JP2004010811A - Flame retardant resin composition and insulated electric wire using the same - Google Patents

Flame retardant resin composition and insulated electric wire using the same Download PDF

Info

Publication number
JP2004010811A
JP2004010811A JP2002168196A JP2002168196A JP2004010811A JP 2004010811 A JP2004010811 A JP 2004010811A JP 2002168196 A JP2002168196 A JP 2002168196A JP 2002168196 A JP2002168196 A JP 2002168196A JP 2004010811 A JP2004010811 A JP 2004010811A
Authority
JP
Japan
Prior art keywords
flame retardant
weight
resin composition
electric wire
retardant resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002168196A
Other languages
Japanese (ja)
Inventor
Yutaka Kobayashi
小林 裕
Masayo Uenoyama
上野山 眞代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2002168196A priority Critical patent/JP2004010811A/en
Publication of JP2004010811A publication Critical patent/JP2004010811A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flame retardant resin that can produce a non-halogen flame retardant insulated electric wire without pre-heating a conductor before extrusion processing and an insulated electric wire using the flame retardant resin. <P>SOLUTION: The flame retardant resin composition comprises (A) 30-60 wt% straight chain ultra low density polyethylene having a density of 0.880-0.908 g/cm<SP>3</SP>and a melt flow rate (MFR) of 0.5-4.0 g/10 min, (B) 40-70 wt% ethylene/vinyl acetate copolymer (EVA) or ethylene/ethyl acetate copolymer (EEA) having a comonomer content of 12-25 wt% and a melt flow rate (MFR) of 0.1-5.0 g/10 min and (C) as a flame retardant, a magnesium hydroxide added in an amount of 80-160 pts.wt. per 100 pts.wt. the resins (A+B). The insulated electric wire is produced by using the resin composition. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ハロゲンフリーの絶縁電線用に用いられる、難燃性樹脂組成物及びそれを用いた絶縁電線に関する。
【0002】
【従来の技術】
従来、絶縁電線には火災時に対する備えとして、難燃性が要求される。この為、難燃性を有するポリ塩化ビニル樹脂を用いた絶縁電線が多く使用されてきた。ところが、塩化ビニル樹脂は火災時にハロゲンガスを発生するため、ノンハロゲンの難燃性絶縁電線がこれに置き換えられてきた。ノンハロゲンの難燃性絶縁電線にはポリオレフィン系樹脂に金属水酸化物を加える手段が良く用いられる。
ポリエチレン系樹脂を用いる難燃性の絶縁電線もその一手段である。
【0003】
ポリエチレン系樹脂を絶縁体として用い、これを被覆することにより得られる絶縁電線において、絶縁体の引張り特性を良好にする目的から、被覆前にあらかじめ導体を予熱しておく必要があった。
【0004】
ポリエチレン系樹脂は結晶性であるために、冷えた導体と急に接触すると、導体との接触面で急激な結晶化が進行し、歪みが蓄積され、機械特性、特に破断伸びに影響を及ぼす。上記の不具合を回避し、絶縁体の機械特性を良好にする目的で、押出被覆の直前に導体を100℃前後に予熱し加工を行う。これは、導体を予熱することで、被覆の急冷を排除し、結晶化による歪みの蓄積を防止する効果が期待されるためである。
【0005】
【発明が解決しようとする課題】
導体を押出加工の直前で予熱する作業は、良好な特性を有する絶縁電線を製造する上で必要であるが、製造業者にとって工程上厄介な操作を伴う。押出し機直前にセットした加熱装置と、押出し速度に合わせてヒートアップする加熱速度の算定等による工程上の準備作業など、多くの前準備を必要とする。
