JP2004010491A - Method for producing saturated fluorinated chain carbonate - Google Patents

Method for producing saturated fluorinated chain carbonate Download PDF

Info

Publication number
JP2004010491A
JP2004010491A JP2002161708A JP2002161708A JP2004010491A JP 2004010491 A JP2004010491 A JP 2004010491A JP 2002161708 A JP2002161708 A JP 2002161708A JP 2002161708 A JP2002161708 A JP 2002161708A JP 2004010491 A JP2004010491 A JP 2004010491A
Authority
JP
Japan
Prior art keywords
carbonate
saturated
chain carbonate
producing
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002161708A
Other languages
Japanese (ja)
Inventor
Yukio Sasaki
佐々木 幸夫
Masahiro Takehara
竹原 雅裕
Makoto Ue
宇恵 誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2002161708A priority Critical patent/JP2004010491A/en
Publication of JP2004010491A publication Critical patent/JP2004010491A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02E60/122

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for simply and selectively producing a saturated fluorinated chain carbonate. <P>SOLUTION: This method for simply and selectively producing the saturated fluorinated chain carbonate is characterized by bringing a saturated chain carbonate into contact with fluorine gas. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、飽和フッ化鎖状炭酸エステルの製造方法に関する。
本発明により製造された各種飽和フッ化鎖状炭酸エステルは、各種溶剤、特に、リチウム電池、リチウムイオン電池、電気二重層キャパシタ、アルミニウム電解コンデンサ等のエネルギー貯蔵デバイス用電解質の溶媒や添加剤として有用である。
【0002】
【従来の技術】
近年、リチウムイオン電池や電気二重層キャパシタ等のエネルギー貯蔵デバイスは,携帯電話、携帯情報端末、ノートパソコン等のデジタル携帯電子機器の急激な普及により、需要が急増している。また、地球環境問題や省エネルギーの点からこれらのエネルギー貯蔵デバイスは電気自動車やハイブリッド車の動力源としても注目を浴びている。
【0003】
これらのエネルギー貯蔵デバイスは動作機構的には電気化学デバイスであるため、構成材料として電解質が必要であり、広い作動電位範囲を利用するために、有機溶媒に溶質塩を溶解した有機電解液が使用されている。
例えば、負極としてリチウム金属を使用しているリチウム一次電池では、正極が二酸化マンガンの際には、プロピレンカーボネートと1,2−ジメトキシエタンとの混合溶媒にLiClOあるいはLiCFSOを溶解した電解質溶液が、また、正極がフッ化炭素の際には、γ−ブチロラクトンにLiBFを溶解した電解質溶液が主として使用されている。また、リチウム−炭素化合物を負極とするリチウムイオン二次電池では、エチレンカーボネートあるいはプロピレンカーボネートなどの環状炭酸エステルとジメチルカーボネート、エチルメチルカーボネートあるいはジエチルカーボネートなどの鎖状炭酸エステルとの混合溶媒にLiPFを溶解した電解質溶液が専ら使用されている(宇恵 誠ら、リチウムイオン電池材料の開発と市場、シーエムシー、第6章(1997))。
【0004】
また、電気二重層コンデンサにはプロピレンカーボネート溶媒にEtNBF塩などを溶解した電解質溶液が使用されている。(宇恵 誠、電気化学、66巻、904頁(1998))。
しかしながら、これらのエネルギー貯蔵デバイスの普及や用途拡大に伴い、さらなる高エネルギー密度化、高パワー密度化などの高性能化への要求が強まり、エネルギー貯蔵デバイスに使用される有機電解液に対しても、その要求に対応できる材料が望まれており、新しい溶媒・添加剤が探索されている状況である。
【0005】
【発明が解決しようとする課題】
一般に、溶媒化合物に対してフッ素化を行うと電気化学的安定性が向上することが知られており、さらには、部分フッ素化に止めることで、誘電率の向上や塩の溶解性向上、各種電極材料との親和性向上も期待できる。
さて、リチウム二次電池においては、正極および/または負極上において電極表面での電解液の溶媒の分解が大小の差違はあれ起こることが知られており、このことが保存特性やサイクル特性の低下の原因となっている。
【0006】
この問題を解決するために、特開平10−144346号公報には、炭酸ジメチルの水素原子の少なくとも一部がフッ素、塩素、臭素、沃素等のハロゲン原子で置換された炭酸ジメチル誘導体を含有する非水系電解液が提案され、モデルセルによる検討結果が記載されている。
【0007】
また、特開平10−247519号公報には、炭酸ジメチルまたは炭酸ジエチルの水素原子の少なくとも一部をフッ素、塩素または臭素原子で置換したハロゲン化鎖状炭酸エステルを含有する溶媒に特定のLi塩を溶質として用いた非水系電解液が記載されている。
しかしながら、これらの文献には、ハロゲン原子で置換された炭酸ジメチル誘導体あるいはハロゲン化鎖状炭酸エステルの製造方法についての記述が見出されない。
【0008】
炭酸エステルの製造は、常法に則れば、アルコールに、ホスゲンを反応させるか、あるいはアルコールに一酸化炭素及び酸素を反応させる。従って、フッ素原子を有する鎖状フッ化炭酸エステルは、通常、フッ化アルコールにホスゲンを反応させるか、フッ化アルコールに一酸化炭素及び酸素を反応させる方法で製造する。しかしながら、フッ化アルコールは毒性が高く、アルコールのフッ素化では製造出来ない為、フッ素原子の導入位置が限られる。また、α位の炭素原子にはフッ素原子は導入できない等、原料としての制約が大きかった

