JP2004012332A - Method for evaluating material strength and material strength testing apparatus - Google Patents

Method for evaluating material strength and material strength testing apparatus Download PDF

Info

Publication number
JP2004012332A
JP2004012332A JP2002167129A JP2002167129A JP2004012332A JP 2004012332 A JP2004012332 A JP 2004012332A JP 2002167129 A JP2002167129 A JP 2002167129A JP 2002167129 A JP2002167129 A JP 2002167129A JP 2004012332 A JP2004012332 A JP 2004012332A
Authority
JP
Japan
Prior art keywords
fixing member
test sheet
stress
polymer material
tensile stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002167129A
Other languages
Japanese (ja)
Other versions
JP3782037B2 (en
Inventor
Hiroto Watanabe
渡邉 裕人
Keiji Ohashi
大橋 圭二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2002167129A priority Critical patent/JP3782037B2/en
Publication of JP2004012332A publication Critical patent/JP2004012332A/en
Application granted granted Critical
Publication of JP3782037B2 publication Critical patent/JP3782037B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To utilize a polymeric material so that a void or a crack may not occur. <P>SOLUTION: A method for evaluating a material strength includes the steps of restricting a stress effective region Sa of a test sheet S so as not to radially and circumferentially displace, applying a tensile stress of substantially uniform three-dimensional direction in the stress effective region S2 of the test sheet S, and obtaining a damage stress of the polymeric material in a state that the three-dimensional tensile stress is applied based on a relative displacing amount of the first fixed member 13 when a void or a crack occurs in the teste sheet S. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、紫外線硬化型樹脂等の高分子材料の機械的強度を評価する材料強度評価方法、及び前記高分子材料の機械的強度を評価するために用いられる材料強度試験装置に関する。
【0002】
【従来の技術】
光ファイバ通信の技術分野においては、光ファイバにおける被覆層に高分子材料として紫外線硬化型樹脂が用いられている。
【0003】
ここで、前記光ファイバにおける前記被覆層は、一般に、二重の被覆構造になっており、ヤング率の低い軟質の紫外線硬化型樹脂から構成されかつ前記光ファイバのガラスファイバの外周部を直接的に被覆する一次被覆層と、ヤング率の高い硬質の紫外線硬化型樹脂から構成されかつ前記ガラスファイバの外周部を前記一次被覆層を介して間接的に被覆する二次被覆層とを備えている。これは、前記光ファイバに外力が加わった場合に、前記二次被覆層によって前記光ファイバ全体の変形を抑制し、更に前記一次被覆層によって抑制された小さい変形を吸収することによって、前記ガラスファイバに前記外力による変形を極力伝えないためである。
【0004】
また、前記ガラスファイバの微小な曲がりによる前記光ファイバの伝送損失を極力少なくして前記光ファイバの品質の向上を図るうえにおいて、前記一次被覆層が前記ガラスファイバを直接的に被覆していることから、前記二次被覆層を構成する前記硬質の紫外線硬化型樹脂の機械的強度よりも、前記一次被覆層を構成する前記軟質の紫外線硬化型樹脂の機械的強度を評価することが重要である。そのため、前記軟質の紫外線硬化型樹脂からなる試験片を一方向へ引っ張る引張試験を行って、1次元方向の引張応力を加えた状態における前記軟質の紫外線硬化型樹脂の破断応力を求めている。
【0005】
【発明が解決しようとする課題】
ところで、前記被覆層の樹脂硬化時からこの硬化終了時にかけて前記被覆層の樹脂温度が低下することによって前記被覆層は3次元的に収縮する傾向にある一方、前記ファイバガラスと前記二次被覆層によって前記一次被覆層の3次元的収縮が拘束されているため、前記一次被覆層において略均一に3次元方向の引張応力が加えることになる。ここで、硬化終了時とは、硬化終了直後の他に、硬化終了してから環境温度が変化した後も含むものであって、3次元方向の引張応力とは、前記一次被覆層の径方向の引張応力と、前記一次被覆層の周方向の引張応力と、ファイバ軸方向の引張応力のことをいう。そして、前記一次被覆層に働く前記3次元方向の引張応力の平均引張応力が所定の破損応力を越えると、前記一次被覆層には前記ガラスファイバの微小な曲がりの原因になるボイド又は亀裂が生じるものである。
【0006】
しかし、前述のように、前記軟質の紫外線硬化型樹脂からなる前記試験片を一方向へ引っ張る引張試験を行って、1次元方向の引張応力を加えた状態における前記軟質の紫外線硬化型樹脂の破断応力を求めるだけでは、1次元方向の引張応力を加えた状態における前記軟質の紫外線硬化型樹脂の機械的強度を評価できても、前記試験片に3次元方向の引張応力を加えた状態における前記軟質の紫外線硬化型樹脂の機械的強度を評価することができない。そのため、前記光ファイバにおける前記一次被覆層にボイド又は亀裂が生じないように前記軟質の紫外線硬化型樹脂を利用する等、ボイド又は亀裂が生じないように前記高分子材料を利用することが困難になる。
【0007】
【課題を解決するための手段】
請求項1に記載の発明にあっては、高分子材料の機械的強度を評価する材料強度評価方法において、
前記高分子材料からなる薄い円板状の試験シートの表面を第1固定部材の第1拘束面に密着して固定すると共に、前記試験シートの裏面を第2固定部材の第2拘束面に密着して固定することにより、前記試験シートの全領域のうち外周部付近を除く応力有効領域を径方向,周方向へ変位しないように拘束し、
透明に構成されたいずれかの固定部材の外側から前記試験シートを観察しつつ、前記第1拘束面と前記第2拘束面を平行に保持した状態の下で、前記第1固定部材を前記試験シートの厚み方向であって前記第2固定部材に対して離反する離反方向へ相対的に微小変位させることにより、前記試験シートの前記応力有効領域において略均一に3次元方向の引張応力を加え、
前記試験シートにボイド又は亀裂が生じたときにおける前記第1固定部材の相対的な変位量に基づいて、3次元方向の引張応力を加えた状態における前記高分子材料の破損応力を求めることを特徴とする。
【0008】
ここで、3次元方向の引張応力とは、前記径方向の引張応力と、前記周方向の引張応力、前記厚み方向の引張応力のことをいい、3次元方向の引張応力が加わった応力状態における前記高分子材料の破損応力とは、前記試験シートにボイド又は亀裂が生じたときに前記試験シートに働く3次元方向の引張応力の平均引張応力のことをいう。また、透明とは、完全に透明の他に、半透明、有色透明も含まれる。
【0009】
請求項2に記載の発明にあっては、請求項1に記載の発明特定事項の他に、前記高分子材料は紫外線硬化型樹脂であることを特徴とする。
【0010】
請求項3に記載の発明にあっては、請求項1に記載の発明特定事項の他に、前記高分子材料は前記光ファイバにおける一次被覆層と同じ紫外線硬化型樹脂であって、
前記試験シートの厚みを前記光ファイバにおける前記一次被覆層の厚みと同じにしたことを特徴とする。
【0011】
請求項4に記載の発明にあっては、高分子材料の機械的強度を評価するために用いられる材料強度試験装置において、
前記高分子材料からなる薄い円板状の試験シートの表面が密着して固定される第1拘束面を有した第1固定部材と、
前記第1固定部材に対向してあって、前記試験シートの裏面が密着して固定される第2拘束面を有した第2固定部材と、
前記第1拘束面と前記第2拘束面を平行に保持した状態の下で、前記第1固定部材を高分子材料の厚み方向であって前記第2固定部材に対して離反する離反方向へ相対的に微小変位させる微小変位機構とを備えてあって、
前記第1固定部材と前記第2固定部材の少なくともいずれかの固定部材を透明に構成してなることを特徴とする。
【0012】
ここで、透明とは、完全に透明の他に、半透明、有色透明も含まれる。
【0013】
請求項4に記載の発明特定事項によると、前記試験シートの表面を前記第1固定部材の前記第1拘束面に密着して固定すると共に、前記試験シートの裏面を前記第2固定部材の前記第2拘束面に密着して固定する。これにより、前記試験シートの全領域のうち外周部付近を除く応力有効領域を径方向,周方向へ変位しないように拘束できる。
【0014】
そして、前記いずれかの固定部材の外側から前記試験シートを観察しつつ、前記第1拘束面と前記第2拘束面を平行に保持した状態の下で、前記微小変位機構の作動によって前記第1固定部材を前記離反方向へ前記第2固定部材に対して相対的に微小変位させる。これにより、前記試験シートは3次元的に収縮する傾向にあるが、前記第1拘束面及び前記第2拘束面よって前記試験シートの前記応力有効領域の径方向,周方向の変位が拘束されることから、試験シートの応力有効領域には前記厚み方向の引張応力の他に、前記径方向の引張応力と前記周方向の引張応力を加えることができ、換言すれば、前記試験シートの前記応力有効領域に3次元方向の引張応力を加えることができ、また、前記試験シートの厚さが薄いことから、前記試験シートの前記応力有効領域において略均一に3次元方向の引張応力を加えることができる。
【0015】
ここで、3次元的引張応力とは、前記径方向の引張応力と、前記周方向の引張応力、前記厚み方向の引張応力のことをいう。
【0016】
更に、前記第1固定部材の相対的な微小変位量が増えることよって、前記試験シートの前記応力有効領域の前記3次元方向の引張応力が徐々に高くなって、前記試験シートにボイド又は亀裂が生じる。そして、前記試験シートにボイド又は亀裂が生じたときにおける前記第1固定部材の相対的な変位量に基づいて、3次元方向の引張応力を加えた状態における前記高分子材料の破損応力を求める。これによって、3次元方向の引張応力を加えた状態における前記高分子材料の機械的強度を評価することができる。
【0017】
ここで、3次元方向の引張応力を加えた状態における前記高分子材料の破損応力とは、前記試験シートにボイド又は亀裂が生じたときに前記試験シートに働く3次元方向の引張応力の平均引張応力のことをいう。
【0018】
請求項5に記載の発明にあっては、請求項4に記載の発明特定事項の他に、前記第1固定部材及び前記第2固定部材をガラスによりそれぞれ構成してなることを特徴とする。
【0019】
請求項5に記載の発明特定事項によると、請求項4に記載の発明特定事項の他に、前記第1固定部材及び前記第2固定部材をガラスによりそれぞれ構成してあるため、前記第1拘束面及び前記第2拘束面に対する前記試験シートの密着した固定状態が安定する。
【0020】
請求項6に記載の発明にあっては、請求項4又は請求項5に記載の発明特定事項の他に、前記いずれかの固定部材の外側から前記試験シートを拡大して観察するための拡大鏡を備えてなることを特徴とする。
【0021】
請求項6に記載の発明特定事項によると、請求項4又は請求項5に記載発明特定事項による作用の他に、前記拡大鏡により前記試験シートを拡大して観察することができる。
【0022】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照して説明する。
【0023】
図1は、本発明の実施の形態に係わる材料強度試験装置の模式的な斜視図であって、図2は、本発明の実施の形態に係わる材料強度評価方法を説明する図であって、図3は、図2(b)における試験シートを上から見た図である。
【0024】
ここで、「上」は、図1及び図2において上,図3において紙面に向かって表のことをいい、「下」は、図1及び図2において下,図3において紙面に向かって裏のことをいう。
【0025】
図1に示すように、本発明の実施の形態に係わる材料強度試験装置1は、軟質の紫外線硬化型樹脂(高分子材料の1つ)の機械的強度を評価するために用いられる装置であって、四角形状の第1ホルダ3と四角形状の第2ホルダ5を上下に対向して備えている。
【0026】
第1ホルダ3が第2ホルダ5に対して上下方向へ移動可能に支持されるようにするため、第2ホルダ5には複数の固定突起7が設けられており、複数の固定突起7にはガイドピン9が立設されてあって、第1ホルダ3には対応するガイドピン9に上下方向へ移動可能に案内される複数の可動突起11が設けられている。
【0027】
第1ホルダ3の中央部には円形状の第1固定部材13が設けられており、この第1固定部材13は極めて薄い円板状の試験シートSの表面が接着作用によって密着して固定される第1拘束面13f(図2参照)を有している。また、第2ホルダ5の中央部には円形状の第2固定部材15が第1固定部材13に上下に対向して設けられており、この第2固定部材15は試験シートSの裏面が接着作用によって密着して固定される第2拘束面15f(図2参照)を有している。
