherein the image-side surface of the negative meniscus lens is an aspheric surface.
 請求項9〜13記載のズームレンズにおいて、
 全系の構成レンズ枚数が8枚以下であることを特徴とするズームレンズ。
The zoom lens according to claim 9, wherein
A zoom lens, wherein the total number of constituent lenses is eight or less.
 請求項9〜14の任意の1に記載のズームレンズを、撮影用ズームレンズとして有するカメラ装置。 A camera device comprising the zoom lens according to any one of claims 9 to 14 as a photographing zoom lens.  請求項15記載のカメラ装置において、
 撮影用ズームレンズが沈胴式に収納されることを特徴とするカメラ装置。
The camera device according to claim 15,
A camera device wherein a photographing zoom lens is stored in a retractable manner.
 請求項15または16記載のカメラ装置において、
 撮影画像をデジタル情報とする機能を有することを特徴とするカメラ装置。
The camera device according to claim 15 or 16,
A camera device having a function of converting a captured image into digital information.
 請求項17記載のカメラ装置において、
 ズームレンズによる像を受光する受光素子が200万画素以上のものであることを特徴とするカメラ装置。
The camera device according to claim 17,
A camera device, wherein a light receiving element for receiving an image by a zoom lens has two million pixels or more.
 携帯情報端末装置であることを特徴とする、請求項17または18記載のカメラ装置。
19. The camera device according to claim 17, wherein the camera device is a portable information terminal device.
JP2003290462A 2003-08-08 2003-08-08 Variable magnification group in zoom lens, zoom lens, and camera system Withdrawn JP2004013169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003290462A JP2004013169A (en) 2003-08-08 2003-08-08 Variable magnification group in zoom lens, zoom lens, and camera system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003290462A JP2004013169A (en) 2003-08-08 2003-08-08 Variable magnification group in zoom lens, zoom lens, and camera system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001222811A Division JP4268773B2 (en) 2001-07-24 2001-07-24 Zoom group, zoom lens, and imaging device for zoom lens

Publications (2)

Publication Number Publication Date
JP2004013169A true JP2004013169A (en) 2004-01-15
JP2004013169A5 JP2004013169A5 (en) 2006-03-30

Family

ID=30438839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003290462A Withdrawn JP2004013169A (en) 2003-08-08 2003-08-08 Variable magnification group in zoom lens, zoom lens, and camera system

Country Status (1)

Country Link
JP (1) JP2004013169A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006039523A (en) * 2004-06-22 2006-02-09 Matsushita Electric Ind Co Ltd Zoom lens system, imaging apparatus, and camera
JP2006184763A (en) * 2004-12-28 2006-07-13 Fujinon Corp Three-group zoom lens
JP2006220715A (en) * 2005-02-08 2006-08-24 Olympus Corp Zoom lens and imaging apparatus using the same
US7151638B2 (en) 2004-02-27 2006-12-19 Ricoh Company, Ltd. Zooming lens system and device using the zooming lens system
JP2007147851A (en) * 2005-11-25 2007-06-14 Olympus Imaging Corp Three-group zoom lens and imaging apparatus provided with the same
JP2007193140A (en) * 2006-01-19 2007-08-02 Fujinon Corp Image-formation variable power optical system and imaging apparatus using the same
US7880974B2 (en) 2009-04-21 2011-02-01 Sony Corporation Zoom lens and imaging apparatus
US7952811B2 (en) 2008-09-05 2011-05-31 Sony Corporation Zoom lens and image pickup device
US7957070B2 (en) 2008-11-21 2011-06-07 Sony Corporation Zoom lens and imaging apparatus
US8031256B2 (en) 2008-11-19 2011-10-04 Sony Corporation Zoom lens and image pickup device
KR101089938B1 (en) 2009-12-21 2011-12-05 삼성전기주식회사 optical system for super wide angle
US8218247B2 (en) 2008-11-19 2012-07-10 Sony Corporation Zoom lens and image pickup device
US9122041B2 (en) 2011-09-02 2015-09-01 Samsung Electronics Co., Ltd. Zoom lens and photographing apparatus including the same
US20180031807A1 (en) * 2016-07-28 2018-02-01 Largan Precision Co., Ltd. Optical imaging lens assembly, image capturing apparatus and electronic device
CN111580251A (en) * 2020-05-22 2020-08-25 玉晶光电(厦门)有限公司 Optical imaging lens
CN111901503A (en) * 2019-05-05 2020-11-06 华为技术有限公司 Camera module, terminal equipment, imaging method and imaging device
US11796893B2 (en) 2019-05-05 2023-10-24 Huawei Technologies Co., Ltd. Compact camera module and terminal device

