JP2004010434A - Granulated carbon and its production method - Google Patents

Granulated carbon and its production method Download PDF

Info

Publication number
JP2004010434A
JP2004010434A JP2002166695A JP2002166695A JP2004010434A JP 2004010434 A JP2004010434 A JP 2004010434A JP 2002166695 A JP2002166695 A JP 2002166695A JP 2002166695 A JP2002166695 A JP 2002166695A JP 2004010434 A JP2004010434 A JP 2004010434A
Authority
JP
Japan
Prior art keywords
group
granulated
activated carbon
binder
coal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002166695A
Other languages
Japanese (ja)
Other versions
JP4219619B2 (en
Inventor
Susumu Abe
阿部 進
Shizuo Ishimura
石邨 静雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Chemical Co Ltd
Original Assignee
Kuraray Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Chemical Co Ltd filed Critical Kuraray Chemical Co Ltd
Priority to JP2002166695A priority Critical patent/JP4219619B2/en
Publication of JP2004010434A publication Critical patent/JP2004010434A/en
Application granted granted Critical
Publication of JP4219619B2 publication Critical patent/JP4219619B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide useful granulated carbon having wide application and to provide a production method of industrially advantageous granulated carbon. <P>SOLUTION: In the granulated carbon and its producing method, the granulation is performed by using at least one kind selected from a group (group A) consisting of acrylic type and acrylic-styrene type and at least one kind selected from a group (group B) consisting of methyl cellulose type, carboxymethyl cellulose type and polyvinyl alcohol type as binders. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、造粒炭及びその製造方法に関する。本発明の造粒炭は、吸着性能及び硬度に優れているので、気相又は液相で、脱臭用、溶剤回収用、自動車燃料蒸散防止用、触媒用などの用途に好ましく使用される。
【0002】
【従来の技術】
近年、吸着操作を効果的に行うため、造粒炭、ブロック、ハニカムなどの形態の活性炭成形体が用いられており、なかでも、コスト、性能、取り扱い性などの点で造粒炭が主に使用されている。造粒炭は、主原料となる炭素質材料にコールタールピッチ、パルプ廃液、廃糖蜜などのバインダーを加えて造粒した後、数100℃で炭化し、さらに、600〜1100℃の高温下で水蒸気や炭酸ガスなどの酸化性ガスの雰囲気下で賦活を行って製造する、いわゆる造粒後賦活により多く製造されている。
【0003】
一方、活性炭にバインダーを加えて造粒する、いわゆる賦活後造粒法による造粒炭も知られている。例えば、特公昭48−7194号公報に、予め4〜40メッシュ(4.75〜0.420mm)の粒状活性炭と耐油性短繊維を混合し、吸着用の容器に充填したものに、ブタジエン−アクリロニトリル系、ウレタン系、スチレン−ブタジエン系などの耐油性エマルジョン型ラテックスを用いて粟おこし状に結合一体化させ、乾燥してブロック状の成形体を作る方法が開示されている。
【0004】
また、特公平5−26747号公報に、予め賦活して得た粉末活性炭に、ベントナイト白土、水ガラスなどの無機系バインダーを加えて造粒し、数100℃で焼成して製造する方法が開示されており、特開平2−80315号公報に、光学的に異方性であるメソカーボンマイクロビーズを原料として賦活した活性炭を、セルロース系樹脂、フェノール樹脂、ポリイミド、ベントナイト、コールタールピッチなど少なくとも1種類を用いて造粒する方法が開示されている。
【0005】
さらに、特開昭52−108388号公報には、粉末活性炭にアルギン酸又はカルボキシメチルセルロースのナトリウム塩などの水溶性の有機系バインダーで造粒し、乾燥固化した後、カルシウム、バリウム、銅、鉄、クロムなどの2価又は3価の金属でナトリウムを置換することで、耐水性に優れ、強度の大きな造粒炭を製造する方法が提案されている。
【0006】
【発明が解決しようとする課題】
しかしながら、上記した従来の技術には次のような問題点がある。すなわち、炭素質材料にバインダーを加え、成形した後に炭化、賦活する造粒後賦活法による造粒炭は、高温に加熱する工程での熱ひずみや賦活収縮により、ひび割れや粉化が起こりやすく、特に高度に賦活した高性能品を得ようとする場合、その影響が顕著に現れるため、高い吸着性能と高硬度の両立は困難であった。また、吸着性能、細孔分布などは、原料の選択と賦活条件により通常コントロールされるが、任意に調整することは難しかった。
【0007】
特公昭48−7194号公報に開示された方法は、振動摩耗を抑制するには有効であるが、本発明のような直径2〜6mm程度の通常の造粒炭そのものの成形には適用困難であるのと、容器に詰められているためバルクで使用することができ難い問題があった。しかも、個々の造粒炭の強度を高めるものではない。また、耐油性エマルジョンにカルボキルメチルセルロース(CMC)を混合することもできると記載されているが、CMCの混合の必要性については全く触れられておらず強度向上効果も明らかにされていない。