【0009】
本発明の課題は、飽和フッ化鎖状炭酸エステルを工業的に有利に製造する方法を提供することである。
【0010】
【課題を解決するための手段】
本発明者らは、既に、従来1,2−ジメトキシエタンのパーフルオロ化に用いられた方法(J.Org.Chem.,38,3617(1973))を、その反応性から勘案すると適用が難しいと思われたラクトン化合物に適用したところ、意外にも高転化率、高選択率で、フッ化ラクトン化合物が得られることを見出し、さらに、従来の製造法では得ることの出来なかった種のモノフルオロラクトン化合物を得ることにも初めて成功している。(特開2001−226367号及びJ. Fluorine Chem.,108,117(2001))。
【0011】
本発明者らは、かかる事情に鑑み、鋭意検討を重ねた結果、飽和鎖状炭酸エステルにも同様の製造法を適用することが可能であることを見出し、本発明を完成するに至った。
即ち本発明の要旨は、飽和鎖状炭酸エステルにフッ素ガスを接触させることを特徴とする飽和フッ化鎖状炭酸エステルの製造方法、に存する。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態につき詳細に説明する。
本発明方法は、飽和鎖状炭酸エステルにフッ素ガスを接触させることによって、飽和鎖状炭酸エステルの水素原子の一部又は全部がフッ素原子で置換された飽和フッ化鎖状炭酸エステルを製造する方法である。
【0013】
本発明方法に用いる原料の飽和鎖状炭酸エステルとしては、フッ素ガスとの接触反応条件下で、溶媒の存在下または不存在下で、液体状態を保持することができる限り任意の飽和鎖状炭酸エステルを用いることができ、例えば、総炭素数が3〜9、好ましくは3〜7の飽和鎖状炭酸エステルが挙げられる。
上記飽和鎖状炭酸エステルの具体例としては、炭酸ジメチル、炭酸エチルメチル、炭酸−n−プロピルメチル、炭酸イソプロピルメチル、炭酸−n−ブチルメチル、炭酸イソブチルメチル、炭酸−t−ブチルメチル、炭酸ジエチル、炭酸エチル−n−プロピル、炭酸エチルイソプロピル、炭酸エチル−n−ブチル、炭酸エチルイソブチル、炭酸エチル−t−ブチル、炭酸ジ−n−プロピル、炭酸−n−プロピルイソプロピル、炭酸−n−プロピル−n−ブチル、炭酸−n−プロピルイソブチル、炭酸−n−プロピル−t−ブチル、炭酸ジイソプロピル、炭酸イソプロピル−n−ブチル、炭酸イソプロピルイソブチル、炭酸イソプロピル−t−ブチル、炭酸ジ−n−ブチル、炭酸−n−ブチルイソブチル、炭酸−n−ブチル−t−ブチル、炭酸ジイソブチル、炭酸イソブチル−t−ブチル、炭酸ジ−t−ブチル等が挙げられる。
【0014】
上記飽和鎖状炭酸エステルの中でも、比較的炭素数の少ない、炭酸ジメチル、炭酸エチルメチル、炭酸−n−プロピルメチル、炭酸イソプロピルメチル、炭酸−n−ブチルメチル、炭酸イソブチルメチル、炭酸−t−ブチルメチル、炭酸ジエチル、炭酸エチル−n−プロピル、炭酸エチルイソプロピル、炭酸エチル−n−ブチル、炭酸エチルイソブチル、炭酸エチル−t−ブチル、炭酸ジ−n−プロピル、炭酸−n−プロピルイソプロピル、炭酸ジイソプロピル等が好ましく、炭酸ジメチル、炭酸エチルメチル及び炭酸ジエチルがより好ましい。
【0015】
飽和鎖状炭酸エステルに対するフッ素ガス(F)の仕込みモル比は、通常0.01〜10が好ましいが、さらに好ましくは、0.1〜2である。
飽和鎖状炭酸エステルと接触させて反応させるフッ素ガスは極めて反応性が高いので、反応の暴走を防止するために、フッ素ガスに対して不活性なガスで希釈したものを用いることが好ましい。このような不活性ガスとしては、窒素、ヘリウム、フッ化水素又は炭素数4以下のパーフルオロアルカンが挙げられる。不活性ガス中のフッ素ガスの濃度は、通常1容量%以上、好ましくは5容量%以上、また通常50容量%以下、好ましくは30容量%以下である。濃度が低すぎると生産性が低下しやすく、高過ぎると反応制御が困難になりやすい。
【0016】
飽和鎖状炭酸エステルとフッ素ガスとの反応は、液相の飽和鎖状炭酸エステル中に希釈されたフッ素ガスを導入して行われるが、フッ素ガスに対して不活性な溶媒の存在下で反応を行ってもよい。
上記のフッ素ガスに対して不活性な溶媒としては、パーフルオロシクロブタン、パーフルオロヘキサン、パーフルオロオクタン、パーフルオロデカンなどのパーフルオロアルカンや潤滑誌32巻2号107頁に示されているようなパーフルオロポリエーテル油(例えば、ダイキン工業社製「デムナム」、オウシモント社製「フォンブリン」、デュポン社製「クライトックス」など)、クロロトリフルオロエチレンオリゴマー油(例えば、ダイキン工業社製「ダイフロイル」など)などのクロロフルオロアルカンを挙げることができる。不活性溶媒に対する飽和鎖状炭酸エステルの割合は、通常、10〜90%であるが、この割合が低過ぎると釜効率が低下し、高過ぎると希釈の効果が薄くなる。
【0017】
反応温度は、通常、−80〜100℃、好ましくは−30〜80℃の範囲である。反応圧力は、通常、常圧であるが、場合により減圧または加圧条件下で行ってもよい。反応時間は、飽和鎖状炭酸エステルの種類、溶媒の種類、反応温度等によって異なるが、通常は1〜500時間である。
また、上記の反応の際、反応により生成するフッ化水素を吸収するために、フッ化ナトリウムのようなフッ化物塩を反応系中に加えてもよい。
【0018】
また、飽和鎖状炭酸エステルを気化させて、フッ素ガスとの気相反応として実施することも可能である。この場合も、反応の暴走を防止するため、不活性ガスで希釈することが必要になる。この場合の反応温度は、通常、30〜250℃であるが、50〜150℃の範囲が好ましい。
反応方式は回分式、半回分式、流通式のいずれの方法でも可能であり、伝熱制御のし易いマイクロリアクターを使用することもできる。
【0019】
反応によって得られる飽和フッ化鎖状炭酸エステルは、フッ素モノ置換体、ジ置換体からパーフルオロ置換体まで、種々の置換体が考えられるが、反応条件を調節することにより、従来製造法の知られていなかった化合物を高収率、高選択率で得ることができる。
【0020】
【実施例】
次に実施例によって本発明の具体的態様を詳細に記述するが、本発明はその要旨を超えない限り、これらの実施例に限定されるものではない。
[実施例1]
液相へのガス仕込み口とガス排出口とを設けた500mlのテフロン(R)容器に、炭酸ジメチル50gを仕込み、この中に、窒素ガスで12vol%に希釈したフッ素ガスを0.06mol/hrの速度にて導入し、反応温度5℃、反応圧を大気圧に保持し、約16時間反応させた。反応終了後、液相をGC/MS分析とNMR分析により分析した。
【0021】
その結果、反応時間が12時間までは、モノフルオロ炭酸ジメチルがほぼ選択的に生成しており、反応時間12時間の時点での炭酸ジメチルの変換率は53%、モノフルオロ炭酸ジメチルへの選択率は約88%で、ジフルオロ体以上のフッ素置換体は合計で8%、炭酸ジメチル骨格を有しない化合物は5%であった。また、反応時間16時間の時点での炭酸ジメチルの変換率は60%、モノフルオロ炭酸ジメチルへの選択率は約78%で、ジフルオロ体以上のフッ素置換体は合計で16%、炭酸ジメチル骨格を有しない化合物は5%であった。
【0022】
[実施例2]
炭酸ジエチルを原料に用いたこと以外は実施例1と同一の条件で反応を行い、GC/MS分析とNMR分析により分析した。
その結果、反応時間が12時間の時点で、炭酸エチル(2−フルオロエチル)が13%、炭酸ビス(2−フルオロエチル)が21%生成しており、炭酸ジエチルの変換率は58%、各種フッ素化物が生成しており、炭酸ジエチル骨格を有しない化合物は3%であった。
【0023】
【発明の効果】
本発明により、飽和鎖状フッ化炭酸エステルを簡便に選択率良く製造することができる。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a saturated fluorocarbon ester.
Various saturated fluorinated carbonates produced according to the present invention are useful as solvents and additives for various solvents, particularly electrolytes for energy storage devices such as lithium batteries, lithium ion batteries, electric double layer capacitors, and aluminum electrolytic capacitors. It is.
[0002]
[Prior art]
2. Description of the Related Art In recent years, demand for energy storage devices such as lithium ion batteries and electric double layer capacitors has rapidly increased due to the rapid spread of digital portable electronic devices such as mobile phones, portable information terminals, and notebook computers. These energy storage devices are also attracting attention as power sources for electric vehicles and hybrid vehicles in view of global environmental problems and energy saving.