【0028】
ここで、第1固定部材13及び第2固定部材15は透明なガラスによりそれぞれ構成されている。なお、透明なガラスとは、完全に透明なガラスの他に、半透明なガラス、有色透明なガラスも含まれる。また、第1固定部材及び第2固定部材をそれぞれ透明に構成する代わりに、第1固定部材13と第2固定部材15のうちいずれかの固定部材を透明に構成してもよい。
【0029】
また、試験シートSは、図示省略の光ファイバにおける一次被覆層を構成する軟質の紫外線硬化型樹脂と同じ軟質の紫外線硬化型樹脂(高分子材料の一例)からなるものであって、試験シートSの厚みは、前記光ファイバにおける一次被覆層の厚みと同じにしてある。なお、試験シートSの固定方法は、前述の接着作用に限るものではなく、例えば、第1固定部材13と第2固定部材15の間に流動状の紫外線硬化型樹脂を充填して、流動状の紫外線硬化型樹脂を紫外線を照射によって硬化させることにより固定してもよい。
【0030】
第1ホルダ3には取付突起17が設けられており、第2ホルダ5には当接突起19が取付突起17に上下に対向して設けられている。第1固定部材13を上方向(換言すれば、試験シートSの厚み方向であって第2固定部材15に対して離反する離反方向)へ微小変位させるため、取付突起17にはつまみ21の回転操作によって上下方向へ微小伸縮可能なスピンドル23を備えたマイクロメータヘッド25が設けられており、このスピンドル23の先端部(下端部)は当接突起に当接可能である。
【0031】
従って、スピンドル23の先端部を当接突起19に当接させて、つまみ21を回転操作によってスピンドル23を下方向へ微少量だけ伸ばすことにより、第1固定部材13を第1ホルダ3と一体的に上方向へ微小変位させることができる。このとき、複数の可動突起11が複数のガイドピン9に案内されて上方向へ変位するため、第1拘束面13fと第2拘束面15fは平行に保持した状態にある。
【0032】
なお、第1固定部材13を微小変位させる機構は、マイクロメータヘッド25に限るものではなく、適宜の微小変位機構を用いることができる。また、第1固定部材13を上方向へ微小変位させる代わりに、第2固定部材15を下方向へ微小変位させてもよく、或いは第1固定部材13及び第2固定部材15を互いに離反する上下方向へ微小変位させるようにしてもよい。
【0033】
第1ホルダ3の上方には第1固定部材13の外側上方から試験シートSを観察する顕微鏡27が図示省略の支持アームを介して設けられている。なお、顕微鏡27は適宜の機構を介して姿勢、位置等を変更することができる。
【0034】
次に、本発明の実施の形態に係わる材料強度評価方法について、作用を含めて説明する。
【0035】
図2に示すように、試験シートSの表面を第1固定部材13の第1拘束面13fに接着作用により密着して固定すると共に、試験シートSの裏面を第2固定部材15の第2拘束面15fに接着作用により密着して固定する(図2(a)参照)。これにより、試験シートSの全領域のうち外周部付近を除く応力有効領域Saを径方向,周方向へ変位しないように拘束できる。なお、第1固定部材13及び第2固定部材15をガラスによりそれぞれ構成してあるため、第1拘束面13f及び第2拘束面15fに対する試験シートSの密着した固定状態が安定する。
【0036】
ここで、応力有効領域Saをより明確にすると、本発明の実施の形態にあっては、第1固定部材13を上方向へ微小変位させると試験シートSの外周面にR状の凹みSdが生じるが、応力有効領域Saとは、試験シートSの全領域のうち外周部付近を除く領域であって、凹みSdが生じない領域のことをいう。
【0037】
そして、顕微鏡27により第1固定部材13の外側から試験シートSを拡大して観察しつつ、第1拘束面13fと第2拘束面15fを平行に保持した状態の下で、スピンドル23の先端部を当接突起19に当接させて、つまみ21を回転操作してスピンドル23を下方向へ微小変位させて、第1固定部材13を上方向へ微小変位させる(図2(b)参照)。これにより、試験シートSは3次元的に収縮する傾向にあるが、第1拘束面13f及び第2拘束面15fよって試験シートSの応力有効領域Saの径方向,周方向の変位が拘束されることから、試験シートSの応力有効領域Saに前記厚み方向(図2において上下方向)の引張応力σの他に、前記径方向の引張応力σと前記周方向の引張応力σθを付与することができ、換言すれば、試験シートSの応力有効領域Saに3次元方向の引張応力(σ σθ 、σ)を付与することができる。また、試験シートSの厚さが極めて薄いことから、試験シートSの応力有効領域Saを略均一な3次元方向の引張応力を加えた状態にすることができる。
【0038】
更に、第1固定部材13の微小変位量が増えることによって、試験シートSの応力有効領域Saの3次元方向の引張応力が徐々に高くなって、試験シートSにボイドV又は亀裂(図示省略)が生じる(図2(c)参照)。そして、試験シートSにボイドV又は亀裂が生じたときにおける第1固定部材13の変位量に基づいて、3次元方向の引張応力を加えた状態における前記軟質の紫外線硬化型樹脂の破損応力を求める。これによって、3次元方向の引張応力を加えた状態における前記軟質の紫外線硬化型樹脂(高分子材料の一例)の機械的強度を評価することができる。
【0039】
ここで、第1固定部材13の変位量に対する3次元方向の引張応力は、有限要素法による解析等を用いて求めることができ、試験シートSの応力有効領域Saにおいて第1固定部材13の変位量と3次元方向の引張応力の間には線形の関係がある。また、3次元方向の引張応力を加えた状態における前記軟質の紫外線硬化型樹脂の破損応力とは、試験シートSにボイドV又は亀裂が生じたときに試験シートSに働く3次元方向の引張応力の平均引張応力(σ+σθ+σ)/3のことをいう。
【0040】
以上の如き、本発明の実施の形態によれば、3次元方向の引張応力を加えた状態における前記軟質の紫外線硬化型樹脂の破損応力を求めて、3次元方向の引張応力を加えた状態における紫外線硬化型樹脂の機械的強度を評価できるため、前記光ファイバにおける前記一次被覆層にボイドV又は亀裂が生じないように前記軟質の紫外線硬化型樹脂を容易に利用することができ、前記軟質の紫外線硬化型樹脂を様々な分野で有効利用することができる。
【0041】
また、試験シートSは前記光ファイバにおける前記一次被覆層を構成する前記軟質の紫外線硬化型樹脂と同じ軟質の紫外線硬化型樹脂からなるものであって、試験シートSの厚みを前記光ファイバにおける前記一次被覆層の厚みと同じにしてあるため、試験シートSを前記光ファイバにおける前記一次被覆層と略同じ状態にすることができ、前記光ファイバにおける前記一次被覆層を構成する前記軟質の紫外線硬化型樹脂の機械的強度を正確に評価することができる。
【0042】
更に、第1拘束面13f及び第2拘束面15fに対する試験シートSの密着した固定状態が安定するため、試験シートSの応力有効領域Saにおいて3次元方向の引張応力(σ σθ 、σ)がより均一化され、3次元方向の引張応力を加えた状態における前記軟質の紫外線硬化型樹脂の機械的強度を正確に評価することができる。
【0043】
また、顕微鏡27により試験シートSを拡大して観察できるため、試験シートSに生じたボイドV又は亀裂を容易に見つけることができ、3次元方向の引張応力状態における前記軟質の紫外線硬化型樹脂の破損応力を正確に求めることができる。
【0044】
なお、本発明は、前述の発明の実施の形態の説明に限るものではなく、例えば、試験シートを紫外線硬化型樹脂以外の別の高分子材料からなるようにすることにより、前記別の高分子材料の機械的強度を評価する等、適宜の変更を行うことが可能である。
【0045】
【実施例】
以下、本発明に係わる実施例について簡単に説明する。
【0046】
第1固定部材13の外径及び第2固定部材15の外径を100mmとし、ヤング率1MPa,厚み100μm,外径100mmの試験シートSの応力有効領域Saにおいて略均一に3次元方向の引張応力(σ σθ 、σ)を加える。
【0047】
ここで、予め、有限要素法による解析によって、試験シートSの中心から半径45mmの領域が略均一な3次元方向の引張応力が働く応力有効領域Saとなることが求められ、更に、第1固定部材13を5μmステップで50μmまで微小変位させた場合において、試験シートSの応力有効領域Saに働く3次元方向の引張応力と第1固定部材13の変位量との関係は、第1固定部材13の変位量50μmで3次元方向の引張応力(σが1.9MPa、σθが1.9MPa、σが2.3MPa)になるような線形の関係が求められている。
【0048】
前記条件の下で、前述のように、第1固定部材13を上方向へ微小変位させて、試験シートSの応力有効領域Saにおいて略均一に3次元方向の引張応力(σr 、σθ 、σ)を加えると、第1固定部材13の変位量30μmのときに試験シートSの応力有効領域SaにボイドVが生じ、このときの試験シートSの応力有効領域Saに働く3次元方向の引張応力(σが1.1MPa、σθが1.1MPa、σが1.4MPa)の平均引張応力1.2MPaを前記軟質の紫外線硬化型樹脂の破損応力とすることができる。
【0049】
【発明の効果】
請求項1から請求項6のうちのいずれかの請求項に記載の発明によれば、3次元方向の引張応力を加えた状態における前記高分子材料の破損応力を求めて、3次方向の引張応力を加えた状態における前記高分子材料の機械的強度を評価できるため、ボイド又は亀裂が生じないように前記高分子材料を容易に利用することができ、前記高分子材料を様々な分野で有効利用することができる。
【0050】
請求項3に記載の発明によれば、前記高分子材料は前記光ファイバにおける前記一次被覆層と同じ軟質の紫外線硬化型樹脂であって、前記試験シートの厚みを前記光ファイバにおける前記一次被覆層の厚みと同じにしてあるため、前記試験シートを前記光ファイバにおける前記一次被覆層と略同じ状態にすることができ、前記光ファイバにおける前記一次被覆層を構成する前記軟質の紫外線硬化型樹脂の機械的強度を正確に評価することができる。
【0051】
請求項5に記載の発明にあっては、前記第1拘束面及び前記第2拘束面に対する前記試験シートの密着した固定状態が安定するため、前記試験シートの前記応力有効領域において3次元方向の引張応力がより均一化され、3次元方向の引張応力を加えた状態における前記高分子材料の機械的強度を正確に評価することができる。
【0052】
請求項6に記載の発明にあっては、前記拡大鏡により前記試験シートを拡大して観察できるため、前記試験シートに生じたボイド又は亀裂を容易に見つけることができ、3次元方向の引張応力を加えた状態における前記高分子材料の破損応力を正確に求めることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係わる材料強度試験装置の模式的な斜視図である。
【図2】本発明の実施の形態に係わる材料強度評価方法を説明する図である。
【図3】図2(b)における試験シートを上から見た図である。
【符号の説明】
1  材料強度試験装置
13  第1固定部材
13f 第1拘束面
15  第2固定部材
15f 第2拘束面
23  スピンドル
25  マイクロメータヘッド
27  顕微鏡
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a material strength evaluation method for evaluating the mechanical strength of a polymer material such as an ultraviolet curable resin, and a material strength test device used for evaluating the mechanical strength of the polymer material.
[0002]
[Prior art]
In the technical field of optical fiber communication, an ultraviolet curable resin is used as a polymer material for a coating layer of an optical fiber.
[0003]
Here, the coating layer in the optical fiber generally has a double coating structure, is made of a soft UV-curable resin having a low Young's modulus, and directly covers the outer peripheral portion of the glass fiber of the optical fiber. And a secondary coating layer composed of a hard UV-curable resin having a high Young's modulus and indirectly coating the outer periphery of the glass fiber through the primary coating layer. . This is because, when an external force is applied to the optical fiber, the secondary coating layer suppresses the deformation of the entire optical fiber, and further absorbs the small deformation suppressed by the primary coating layer, thereby forming the glass fiber. This is because the deformation by the external force is not transmitted as much as possible.
[0004]