【0008】
特公平5−26747号公報によれば、賦活後成形法としてベントナイトなどの無機系バインダーを使用する方法が開示され、ベースとなる活性炭を比較的自由に選定できる利点はあるが、灰分となる無機系の不純物が増加するだけでなく、充填密度も必要以上に高くなり、さらに約600℃以上の高温熱処理が必要になるなどの問題がある。
【0009】
特開平2−80315号公報に開示された方法は、メソカーボンマイクロビーズはピッチを精製して造粒炭とするので、もともと高価であるのと、酸化性ガスとの反応速度が遅いため、反応促進剤を添加するか、KOHなどのアルカリで賦活する必要があり、通常の酸化性ガス賦活と比べてコストアップになる。さらに、特開昭52−108388号公報に開示された方法は、バインダーとしてアルギン酸などのナトリウム塩を使用し、後工程で2〜3価の金属と置換する方法であるため、工程が複雑であり、必然的にコストアップになる。したがって、本発明の目的は、吸着性能と硬度に優れた用途の広い有用な造粒炭と工業的に有利な造粒炭の製造方法を提供することにある。
【0010】
【課題を解決するための手段】
本発明者らは、上記目的を達成するためには、活性炭の特性及びバインダーの選定が重要であることに着目し、鋭意検討を重ね本発明に至った。すなわち、本発明は、粉末又は粒状の活性炭にバインダーを加えて造粒した造粒炭であって、バインダーとして、アクリル系、アクリル・スチレン系からなる群(A群)から選ばれる少なくとも1種類と、メチルセルロース系、カルボキシメチルセルロース系、ポリビニルアルコール系からなる群(B群)から選ばれる少なくとも1種を用いて造粒された造粒炭である。
【0011】
また、本発明のもう一つの発明は、粉末又は粒状活性炭に、アクリル系、アクリル・スチレン系からなる群(A群)から選ばれる少なくとも1種類と、メチルセルロース系、カルボキシメチルセルロース系、ポリビニルアルコール系からなる群(B群)から選ばれる少なくとも1種の水溶液からなるバインダーを加えて混練し、造粒して得た造粒炭を200℃以下で乾燥、硬化した後、常温まで冷却することを特徴とする造粒炭の製造方法である。
【0012】
【発明の実施の形態】
本発明で使用する活性炭の原料となる炭素質材料としては、賦活することによって活性炭を形成するものであればとくに制限はなく、植物系、鉱物系、天然素材及び合成素材などの等方性の炭素質材料から広く選択することができる。具体的には、植物系の炭素質材料として、木材、木炭、ヤシ殻などの果実殻、鉱物系の炭素質材料として、石油系及び/又は石炭系ピッチ、コークス、天然素材として、木綿、麻などの天然繊維、レーヨン、ビスコースレーヨンなどの再生繊維、アセテート、トリアセテートなどの半合成繊維、合成素材として、ナイロンなどのポリアミド系、ビニロンなどのポリビニルアルコール系、アクリルなどのポリアクリロニトリル系、ポリエチレン、ポリプロピレンなどのポリオレフィン系、ポリウレタン、フェノール系樹脂、塩化ビニル系樹脂などを例示することができる。
【0013】
炭素質材料の形状は限定されるものではなく、粒状、微粉状、繊維状、シート状など種種の形状のものを使用することができるが、粒子サイズは0.3mm以下のものが造粒に適しており、好ましい。
【0014】
造粒炭は、吸着塔への充填や抜き取り、吸着操作による摩擦や圧力などに対する機械的強度に優れるだけでなく、耐水及び耐油性にも優れることが望ましく、本発明の最大の特徴は、かかる目的に対し、添加するバインダーを選定したことにある。本発明の造粒炭は、バインダーとして、アクリル系、アクリル・スチレン系からなる群(A群)から選ばれる少なくとも1種類と、メチルセルロース系、カルボキシメチルセルロース系、ポリビニルアルコール系からなる群(B群)から選ばれる少なくとも1種を用いて製造される。B群のバインダーは水溶液とするのが好ましい。
【0015】
バインダーの添加量は、活性炭100重量部に対しA群2〜40重量部及びB群0.5〜10重量部とするのが好ましい。粉末又は粒状の活性炭にバインダーを添加した後、ニーダーなどで混練される。混練物は、次いでペレッターなどの造粒機で造粒され、200℃以下の温度で乾燥、硬化されて造粒炭が製造される。
【0016】
本発明において、粉末又は粒状の活性炭として、少なくとも細孔分布及び/又は吸着特性の異なる2種類以上をブレンドした活性炭を使用すると、任意の細孔径分布を有する造粒炭を容易に製造することができ、吸着性能を任意にコントロールすることが可能となり、好ましい。
【0017】
本発明の造粒炭において、硬度はコークスの強度試験法であるマイクロストレングス硬度で10%以上であるのが好ましく、15%以上であるのがさらに好ましい。マイクロストレングス硬度(MS硬度)とは、コークスの強度試験法の一種でそれを造粒炭に適用したものであるが、簡単に述べるとは、試料5gと直径8mmの鋼球10個とを直径1インチ長さ12インチの鉄製容器に入れ、25rpmで1000回転させた後、目開き0.3mmの標準篩の上に止まった重さを%で表示したものである。
【0018】
本発明の造粒炭の吸着性能は、ベンゼン吸着能を測定することによって確認することができる。ベンゼン吸着能はJIS K1474溶剤蒸気の吸着性能の測定に準拠して測定することができ、飽和濃度の1/10の濃度における平衡吸着能で表す。本発明の造粒炭において、造粒することによるベンゼン吸着能の低下は軽微であり、原料活性炭に対し70〜90%の性能を確保することができる。また、活性炭の中心細孔径は水蒸気吸着法による細孔分布曲線から求めた。以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、配合割合は全て重量部である。
【0019】
【実施例】
実施例1〜10及び比較例1〜2
ベンゼン吸着能50%、比表面積1400m/g、水蒸気吸着法による細孔分布で、中心細孔径30Å、粒度0.1mm以下の石炭系粉末活性炭に、B群バインダーとしてカルボキシメチルセルロース(以下CMCとする)量を3部に固定し、A群バインダーであるアクリル・スチレン系エマルジョン(ASE)の混合比を3〜30部まで変化させたものについて、ベンゼン吸着性能とMS硬度をの測定した(実施例1〜5)。また、A群をASE10部に固定し、B群CMC量を1〜5部に変化させた場合のベンゼン吸着能とMS硬度を測定した(実施例6〜7)。造粒炭サイズはダイス孔径を変えることにより調節した。造粒炭サイズの効果を実施例8〜9に示す。
【0020】
A群及びB群をそれぞれ単独で使用した場合について同様にベンゼン吸着能とMS硬度を測定した(比較例1〜2)。さらに、CMC量を3部に固定し、ASE量を少なくした場合について測定し、実施例10に示した。
【0021】
【表1】