【0006】
【課題を解決するための手段】
本発明者らは、こうした予熱作業なしにポリエチレン系樹脂を用いた絶縁電線を供給する検討を進め、以下の発明に至った。
すなわち、(A)密度0.880〜0.908g/cmで、190℃、2.16kg荷重におけるMFRが0.5〜4.0g/10minである直鎖状超低密度ポリエチレンを30〜60重量%、(B)コモノマー含量を12〜25重量%含み、190℃、2.16kg荷重におけるMFRが0.1〜5.0g/10minであるエチレン−酢酸ビニル共重合体(EVA)又はエチレン−酢酸エチル共重合体(EEA)を40〜70重量%、(C)難燃剤として、前記樹脂(A+B)100重量部に対し、水酸化マグネシウムを80〜160重量部加えてなる難燃性樹脂組成物を用いることにより、解決できた。
【0007】
直鎖状超低密度ポリエチレンは密度が0.908g/cm以下であれば導体予熱を必要としない。導体を予熱していない場合、密度が0.908g/cmを越えると伸び特性が悪化する。しかし、直鎖状超低密度ポリエチレンは主としてメタロセン系触媒を用い生産されるため、分子量分布が狭く、押出加工性に乏しい。また、直鎖状超低密度ポリエチレンの密度が0.880g/cm未満のものは、融点が75℃以下となり、樹脂自体の耐熱性が不足する。
【0008】
押出加工性を良好にし、且つ電線の難燃性を向上させるためには、コモノマーを含むEVA又はEEAをブレンドするのが良い。但しEVA又はEEAのブレンド量は、ポリエチレンの電気特性を損なわない範囲とするため、直鎖状超低密度ポリエチレンが30〜60重量%、コモノマーを含むEVA又はEEAを40〜70重量%の範囲にするとともに、コモノマーの含有量は、12〜25重量%を含むものを適用する。コモノマーの含有量が25重量%を越えるとEVA又はEEA自体の融点が75℃未満となり、耐熱性が不十分になる。12重量%未満ではブレンド量を40〜70重量%の範囲にした場合、仕上がり径が8φ以下の電線では、難燃性規格(JIS C3005)に不合格となる
【0009】
ブレンドされた樹脂(直鎖状超低密度ポリエチレンとEVA又はEEA)には難燃性を付与する必要が有るが、上記範囲においては水酸化マグネシウムを上記樹脂100重量部に対し、80〜160重量部加えるのがよい。特に水酸化マグネシウムとしては、海水を出発原料として合成されるもの或いは天然鉱物の粉砕により得られるものが何れも使用できるが、平均粒子径は1.0〜8.5μmの範囲にあるものが好ましい。あらかじめ種々の脂肪酸やシランカップリング剤等の表面処理剤により処理されていても、されていなくても、どちらも使用可能である。水酸化マグネシウムが80重量部未満では、難燃性規格(JIS C3005)に不合格となるサンプル数が増大する。160重量部を越えると、配合物の押出し時のスクリュー駆動系への負荷が大きくなり、また出来上がり後の特性としても引張り伸びが不十分の傾向になる。
【0010】
このような組み合わせにより、電気絶縁特性や機械的特性を満足させるには、直鎖状超低密度ポリエチレンの場合、190℃、2.16kg荷重におけるMFRが0.5〜4.0g/10minの範囲のものを用いると良い。同様にEVA又はEEAの場合は、190℃、2.16kg荷重におけるMFRが0.1〜5.0g/10minの範囲のものを用いると良い。
【0011】
特記すべき長所は、導体予熱が不要であるため、予熱で起こりがちな導体酸化を押さえることになり、絶縁体の引き抜き力が長期間低い値に保たれる効果を有する。
【0012】
【実施例】
(実施例1)表1に示す配合を用いて、樹脂組成物を作製した。ブレンドには150℃に設定したオープンロールミキサーを用い、出来上がった混練物をシートペレタイザでペレット状にした。このペレットを用い、径90mmφの押出し機を用いて1.6mmφの導体に0.8mmの被覆を行い、絶縁電線とした。電線の加工速度は150m/分に維持し、スクリューはフルフライトタイプを用いている。こうして出来た3.2mmφの絶縁電線を以下の試験に供した。
【0013】
(絶縁体引張り試験)JIS C3005−4.16に順じて実施。電線サンプルから導体を抜き取り、チューブ状の絶縁体とし、これを引張試験機にかけ、電気用品の規格値である強度10MPa以上、伸び350%以上のものには○、未満のものには×として評価。
(75℃耐熱性試験)JIS C3005−4.23に順じて実施。前記電線サンプルに75℃の雰囲気中で30分間10Nの荷重をかけ、負荷後の変形が絶縁体の厚さの10%以下であれば○、10%を越える場合は×として評価。
(燃焼性試験)JIS C3005−4.26に順じて実施。電線サンプルを300mm取り、60度の角度に傾斜させ、口径10mmのブンゼンバーナ(酸化炎が約130mm、還元炎が約35mmに調節)を用い、サンプルの下端から約20mmの位置に10秒間火をあて、その後静かに炎を取り去り、サンプルの燃焼状態を観察する。60秒以内に火が消え、且つ燃焼長が300mm未満であれば○、60秒以上まで燃えつづけるか、燃焼長が300mmを越える(全焼する)ものは×として評価。
【0014】
試験結果を合わせて表1に示す。この結果から配合1〜8の内、本発明の範囲である配合2、3、6、7を用いた絶縁電線は前記すべての試験に合格し○となった。
配合1を用いた絶縁電線は、直鎖状超低密度ポリエチレンの密度が小さく、耐熱性が不十分であった。配合4を用いた絶縁電線は、直鎖状超低密度ポリエチレンの密度が大きいため、押出し加工時に予熱が必要であった。また、引張り特性が不十分であった。配合5を用いた絶縁電線は、EVAのコモノマーが10重量%であったため、電線燃焼試験で不合格となった。配合8を用いた絶縁電線は、EVAのコモノマーが28重量%もあったため、融点が下がり、耐熱性不良となった。
【0015】
【表1】