Further, in order to minimize the transmission loss of the optical fiber due to the slight bending of the glass fiber and to improve the quality of the optical fiber, the primary coating layer directly covers the glass fiber. Therefore, it is more important to evaluate the mechanical strength of the soft UV-curable resin constituting the primary coating layer than the mechanical strength of the hard UV-curable resin constituting the secondary coating layer. . Therefore, a tensile test is performed in which a test piece made of the soft ultraviolet-curable resin is pulled in one direction, and the breaking stress of the soft ultraviolet-curable resin in a state where a one-dimensional tensile stress is applied is determined.
[0005]
[Problems to be solved by the invention]
By the way, while the resin temperature of the coating layer decreases from the time of curing the resin of the coating layer to the end of the curing, the coating layer tends to contract three-dimensionally, while the fiber glass and the secondary coating layer Since the three-dimensional shrinkage of the primary coating layer is restrained by this, a three-dimensional tensile stress is applied substantially uniformly to the primary coating layer. Here, the end of the curing includes not only immediately after the end of the curing but also after the environmental temperature changes after the end of the curing, and the three-dimensional tensile stress is defined as the tensile stress in the radial direction of the primary coating layer. , The tensile stress in the circumferential direction of the primary coating layer, and the tensile stress in the fiber axis direction. When the average tensile stress of the three-dimensional tensile stress acting on the primary coating layer exceeds a predetermined breaking stress, a void or a crack is generated in the primary coating layer, which causes a slight bending of the glass fiber. Things.
[0006]
However, as described above, a tensile test was performed in which the test piece made of the soft UV-curable resin was pulled in one direction, and the soft UV-curable resin was broken in a state where a one-dimensional tensile stress was applied. Even if the mechanical strength of the soft UV-curable resin in a state where a one-dimensional tensile stress is applied can be evaluated only by determining the stress, the above-mentioned test piece in a state where a three-dimensional tensile stress is applied to the test piece can be evaluated. The mechanical strength of the soft UV-curable resin cannot be evaluated. For this reason, it is difficult to use the polymer material so as not to cause voids or cracks, such as to use the soft UV-curable resin so as not to cause voids or cracks in the primary coating layer in the optical fiber. Become.
[0007]
[Means for Solving the Problems]
In the invention according to claim 1, in a material strength evaluation method for evaluating mechanical strength of a polymer material,
The surface of the thin disk-shaped test sheet made of the polymer material is fixed in close contact with the first constraint surface of the first fixing member, and the back surface of the test sheet is adhered to the second constraint surface of the second fixing member. By fixing the stress effective area except for the vicinity of the outer peripheral portion of the entire area of the test sheet, constrain it so as not to be displaced in the radial direction and the circumferential direction,
While observing the test sheet from the outside of any of the transparent fixing members, the first fixing member is subjected to the test while maintaining the first constraint surface and the second constraint surface in parallel. In the thickness direction of the sheet, and by relatively small displacement in a separating direction that separates from the second fixing member, a three-dimensional tensile stress is applied substantially uniformly in the stress effective area of the test sheet,
Determining a fracture stress of the polymer material in a state where a three-dimensional tensile stress is applied, based on a relative displacement amount of the first fixing member when a void or a crack occurs in the test sheet. And
[0008]
Here, the three-dimensional tensile stress refers to the radial tensile stress, the circumferential tensile stress, and the thickness-direction tensile stress, and refers to a stress state in which the three-dimensional tensile stress is applied. The breakage stress of the polymer material refers to an average tensile stress of three-dimensional tensile stress acting on the test sheet when a void or a crack occurs in the test sheet. The term “transparent” includes translucent and colored transparent in addition to completely transparent.
[0009]
The invention according to a second aspect is characterized in that, in addition to the matters specifying the invention according to the first aspect, the polymer material is an ultraviolet curable resin.
[0010]
In the invention according to claim 3, in addition to the matters specifying the invention according to claim 1, the polymer material is the same ultraviolet curable resin as a primary coating layer in the optical fiber,
The thickness of the test sheet is the same as the thickness of the primary coating layer in the optical fiber.
[0011]
In the invention according to claim 4, in a material strength test device used to evaluate the mechanical strength of the polymer material,
A first fixing member having a first constraint surface to which the surface of the thin disk-shaped test sheet made of the polymer material is fixed in close contact;
A second fixing member facing the first fixing member, the second fixing member having a second constraint surface to which the back surface of the test sheet is fixed in close contact;
Under the state where the first constraint surface and the second constraint surface are held in parallel, the first fixing member is moved in the thickness direction of the polymer material and in the separating direction in which the first fixing member separates from the second fixing member. And a minute displacement mechanism for minute displacement
At least one of the first fixing member and the second fixing member is configured to be transparent.
[0012]
Here, the term “transparent” includes not only completely transparent but also translucent and colored transparent.
[0013]
According to the invention specifying matter of claim 4, the surface of the test sheet is fixed in close contact with the first restraining surface of the first fixing member, and the back surface of the test sheet is fixed to the second fixing member. It is fixed in close contact with the second constraint surface. Thus, the stress effective area of the entire area of the test sheet except for the vicinity of the outer peripheral portion can be restrained so as not to be displaced in the radial and circumferential directions.
