JP2004010842A - Polylactic acid resin composition - Google Patents

Polylactic acid resin composition Download PDF

Info

Publication number
JP2004010842A
JP2004010842A JP2002169429A JP2002169429A JP2004010842A JP 2004010842 A JP2004010842 A JP 2004010842A JP 2002169429 A JP2002169429 A JP 2002169429A JP 2002169429 A JP2002169429 A JP 2002169429A JP 2004010842 A JP2004010842 A JP 2004010842A
Authority
JP
Japan
Prior art keywords
polylactic acid
resin composition
acid resin
weight
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002169429A
Other languages
Japanese (ja)
Inventor
Shigeru Matsuo
松尾 茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Petrochemical Co Ltd
Original Assignee
Idemitsu Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Petrochemical Co Ltd filed Critical Idemitsu Petrochemical Co Ltd
Priority to JP2002169429A priority Critical patent/JP2004010842A/en
Publication of JP2004010842A publication Critical patent/JP2004010842A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a biodegradable polylactic acid resin composition which is flexibilized without detriment to transparency and biodegradability inherent in polylactic acid, has good moldability, and is useful as a molding material for such as structures, films or sheets. <P>SOLUTION: The polylactic acid resin composition contains (A) polylactic acid and (B) and an alkyl acrylate oligomer having structural units each represented by formula (I) (wherein R is a 1-3C alkyl group). <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ポリ乳酸樹脂組成物に関する。さらに詳しくは、本発明は、ポリ乳酸が本来有する透明性及び生分解性を損なうことなく、柔軟性が付与され、良好な成形性を有し、各種用途に用いられるフィルム、シート、構造体などの成形材料として有用な生分解性を有するポリ乳酸樹脂組成物に関するものである。
【0002】
【従来の技術】
近年、地球環境問題への関心が高まるに伴い、環境適応型プラスチックとして、使用後は生ごみなどと一緒に堆肥などにして利用でき、処理がしやすい素材である生分解性樹脂が注目され、一部がすでに実用化されている。この生分解性樹脂は、使用時には、通常のプラスチックと同様の機能を発揮するが、使用後は自然界に存在する微生物や分解酵素によって分解され、最終的に水と二酸化炭素になる性質を有している。また、焼却しても発生熱量が低いので焼却炉を傷付けず、ダイオキシンなどの有害物質の排出がない上、堆肥を作るコンポスト化装置の中では、分解がさらに速くなるなどの特性も有している。
【0003】
該生分解性樹脂には、大きく分けて化学合成系、微生物系、天然物利用系の三種があり、化学合成系としては、例えばポリカプロラクトン系、ポリ乳酸系、ポリブチレンサクシネート系、ポリグリコール酸系、ポリビニルアルコール系などがある。一方、微生物系としては、例えばポリ3−ヒドロキシブチレート、3−ヒドロキシブチレートと3−ヒドロキシバリレートの共重合ポリエステル、ポリアミノ酸などがあり、天然物利用系としては、例えば修飾澱粉、酢酸セルロース、キトサン、アルギン酸などの利用が挙げられる。これらの生分解性樹脂の中で、大量生産が可能で、コスト的に有利なことから、現在、化学合成系の脂肪族ポリエステル系生分解性樹脂であるポリカプロラクトン系、ポリ乳酸系、ポリブチレンサクシネート系などを中心に市場開拓が進められている。
【0004】
前記化学合成系の中で、特にポリ乳酸は、トウモロコシなどの植物を発酵して得られる乳酸を原料として製造され、そして微生物によって水と二酸化炭素に分解され、再び植物の育成を助けるという連鎖性を有することから、バイオリサイクル型として有力視されている。
ところで、このポリ乳酸は、透明性に優れているものの、結晶性樹脂であって、硬くて脆く、成形しにくいなどの欠点を有している。したがって、このような欠点をなくすために、共重合したり、あるいは可塑剤を添加する方法などが試みられている。しかしながら、共重合する方法においては、得られる乳酸共重合体は、結晶性が失われ耐熱性が著しく損なわれたり、引張り強度や弾性率が低下したりするなどの問題がある。また、可塑剤を添加する方法においても、ポリ乳酸の特徴である透明性が損なわれたり、あるいは可塑剤がブリードアウトしたり、ブレンド時に発煙が生じたり、可塑化効果が不充分であるなどの問題を有している。
【0005】
【発明が解決しようとする課題】
本発明は、このような状況下で、ポリ乳酸が本来有する透明性及び生分解性を損なうことなく、柔軟性が付与され、良好な成形性を有し、フィルム、シート、構造体などの成形材料として有用な生分解性を有するポリ乳酸樹脂組成物を提供することを目的とするものである。
【0006】
【課題を解決するための手段】
本発明者は、前記目的を達成するために鋭意研究を重ねた結果、アルキル基の炭素数が1〜3のアクリル酸アルキルエステル系オリゴマーは、ポリ乳酸との相溶性が良好であって、ポリ乳酸にブレンドすることで、優れた可塑化効果を発揮すると共に、ブリードアウトすることがなく、ポリ乳酸の透明性及び生分解性を損なわずに、柔軟性が付与され、良好な成形性を有するポリ乳酸樹脂組成物が得られることを見出した。本発明は、かかる知見に基づいて完成したものである。
すなわち、本発明は、
(1)(A)ポリ乳酸と、(B)一般式(I)
【0007】
【化2】