[0003]
Since these energy storage devices are electrochemical devices in terms of their operation mechanism, they require an electrolyte as a constituent material, and use an organic electrolyte solution in which a solute is dissolved in an organic solvent to utilize a wide operating potential range. Have been.
For example, in a lithium primary battery using lithium metal as a negative electrode, when the positive electrode is manganese dioxide, an electrolyte in which LiClO 4 or LiCF 3 SO 3 is dissolved in a mixed solvent of propylene carbonate and 1,2-dimethoxyethane When the solution is fluorocarbon or the positive electrode is fluorocarbon, an electrolyte solution in which LiBF 4 is dissolved in γ-butyrolactone is mainly used. In addition, in a lithium ion secondary battery using a lithium-carbon compound as a negative electrode, LiPF 6 is used as a mixed solvent of a cyclic carbonate such as ethylene carbonate or propylene carbonate and a chain carbonate such as dimethyl carbonate, ethyl methyl carbonate or diethyl carbonate. Is used exclusively (Makoto Ue et al., Development and Market of Lithium-ion Battery Materials, CMC, Chapter 6 (1997)).
[0004]
Further, for the electric double layer capacitor, an electrolyte solution obtained by dissolving Et 4 NBF 4 salt or the like in a propylene carbonate solvent is used. (Makoto Ue, Electrochemistry, 66, 904 (1998)).
However, with the spread of these energy storage devices and the expansion of applications, demands for higher performance such as higher energy density and higher power density are increasing, and organic electrolytes used for energy storage devices are also required. Materials that can meet the demands are desired, and new solvents and additives are being searched for.
[0005]
[Problems to be solved by the invention]
In general, it is known that fluorination of a solvent compound improves electrochemical stability.Furthermore, by stopping partial fluorination, it is possible to improve the dielectric constant and the solubility of salts, An improvement in affinity with the electrode material can also be expected.
In a lithium secondary battery, it is known that the decomposition of the solvent of the electrolytic solution on the electrode surface on the positive electrode and / or the negative electrode occurs in a large or small amount, which causes deterioration in storage characteristics and cycle characteristics. Is the cause.
[0006]
In order to solve this problem, JP-A-10-144346 discloses a non-dimethyl carbonate containing a dimethyl carbonate derivative in which at least a part of the hydrogen atoms of dimethyl carbonate is replaced by a halogen atom such as fluorine, chlorine, bromine or iodine. An aqueous electrolyte has been proposed, and the results of studies using a model cell are described.
[0007]
JP-A-10-247519 discloses that a specific Li salt is used as a solvent containing a halogenated chain carbonate in which at least a part of hydrogen atoms of dimethyl carbonate or diethyl carbonate is substituted with fluorine, chlorine or bromine atoms. A non-aqueous electrolyte used as a solute is described.
However, none of these documents describes a method for producing a dimethyl carbonate derivative or a halogenated chain carbonate substituted with a halogen atom.
[0008]
The production of the carbonate ester is carried out by reacting phosgene with an alcohol or reacting carbon monoxide and oxygen with an alcohol according to a conventional method. Therefore, the chain fluorocarbon ester having a fluorine atom is usually produced by reacting fluorinated alcohol with phosgene or reacting fluorinated alcohol with carbon monoxide and oxygen. However, since fluorinated alcohols are highly toxic and cannot be produced by fluorination of alcohols, the positions where fluorine atoms are introduced are limited. In addition, restrictions on the raw material were great, such as the inability to introduce a fluorine atom into the carbon atom at the α-position.
[0009]
An object of the present invention is to provide a method for industrially advantageously producing a saturated fluorinated carbonate.
