JP2004009239A - Saw wire manufacturing method - Google Patents

Saw wire manufacturing method Download PDF

Info

Publication number
JP2004009239A
JP2004009239A JP2002168028A JP2002168028A JP2004009239A JP 2004009239 A JP2004009239 A JP 2004009239A JP 2002168028 A JP2002168028 A JP 2002168028A JP 2002168028 A JP2002168028 A JP 2002168028A JP 2004009239 A JP2004009239 A JP 2004009239A
Authority
JP
Japan
Prior art keywords
abrasive grains
plating layer
aluminum plating
steel wire
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002168028A
Other languages
Japanese (ja)
Inventor
Hiroshi Yamada
山田 廣志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2002168028A priority Critical patent/JP2004009239A/en
Publication of JP2004009239A publication Critical patent/JP2004009239A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new step for manufacturing a stuck abrasive grains type saw wire with a high sticking force of abrasive grains to a steel wire, with improved productivity by increasing a wire speed of a wire rod in a manufacturing step. <P>SOLUTION: The steel wire 10 coated with a required thickness of an aluminum plating layer 10a is heated to soften the aluminum plating layer. The steel wire 10 with the heated and softened aluminum plating layer is passed through an abrasive grain bath 2, and abrasive grains 10b are stuck on its surface. After the abrasive grains 10b on the surface are made to bite into the aluminum plating layer 10a by pressurizing the surface with the abrasive grains stuck, the aluminum plating layer is cooled and hardened, to stick the abrasive grains 10b to the aluminum plating layer 10a. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【産業上の利用分野】
この発明は、半導体、シリコンウエハ、水晶、磁器材料などで代表される電気部品材料などの高価な素材を切断するのに用いられるソーワイヤの製造方法に関するものであり、その生産性を改良して生産コストを低減することができるものである。
【0002】
【従来の技術】
近年細い金属線の表面にダイヤモンドなどの微細な砥粒を固着した固定砥粒式ソーワイヤが使用されはじめている。この従来の固定砥粒式ソーワイヤには、例えば伸線加工して細径化した金属線にレジンボンド(熱硬化性樹脂)を積層して、上記レジンボンド層によって、その表面に密にダイヤモンド砥粒やCBN砥粒、硬質微細繊維などの硬質微片(以下これを砥粒という)を固着したもの、或いは、メッキ層に砥粒を埋設して固着したものがある。前者の固定砥粒式ソーワイヤの製造方法は砥粒を混入させたレジンボンドの中を鋼線を通過させることでその表面に砥粒を混入したレジンボンドを付着させ、これを冷却硬化させる方法があり、後者の固定砥粒式ソーワイヤの製造方法はメッキ液(Niメッキ液等)に砥粒を浮遊させておいてメッキ(電気メッキ)処理時にメッキ層に砥粒が付着するようにする方法がある。
【0003】
前者の場合は混入した砥粒のレジンボンド中での分布が不均一であると、ソーワイヤ表面に付着した砥粒分布が不均一になり、また、後者の場合はメッキ液中の砥粒分布が不均一であると不均一になることが避けられず、さらに前者の場合は砥粒の金属線表面への固着力が必ずしも十分でないために、使用中に砥粒が脱落してその分布が粗になり、その結果ソーワイヤの切削性能が低下するという問題がある。
【0004】
後者の場合は、砥粒の金属線表面への固着力は十分で、したがって、長時間に亘って切削性能が保持されるが、砥粒を十分な固着力で固着、保持するために必要な厚さにメッキ層を形成しなければならない。このメッキ処理は、細径の金属線をメッキ液中を微速で通過させてその間にメッキ層を所要の厚さに成長させるものであるから、メッキ液槽の通過時間を長くしなければならないので、メッキ処理を施すための線材の線速が遅く、したがって、ソーワイヤの生産性が低く、その生産コストが高いという問題がある。
【0005】
【発明が解決しようとする課題】
この発明は、従来のソーワイヤの製造方法のいずれとも根本的に異なり、砥粒に対する固着力が高くかつ製造工程での線材の線速を高めて、その生産性を向上できる、新たな製造方法を工夫することをその課題とするものである。
【0006】
【課題を解決するための手段】
上記課題解決のための製造方法は、次の(イ)〜(ハ)によって構成されるものである。