Figure 2004010811
【0016】
(実施例2)実施例1と同様に表2に示す配合を用いて絶縁電線を作製した。出来上がった絶縁電線は、1.6mmφの導体で、0.8mmの被覆を施した3.2mmφである。この電線サンプルを実施例1で行った絶縁体引張り試験、燃焼性試験に供した。また、特に押出し加工時のスクリューにかかる負荷を見るために、スクリューの回転に必要な電流値を採取し、結果を表2に付記した。
【0017】
【表2】
Figure 2004010811
【0018】
表2の結果より、本発明の範囲にある配合10、配合11を用いた絶縁電線は試験にも合格し、負荷電流値も異常は見られなかった。
配合9を用いた絶縁電線は、配合中に含まれる水酸化マグネシウムが不足し、燃焼性試験で不合格となった。配合12を用いた絶縁電線は、配合中の水酸化マグネシウムの量が多いため、燃焼性試験は合格したが、押出し加工時に負荷電流値が大きく、押出し性はよくない。また、絶縁体引張り試験で不合格であった。以上の実施例から、本発明の範囲にある難燃性樹脂組成を用いた絶縁電線は燃焼性試験に合格する難燃性を示し、機械的特性である絶縁体引張り試験にも合格する。また、押出し加工時の作業性も特に問題なく、何よりも導体の予熱が不要である。
【0019】
【発明の効果】
本発明により、ハロゲンフリーの難燃性絶縁電線を作製するに最適な難燃性樹脂及びそれを用いた絶縁電線が提供できる。この難燃性樹脂は、電線製造時に導体を予熱すること無しに、直接導体に押出し被覆可能であり、作業性が良い。また、余熱を必要としないことで、導体表面の錆を押さえ、その結果として被覆除去抵抗を長期間にわたり低く保つことが出来る。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a flame-retardant resin composition used for halogen-free insulated wires and an insulated wire using the same.
[0002]
[Prior art]
Conventionally, insulated wires are required to have flame retardancy in preparation for a fire. For this reason, insulated wires using a flame-retardant polyvinyl chloride resin have been widely used. However, a halogen-free flame-retardant insulated wire has been replaced by a halogen-free flame-retardant electric wire because vinyl chloride resin generates a halogen gas in a fire. A means for adding a metal hydroxide to a polyolefin-based resin is often used for non-halogen flame-retardant insulated wires.
A flame-retardant insulated wire using a polyethylene-based resin is one such means.
[0003]
In an insulated wire obtained by using a polyethylene-based resin as an insulator and coating the same, it is necessary to preheat the conductor before coating in order to improve the tensile properties of the insulator.
[0004]
Since the polyethylene resin is crystalline, if it suddenly comes into contact with a cooled conductor, rapid crystallization proceeds at the contact surface with the conductor, strain is accumulated, and the mechanical properties, particularly the elongation at break, are affected. In order to avoid the above problems and improve the mechanical properties of the insulator, the conductor is preheated to about 100 ° C. and processed immediately before extrusion coating. This is because preheating the conductor is expected to have an effect of eliminating rapid cooling of the coating and preventing accumulation of strain due to crystallization.
[0005]
[Problems to be solved by the invention]
The operation of preheating the conductor immediately before extrusion processing is necessary for producing an insulated wire having good properties, but involves a cumbersome operation for the manufacturer. Many preparations are required, such as a heating device set immediately before the extruder, and a preparation work in the process by calculating a heating rate for heating up in accordance with the extrusion rate.
[0006]
[Means for Solving the Problems]
The present inventors have studied to supply an insulated wire using a polyethylene resin without such a preheating operation, and have reached the following invention.
That is, (A) a linear ultra-low-density polyethylene having a density of 0.880 to 0.908 g / cm 3 and an MFR of 0.5 to 4.0 g / 10 min at 190 ° C. and a load of 2.16 kg is 30 to 60; (B) an ethylene-vinyl acetate copolymer (EVA) or ethylene-vinyl acetate copolymer having a comonomer content of 12 to 25% by weight and an MFR of 0.1 to 5.0 g / 10 min at 190 ° C. under a load of 2.16 kg. Flame-retardant resin composition comprising 40 to 70% by weight of an ethyl acetate copolymer (EEA) and (C) 80 to 160 parts by weight of magnesium hydroxide as a flame retardant per 100 parts by weight of the resin (A + B) The problem was solved by using an object.
[0007]
The linear ultra-low density polyethylene does not require conductor preheating if the density is 0.908 g / cm 3 or less. In the case where the conductor is not preheated, the elongation characteristics deteriorate when the density exceeds 0.908 g / cm 3 . However, since linear ultra-low density polyethylene is mainly produced using a metallocene catalyst, the molecular weight distribution is narrow and the extrusion processability is poor. Further, the linear ultra-low density polyethylene having a density of less than 0.880 g / cm 3 has a melting point of 75 ° C. or less, and the heat resistance of the resin itself is insufficient.
[0008]
In order to improve the extrusion processability and improve the flame retardancy of the electric wire, it is preferable to blend EVA or EEA containing a comonomer. However, the blending amount of EVA or EEA should be within a range that does not impair the electrical properties of polyethylene, so that the linear ultra-low density polyethylene is 30 to 60% by weight, and the EVA or EEA containing comonomer is 40 to 70% by weight. In addition, a comonomer content of 12 to 25% by weight is applied. When the content of the comonomer exceeds 25% by weight, the melting point of EVA or EEA itself becomes less than 75 ° C., and the heat resistance becomes insufficient. If the blending amount is less than 12% by weight and the blending amount is in the range of 40 to 70% by weight, the wire having a finished diameter of 8φ or less fails the flame retardancy standard (JIS C3005).
It is necessary to impart flame retardancy to the blended resin (linear ultra low density polyethylene and EVA or EEA). In the above range, magnesium hydroxide is used in an amount of 80 to 160 parts by weight based on 100 parts by weight of the resin. It is good to add a part. In particular, as the magnesium hydroxide, any of those synthesized from seawater as a starting material or those obtained by pulverizing natural minerals can be used, but those having an average particle diameter in the range of 1.0 to 8.5 μm are preferable. . Both can be used whether or not they have been previously treated with a surface treating agent such as various fatty acids or silane coupling agents. If the amount of magnesium hydroxide is less than 80 parts by weight, the number of samples that fail the flame retardancy standard (JIS C3005) increases. If the amount exceeds 160 parts by weight, the load on the screw drive system at the time of extrusion of the compound becomes large, and the tensile elongation tends to be insufficient as a property after completion.