[0010]
[Means for Solving the Problems]
The present inventors have found it difficult to apply the method (J. Org. Chem., 38, 3617 (1973)) which has been conventionally used for perfluorination of 1,2-dimethoxyethane in view of its reactivity. When applied to a lactone compound that was thought to be surprising, it was unexpectedly found that a fluorinated lactone compound could be obtained at a high conversion and a high selectivity, and furthermore, it was possible to obtain a kind of lactone compound that could not be obtained by the conventional production method. It has also succeeded for the first time in obtaining a fluorolactone compound. (Japanese Patent Application Laid-Open No. 2001-226667 and J. Fluorine Chem., 108, 117 (2001)).
[0011]
The present inventors have conducted intensive studies in view of such circumstances, and as a result, have found that the same production method can be applied to a saturated chain carbonate, and have completed the present invention.
That is, the gist of the present invention resides in a method for producing a saturated fluorinated chain carbonate, which comprises contacting a fluorine gas with the saturated chain carbonate.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
The method of the present invention is a method for producing a saturated fluorinated carbonate in which some or all of the hydrogen atoms of the saturated carbonyl are substituted with fluorine atoms by contacting the saturated chain carbonate with fluorine gas. It is.
[0013]
The raw material saturated chain carbonate used in the method of the present invention may be any saturated chain carbonate as long as it can maintain a liquid state under the conditions of contact reaction with fluorine gas in the presence or absence of a solvent. Esters can be used, and examples thereof include saturated chain carbonates having a total carbon number of 3 to 9, preferably 3 to 7.
Specific examples of the saturated chain carbonate include dimethyl carbonate, ethyl methyl carbonate, -n-propylmethyl carbonate, isopropylmethyl carbonate, -n-butylmethyl carbonate, isobutylmethyl carbonate, -t-butylmethyl carbonate, diethyl carbonate, and carbonic acid. Ethyl-n-propyl, ethyl isopropyl carbonate, ethyl-n-butyl carbonate, ethyl isobutyl carbonate, ethyl-t-butyl carbonate, di-n-propyl carbonate, -n-propylisopropyl carbonate, -n-propyl-n-carbonate Butyl, n-propylisobutyl carbonate, n-propyl-t-butyl carbonate, diisopropyl carbonate, isopropyl-n-butyl carbonate, isopropyl isobutyl carbonate, isopropyl-t-butyl carbonate, di-n-butyl carbonate, -n carbonate -Butyl isobutyl, -n-butyl-t-butyl carbonate, carbonic acid Isobutyl carbonate isobutyl -t- butyl, di -t- butyl and the like carbonates.
[0014]
Among the saturated chain carbonates, dimethyl carbonate, ethyl methyl carbonate, -n-propylmethyl carbonate, isopropylmethyl carbonate, -n-butylmethyl carbonate, isobutylmethyl carbonate, -t-butylmethyl carbonate, having relatively few carbon atoms, Diethyl carbonate, ethyl-n-propyl carbonate, ethyl isopropyl carbonate, ethyl-n-butyl carbonate, ethyl isobutyl carbonate, ethyl-t-butyl carbonate, di-n-propyl carbonate, -n-propylisopropyl carbonate, diisopropyl carbonate, etc. Preferably, dimethyl carbonate, ethyl methyl carbonate and diethyl carbonate are more preferred.
[0015]
The charged molar ratio of the fluorine gas (F 2 ) to the saturated chain carbonate is usually preferably from 0.01 to 10, and more preferably from 0.1 to 2.
Fluorine gas to be reacted with a saturated chain carbonate ester is extremely reactive, so that it is preferable to use a gas diluted with a gas inert to the fluorine gas in order to prevent runaway of the reaction. Examples of such an inert gas include nitrogen, helium, hydrogen fluoride, and a perfluoroalkane having 4 or less carbon atoms. The concentration of fluorine gas in the inert gas is usually 1% by volume or more, preferably 5% by volume or more, and usually 50% by volume or less, preferably 30% by volume or less. If the concentration is too low, productivity tends to decrease, and if it is too high, reaction control tends to be difficult.
[0016]