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7151638B2 (en) 2004-02-27 2006-12-19 Ricoh Company, Ltd. Zooming lens system and device using the zooming lens system
JP2006039523A (en) * 2004-06-22 2006-02-09 Matsushita Electric Ind Co Ltd Zoom lens system, imaging apparatus, and camera
JP2006184763A (en) * 2004-12-28 2006-07-13 Fujinon Corp Three-group zoom lens
JP4624776B2 (en) * 2004-12-28 2011-02-02 富士フイルム株式会社 3 group zoom lens
JP2006220715A (en) * 2005-02-08 2006-08-24 Olympus Corp Zoom lens and imaging apparatus using the same
JP2007147851A (en) * 2005-11-25 2007-06-14 Olympus Imaging Corp Three-group zoom lens and imaging apparatus provided with the same
JP2007193140A (en) * 2006-01-19 2007-08-02 Fujinon Corp Image-formation variable power optical system and imaging apparatus using the same
US7952811B2 (en) 2008-09-05 2011-05-31 Sony Corporation Zoom lens and image pickup device
US8031256B2 (en) 2008-11-19 2011-10-04 Sony Corporation Zoom lens and image pickup device
US8218247B2 (en) 2008-11-19 2012-07-10 Sony Corporation Zoom lens and image pickup device
US7957070B2 (en) 2008-11-21 2011-06-07 Sony Corporation Zoom lens and imaging apparatus
US7880974B2 (en) 2009-04-21 2011-02-01 Sony Corporation Zoom lens and imaging apparatus
KR101089938B1 (en) 2009-12-21 2011-12-05 삼성전기주식회사 optical system for super wide angle
US9122041B2 (en) 2011-09-02 2015-09-01 Samsung Electronics Co., Ltd. Zoom lens and photographing apparatus including the same
US20180031807A1 (en) * 2016-07-28 2018-02-01 Largan Precision Co., Ltd. Optical imaging lens assembly, image capturing apparatus and electronic device
CN107664810A (en) * 2016-07-28 2018-02-06 大立光电股份有限公司 Optical image capturing lens assembly, image capturing device and electronic device
CN111901503A (en) * 2019-05-05 2020-11-06 华为技术有限公司 Camera module, terminal equipment, imaging method and imaging device
CN111901503B (en) * 2019-05-05 2022-11-08 华为技术有限公司 Camera module, terminal equipment, imaging method and imaging device
US11796893B2 (en) 2019-05-05 2023-10-24 Huawei Technologies Co., Ltd. Compact camera module and terminal device
CN111580251A (en) * 2020-05-22 2020-08-25 玉晶光电(厦门)有限公司 Optical imaging lens
CN111580251B (en) * 2020-05-22 2022-02-08 玉晶光电(厦门)有限公司 Optical imaging lens

Similar Documents

Publication Publication Date Title
JP5101262B2 (en) Zoom lens, imaging device, and portable information terminal device
US7777967B2 (en) Zoom lens, camera device and personal digital assistant
JP2009008845A (en) Zoom lens and imaging apparatus
JP4548766B2 (en) Zoom lens, lens unit, camera, and portable information terminal device
JP2011252962A (en) Imaging optical system and imaging apparatus having the same
JP2007249087A (en) Photographic optical system, camera device and personal digital assistant
JP2004013169A (en) Variable magnification group in zoom lens, zoom lens, and camera system
JP4911679B2 (en) Zoom lens and image pickup apparatus including the same
JP4690052B2 (en) Zoom lens and imaging apparatus using the same
JP2011232620A (en) Imaging optical system and electronic imaging apparatus equipped with the same
JP2005326743A (en) Zooming lens and information device having photographing function
JP4268773B2 (en) Zoom group, zoom lens, and imaging device for zoom lens
JP4642883B2 (en) Zoom lens, camera, and portable information terminal device
JP6108215B2 (en) Zoom lens, camera, and portable information terminal device
US8780452B2 (en) Zoom lens and imaging apparatus
JP5601584B2 (en) Wide angle lens, imaging lens unit, camera and information device
JP4321850B2 (en) Zoom lens, camera, and portable information terminal device
JP2004198855A (en) Zoom lens, camera and personal digital assistance device
JP2003107352A (en) Zoom lens, camera and portable information terminal device
JP4947992B2 (en) Zoom lens and imaging apparatus using the same
JP2003287679A (en) Zoom lens and camera device
JP2005265914A (en) Zoom lens, camera and personal digital assistance
JP2006126741A (en) Zoom lens and information device
JP4181851B2 (en) Zoom lens, camera, and portable information terminal device
JP3711059B2 (en) camera

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050805

Free format text: JAPANESE INTERMEDIATE CODE: A621

A521 Written amendment

Effective date: 20060130

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20080930

Free format text: JAPANESE INTERMEDIATE CODE: A131

A761 Written withdrawal of application

Effective date: 20081201

Free format text: JAPANESE INTERMEDIATE CODE: A761