Figure 2004010842
【0008】
(式中、Rは炭素数1〜3のアルキル基を示す。)
で表される構成単位を有するアクリル酸アルキルエステル系オリゴマーを含むことを特徴とするポリ乳酸樹脂組成物、
(2)(A)成分100重量部当たり、(B)成分10〜120重量部を含む上記(1)のポリ乳酸樹脂組成物、及び
(3)(B)成分のアクリル酸アルキルエステル系オリゴマーが、数平均分子量200〜3000のものである上記(1)、(2)のポリ乳酸樹脂組成物、
を提供するものである。
【0009】
【発明の実施の形態】
本発明のポリ乳酸樹脂組成物においては、(A)成分としてポリ乳酸が用いられる。このポリ乳酸の原料である乳酸としては、L形、D形、ラセミ形のいずれを用いてもよく、また、化学合成法及び発酵法のいずれの方法で得られたものも用いることができるが、バイオリサイクルの観点から、トウモロコシなどの澱粉を乳酸発酵させて得られたものが好ましい。
本発明で用いるポリ乳酸は、前記乳酸を原料とし、(1)環化反応によって得られたラクチドを開環重合させてポリマーを得る二段階プロセス、及び(2)乳酸を直接重合させてポリマーを得る一段階プロセス、のいずれの方法によって得られたものであってもよい。
前記(1)の二段階プロセスは、以下に示す反応式に従って、高分子量のポリ乳酸が得られる。
【0010】
【化3】
Figure 2004010842
【0011】
(m及びnは重合度である。)
まず、乳酸(II)を自己縮合重合反応させて、低分子量ポリ乳酸(III)を得たのち、この低分子量ポリ乳酸(III)を解重合して、環状ジエステルであるラクチド(IV)を得る。次いでこのラクチド(IV)を開環重合させることにより、高分子量ポリ乳酸(V)が得られる。
本発明で用いるポリ乳酸の重量平均分子量は、通常10万〜25万、好ましくは13万〜20万の範囲である。また、融点は、通常130〜160℃程度であり、ガラス転移温度は、通常50〜60℃程度である。
本発明のポリ乳酸樹脂組成物においては、(B)成分としてアクリル酸アルキルエステル系オリゴマーが用いられる。このアクリル酸アルキルエステル系オリゴマーは、一般式
【0012】
【化4】
Figure 2004010842
【0013】
(式中、Rは炭素数1〜3のアルキル基を示す。)
で表される構成単位を有するものである。一般式(I)において、Rで示されるアルキル基の炭素数が4以上のオリゴマーは、ポリ乳酸との相溶性に劣り、該オリゴマーをポリ乳酸にブレンドしても、本発明の目的が達せられない。
当該アクリル酸アルキルエステル系オリゴマーは、原料単量体として、アクリル酸メチル、アクリル酸エチル、アクリル酸n−プロピル及びアクリル酸イソプロピルの中から選ばれる少なくとも一種のアクリル酸アルキルエステルを用い、公知の方法、例えば適当な有機溶剤中において、有機過酸化物やアゾビスイソブチロニトリルなどのアゾ系化合物等のラジカル重合開始剤及び適当な連鎖移動剤の存在下に、40〜90℃程度の温度で重合させることにより、得ることができる。
【0014】
本発明においては、該(B)成分のアクリル酸アルキルエステル系オリゴマーの数平均分子量は200〜3000の範囲が好ましい。この数平均分子量が上記範囲を逸脱するものでは、本発明の目的が充分に達せられない。より好ましい数平均分子量は、250〜800の範囲である。なお、上記数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法により測定したポリスチレン換算の値である。
このようなアクリル酸アルキルエステル系オリゴマーは、耐候性に優れ、かつ無害であることが知られており、またポリ乳酸との相溶性を有していることから、ポリ乳酸に対する柔軟性付与剤として、優れた素材となる。
当該アクリル酸アルキルエステル系オリゴマーは、本発明の目的が損なわれない範囲で、前記のアクリル酸アルキルエステルと、それと共重合可能な単量体、例えばスチレン、ビニルアセテート、メタクリル酸エステルなどとの共重合体であってもよい。
【0015】
本発明においては、(B)成分として、前記アクリル酸アルキルエステル系オリゴマーを一種単独で用いてもよく、二種以上組み合わせて用いてもよい。また、その配合量は、前記(A)成分のポリ乳酸100重量部に対し、10〜120重量部の範囲であることが好ましい。この配合量が10重量部未満では柔軟性付与効果が充分に発揮されないおそれがあり、一方120重量部を超えると得られる樹脂組成物の機械的物性が著しく低下する原因となる。この(B)成分のより好ましい配合量は、10〜80重量部の範囲である。
【0016】
本発明のポリ乳酸樹脂組成物においては、本発明の目的が損なわれない範囲で、所望により、各種添加剤、例えば酸化防止剤、紫外線吸収剤、熱安定剤、光安定剤、着色剤、発泡剤、帯電防止剤、フィラーなどを適宜配合することができる。
本発明のポリ乳酸樹脂組成物の調製方法としては特に制限はなく、従来公知の方法を用いることができる。例えば溶融混練法や溶剤に溶解して混合する方法などにより、ポリ乳酸樹脂組成物を調製することができるが、これらの方法の中で、溶融混練法が好ましい。この溶融混練法を適用する場合には、前記の(A)成分、(B)成分及び所望により用いられる各種添加剤を配合し、単軸押出機や多軸押出機、ニーダー、バンバリーミキサーなどを用い、180℃以上の温度で溶融混練することが好ましい。
【0017】
このようにして得られたポリ乳酸樹脂組成物は、ポリ乳酸が本来有する透明性及び生分解性が損なわれずに、柔軟性が付与され、良好な成形性を有し、従来公知の各種成形方法、例えば射出成形、押出成形、プレス成形などにより、フィルム、シート、構造体などを容易に作製することができる。
本発明のポリ乳酸樹脂組成物は生分解性素材として、ごみ袋や紙おむつなどの生活、衛生資材分野、農業用マルチフィルム、育苗ポットなどの農業資材分野、食品トレーや食品用包装材などの食品資材分野、その他一般包装、ブリスター包装、シュリンクフィルム、磁気カード、サニタリー用品などに用いることができる。
【0018】
【実施例】
次に、本発明を実施例により、さらに詳細に説明するが、本発明はこれらの例によってなんら限定されるものではない。
なお、各例における諸特性は、以下に示す要領に従って測定した。
【0019】
(1)相溶性
樹脂組成物を目視観察し、ポリ乳酸とアクリル酸アルキルエステル系オリゴマーとの相溶性を評価した。
(2)ガラス転移温度(Tg)
ガラス転移温度測定
装置:セイコー電子工業(株)製 DSC220C型
測定雰囲気:窒素(流量100ml/min)
室温から10℃/分の速度で200℃まで上げ、この温度で10分ホールドする。次に200℃から30℃/分の条件で−100℃まで降温し、10分ホールドする。次に−100℃から200℃まで30℃/分で温度を上昇させ、この際にガラス転移温度を測定した。
(3)破断点応力、破断伸び
得られたシートについて、JIS K7113に準拠し、破断点応力及び破断伸びを測定した。
(4)ヘイズ値
得られたシートについて、JIS K7105に準拠し、ヘイズ値を測定した。
【0020】
実施例1
ポリ乳酸[重量平均分子量(Mw):17.3万、数平均分子量(Mn):7.5万、ガラス転移温度(Tg):60℃]100重量部に、Mnが550のエチルアクリレートオリゴマー20重量部を配合し、200℃で溶融混練することにより、樹脂組成物を調製した。次に、この樹脂組成物を熱プレスして、厚さ1.0mmの物性測定用シートを作製した。
諸特性を第1表に示す。
【0021】
実施例2、3
実施例1において、エチルアクリレートオリゴマーの配合量を第1表に示すように変えた以外は、実施例1と同様に実施した。諸特性を第1表に示す。
【0022】
比較例1
ポリ乳酸[Mw:17.3万、Mn:7.5万、ガラス転移温度(Tg):60℃]単独について、諸特性を求め、その結果を第1表に示した。
【0023】
【表1】
Figure 2004010842
【0024】
実施例4
ポリ乳酸[Mw:17.3万、Mn:7.5万、ガラス転移温度(Tg):60℃]100重量部に、Mnが1100のメチルアクリレートオリゴマー20重量部を配合し、200℃で溶融混練することにより、樹脂組成物を調製した。次に、この樹脂組成物を熱プレスして、厚さ1.0mmの物性測定用シートを作製した。
諸特性を第2表に示す。
【0025】
実施例5、6
実施例4において、メチルアクリレートオリゴマーの配合量を第2表に示すように変えた以外は、実施例4と同様に実施した。諸特性を第2表に示すと共に、比較例1のポリ乳酸単独の場合の諸特性を併記した。
【0026】
【表2】
Figure 2004010842
【0027】
比較例2
ポリ乳酸[Mw:17.3万、Mn:7.5万、ガラス転移温度(Tg):60℃]100重量部に、Mnが700のブチルアクリレート20重量部を配合し、200℃で30分間溶融混練を行ったが、ポリ乳酸とブチルアクリレートオリゴマーは相溶化せず、ポリ乳酸の塊とブチルアクリレートオリゴマーの液体とが別々に存在する状態となった。
【0028】
【発明の効果】
本発明によれば、ポリ乳酸が本来有する透明性及び生分解性を損なうことなく、柔軟性が付与され、良好な成形性を有し、各種用途に用いられるフィルム、シート、構造体などの成形材料として有用な生分解性を有するポリ乳酸樹脂組成物を提供することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a polylactic acid resin composition. More specifically, the present invention provides films, sheets, structures, and the like, which are imparted with flexibility and have good moldability without impairing the inherent transparency and biodegradability of polylactic acid. The present invention relates to a biodegradable polylactic acid resin composition useful as a molding material.
[0002]
[Prior art]