The reaction between the saturated chain carbonate and the fluorine gas is carried out by introducing the diluted fluorine gas into the saturated chain carbonate in the liquid phase, but in the presence of a solvent inert to the fluorine gas. May be performed.
Examples of the solvent inert to the above-mentioned fluorine gas include perfluoroalkanes such as perfluorocyclobutane, perfluorohexane, perfluorooctane, and perfluorodecane, and lubrication magazine Vol. 32, No. 2, page 107. Perfluoropolyether oils (eg, “Demnum” manufactured by Daikin Industries, “Fomblin” manufactured by Oshimont Inc., “Crytox” manufactured by DuPont), chlorotrifluoroethylene oligomer oils (eg, “Daifuroil” manufactured by Daikin Industries, Ltd.) Chlorofluoroalkanes. The ratio of the saturated chain carbonate to the inert solvent is usually 10 to 90%. If the ratio is too low, the efficiency of the kettle is reduced, and if it is too high, the effect of dilution is diminished.
[0017]
The reaction temperature is usually in the range of -80 to 100C, preferably -30 to 80C. The reaction pressure is usually normal pressure, but may be carried out under reduced pressure or increased pressure in some cases. The reaction time varies depending on the type of the saturated chain carbonate, the type of the solvent, the reaction temperature and the like, but is usually from 1 to 500 hours.
In the above reaction, a fluoride salt such as sodium fluoride may be added to the reaction system in order to absorb hydrogen fluoride generated by the reaction.
[0018]
It is also possible to vaporize the saturated chain carbonate and carry out the reaction as a gas phase reaction with fluorine gas. Also in this case, it is necessary to dilute with an inert gas to prevent runaway of the reaction. The reaction temperature in this case is usually 30 to 250 ° C, but is preferably in the range of 50 to 150 ° C.
The reaction system can be any of a batch system, a semi-batch system, and a flow system, and a microreactor that can easily control heat transfer can also be used.
[0019]
As the saturated fluorinated chain carbonate obtained by the reaction, various substituents can be considered, from mono-substituted fluorine and di-substituted to perfluoro-substituted ones. Compounds that have not been obtained can be obtained with high yield and high selectivity.
[0020]
【Example】
Next, specific embodiments of the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples unless it exceeds the gist.
[Example 1]
50 g of dimethyl carbonate was charged into a 500 ml Teflon (R) container provided with a gas inlet and a gas outlet to the liquid phase, and 0.06 mol / hr of fluorine gas diluted to 12 vol% with nitrogen gas was added thereto. At a reaction temperature of 5 ° C. and a reaction pressure of atmospheric pressure, and reacted for about 16 hours. After the reaction was completed, the liquid phase was analyzed by GC / MS analysis and NMR analysis.
[0021]
As a result, dimethyl monofluorocarbonate was almost selectively produced up to a reaction time of 12 hours, and the conversion of dimethyl carbonate at the time of 12 hours was 53%, and the selectivity to dimethyl monofluorocarbonate was 53%. Was about 88%, a total of 8% of the fluorine-substituted or more difluoro-substituted compounds, and 5% of the compounds having no dimethyl carbonate skeleton. The conversion of dimethyl carbonate at the time of the reaction time of 16 hours was 60%, the selectivity to dimethyl monofluorocarbonate was about 78%, and the fluorine-substituted form of difluoro or higher was 16% in total, and the dimethyl carbonate skeleton was changed. The compound having no compound was 5%.
[0022]
[Example 2]
The reaction was carried out under the same conditions as in Example 1 except that diethyl carbonate was used as a raw material, and analyzed by GC / MS analysis and NMR analysis.
As a result, when the reaction time was 12 hours, 13% of ethyl carbonate (2-fluoroethyl) and 21% of bis (2-fluoroethyl) carbonate were formed, and the conversion of diethyl carbonate was 58%. A fluorinated product was formed, and 3% of the compounds had no diethyl carbonate skeleton.
[0023]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, a saturated chain fluorocarbonate can be easily manufactured with a high selectivity.