[0010]
In order to satisfy the electrical insulation properties and mechanical properties by such a combination, in the case of linear ultra-low density polyethylene, the MFR at 190 ° C. and a load of 2.16 kg is in the range of 0.5 to 4.0 g / 10 min. It is good to use those. Similarly, in the case of EVA or EEA, one having an MFR in the range of 0.1 to 5.0 g / 10 min at 190 ° C. and a load of 2.16 kg may be used.
[0011]
A special advantage is that since conductor preheating is not required, conductor oxidation, which tends to occur during preheating, is suppressed, and the effect of keeping the withdrawal force of the insulator at a low value for a long time is obtained.
[0012]
【Example】
(Example 1) A resin composition was prepared using the composition shown in Table 1. For the blending, an open roll mixer set at 150 ° C. was used, and the completed kneaded material was formed into pellets using a sheet pelletizer. Using this pellet, a conductor of 1.6 mmφ was coated with 0.8 mm using an extruder having a diameter of 90 mmφ to obtain an insulated wire. The processing speed of the electric wire is maintained at 150 m / min, and a full flight type screw is used. The 3.2 mmφ insulated wire thus produced was subjected to the following test.
[0013]
(Insulator tensile test) Conducted in accordance with JIS C3005-4.16. A conductor was extracted from the wire sample to make a tube-shaped insulator, which was then subjected to a tensile tester. .
(75 ° C heat resistance test) Conducted according to JIS C3005-4.23. A 10 N load was applied to the wire sample in an atmosphere at 75 ° C. for 30 minutes, and the deformation after the load was 10% or less of the thickness of the insulator.
(Flammability test) Conducted in accordance with JIS C3005-4.26. Take a wire sample of 300 mm, incline it at an angle of 60 degrees, and use a Bunsen burner with a diameter of 10 mm (adjusting the oxidizing flame to about 130 mm and reducing flame to about 35 mm) for 10 seconds at a position about 20 mm from the lower end of the sample. After that, remove the flame gently and observe the burning condition of the sample. If the fire was extinguished within 60 seconds and the burning length was less than 300 mm, the result was evaluated as ○.
[0014]
Table 1 shows the test results. From these results, among the formulations 1 to 8, the insulated wires using the formulations 2, 3, 6, and 7, which were within the scope of the present invention, passed all the above tests and were evaluated as ○.
The insulated wire using Formulation 1 had a low linear ultra low density polyethylene density and insufficient heat resistance. The insulated wire using Formulation 4 required preheating at the time of extrusion because of the high density of linear ultra-low density polyethylene. Further, the tensile properties were insufficient. The insulated wire using Formulation 5 failed the wire burning test because the EVA comonomer was 10% by weight. The insulated wire using Formulation 8 contained 28% by weight of the EVA comonomer, so the melting point was lowered and the heat resistance was poor.
[0015]
[Table 1]
Figure 2004010811
[0016]
(Example 2) An insulated wire was produced in the same manner as in Example 1 using the composition shown in Table 2. The insulated wire thus completed was a 3.2 mmφ with a conductor of 1.6 mmφ covered with 0.8 mm. This wire sample was subjected to an insulator tensile test and a flammability test performed in Example 1. In addition, in order to check the load applied to the screw during the extrusion process, a current value required for rotation of the screw was sampled, and the results are shown in Table 2.
[0017]
[Table 2]
Figure 2004010811
[0018]
From the results in Table 2, the insulated wires using Formulations 10 and 11 within the scope of the present invention also passed the test, and no abnormal load current value was observed.
The insulated wire using formulation 9 lacked magnesium hydroxide contained in the formulation, and failed the flammability test. The insulated wire using Formulation 12 passed the flammability test because of the large amount of magnesium hydroxide in the formula, but had a large load current value during extrusion and poor extrudability. Also, the insulator failed in the tensile test. From the above examples, the insulated wire using the flame-retardant resin composition falling within the scope of the present invention exhibits flame retardancy that passes the flammability test, and also passes the insulator tensile test, which is a mechanical property. In addition, workability during extrusion processing is not particularly problematic, and above all, preheating of the conductor is unnecessary.
[0019]
【The invention's effect】
According to the present invention, it is possible to provide a flame-retardant resin most suitable for producing a halogen-free flame-retardant insulated wire and an insulated wire using the same. The flame-retardant resin can be directly extruded and coated on the conductor without preheating the conductor at the time of manufacturing the electric wire, and has good workability. In addition, by eliminating the need for residual heat, rust on the conductor surface can be suppressed, and as a result, the coating removal resistance can be kept low for a long time.