Figure 2004010434
【0022】
実施例11〜14
B群をCMC3部に固定し、A群をアクリル系エマルジョン(AE)に変更した場合のベンゼン吸着能、MS硬度の測定結果を表2に示す。
【0023】
【表2】
Figure 2004010434
【0024】
実施例15〜18
A群をASE10部に固定し、B群をポリビニルアルコール(PVA)に変更した場合のベンゼン吸着能、MS硬度の測定結果を表3に示す。
【0025】
【表3】
Figure 2004010434
【0026】
比較例3〜5
B群をCMC3部に固定し、A群についてフェノール樹脂エマルジョンを8〜42部添加した場合のベンゼン吸着能、MS硬度の測定結果を表4に示す。
【0027】
【表4】
Figure 2004010434
【0028】
比較例6〜7
バインダーとしてベントナイトを使用した場合のベンゼン吸着能、MS硬度の測定結果を表5に示す。
【0029】
【表5】
Figure 2004010434
【0030】
実施例19及び比較例8〜9
図1に示されるように、水蒸気吸着法で測定される小さい細孔を有するヤシ殻活性炭と大きな細孔を有する石炭系活性炭を重量比1:1でブレンドしたものに、実施例3と同一の処方により造粒炭を製造した。造粒炭の細孔分布曲線を図2に示す。このように、細孔分布などの異なる2種類の活性炭を適宜ブレンドすることにより、所望とする細孔分布を示す造粒炭とすることができ、したがって、各用途に応じた吸着性能を有するように任意にコントロールすることが可能となる。
【0031】
実施例20〜21及び比較例10
自動車燃料蒸散防止用活性炭の代表的な性能評価法である、ASTM D5228によるブタンワーキングキャパシティー(BWC)が12g/dlで、充填密度0.40g/mlの石炭系粒状活性炭を0.1mm以下の粒度に粉砕したものについて、実施例3及び13の条件で造粒炭を製造し、BWCを測定した(各々実施例20及び21)。結果を表6に示す。比較のため、もとの石炭系活性炭のBWCを測定し、結果を併記した。
【0032】
【表6】
Figure 2004010434
【0033】
【発明の効果】
本発明により、用途の広い有用な造粒炭と工業的に有利な造粒炭の製造方法を提供することができる。本発明の造粒炭は、吸着性能に優れていることは勿論、強度が大きいため、輸送や使用中の微粉の発生が少なく、振動や衝撃が加わる様な従来の造粒炭が使用し難い用途にも適用できるので、気相又は液相に好ましく使用することができる。また、複数種の活性炭をブレンド使用することにより、細孔分布及び吸着性能を任意にコントロールすることができるので、窒素、メタン、ブタン、トルエンなどの単一組成の吸着除去用だけでなく、脱臭用、溶剤回収用、自動車燃料蒸散防止用、触媒用など種々の用途に適用可能な造粒炭を製造することができる。
【図面の簡単な説明】
【図1】実施例19で使用したヤシ殻活性炭と石炭系活性炭の細孔分布図である。
【図2】実施例19における造粒炭の細孔分布図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to granulated coal and a method for producing the same. Since the granulated coal of the present invention has excellent adsorption performance and hardness, it is preferably used in a gas phase or a liquid phase for applications such as deodorization, solvent recovery, automobile fuel evaporation prevention, and catalyst use.
[0002]
[Prior art]
In recent years, activated carbon compacts in the form of granulated coal, blocks, honeycombs, etc. have been used in order to perform the adsorption operation effectively. Among them, granulated coal is mainly used in terms of cost, performance, handleability, etc. It is used. Granulated coal is obtained by adding coal tar pitch, pulp waste liquid, molasses, and other binders to the carbonaceous material as the main raw material, granulating, carbonizing at several hundred degrees Celsius, and further under a high temperature of 600 to 1100 ° C. It is often produced by so-called post-granulation activation, which is produced by activating in an atmosphere of an oxidizing gas such as steam or carbon dioxide gas.
[0003]
On the other hand, granulated carbon by a so-called post-activation granulation method in which a binder is added to activated carbon to granulate is also known. For example, in Japanese Patent Publication No. 48-7194, butadiene-acrylonitrile is prepared by previously mixing granular activated carbon of 4 to 40 mesh (4.75 to 0.420 mm) and oil-resistant short fibers and filling the mixture in a container for adsorption. A method is disclosed in which an oil-resistant emulsion type latex such as an oil-based, urethane-based, or styrene-butadiene-based latex is bonded and integrated in a millet state and dried to form a block-shaped molded body.
[0004]
In addition, Japanese Patent Publication No. 5-26747 discloses a method in which an inorganic binder such as bentonite clay and water glass is added to powdered activated carbon obtained in advance and granulated, followed by firing at several hundred degrees Celsius for production. JP-A-2-80315 discloses that activated carbon activated by using optically anisotropic mesocarbon microbeads as a raw material is mixed with at least one of cellulose-based resin, phenolic resin, polyimide, bentonite, coal tar pitch and the like. A method of granulating using types is disclosed.
[0005]
Further, JP-A-52-108388 discloses that powdered activated carbon is granulated with a water-soluble organic binder such as alginic acid or a sodium salt of carboxymethylcellulose, dried, solidified, and then dried with calcium, barium, copper, iron, chromium. For example, a method has been proposed in which sodium is replaced with a divalent or trivalent metal such as the above to produce a granulated coal having excellent water resistance and high strength.
[0006]
[Problems to be solved by the invention]