Claims (4)

飽和鎖状炭酸エステルにフッ素ガスを接触させることを特徴とする飽和フッ化鎖状炭酸エステルの製造方法。A method for producing a saturated fluorinated chain carbonate, comprising contacting a fluorine gas with the saturated chain carbonate. 飽和鎖状炭酸エステルは、その総炭素数が3〜9である、請求項1に記載の飽和フッ化鎖状炭酸エステルの製造方法The method for producing a saturated fluorinated chain carbonate according to claim 1, wherein the saturated chain carbonate has a total carbon number of 3 to 9. 飽和鎖状炭酸エステルが、炭酸ジメチル、炭酸エチルメチル及び炭酸ジエチルからなる群から選ばれた化合物である、請求項1又は2に記載の飽和フッ化鎖状炭酸エステルの製造方法。The method for producing a saturated fluorinated chain carbonate according to claim 1 or 2, wherein the saturated chain carbonate is a compound selected from the group consisting of dimethyl carbonate, ethyl methyl carbonate and diethyl carbonate. フッ素ガスが、窒素、ヘリウム、フッ化水素又は炭素数4以下のパーフルオロアルカンで希釈されてなる、請求項1〜3のいずれかに記載の飽和フッ化鎖状炭酸エステルの製造方法。The method for producing a saturated fluorocarbon ester according to any one of claims 1 to 3, wherein the fluorine gas is diluted with nitrogen, helium, hydrogen fluoride, or a perfluoroalkane having 4 or less carbon atoms.
JP2002161708A 2002-06-03 2002-06-03 Method for producing saturated fluorinated chain carbonate Pending JP2004010491A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002161708A JP2004010491A (en) 2002-06-03 2002-06-03 Method for producing saturated fluorinated chain carbonate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002161708A JP2004010491A (en) 2002-06-03 2002-06-03 Method for producing saturated fluorinated chain carbonate