[0014]
Then, while observing the test sheet from the outside of any one of the fixing members, the first displacement surface is operated by the minute displacement mechanism while the first constraint surface and the second constraint surface are held in parallel. The fixing member is slightly displaced relative to the second fixing member in the separating direction. As a result, the test sheet tends to shrink three-dimensionally, but the radial displacement and the circumferential displacement of the stress effective area of the test sheet are restricted by the first constraint surface and the second constraint surface. Therefore, in addition to the tensile stress in the thickness direction, the tensile stress in the radial direction and the tensile stress in the circumferential direction can be applied to the stress effective area of the test sheet. In other words, the stress of the test sheet can be increased. A three-dimensional tensile stress can be applied to the effective area, and since the thickness of the test sheet is thin, a three-dimensional tensile stress can be applied substantially uniformly in the stress effective area of the test sheet. it can.
[0015]
Here, the three-dimensional tensile stress refers to the tensile stress in the radial direction, the tensile stress in the circumferential direction, and the tensile stress in the thickness direction.
[0016]
Further, by increasing the relative minute displacement of the first fixing member, the tensile stress in the three-dimensional direction in the stress effective area of the test sheet gradually increases, and voids or cracks are formed in the test sheet. Occurs. Then, based on a relative displacement amount of the first fixing member when a void or a crack occurs in the test sheet, a breakage stress of the polymer material in a state where a three-dimensional tensile stress is applied is obtained. This makes it possible to evaluate the mechanical strength of the polymer material in a state where a three-dimensional tensile stress is applied.
[0017]
Here, the fracture stress of the polymer material in a state where a three-dimensional tensile stress is applied is the average tensile strength of the three-dimensional tensile stress acting on the test sheet when a void or a crack occurs in the test sheet. Refers to stress.
[0018]
According to a fifth aspect of the present invention, in addition to the features of the fourth aspect, the first fixing member and the second fixing member are each made of glass.
[0019]
According to the fifth aspect of the present invention, in addition to the first aspect of the present invention, since the first fixing member and the second fixing member are each made of glass, the first constraint is achieved. The fixed state of the test sheet in close contact with the surface and the second restraint surface is stabilized.
[0020]
In the invention according to claim 6, in addition to the matters specifying the invention according to claim 4 or 5, an enlargement for observing the test sheet from outside any of the fixing members is provided. It is characterized by comprising a mirror.
[0021]
According to the sixth aspect of the present invention, in addition to the effect of the fourth or fifth aspect of the present invention, the test sheet can be enlarged and observed by the magnifying glass.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0023]
FIG. 1 is a schematic perspective view of a material strength test device according to an embodiment of the present invention, and FIG. 2 is a diagram illustrating a material strength evaluation method according to an embodiment of the present invention. FIG. 3 is a view of the test sheet in FIG. 2B as viewed from above.
[0024]
Here, “upper” refers to the upper side in FIGS. 1 and 2 and the front side toward the page in FIG. 3, and “down” refers to the lower side in FIGS. 1 and 2 and the lower side toward the page in FIG. Means
[0025]
As shown in FIG. 1, a material strength test apparatus 1 according to an embodiment of the present invention is an apparatus used for evaluating the mechanical strength of a soft ultraviolet curable resin (one of polymer materials). In addition, a rectangular first holder 3 and a rectangular second holder 5 are provided vertically facing each other.
[0026]
In order to support the first holder 3 so as to be vertically movable with respect to the second holder 5, the second holder 5 is provided with a plurality of fixing protrusions 7. The guide pins 9 are provided upright, and the first holder 3 is provided with a plurality of movable projections 11 which are guided by the corresponding guide pins 9 so as to be movable in the vertical direction.
[0027]
A circular first fixing member 13 is provided at the center of the first holder 3, and the first fixing member 13 is fixed by closely attaching the surface of a very thin disk-shaped test sheet S by an adhesive action. 13f (see FIG. 2). A circular second fixing member 15 is provided at the center of the second holder 5 so as to face the first fixing member 13 vertically, and the second fixing member 15 is bonded to the back surface of the test sheet S. It has a second constraining surface 15f (see FIG. 2) which is tightly fixed by the action.
[0028]
Here, the first fixing member 13 and the second fixing member 15 are each made of transparent glass. The transparent glass includes not only completely transparent glass but also translucent glass and colored transparent glass. Instead of making the first fixing member and the second fixing member transparent, respectively, one of the first fixing member 13 and the second fixing member 15 may be made transparent.
[0029]
The test sheet S is made of the same soft UV-curable resin (an example of a polymer material) as the soft UV-curable resin constituting the primary coating layer in the optical fiber (not shown). Is the same as the thickness of the primary coating layer in the optical fiber. Note that the method of fixing the test sheet S is not limited to the above-described adhesive action. For example, a liquid ultraviolet curable resin is filled between the first fixing member 13 and the second fixing member 15 to form a liquid. The UV-curable resin may be fixed by curing the resin by irradiation with UV light.