However, the above-described conventional technology has the following problems. In other words, a binder is added to the carbonaceous material, carbonized after molding, and granulated coal by a post-granulation activation method of activation is easily cracked or powdered due to thermal strain or activation shrinkage in a step of heating to a high temperature, In particular, when a highly activated high performance product is to be obtained, the effect is remarkable, and it has been difficult to achieve both high adsorption performance and high hardness. In addition, adsorption performance, pore distribution, and the like are usually controlled by selection of raw materials and activation conditions, but it has been difficult to arbitrarily adjust them.
[0007]
The method disclosed in Japanese Patent Publication No. 48-7194 is effective for suppressing vibration wear, but is difficult to apply to the formation of ordinary granulated coal having a diameter of about 2 to 6 mm as in the present invention. There was a problem that it was difficult to use it in bulk because it was packed in a container. Moreover, it does not increase the strength of each granulated coal. Further, it is described that carboxymethylcellulose (CMC) can be mixed with the oil-resistant emulsion, but the necessity of mixing CMC is not mentioned at all, and the strength improving effect is not clarified.
[0008]
Japanese Patent Publication No. 5-26747 discloses a method using an inorganic binder such as bentonite as a molding method after activation, which has an advantage that activated carbon as a base can be relatively freely selected. In addition to an increase in impurities in the system, there is a problem that the packing density becomes unnecessarily high and a high-temperature heat treatment at about 600 ° C. or more is required.
[0009]
According to the method disclosed in Japanese Patent Application Laid-Open No. 2-80315, the mesocarbon microbeads are refined in pitch to form granulated charcoal, which is expensive in nature and has a low reaction rate with oxidizing gas. It is necessary to add a promoter or to activate with an alkali such as KOH, so that the cost is increased as compared with the usual oxidizing gas activation. Further, the method disclosed in JP-A-52-108388 is a method in which a sodium salt such as alginic acid is used as a binder, and a divalent or trivalent metal is substituted in a subsequent step. , Which inevitably increases costs. Accordingly, an object of the present invention is to provide a useful granulated coal having excellent adsorption performance and hardness and a wide range of uses, and a method for producing an industrially advantageous granulated coal.
[0010]
[Means for Solving the Problems]
The present inventors have paid attention to the fact that the properties of activated carbon and the selection of a binder are important in order to achieve the above object, and have conducted intensive studies and reached the present invention. That is, the present invention relates to granulated carbon obtained by adding a binder to powdered or granular activated carbon and granulating the same. As the binder, at least one selected from the group consisting of acrylic and acrylic / styrene (group A) is used. And granulated carbon using at least one selected from the group (group B) consisting of methyl cellulose, carboxymethyl cellulose, and polyvinyl alcohol.
[0011]
Further, another invention of the present invention relates to a method in which powdered or granular activated carbon includes at least one selected from the group consisting of acryl-based and acryl-styrene-based (group A) and methylcellulose-based, carboxymethylcellulose-based, and polyvinyl alcohol-based. A binder comprising at least one aqueous solution selected from the group (Group B) is added and kneaded, and the granulated carbon obtained by granulation is dried and cured at 200 ° C. or lower, and then cooled to room temperature. This is a method for producing granulated coal.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