Publications (1)

Publication Number Publication Date
JP2004010491A true JP2004010491A (en) 2004-01-15

Family

ID=30430708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002161708A Pending JP2004010491A (en) 2002-06-03 2002-06-03 Method for producing saturated fluorinated chain carbonate

Country Status (1)

Country Link
JP (1) JP2004010491A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005123656A1 (en) * 2004-06-16 2005-12-29 Asahi Glass Company, Limited Novel methyl carbonates, and method for production thereof and non-aqueous electrolyte
WO2011006822A1 (en) 2009-07-16 2011-01-20 Solvay Fluor Gmbh Process for the preparation of fluoroalkyl (fluoro)alkyl carbonates and carbamates
EP2602241A1 (en) 2011-12-07 2013-06-12 Solvay Sa Process for the manufacture of 1, 1'-difluorosubstituted dialkyl carbonates, isomers thereof and electrolyte compositions containing them
EP2854147A1 (en) 2013-09-30 2015-04-01 Solvay SA Electrolyte compositions comprising fluorinated carbonates
JP2017530091A (en) * 2014-07-29 2017-10-12 ソルヴェイ(ソシエテ アノニム) Fluorinated carbonate containing two oxygen-containing functional groups

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0640951A (en) * 1992-02-12 1994-02-15 Minnesota Mining & Mfg Co <3M> Preparation of fluorinated functional compound

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0640951A (en) * 1992-02-12 1994-02-15 Minnesota Mining & Mfg Co <3M> Preparation of fluorinated functional compound