In recent years, with the increasing interest in global environmental issues, biodegradable resins, which are easy-to-treat materials that can be used as compost together with garbage after use as environmentally-friendly plastics, have attracted attention, Some are already in practical use. When used, this biodegradable resin exhibits the same function as ordinary plastic, but after use it is degraded by microorganisms and degrading enzymes that exist in nature and eventually becomes water and carbon dioxide. ing. In addition, since the amount of heat generated is low even when incinerated, it does not damage the incinerator, there is no emission of harmful substances such as dioxin, and in the composting equipment that makes compost, it has the characteristics of faster decomposition. I have.
[0003]
The biodegradable resin is roughly classified into three types: a chemically synthesized system, a microbial system, and a natural product utilization system. Examples of the chemically synthesized system include polycaprolactone, polylactic acid, polybutylene succinate, and polyglycol. Acid-based, polyvinyl alcohol-based and the like. On the other hand, examples of microbial systems include poly-3-hydroxybutyrate, copolymerized polyesters of 3-hydroxybutyrate and 3-hydroxyvalerate, and polyamino acids. Examples of natural product-based systems include modified starch and cellulose acetate. , Chitosan, alginic acid and the like. Among these biodegradable resins, because they can be mass-produced and are cost-effective, they are currently chemically synthesized aliphatic polyester-based biodegradable resins such as polycaprolactone, polylactic acid, and polybutylene. Market development is being promoted, mainly for succinates.
[0004]
Among the above-mentioned chemical synthesis systems, polylactic acid is particularly produced using lactic acid obtained by fermenting plants such as corn as raw materials, and is decomposed into water and carbon dioxide by microorganisms, thereby helping to grow plants again. Therefore, it is regarded as a promising biorecycling type.
By the way, although this polylactic acid is excellent in transparency, it is a crystalline resin and has drawbacks such as being hard, brittle, and difficult to mold. Therefore, in order to eliminate such a defect, a method of copolymerizing or adding a plasticizer has been attempted. However, in the copolymerization method, the obtained lactic acid copolymer has problems such as loss of crystallinity, remarkably impaired heat resistance, and decreased tensile strength and elastic modulus. Also, in the method of adding a plasticizer, the transparency characteristic of polylactic acid is impaired, or the plasticizer bleeds out, smoke is generated at the time of blending, and the plasticizing effect is insufficient. Have a problem.
[0005]
[Problems to be solved by the invention]
Under such circumstances, the present invention provides flexibility and good moldability without impairing the inherent transparency and biodegradability of polylactic acid, and forms films, sheets, structures and the like. It is an object of the present invention to provide a biodegradable polylactic acid resin composition useful as a material.
[0006]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to achieve the above object, and as a result, the alkyl acrylate oligomer having 1 to 3 carbon atoms in the alkyl group has good compatibility with polylactic acid, By blending with lactic acid, it exerts an excellent plasticizing effect, without bleeding out, without impairing the transparency and biodegradability of polylactic acid, imparts flexibility and has good moldability It has been found that a polylactic acid resin composition can be obtained. The present invention has been completed based on such findings.
That is, the present invention
(1) (A) polylactic acid and (B) a general formula (I)
[0007]
Embedded image
Figure 2004010842
[0008]
(In the formula, R represents an alkyl group having 1 to 3 carbon atoms.)
A polylactic acid resin composition comprising an acrylic acid alkyl ester-based oligomer having a structural unit represented by
(2) The polylactic acid resin composition of the above (1) containing 10 to 120 parts by weight of the component (B) per 100 parts by weight of the component (A), and the alkyl acrylate oligomer (3) of the component (B) are used. The polylactic acid resin composition according to the above (1) or (2), which has a number average molecular weight of 200 to 3000;
Is provided.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
In the polylactic acid resin composition of the present invention, polylactic acid is used as the component (A). As the lactic acid as a raw material of this polylactic acid, any of L-form, D-form and racemic-form may be used, and those obtained by any of a chemical synthesis method and a fermentation method can be used. From the viewpoint of biorecycling, those obtained by subjecting starch such as corn to lactic acid fermentation are preferred.