[0030]
The first holder 3 is provided with a mounting projection 17, and the second holder 5 is provided with an abutment projection 19 vertically opposed to the mounting projection 17. To slightly displace the first fixing member 13 in the upward direction (in other words, in the thickness direction of the test sheet S and in the separating direction in which the first fixing member 13 is separated from the second fixing member 15), the rotation of the knob 21 is applied to the mounting projection 17. A micrometer head 25 provided with a spindle 23 that can be slightly expanded and contracted in the vertical direction by operation is provided, and the tip (lower end) of the spindle 23 can abut on the abutting projection.
[0031]
Therefore, the first fixing member 13 is integrated with the first holder 3 by bringing the tip of the spindle 23 into contact with the contact projection 19 and rotating the knob 21 to slightly extend the spindle 23 downward by a small amount. Can be slightly displaced upward. At this time, since the plurality of movable projections 11 are guided by the plurality of guide pins 9 and are displaced upward, the first constraint surface 13f and the second constraint surface 15f are held in parallel.
[0032]
The mechanism for minutely displacing the first fixing member 13 is not limited to the micrometer head 25, and an appropriate minute displacement mechanism can be used. Instead of minutely displacing the first fixing member 13 upward, the second fixing member 15 may be minutely displaced downward. Alternatively, the first fixing member 13 and the second fixing member 15 may be vertically displaced from each other. You may make it displace slightly in the direction.
[0033]
A microscope 27 for observing the test sheet S from above the outside of the first fixing member 13 is provided above the first holder 3 via a support arm (not shown). The posture, position, and the like of the microscope 27 can be changed via an appropriate mechanism.
[0034]
Next, a method for evaluating a material strength according to an embodiment of the present invention will be described including an operation.
[0035]
As shown in FIG. 2, the surface of the test sheet S is fixed to the first restraining surface 13 f of the first fixing member 13 in close contact by an adhesive action, and the back surface of the test sheet S is fixed to the second restraining member 15 by the second restraining member 15. The surface 15f is adhered and fixed by an adhesive action (see FIG. 2A). Thereby, the stress effective area Sa excluding the vicinity of the outer peripheral portion of the entire area of the test sheet S can be restricted so as not to be displaced in the radial direction and the circumferential direction. In addition, since the first fixing member 13 and the second fixing member 15 are each made of glass, the state of the test sheet S in close contact with the first constraint surface 13f and the second constraint surface 15f is stabilized.
[0036]
Here, if the stress effective area Sa is further clarified, in the embodiment of the present invention, when the first fixing member 13 is slightly displaced upward, an R-shaped dent Sd is formed on the outer peripheral surface of the test sheet S. Although the stress effective area Sa is generated, the stress effective area Sa is an area of the entire area of the test sheet S excluding the vicinity of the outer peripheral portion, and is an area in which the depression Sd does not occur.
[0037]
Then, while enlarging and observing the test sheet S from the outside of the first fixing member 13 with the microscope 27, the tip end of the spindle 23 is held under the state where the first constraint surface 13f and the second constraint surface 15f are held in parallel. Is brought into contact with the contact protrusion 19, the knob 21 is rotated to slightly displace the spindle 23 downward, and the first fixing member 13 is displaced slightly upward (see FIG. 2B). As a result, the test sheet S tends to contract three-dimensionally, but the displacement in the radial and circumferential directions of the stress effective area Sa of the test sheet S is restricted by the first constraint surface 13f and the second constraint surface 15f. Therefore, in addition to the tensile stress σ z in the thickness direction (vertical direction in FIG. 2), the tensile stress σ r in the radial direction and the tensile stress σ θ in the circumferential direction are applied to the stress effective area Sa of the test sheet S. In other words, it is possible to apply a three-dimensional tensile stress (σ r , σ θ, σ z ) to the stress effective area Sa of the test sheet S. Further, since the thickness of the test sheet S is extremely thin, the stress effective area Sa of the test sheet S can be brought into a state in which a substantially uniform three-dimensional tensile stress is applied.
[0038]
Further, as the minute displacement amount of the first fixing member 13 increases, the tensile stress in the three-dimensional direction of the stress effective area Sa of the test sheet S gradually increases, and the test sheet S has a void V or a crack (not shown). (See FIG. 2C). Then, based on the displacement amount of the first fixing member 13 when the void V or the crack occurs in the test sheet S, the breaking stress of the soft ultraviolet-curable resin in a state where a three-dimensional tensile stress is applied is obtained. . This makes it possible to evaluate the mechanical strength of the soft UV-curable resin (an example of a polymer material) in a state where a three-dimensional tensile stress is applied.
[0039]
Here, the tensile stress in the three-dimensional direction with respect to the amount of displacement of the first fixing member 13 can be obtained using analysis by the finite element method or the like. There is a linear relationship between quantity and tensile stress in three dimensions. The breaking stress of the soft ultraviolet-curable resin in a state where a three-dimensional tensile stress is applied is the three-dimensional tensile stress acting on the test sheet S when a void V or a crack is generated in the test sheet S. Mean tensile stress (σ r + σ θ + σ z ) / 3.
[0040]