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005123656A1 (en) * 2004-06-16 2005-12-29 Asahi Glass Company, Limited Novel methyl carbonates, and method for production thereof and non-aqueous electrolyte
WO2011006822A1 (en) 2009-07-16 2011-01-20 Solvay Fluor Gmbh Process for the preparation of fluoroalkyl (fluoro)alkyl carbonates and carbamates
US9000204B2 (en) 2009-07-16 2015-04-07 Solvay Flour Gmbh Process for the preparation of fluoroalkyl (fluoro)alkyl carbonates and carbamates
EP3214066A2 (en) 2009-07-16 2017-09-06 Solvay Fluor GmbH Process for the preparation of fluoroalkyl fluoroformates
EP2602241A1 (en) 2011-12-07 2013-06-12 Solvay Sa Process for the manufacture of 1, 1'-difluorosubstituted dialkyl carbonates, isomers thereof and electrolyte compositions containing them
WO2013083418A1 (en) 2011-12-07 2013-06-13 Solvay Sa Process for the manufacture of 1, 1'-difluorosubstituted dialkyl carbonates, isomers thereof and electrolyte compositions containing them
US9969673B2 (en) 2011-12-07 2018-05-15 Solvay S.A. Process for the manufacture of 1, 1′-difluorosubstituted dialkyl carbonates, isomers thereof and electrolyte compositions containing them
EP2854147A1 (en) 2013-09-30 2015-04-01 Solvay SA Electrolyte compositions comprising fluorinated carbonates
JP2017530091A (en) * 2014-07-29 2017-10-12 ソルヴェイ(ソシエテ アノニム) Fluorinated carbonate containing two oxygen-containing functional groups

Similar Documents

Publication Publication Date Title
US6180800B1 (en) Fluorine-substituted cyclic carbonate and electrolytic solution and battery containing the same
EP0495073B1 (en) Li, mg and al- methide salts, formulations, electrolytes and batteries formed therefrom
TWI462367B (en) Redox shuttles for high voltage cathodes
US6413678B1 (en) Non-aqueous electrolyte and lithium secondary battery using the same
WO2017204225A1 (en) Method for producing bis(fluorosulfonyl)imide alkali metal salt and bis(fluorosulfonyl)imide alkali metal salt composition
JP2019220474A (en) Non-aqueous electrolyte for secondary battery and secondary battery including the same
US9472831B2 (en) Lithium-2-methoxy-1,1,2,2-tetrafluoro-ethanesulfonate and use thereof as conductive salt in lithium-based energy accumulators
JP6910324B2 (en) Disulfonylamide salt granules or powder
JP2001110450A (en) Electrolyte for electrochemical device
JP3542762B2 (en) Lithium fluoroalkyl phosphate compounds and use of these compounds as electrolyte salts
WO2015051131A1 (en) Methods for preparation of fluorinated ethers
CN113851711B (en) Battery electrolyte and preparation method of benzenesulfonate compound therein
JP5609879B2 (en) Method for producing bissulfonylimide ammonium salt, bissulfonylimide and bissulfonylimide lithium salt
JP2012087092A (en) Fluorine-containing sulfone, fluorine-containing thioether, method for producing fluorine-containing thioether, and method for producing fluorine-containing sulfone
JP5074817B2 (en) BF3 complex and method for producing BF3 complex
JPH10233345A (en) Nonaqueous electrolytic solution
JP2016531093A (en) Fluorocarbonate containing double bond-containing group, method for producing the same, and use thereof
Cai et al. Synthesis, application and industrialization of LiFSI: A review and perspective
JP5552088B2 (en) Non-aqueous electrolyte and lithium secondary battery containing benzodioxadithiepine derivative
JP2004010491A (en) Method for producing saturated fluorinated chain carbonate
JPWO2005123656A1 (en) NOVEL METHYL CARBONATES, PROCESS FOR PRODUCING THE SAME, NON-AQUEOUS ELECTROLYTE SOLUTION
JP2004161638A (en) Method for producing fluorine-containing cyclic compound
JP2004161637A (en) Method for producing fluorine-containing cyclic compound and new difluoro-3-methyl-2-oxazolidinone
JP2003267931A (en) Method for producing saturated fluorocarboxylic acid ester
JP4440006B2 (en) Fluorinated carbonates and process for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070629

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070724