Claims (2)

(A)密度0.880〜0.908g/cmで、190℃、2.16kg荷重におけるメルトフローレート(MFR)が0.5〜4.0g/10minである直鎖状超低密度ポリエチレンを30〜60重量%、
(B)コモノマー含量を12〜25重量%含み、190℃、2.16kg荷重におけるメルトフローレート(MFR)が0.1〜5.0g/10minであるエチレン−酢酸ビニル共重合体(EVA)又はエチレン−酢酸エチル共重合体(EEA)を40〜70重量%、
(C)難燃剤として、前記樹脂(A+B)100重量部に対し、水酸化マグネシウムを80〜160重量部加えてなる難燃性樹脂組成物。
(A) A linear ultra low density polyethylene having a density of 0.880 to 0.908 g / cm 3 and a melt flow rate (MFR) at 190 ° C. and a load of 2.16 kg of 0.5 to 4.0 g / 10 min. 30-60% by weight,
(B) an ethylene-vinyl acetate copolymer (EVA) containing a comonomer content of 12 to 25% by weight and having a melt flow rate (MFR) at 190 ° C. and a load of 2.16 kg of 0.1 to 5.0 g / 10 min or 40-70% by weight of ethylene-ethyl acetate copolymer (EEA),
(C) A flame-retardant resin composition obtained by adding 80 to 160 parts by weight of magnesium hydroxide to 100 parts by weight of the resin (A + B) as a flame retardant.
請求項1に記載の難燃性樹脂組成物を導体直上に押し出し被覆してなる絶縁電線。An insulated wire formed by extruding and coating the flame-retardant resin composition according to claim 1 immediately above a conductor.
JP2002168196A 2002-06-10 2002-06-10 Flame retardant resin composition and insulated electric wire using the same Pending JP2004010811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002168196A JP2004010811A (en) 2002-06-10 2002-06-10 Flame retardant resin composition and insulated electric wire using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002168196A JP2004010811A (en) 2002-06-10 2002-06-10 Flame retardant resin composition and insulated electric wire using the same