The carbonaceous material used as the raw material of the activated carbon used in the present invention is not particularly limited as long as it forms activated carbon by activation, and isotropic such as plant-based, mineral-based, natural material and synthetic material. It can be widely selected from carbonaceous materials. Specifically, plant-based carbonaceous materials such as wood, charcoal, fruit shells such as coconut shells, mineral-based carbonaceous materials, petroleum and / or coal-based pitch, coke, and natural materials such as cotton and hemp Natural fibers such as rayon, regenerated fibers such as viscose rayon, semi-synthetic fibers such as acetate and triacetate, polyamide materials such as nylon, polyvinyl alcohol materials such as vinylon, polyacrylonitrile materials such as acrylic, polyethylene, Examples thereof include polyolefins such as polypropylene, polyurethane, phenolic resins, and vinyl chloride resins.
[0013]
The shape of the carbonaceous material is not limited, and various shapes such as granules, fine powders, fibers, and sheets can be used, but those having a particle size of 0.3 mm or less are used for granulation. Suitable and preferred.
[0014]
Granulated coal is preferably not only excellent in mechanical strength against friction and pressure due to filling and withdrawal in the adsorption tower, adsorption operation and the like, but also excellent in water resistance and oil resistance. That is, the binder to be added is selected for the purpose. The granulated charcoal of the present invention has, as a binder, at least one selected from the group consisting of an acrylic type and an acrylic styrene type (group A) and a group consisting of a methylcellulose type, a carboxymethylcellulose type and a polyvinyl alcohol type (group B). It is manufactured using at least one kind selected from The binder of Group B is preferably an aqueous solution.
[0015]
The amount of the binder to be added is preferably 2 to 40 parts by weight of Group A and 0.5 to 10 parts by weight of Group B per 100 parts by weight of activated carbon. After adding a binder to powdered or granular activated carbon, it is kneaded with a kneader or the like. The kneaded material is then granulated with a granulator such as a pelletizer, dried and cured at a temperature of 200 ° C. or less to produce granulated coal.
[0016]
In the present invention, when activated carbon in which at least two types having different pore distributions and / or adsorption characteristics are blended is used as powdered or granular activated carbon, granulated carbon having an arbitrary pore size distribution can be easily produced. It is preferable because the adsorption performance can be arbitrarily controlled.
[0017]
In the granulated coal of the present invention, the hardness is preferably 10% or more, more preferably 15% or more, in terms of micro-strength hardness, which is a method for testing coke strength. The micro-strength hardness (MS hardness) is a type of coke strength test applied to granulated coal, but the simple description is that 5 g of a sample and 10 steel balls having a diameter of 8 mm are combined. The weight which stopped in a 1-inch long 12-inch iron container, rotated 1000 rpm at 25 rpm, and stopped on a standard sieve with an aperture of 0.3 mm is indicated by%.
[0018]
The adsorption performance of the granulated coal of the present invention can be confirmed by measuring the benzene adsorption capability. The benzene adsorption capacity can be measured in accordance with JIS K1474 solvent vapor adsorption capacity measurement, and is expressed as the equilibrium adsorption capacity at a concentration of 1/10 of the saturation concentration. In the granulated carbon of the present invention, the decrease in benzene adsorption capacity due to granulation is slight, and a performance of 70 to 90% with respect to the raw activated carbon can be secured. The central pore diameter of the activated carbon was determined from a pore distribution curve obtained by a water vapor adsorption method. Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited thereto. All mixing ratios are parts by weight.
[0019]
【Example】
Examples 1 to 10 and Comparative Examples 1 and 2
Benzene adsorption capacity 50%, specific surface area 1400 m 2 / g, pore distribution by steam adsorption method, central pore diameter 30 mm, particle size 0.1 mm or less activated carbon-based powdered activated carbon, carboxymethyl cellulose (hereinafter referred to as CMC) as a group B binder ) The benzene adsorption performance and the MS hardness were measured with respect to a mixture in which the amount was fixed at 3 parts and the mixing ratio of the acryl-styrene emulsion (ASE) as the group A binder was changed from 3 to 30 parts (Example). 1-5). Further, the benzene adsorption capacity and MS hardness were measured when the group A was fixed to 10 parts of ASE and the CMC amount of the group B was changed to 1 to 5 parts (Examples 6 and 7). Granulated coal size was adjusted by changing the die pore size. Examples 8 and 9 show the effect of the granulated coal size.