The polylactic acid used in the present invention is obtained by using the above lactic acid as a raw material, (1) a two-step process in which lactide obtained by a cyclization reaction is polymerized by ring-opening polymerization, and (2) a polymer obtained by directly polymerizing lactic acid. It may be obtained by any method of the one-step process to obtain.
In the two-step process (1), high-molecular-weight polylactic acid is obtained according to the following reaction formula.
[0010]
Embedded image
Figure 2004010842
[0011]
(M and n are degrees of polymerization.)
First, lactic acid (II) is subjected to a self-condensation polymerization reaction to obtain low molecular weight polylactic acid (III), and then depolymerized to obtain lactide (IV) which is a cyclic diester. . Then, the lactide (IV) is subjected to ring-opening polymerization to obtain a high molecular weight polylactic acid (V).
The weight average molecular weight of the polylactic acid used in the present invention is usually in the range of 100,000 to 250,000, preferably 130,000 to 200,000. The melting point is usually about 130 to 160 ° C, and the glass transition temperature is usually about 50 to 60 ° C.
In the polylactic acid resin composition of the present invention, an alkyl acrylate oligomer is used as the component (B). This acrylic acid alkyl ester oligomer has the general formula:
Embedded image
Figure 2004010842
[0013]
(In the formula, R represents an alkyl group having 1 to 3 carbon atoms.)
Having a structural unit represented by In the general formula (I), an oligomer having an alkyl group represented by R having 4 or more carbon atoms has poor compatibility with polylactic acid, and the object of the present invention can be achieved even when the oligomer is blended with polylactic acid. Absent.
The acrylic acid alkyl ester-based oligomer uses, as a raw material monomer, at least one kind of acrylic acid alkyl ester selected from methyl acrylate, ethyl acrylate, n-propyl acrylate and isopropyl acrylate, by a known method. For example, in a suitable organic solvent, in the presence of a radical polymerization initiator such as an organic peroxide or an azo compound such as azobisisobutyronitrile and a suitable chain transfer agent, at a temperature of about 40 to 90 ° C. It can be obtained by polymerizing.
[0014]
In the present invention, the number average molecular weight of the alkyl acrylate oligomer of the component (B) is preferably in the range of 200 to 3,000. If the number average molecular weight is out of the above range, the object of the present invention cannot be sufficiently achieved. A more preferred number average molecular weight is in the range of 250-800. The number average molecular weight is a value in terms of polystyrene measured by a gel permeation chromatography (GPC) method.
Such acrylic acid alkyl ester oligomers are known to be excellent in weather resistance and harmless, and because they have compatibility with polylactic acid, they are used as a flexibility-imparting agent for polylactic acid. , Will be an excellent material.
The alkyl acrylate oligomer is a copolymer of the alkyl acrylate and a monomer copolymerizable therewith, such as styrene, vinyl acetate, and methacrylic ester, as long as the object of the present invention is not impaired. It may be a polymer.
[0015]
In the present invention, as the component (B), the acrylic acid alkyl ester-based oligomer may be used alone or in a combination of two or more. Further, the compounding amount is preferably in the range of 10 to 120 parts by weight based on 100 parts by weight of the polylactic acid of the component (A). If the amount is less than 10 parts by weight, the effect of imparting flexibility may not be sufficiently exerted. On the other hand, if the amount exceeds 120 parts by weight, the mechanical properties of the obtained resin composition may be significantly reduced. A more preferred amount of the component (B) is in the range of 10 to 80 parts by weight.
[0016]
In the polylactic acid resin composition of the present invention, various additives such as an antioxidant, an ultraviolet absorber, a heat stabilizer, a light stabilizer, a colorant, and a foaming agent may be used as long as the object of the present invention is not impaired. Agents, antistatic agents, fillers and the like can be appropriately compounded.
The method for preparing the polylactic acid resin composition of the present invention is not particularly limited, and a conventionally known method can be used. For example, the polylactic acid resin composition can be prepared by a melt-kneading method or a method of dissolving and mixing in a solvent, and among these methods, the melt-kneading method is preferable. When this melt kneading method is applied, the components (A) and (B) and various additives used as desired are blended, and a single-screw extruder, a multi-screw extruder, a kneader, a Banbury mixer, or the like is used. It is preferred to use and melt-knead at a temperature of 180 ° C. or higher.