As described above, according to the embodiment of the present invention, the breakage stress of the soft UV-curable resin in a state where a three-dimensional tensile stress is applied is determined, and the state in which a three-dimensional tensile stress is applied is obtained. Since the mechanical strength of the UV-curable resin can be evaluated, the soft UV-curable resin can be easily used so that no void V or crack is generated in the primary coating layer in the optical fiber, and the soft UV-curable resin can be used. The ultraviolet curable resin can be effectively used in various fields.
[0041]
Further, the test sheet S is made of the same soft UV-curable resin as the soft UV-curable resin constituting the primary coating layer in the optical fiber, and the thickness of the test sheet S is the same as that of the optical fiber. Since the thickness of the primary coating layer is the same as that of the primary coating layer, the test sheet S can be in substantially the same state as the primary coating layer in the optical fiber, and the soft ultraviolet curing that constitutes the primary coating layer in the optical fiber The mechanical strength of the mold resin can be accurately evaluated.
[0042]
Furthermore, since the fixed state of the test sheet S in close contact with the first constraint surface 13f and the second constraint surface 15f is stabilized, the three-dimensional tensile stress (σ r , σ θ, σ) is obtained in the stress effective area Sa of the test sheet S. z ) is made more uniform, and the mechanical strength of the soft UV-curable resin in a state where a three-dimensional tensile stress is applied can be accurately evaluated.
[0043]
Further, since the test sheet S can be enlarged and observed by the microscope 27, the void V or the crack generated in the test sheet S can be easily found, and the soft ultraviolet-curable resin in the three-dimensional tensile stress state can be easily observed. The failure stress can be determined accurately.
[0044]
Note that the present invention is not limited to the description of the above-described embodiment of the present invention. For example, the test sheet may be made of another polymer material other than the ultraviolet curable resin, so that the another polymer is used. Appropriate changes can be made, such as evaluating the mechanical strength of the material.
[0045]
【Example】
Hereinafter, embodiments according to the present invention will be briefly described.
[0046]
The outer diameter of the first fixing member 13 and the outer diameter of the second fixing member 15 are 100 mm, and the tensile stress in the stress effective area Sa of the test sheet S having a Young's modulus of 1 MPa, a thickness of 100 μm, and an outer diameter of 100 mm is substantially uniformly three-dimensional. (Σ r , σ θ, σ z ).
[0047]
Here, it is previously determined by analysis by the finite element method that an area having a radius of 45 mm from the center of the test sheet S becomes a stress effective area Sa in which a substantially uniform three-dimensional tensile stress is applied. When the member 13 is minutely displaced to 50 μm in 5 μm steps, the relationship between the three-dimensional tensile stress acting on the stress effective area Sa of the test sheet S and the displacement amount of the first fixing member 13 is as follows. A linear relationship is obtained such that the three-dimensional tensile stress (σ r is 1.9 MPa, σ θ is 1.9 MPa, and σ z is 2.3 MPa) at a displacement of 50 μm.
[0048]
Under the above conditions, as described above, the first fixing member 13 is slightly displaced in the upward direction, and the tensile stress (σ r, σ θ, σ r, σ θ) in the stress effective area Sa of the test sheet S is substantially uniform . When σ z ) is added, a void V is generated in the stress effective area Sa of the test sheet S when the displacement amount of the first fixing member 13 is 30 μm, and the void V in the three-dimensional direction acting on the stress effective area Sa of the test sheet S at this time. An average tensile stress of 1.2 MPa with a tensile stress (σ r of 1.1 MPa, σ θ of 1.1 MPa, and σ z of 1.4 MPa) can be used as the breaking stress of the soft ultraviolet-curable resin.
[0049]
【The invention's effect】
According to the invention described in any one of claims 1 to 6, a fracture stress of the polymer material in a state where a three-dimensional tensile stress is applied is determined, and a tensile stress in a tertiary direction is determined. Because the mechanical strength of the polymer material under stress can be evaluated, the polymer material can be easily used so that voids or cracks do not occur, and the polymer material is effective in various fields. Can be used.
[0050]
According to the invention described in claim 3, the polymer material is the same soft UV-curable resin as the primary coating layer in the optical fiber, and the thickness of the test sheet is the primary coating layer in the optical fiber. Since the thickness is the same as the thickness, the test sheet can be in substantially the same state as the primary coating layer in the optical fiber, the soft UV-curable resin constituting the primary coating layer in the optical fiber Mechanical strength can be accurately evaluated.
[0051]
In the invention according to claim 5, since the fixed state of the test sheet in close contact with the first constraint surface and the second constraint surface is stable, the three-dimensional direction in the stress effective region of the test sheet is stable. The tensile stress is made more uniform, and the mechanical strength of the polymer material in a state where a three-dimensional tensile stress is applied can be accurately evaluated.
[0052]
In the invention according to claim 6, since the test sheet can be enlarged and observed with the magnifying glass, a void or a crack generated in the test sheet can be easily found, and a tensile stress in a three-dimensional direction can be obtained. The stress at break of the polymer material in a state in which is added can be accurately obtained.
[Brief description of the drawings]
FIG. 1 is a schematic perspective view of a material strength test device according to an embodiment of the present invention.
FIG. 2 is a diagram illustrating a material strength evaluation method according to an embodiment of the present invention.
FIG. 3 is a top view of the test sheet in FIG. 2 (b).
[Explanation of symbols]
1 Material Strength Testing Apparatus 13 First Fixing Member 13f First Constraining Surface 15 Second Fixing Member 15f Second Constraining Surface 23 Spindle 25 Micrometer Head 27 Microscope