[0020]
The benzene adsorption capacity and the MS hardness were measured in the same manner when the groups A and B were used alone (Comparative Examples 1 and 2). Further, the CMC amount was fixed at 3 parts and the ASE amount was reduced.
[0021]
[Table 1]
Figure 2004010434
[0022]
Examples 11 to 14
Table 2 shows the measurement results of the benzene adsorption ability and the MS hardness when the group B was fixed to 3 parts of CMC and the group A was changed to an acrylic emulsion (AE).
[0023]
[Table 2]
Figure 2004010434
[0024]
Examples 15 to 18
Table 3 shows the measurement results of the benzene adsorption ability and the MS hardness when the group A was fixed to 10 parts of ASE and the group B was changed to polyvinyl alcohol (PVA).
[0025]
[Table 3]
Figure 2004010434
[0026]
Comparative Examples 3 to 5
Table 4 shows the measurement results of benzene adsorption ability and MS hardness when Group B was fixed to 3 parts of CMC and 8 to 42 parts of phenol resin emulsion was added to Group A.
[0027]
[Table 4]
Figure 2004010434
[0028]
Comparative Examples 6 and 7
Table 5 shows the measurement results of the benzene adsorption ability and the MS hardness when bentonite was used as the binder.
[0029]
[Table 5]
Figure 2004010434
[0030]
Example 19 and Comparative Examples 8 to 9
As shown in FIG. 1, the same as Example 3 was obtained by blending a coconut shell activated carbon having small pores and a coal-based activated carbon having large pores at a weight ratio of 1: 1 as measured by a water vapor adsorption method. Granulated coal was manufactured according to the recipe. FIG. 2 shows a pore distribution curve of the granulated coal. As described above, by appropriately blending two types of activated carbons having different pore distributions or the like, it is possible to obtain granulated carbon having a desired pore distribution, and thus to have adsorption performance according to each application. Can be controlled arbitrarily.
[0031]
Examples 20 to 21 and Comparative Example 10
ASTM D5228, a typical method for evaluating the performance of activated carbon for automobile fuel evaporation, has a butane working capacity (BWC) of 12 g / dl and a packing density of 0.40 g / ml. Granulated coal was manufactured under the conditions of Examples 3 and 13 and the BWC was measured for those pulverized to the particle size (Examples 20 and 21 respectively). Table 6 shows the results. For comparison, the BWC of the original coal-based activated carbon was measured and the results are also shown.
[0032]
[Table 6]
Figure 2004010434
[0033]
【The invention's effect】
According to the present invention, it is possible to provide a useful granulated coal having a wide range of uses and an industrially advantageous method for producing a granulated coal. The granulated coal of the present invention is not only excellent in adsorption performance, but also has high strength, so that the generation of fine powder during transportation and use is small, and it is difficult to use the conventional granulated coal to which vibration and impact are applied. Since it can be applied to applications, it can be preferably used in a gas phase or a liquid phase. In addition, by blending a plurality of types of activated carbon, the pore distribution and adsorption performance can be arbitrarily controlled, so that it can not only remove and adsorb single components such as nitrogen, methane, butane, and toluene, but also deodorize. It is possible to produce granulated coal which can be used for various purposes, such as application, solvent recovery, automobile fuel evaporation prevention, and catalyst use.
[Brief description of the drawings]
FIG. 1 is a pore distribution diagram of coconut shell activated carbon and coal-based activated carbon used in Example 19.
FIG. 2 is a pore distribution diagram of granulated coal in Example 19.