[0017]
The polylactic acid resin composition thus obtained is imparted with flexibility and has good moldability without impairing the inherent transparency and biodegradability of polylactic acid, and various conventionally known molding methods. For example, films, sheets, structures, and the like can be easily produced by, for example, injection molding, extrusion molding, press molding, and the like.
The polylactic acid resin composition of the present invention can be used as a biodegradable material, such as garbage bags and disposable diapers, for living and sanitary materials, agricultural multi-films, agricultural materials such as seedling pots, and foods such as food trays and food packaging. It can be used for material field, other general packaging, blister packaging, shrink film, magnetic card, sanitary goods, etc.
[0018]
【Example】
Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
In addition, various characteristics in each example were measured in accordance with the following procedure.
[0019]
(1) The compatible resin composition was visually observed to evaluate the compatibility between the polylactic acid and the alkyl acrylate oligomer.
(2) Glass transition temperature (Tg)
Glass transition temperature measuring device: DSC220C type manufactured by Seiko Electronic Industry Atmosphere: Nitrogen (flow rate 100 ml / min)
The temperature is raised from room temperature to 200 ° C. at a rate of 10 ° C./min and held at this temperature for 10 minutes. Next, the temperature is lowered from 200 ° C. to −100 ° C. under a condition of 30 ° C./min, and the temperature is held for 10 minutes. Next, the temperature was increased at a rate of 30 ° C./min from −100 ° C. to 200 ° C., and at this time, the glass transition temperature was measured.
(3) Stress at Break and Elongation at Break The resulting sheet was measured for stress at break and elongation at break in accordance with JIS K7113.
(4) Haze value The haze value of the obtained sheet was measured in accordance with JIS K7105.
[0020]
Example 1
Ethyl acrylate oligomer 20 having Mn of 550 is added to 100 parts by weight of polylactic acid [weight average molecular weight (Mw): 173,000, number average molecular weight (Mn): 75,000, glass transition temperature (Tg): 60 ° C] A resin composition was prepared by blending parts by weight and melt-kneading at 200 ° C. Next, the resin composition was hot-pressed to produce a physical property measurement sheet having a thickness of 1.0 mm.
Table 1 shows various characteristics.
[0021]
Examples 2 and 3
Example 1 was carried out in the same manner as in Example 1 except that the amount of the ethyl acrylate oligomer was changed as shown in Table 1. Table 1 shows various characteristics.
[0022]
Comparative Example 1
Various properties of polylactic acid [Mw: 173,000, Mn: 75,000, glass transition temperature (Tg): 60 ° C] alone were determined, and the results are shown in Table 1.
[0023]
[Table 1]
Figure 2004010842
[0024]
Example 4
100 parts by weight of polylactic acid [Mw: 173,000, Mn: 75,000, glass transition temperature (Tg): 60 ° C], and 20 parts by weight of a methyl acrylate oligomer having Mn of 1100 are blended and melted at 200 ° C. By kneading, a resin composition was prepared. Next, this resin composition was hot-pressed to produce a 1.0 mm thick sheet for measuring physical properties.
Table 2 shows various characteristics.
[0025]
Examples 5 and 6
Example 4 was carried out in the same manner as in Example 4, except that the amount of the methyl acrylate oligomer was changed as shown in Table 2. Various characteristics are shown in Table 2, and various characteristics of Comparative Example 1 in the case of polylactic acid alone are also shown.
[0026]
[Table 2]
Figure 2004010842
[0027]
Comparative Example 2
To 100 parts by weight of polylactic acid [Mw: 173,000, Mn: 75,000, glass transition temperature (Tg): 60 ° C], 20 parts by weight of butyl acrylate having Mn of 700 are blended, and the mixture is mixed at 200 ° C for 30 minutes. Although the melt kneading was performed, the polylactic acid and the butyl acrylate oligomer were not compatibilized, and the lump of polylactic acid and the liquid of the butyl acrylate oligomer were present separately.
[0028]
【The invention's effect】
According to the present invention, flexibility is imparted without impairing the inherent transparency and biodegradability of polylactic acid, has good moldability, and forms films, sheets, structures and the like used for various applications. A polylactic acid resin composition having biodegradability useful as a material can be provided.