Publications (1)

Publication Number Publication Date
JP2004010811A true JP2004010811A (en) 2004-01-15

Family

ID=30435172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002168196A Pending JP2004010811A (en) 2002-06-10 2002-06-10 Flame retardant resin composition and insulated electric wire using the same

Country Status (1)

Country Link
JP (1) JP2004010811A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100627512B1 (en) 2005-01-31 2006-09-22 엘에스전선 주식회사 Composition for production flame retardant insulating material of halogen free type with low temperature resistance properties
CN102543274A (en) * 2010-12-20 2012-07-04 住友电气工业株式会社 Insulating cable and manufacturing method thereof
CN114316418A (en) * 2021-12-09 2022-04-12 成都金发科技新材料有限公司 Low-shrinkage flame-retardant polyethylene composition, and preparation method and application thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100627512B1 (en) 2005-01-31 2006-09-22 엘에스전선 주식회사 Composition for production flame retardant insulating material of halogen free type with low temperature resistance properties
CN102543274A (en) * 2010-12-20 2012-07-04 住友电气工业株式会社 Insulating cable and manufacturing method thereof
JP2012146645A (en) * 2010-12-20 2012-08-02 Sumitomo Electric Ind Ltd Insulated cable, and method of manufacturing the same
CN114316418A (en) * 2021-12-09 2022-04-12 成都金发科技新材料有限公司 Low-shrinkage flame-retardant polyethylene composition, and preparation method and application thereof
CN114316418B (en) * 2021-12-09 2023-08-04 成都金发科技新材料有限公司 Low-shrinkage flame-retardant polyethylene composition, and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP4940568B2 (en) Non-halogen flame retardant wire / cable
JP5343327B2 (en) Method for producing flame retardant silane-crosslinked olefin resin, insulated wire and method for producing insulated wire
CN100509939C (en) Halogen free polymer and automotive wire using thereof
JP6850420B2 (en) Insulated electric wires and cables using non-halogen flame-retardant resin composition
WO2007058349A1 (en) Flame-retardant resin composition, and insulated wire, insulated shielded wire, insulated cable and insulating tubing made by using the same
JP4735340B2 (en) Non-halogen flame retardant resin composition and electric wire / cable using the same
JPH10330558A (en) Abrasion-resistant flame-retardant resin composition, its production and electric wire insulated therewith
JP2017031337A (en) Non-halogen flame-retardant resin composition, and insulated electric wire and cable
CN103739928A (en) High-performance low smoke zero halogen power cable sheath material adopting silicon resin to enhance efficiency and preparation method thereof
JP2013155269A (en) Flame-retardant composition and insulated wire
JP2010095638A (en) Non-halogen flame retardant resin composition and non-halogen flame retardant electric wire
WO2016084613A1 (en) Insulated wire
JP2004010811A (en) Flame retardant resin composition and insulated electric wire using the same
JP5655595B2 (en) Flame-retardant composition having peelability, method for producing flame-retardant resin, and insulated wire
JP2002332384A (en) Heat-resistant flame-retardant resin composition
JP6802968B2 (en) Insulated wire
JP2002226643A (en) Heat-resistant, flexible and flame-retardant resin composition of non-halogen type and its application product
JPH0619030B2 (en) Flame-retardant sheath material for cables
JPS6326906A (en) Flame resisting electrically insulating composition
JPH10287777A (en) Flame-retardant molded article
JP5813424B2 (en) Flame retardant resin composition
WO2013008582A1 (en) Releasable and heat-resistant flame retardant composition, method for manufacturing flame retardant resin and insulated electric wire
JPH0573135B2 (en)
JP3871028B2 (en) Wire harness
JP3907417B2 (en) Flame retardant resin composition

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050322