Claims (6)

粉末又は粒状の活性炭にバインダーを加えて造粒した造粒炭であって、バインダーとして、アクリル系、アクリル・スチレン系からなる群(A群)から選ばれる少なくとも1種類と、メチルセルロース系、カルボキシメチルセルロース系、ポリビニルアルコール系からなる群(B群)から選ばれる少なくとも1種を用いて造粒された造粒炭。A granulated charcoal obtained by adding a binder to powdered or granular activated carbon and granulating, wherein the binder is at least one selected from the group consisting of acryl-based and acryl-styrene-based (group A), methylcellulose-based, carboxymethylcellulose Granulated charcoal granulated using at least one member selected from the group consisting of a propylene-based and polyvinyl alcohol-based (group B). 該粉末又は粒状の活性炭の粒度が0.3mm以下である請求項1記載の造粒炭。The granulated carbon according to claim 1, wherein the particle size of the powdered or granular activated carbon is 0.3 mm or less. 該造粒炭の硬度が10%以上である請求項1又は2記載の造粒炭。The granulated coal according to claim 1 or 2, wherein the hardness of the granulated coal is 10% or more. 粉末又は粒状の活性炭に、アクリル系、アクリル・スチレン系からなる群(A群)から選ばれる少なくとも1種類と、メチルセルロース系、カルボキシメチルセルロース系、ポリビニルアルコール系からなる群(B群)から選ばれる少なくとも1種のバインダーを加えて混練し、造粒して得た造粒炭を200℃以下で乾燥、硬化した後、常温まで冷却することを特徴とする造粒炭の製造方法。Powdered or granular activated carbon, at least one selected from the group consisting of acrylics and acrylic styrenes (group A) and at least one selected from the group consisting of methylcellulose, carboxymethylcellulose and polyvinyl alcohol (group B) A method for producing granulated charcoal, comprising adding and kneading one kind of binder, kneading and granulating the granulated charcoal, drying and hardening the granulated charcoal at a temperature of 200 ° C. or lower, and then cooling to room temperature. バインダーの添加量が、活性炭100重量部に対しA群2〜40重量部及びB群0.5〜10重量部である請求項4記載の造粒炭の製造方法。The method for producing granulated coal according to claim 4, wherein the amount of the binder is 2 to 40 parts by weight of Group A and 0.5 to 10 parts by weight of Group B based on 100 parts by weight of activated carbon. 該粉末又は粒状の活性炭が、少なくとも細孔分布及び/又は吸着特性の異なる2種類以上をブレンドした活性炭である請求項4又は5記載の造粒炭の製造方法。The method for producing granulated carbon according to claim 4 or 5, wherein the powdered or granular activated carbon is an activated carbon obtained by blending at least two kinds having different pore distribution and / or adsorption characteristics.
JP2002166695A 2002-06-07 2002-06-07 Granulated coal and method for producing the same Expired - Lifetime JP4219619B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002166695A JP4219619B2 (en) 2002-06-07 2002-06-07 Granulated coal and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002166695A JP4219619B2 (en) 2002-06-07 2002-06-07 Granulated coal and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004010434A true JP2004010434A (en) 2004-01-15
JP4219619B2 JP4219619B2 (en) 2009-02-04