Claims (3)

(A)ポリ乳酸と、(B)一般式(I)
Figure 2004010842
(式中、Rは炭素数1〜3のアルキル基を示す。)
で表される構成単位を有するアクリル酸アルキルエステル系オリゴマーを含むことを特徴とするポリ乳酸樹脂組成物。
(A) polylactic acid and (B) a general formula (I)
Figure 2004010842
(In the formula, R represents an alkyl group having 1 to 3 carbon atoms.)
A polylactic acid resin composition comprising an alkyl acrylate oligomer having a structural unit represented by the formula:
(A)成分100重量部当たり、(B)成分10〜120重量部を含む請求項1記載のポリ乳酸樹脂組成物。The polylactic acid resin composition according to claim 1, comprising 10 to 120 parts by weight of the component (B) per 100 parts by weight of the component (A). (B)成分のアクリル酸アルキルエステル系オリゴマーが、数平均分子量200〜3000のものである請求項1又は2記載のポリ乳酸樹脂組成物。The polylactic acid resin composition according to claim 1 or 2, wherein the alkyl acrylate oligomer (B) has a number average molecular weight of 200 to 3,000.
JP2002169429A 2002-06-11 2002-06-11 Polylactic acid resin composition Pending JP2004010842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002169429A JP2004010842A (en) 2002-06-11 2002-06-11 Polylactic acid resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002169429A JP2004010842A (en) 2002-06-11 2002-06-11 Polylactic acid resin composition