Claims (6)

高分子材料の機械的強度を評価する材料強度評価方法において、
前記高分子材料からなる薄い円板状の試験シートの表面を第1固定部材の第1拘束面に密着して固定すると共に、前記試験シートの裏面を第2固定部材の第2拘束面に密着して固定することにより、前記試験シートの全領域のうち外周部付近を除く応力有効領域を径方向,周方向へ変位しないように拘束し、
透明に構成されたいずれかの固定部材の外側から前記試験シートを観察しつつ、前記第1拘束面と前記第2拘束面を平行に保持した状態の下で、前記第1固定部材を前記試験シートの厚み方向であって前記第2固定部材に対して離反する離反方向へ相対的に微小変位させることにより、前記試験シートの前記応力有効領域において略均一に3次元方向の引張応力を加え、
前記試験シートにボイド又は亀裂が生じたときにおける前記第1固定部材の相対的な変位量に基づいて、3次元方向の引張応力を加えた状態における前記高分子材料の破損応力を求めることを特徴とする材料強度評価方法。
In a material strength evaluation method for evaluating the mechanical strength of a polymer material,
The surface of the thin disk-shaped test sheet made of the polymer material is fixed in close contact with the first constraint surface of the first fixing member, and the back surface of the test sheet is adhered to the second constraint surface of the second fixing member. By fixing the stress effective area except for the vicinity of the outer peripheral portion of the entire area of the test sheet, constrained to not be displaced in the radial and circumferential directions,
While observing the test sheet from the outside of any of the transparent fixing members, the first fixing member is subjected to the test while maintaining the first constraint surface and the second constraint surface in parallel. In the thickness direction of the sheet, and by relatively small displacement in a separating direction that separates from the second fixing member, a three-dimensional tensile stress is applied substantially uniformly in the stress effective area of the test sheet,
Determining a fracture stress of the polymer material in a state where a three-dimensional tensile stress is applied, based on a relative displacement amount of the first fixing member when a void or a crack occurs in the test sheet. Material strength evaluation method.
前記高分子材料は紫外線硬化型樹脂であることを特徴とする請求項1に記載の材料強度評価方法。The material strength evaluation method according to claim 1, wherein the polymer material is an ultraviolet curable resin. 前記高分子材料は前記光ファイバにおける一次被覆層と同じ紫外線硬化型樹脂であって、
前記試験シートの厚みを前記光ファイバにおける前記一次被覆層の厚みと同じにしたことを特徴とする請求項1に記載の材料強度評価方法。
The polymer material is the same ultraviolet curable resin as the primary coating layer in the optical fiber,
The method according to claim 1, wherein the thickness of the test sheet is the same as the thickness of the primary coating layer in the optical fiber.
高分子材料の機械的強度を評価するために用いられる材料強度試験装置において、
前記高分子材料からなる薄い円板状の試験シートの表面が密着して固定される第1拘束面を有した第1固定部材と、
前記第1固定部材に対向してあって、前記試験シートの裏面が密着して固定される第2拘束面を有した第2固定部材と、
前記第1拘束面と前記第2拘束面を平行に保持した状態の下で、前記第1固定部材を前記高分子材料の厚み方向であって前記第2固定部材に対して離反する離反方向へ相対的に微小変位させる微小変位機構とを備えてあって、
前記第1固定部材と前記第2固定部材の少なくともいずれかの固定部材を透明に構成してなることを特徴とする材料強度試験装置。
In a material strength test device used to evaluate the mechanical strength of a polymer material,
A first fixing member having a first constraining surface to which the surface of the thin disk-shaped test sheet made of the polymer material is fixed in close contact;
A second fixing member facing the first fixing member, the second fixing member having a second restraining surface to which the back surface of the test sheet is fixed in close contact;
In a state in which the first constraint surface and the second constraint surface are held in parallel, the first fixing member is moved in a thickness direction of the polymer material and in a separating direction in which the first fixing member is separated from the second fixing member. And a minute displacement mechanism for relatively minute displacement.
A material strength test apparatus, wherein at least one of the first fixing member and the second fixing member is configured to be transparent.
前記第1固定部材及び前記第2固定部材をガラスによりそれぞれ構成してなることを特徴とする請求項4に記載の材料強度試験装置。The material strength test apparatus according to claim 4, wherein the first fixing member and the second fixing member are each made of glass. 前記いずれかの固定部材の外側から前記試験シートを拡大して観察するための拡大鏡を備えてなることを特徴とする請求項4又は請求項5に記載の材料強度試験装置。The material strength test apparatus according to claim 4, further comprising a magnifier for enlarging and observing the test sheet from outside any one of the fixing members.
JP2002167129A 2002-06-07 2002-06-07 Material strength evaluation method and material strength test apparatus Expired - Lifetime JP3782037B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002167129A JP3782037B2 (en) 2002-06-07 2002-06-07 Material strength evaluation method and material strength test apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002167129A JP3782037B2 (en) 2002-06-07 2002-06-07 Material strength evaluation method and material strength test apparatus