Family

ID=30434168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002166695A Expired - Lifetime JP4219619B2 (en) 2002-06-07 2002-06-07 Granulated coal and method for producing the same

Country Status (1)

Country Link
JP (1) JP4219619B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005113435A1 (en) * 2004-05-20 2005-12-01 Kuraray Chemical Co., Ltd Spherical active carbon and process for producing the same
CN100404124C (en) * 2004-11-02 2008-07-23 石油大学(北京) Method for producing natural gas-storing charcoal blocky absorbent
JP2010222163A (en) * 2009-03-23 2010-10-07 Kuraray Chem Corp High functional granulated carbon and method for manufacturing the same
JP2016147218A (en) * 2015-02-10 2016-08-18 クラレケミカル株式会社 High performance adsorbent for removing aldehyde and method for producing the same
JP2016168544A (en) * 2015-03-12 2016-09-23 株式会社豊田中央研究所 Adsorbent compact
CN113636551A (en) * 2020-05-11 2021-11-12 中冶长天国际工程有限责任公司 Method for preparing high-performance activated carbon by using activated carbon powder blended with coal
CN114592123A (en) * 2021-12-27 2022-06-07 福建通海镍业科技有限公司 Chromium ore powder ball and preparation method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005113435A1 (en) * 2004-05-20 2005-12-01 Kuraray Chemical Co., Ltd Spherical active carbon and process for producing the same
JPWO2005113435A1 (en) * 2004-05-20 2008-03-27 クラレケミカル株式会社 Spherical activated carbon and method for producing the same
JP4855251B2 (en) * 2004-05-20 2012-01-18 クラレケミカル株式会社 Spherical activated carbon and method for producing the same
CN100404124C (en) * 2004-11-02 2008-07-23 石油大学(北京) Method for producing natural gas-storing charcoal blocky absorbent
JP2010222163A (en) * 2009-03-23 2010-10-07 Kuraray Chem Corp High functional granulated carbon and method for manufacturing the same
JP2016147218A (en) * 2015-02-10 2016-08-18 クラレケミカル株式会社 High performance adsorbent for removing aldehyde and method for producing the same
JP2016168544A (en) * 2015-03-12 2016-09-23 株式会社豊田中央研究所 Adsorbent compact
CN113636551A (en) * 2020-05-11 2021-11-12 中冶长天国际工程有限责任公司 Method for preparing high-performance activated carbon by using activated carbon powder blended with coal
CN114592123A (en) * 2021-12-27 2022-06-07 福建通海镍业科技有限公司 Chromium ore powder ball and preparation method thereof

Also Published As

Publication number Publication date
JP4219619B2 (en) 2009-02-04

Similar Documents

Publication Publication Date Title
US5538932A (en) Preparation of high activity, high density activated carbon with activatable binder
US6790390B2 (en) Composite material comprising activated carbon and expanded graphite
US5324703A (en) Method of preparation of gasoline vapor adsorptive activated carbon
CN105148843B (en) A kind of activated carbon granule and preparation method thereof and canister
CN103043644B (en) The preparation method of spheroidizing carbon meso-hole structure body
JP6545693B2 (en) Method for producing adsorbent containing activated carbon
JPH0516371B2 (en)
JPH069208A (en) Activated carbon
JP2005501790A5 (en)
JP2006213544A (en) Granular active carbon and its manufacturing method
WO2016204206A1 (en) Activated carbon molded body, method for manufacturing activated carbon molded body, and absorbent material and storage material using activated carbon molded body
US20060154815A1 (en) Pelletized activated carbon and production method for the same
US5736481A (en) Shaped lignocellulosic-based activated carbon
JPH09173828A (en) Production of activated carbon article and use thereof
US5736485A (en) Shaped lignocellulosic-based activated carbon
JP2004010434A (en) Granulated carbon and its production method
CN103787686B (en) A kind of carbon fiber compound ball and preparation method thereof
Zhou et al. Carbon-based CO2 adsorbents
US6090362A (en) Method of producing free-flowing carbon
JPH03275139A (en) Globular fiber lump-activated carbon and its production
KR101752967B1 (en) Pellet-producing apparatus for pelletizing a composition for ignition resistant molded-composite adsorbent comprising activated carbon and zeolite
KR20050055272A (en) Pelletized activated carbon and method for preparation thereof
JP2009057239A (en) Activated carbon preparation method
KR100244687B1 (en) Shaped lignocellulosic-based activaed carbon
KR20160135251A (en) Porous carbon, method for producing same, and adsorption/desorption device using porous carbon

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4219619

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term