Publications (1)

Publication Number Publication Date
JP2004010842A true JP2004010842A (en) 2004-01-15

Family

ID=30435989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002169429A Pending JP2004010842A (en) 2002-06-11 2002-06-11 Polylactic acid resin composition

Country Status (1)

Country Link
JP (1) JP2004010842A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005123831A1 (en) * 2004-06-16 2005-12-29 Unitika Ltd. Polylactic acid-containing resin composition and molded body obtained from same
JP2006045487A (en) * 2004-01-09 2006-02-16 Mitsubishi Rayon Co Ltd Thermoplastic resin composition
JP2006316137A (en) * 2005-05-11 2006-11-24 Mitsubishi Plastics Ind Ltd Heat-shrinkable film and molded article and container using the same film
WO2007115081A2 (en) 2006-03-31 2007-10-11 3M Innovative Properties Company Polylactic acid-containing resin compositions
WO2010088067A1 (en) 2009-01-30 2010-08-05 3M Innovative Properties Company Polylactic acid-containing resin compositions and films
JP2010242065A (en) * 2009-03-17 2010-10-28 Mitsubishi Rayon Co Ltd Non-petroleum-based thermoplastic resin composition and molding
JP2010270171A (en) * 2009-05-19 2010-12-02 Mitsubishi Rayon Co Ltd Thermoplastic resin composition and molded article
US10434493B2 (en) 2015-12-18 2019-10-08 3M Innovative Properties Company Metal-containing sorbents for nitrogen-containing compounds
US10597564B2 (en) 2015-12-22 2020-03-24 3M Innovative Properties Company Internally incorporated phenolic resins in water-based (meth)acrylate adhesive compositions, pre-adhesive reaction mixtures, methods, and articles
US10759980B1 (en) 2015-12-22 2020-09-01 3M Innovative Properties Company Packaged pre-adhesive composition including a polylactic acid-containing packaging material, adhesives, and articles