Publications (2)

Publication Number Publication Date
JP2004012332A true JP2004012332A (en) 2004-01-15
JP3782037B2 JP3782037B2 (en) 2006-06-07

Family

ID=30434468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002167129A Expired - Lifetime JP3782037B2 (en) 2002-06-07 2002-06-07 Material strength evaluation method and material strength test apparatus

Country Status (1)

Country Link
JP (1) JP3782037B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102879272A (en) * 2012-09-29 2013-01-16 长安大学 Method for evaluating damage self-healing capacity of asphalt mortar
CN105300801A (en) * 2014-08-02 2016-02-03 同济大学 Evaluation method of self-repairing effect of self-repairing cement-based material
CN109187186A (en) * 2018-09-21 2019-01-11 中国石油大学(华东) A kind of test method and system of polyethylene effective stress under ideal nondestructive state
KR102545151B1 (en) * 2022-12-26 2023-06-20 목포대학교산학협력단 strength test device for insulation panels of extremely low temperature cargo tank

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102879272A (en) * 2012-09-29 2013-01-16 长安大学 Method for evaluating damage self-healing capacity of asphalt mortar
CN105300801A (en) * 2014-08-02 2016-02-03 同济大学 Evaluation method of self-repairing effect of self-repairing cement-based material
CN109187186A (en) * 2018-09-21 2019-01-11 中国石油大学(华东) A kind of test method and system of polyethylene effective stress under ideal nondestructive state
CN109187186B (en) * 2018-09-21 2019-11-08 中国石油大学(华东) A kind of test method and system of polyethylene effective stress under ideal nondestructive state
KR102545151B1 (en) * 2022-12-26 2023-06-20 목포대학교산학협력단 strength test device for insulation panels of extremely low temperature cargo tank

Also Published As

Publication number Publication date
JP3782037B2 (en) 2006-06-07

Similar Documents

Publication Publication Date Title
US10870243B2 (en) Method and device for producing microstructures on optical fibers
US6839474B2 (en) Optical assembly for coupling with integrated optical devices and method for making
JP2006139276A (en) Curved optical device and method of fabrication
JP2011508253A (en) Optical element manufacturing
JPH1172649A (en) Manual optical fiber aligning device and method therefor
KR20010091066A (en) Apparatus and method for measuring residual stress and photoelastic effect of optical fiber
KR101149103B1 (en) Property testing apparatus for photocurable resin, retainer used in the testing apparatus and property testing method
US7512305B2 (en) Precision optical fiber clamp
KR20030023508A (en) Internally Marked Quartz Glass, Quartz Glass Substrate for Optical Member, and Marking Method
US20190293916A1 (en) Objective lens attachment
JP2004012332A (en) Method for evaluating material strength and material strength testing apparatus
JPH04270304A (en) Fused fiber optic coupler
TWI230808B (en) Optical devices and methods of manufacture
US20040026803A1 (en) Process for producing polymer optical waveguide and producing apparatus therefor
JP2004163147A (en) Method for manufacturing optical propagation element probe for near-field microscope
Liu et al. Gecko-inspired self-adhesive packaging for strain-free temperature sensing based on optical fibre Bragg gratings
Tyas et al. Design and production of DESI slit assemblies
US20050109177A1 (en) Rotary large diameter fiber cleaver
JP2004117185A (en) Material strength evaluating method
JP2019012196A (en) Cemented lens and on-vehicle camera
Smith et al. Development and characterization of a precisely adjustable fiber polishing arm
JP3352710B2 (en) Optical fiber array
EP1762838A1 (en) Sample stand arrangement for scanning type probe microscope
WO2022195729A1 (en) Laminate lens, optical unit, endoscope, and method for manufacturing optical unit
JPH1084105A (en) Fully contact image sensor and its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051018

A131 Notification of reasons for refusal

Effective date: 20051025

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20051221

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20060214

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060308

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20090317

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20110317

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7