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006045487A (en) * 2004-01-09 2006-02-16 Mitsubishi Rayon Co Ltd Thermoplastic resin composition
WO2005123831A1 (en) * 2004-06-16 2005-12-29 Unitika Ltd. Polylactic acid-containing resin composition and molded body obtained from same
JP2006316137A (en) * 2005-05-11 2006-11-24 Mitsubishi Plastics Ind Ltd Heat-shrinkable film and molded article and container using the same film
US8450420B2 (en) 2006-03-31 2013-05-28 3M Innovative Properties Company Polylactic acid-containing resin compositions
WO2007115081A2 (en) 2006-03-31 2007-10-11 3M Innovative Properties Company Polylactic acid-containing resin compositions
US9527972B2 (en) 2009-01-30 2016-12-27 3M Innovative Properties Company Release film formed from polylactic acid-containing resin
US9090771B2 (en) 2009-01-30 2015-07-28 3M Innovative Properties Company Release film formed from polylactic acid-containing resin
WO2010088067A1 (en) 2009-01-30 2010-08-05 3M Innovative Properties Company Polylactic acid-containing resin compositions and films
JP2010242065A (en) * 2009-03-17 2010-10-28 Mitsubishi Rayon Co Ltd Non-petroleum-based thermoplastic resin composition and molding
JP2010270171A (en) * 2009-05-19 2010-12-02 Mitsubishi Rayon Co Ltd Thermoplastic resin composition and molded article
US10434493B2 (en) 2015-12-18 2019-10-08 3M Innovative Properties Company Metal-containing sorbents for nitrogen-containing compounds
US10597564B2 (en) 2015-12-22 2020-03-24 3M Innovative Properties Company Internally incorporated phenolic resins in water-based (meth)acrylate adhesive compositions, pre-adhesive reaction mixtures, methods, and articles
US10759980B1 (en) 2015-12-22 2020-09-01 3M Innovative Properties Company Packaged pre-adhesive composition including a polylactic acid-containing packaging material, adhesives, and articles
US11401447B2 (en) 2015-12-22 2022-08-02 3M Innovative Properties Company Internally incorporated phenolic resins in water-based (meth)acrylate adhesive compositions, pre-adhesive reaction mixtures, methods, and articles

Similar Documents

Publication Publication Date Title
US5834582A (en) Degradable polymer composition
JP3316972B2 (en) Lactic acid based polymer composition
CN101235156B (en) Polylactic acid/thermoplastic starch extrusion blow molding film and its producing method and application
CN108047658B (en) Biodegradable polyester agricultural mulching film
HUT64576A (en) Thermoplastic materials to be produced from lactides and method for it&#39;s production, method for producing of degradable polyolefinic - compound, compound for replacing polystyrene, method for producing of degradable, thermoplastic compound
CA1339026C (en) Degradable thermoplastics from lactides
WO1992004413A1 (en) Packaging thermoplastics from lactic acid
JPH06500819A (en) Film containing polyhydroxy acid and compatibilizer
JP2007269995A (en) Polylactic acid-containing resin composition, polylactic acid-containing resin film, and polylactic acid-containing resin fiber
JP2007099952A (en) Self-adhesive polylactic acid resin soft film
JPH11302521A (en) Polylactic acid composition and its molding product
JP2004010842A (en) Polylactic acid resin composition
JP3785904B2 (en) Polylactic acid composition and method for producing the same
JP2004010843A (en) Polylactic acid resin composition
JP3773335B2 (en) Biodegradable aliphatic polyester resin-starch composition
JP7251250B2 (en) Resin composition for film molding and film made of the resin composition
JP2000327847A (en) Resin composition
JPH06184417A (en) Lactic acid-type polymer composition
JPH0859949A (en) Resin composition having excellent hydrolyzing property
Sungsanit Rheological and mechanical behaviour of poly (lactic acid)/polyethylene glycol blends
JP2005154524A (en) Aliphatic polyester resin composition and film
JP5145531B2 (en) Polylactic acid composition and polylactic acid molded article
CN107987438B (en) Composition for packaging film, method for producing same, and packaging film
CN114410085B (en) Full-biodegradation toughened plasticized polyglycolic acid material and preparation method thereof
JP2001240731A (en) Resin composition

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041208

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050329

A977 Report on retrieval

Effective date: 20070509

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A02 Decision of refusal

Effective date: 20071127

Free format text: JAPANESE INTERMEDIATE CODE: A02