(イ)所要厚さのアルミニウムメッキ層で被覆した鋼線を加熱してそのアルミニウムメッキ層を軟化(半溶融状態に)させること、
(ロ)アルミニウムメッキ層が加熱軟化した鋼線を砥粒槽を通過させて、その表面に砥粒を付着させること、
(ハ)砥粒が付着した表面を加圧して、表面の砥粒をアルミニウムメッキ層に食い込ませた後、アルミニウムメッキ層を冷却硬化させて砥粒をアルミニウムメッキ層に固着させること。
【0007】
【作用】
上記要件(イ)の工程、すなわち、所要厚さのアルミニウムメッキ層で被覆した鋼線を加熱炉に送り込んで、そのアルミニウムメッキ層を軟化(半溶融状態に)させる。なお、前記アルミニウムメッキ層は溶融メッキで形成するのが好適である。
そして、要件(ロ)の工程、すなわち、アルミニウムメッキ層で被覆した鋼線を加熱してそのアルミニウムメッキ層を軟化させた状態で砥粒槽を通過させる。要件(ロ)の工程は、単に軟化したアルミニウムメッキ層に砥粒を付着させるだけであるから、極めて高速で行われる。
そして、上記要件(ハ)の加圧工程で表面に付着した砥粒が加熱軟化したアルミニウムメッキ層に押し込まれて、その一部がアルミニウムメッキ層に食い込まされる。その後の冷却によってアルミニウムメッキ層は熱収縮しながら硬化するので、砥粒はその一部がアルミニウムメッキ層に包まれた状態でしっかりと固着、保持される。この加熱軟化、冷却の過程においてアルミニウムメッキ層の少なくとも表層部が酸化アルミニウム(Al)に変化して硬質化するので、砥粒に対する保持が強固である。
【0008】
また、要件(ハ)の工程、すなわち、砥粒が付着した表面を加圧して表面の砥粒をアルミニウムメッキ層に食い込ませる工程は、小径のダイス孔を通過させ、或いは加圧ローラを通過させるなどの単純な加圧工程であるから、極めて高速で行われる。そして、その後の冷却工程は線速度に影響するものではない。
以上のように要件(イ)(ロ)(ハ)の工程はいずれも高速で行われるから、この方法によるソーワイヤの製造は高速であり、また、各工程は全て単純な加工工程であって低コストで行われるから、その製造コストは従来のものに比して極めて低廉である。
【0009】
【実施態様1】
実施態様1は、解決手段(前記の課題を解決する手段)について、そのアルミニウムメッキ層の厚さが上記砥粒の平均径の1/2〜9/10倍であることである。
【0010】
【作用】
これによって、平均的にみれば、個々の砥粒は、その9/10〜1/2がアルミニウム層に食い込んだ状態になり、残りの部分が露出することになるので、砥粒によるソーワイヤの高い切削性能を長期間確保することができるとともに、砥粒の脱落を確実に防止することができる。
【0011】
【実施態様2】
実施態様2は、解決手段について、そのアルミニウムメッキ層を600〜680℃に加熱して軟化させることである。
【0012】
【作用】
上記加熱温度で、アルミニウムは半溶融状態、すなわち、固相と液相との共存状態となる。
加熱温度が低いと砥粒のアルミニウムメッキ層への付着性が低下し、加熱温度が高すぎるとアルミニウムメッキ層が流動、変形してメッキ層の厚さが不均一になり、そのためにアルミニウムメッキ層による砥粒の保持力が不足する部分を生じる恐れがある。
加熱温度を上記の範囲に選択することによって、砥粒のアルミニウムメッキ層への十分な付着性を確保しつつアルミニウムメッキ層の厚さが均一になって、アルミニウムメッキ層による砥粒の保持力が不足する部分を生じることが回避される。
【0013】
【実施態様3】
実施態様3は、解決手段について、その砥粒槽内に砥粒を堆積させ、堆積した砥粒の中をアルミニウムメッキ層で被覆した鋼線を通過させることである。
【0014】
【作用】
極めて単純な方法で鋼線表面に均一に砥粒が付着される。
【0015】
【実施態様4】
実施態様4は、解決手段について、その砥粒槽内で砥粒を気体で浮遊させ、この中を上記アルミニウムメッキ層で被覆した鋼線を通過させることである。
【0016】
【作用】
砥粒槽内の砥粒の浮遊密度、当該密度の分布を調整することによって、砥粒槽内を通過する鋼線の表面への砥粒の最終的な付着密度を調整し、また付着密度分布の均一化を図ることができる。
【0017】
【実施態様5】
実施態様5は、解決手段について、そのアルミニウムメッキ層に砥粒が付着した鋼線を円錐状のダイス孔を通過させて、その小径内面によって砥粒が付着した表面を加圧することである。
【0018】
【実施態様6】
実施態様6は、解決手段について、そのアルミニウムメッキ層に砥粒が付着した鋼線を、断面円弧状の外周溝を備えた2つのロールの間を通過させて、その円弧状溝の内面によって砥粒が付着した表面を加圧することである。
【0019】
【実施例】
次いで、図面を参照して実施例を説明する。
ソーワイヤの仕様は使用目的によって、その線径が0.02〜0.50mm、砥粒の平均粒径が5〜300μmである等、様々であるが、この実施例は、0.23mmの鋼線、平均粒径 35μmの立方晶窒化ホウ素(CBN)の砥粒によるものである。
線径0.23mmの鋼線に厚さ30μmのアルミニウムメッキを施した鋼線10を加熱炉1、CBNパウダー槽(砥粒槽)2、加圧ダイス3、冷却槽4に順次送入通過させる。これによってアルミニウムメッキ層で被覆した鋼線10の表面に砥粒が固着され、その砥粒分布がほぼ均等なソーワイヤになる。
【0020】
この製造方法における加熱炉1を出るときの上記メッキ層の温度は660℃(制御範囲± 5℃)になるように、加熱炉1内の温度がコントロールされている。加熱炉による加熱方法としては通常の電気炉による加熱でもよく、高周波誘導加熱によることもできる。
平均粒径 35μmのCBNパウダー2aを堆積したCBNパウダー槽2の略中間位置をアルミニウムメッキ層で被覆した鋼線10が通過するようにしている。このCBNパウダー槽2の通過長さLは線速度、砥粒粒径等に関係するので一概には決められないが、要するにメッキ層10aに均一にかつ十分に付着するように調整すればよい。
また、メッキ層10aの表面温度はCBNパウダー槽2内のパウダー2aに接すると急速に低下し、パウダー2aの付着性が低下してしまう場合もある。このような場合は、CBNパウダー槽2を加熱してCBNパウダー槽2内でのメッキ層10aの表面温度が下がり過ぎないようにすればよい。
【0021】
CBNパウダー槽2に熱風を吹き込んでCBNパウダー2aを浮遊させ、浮遊層の中をアルミニウムメッキ層で被覆した鋼線10を通過させるようにすることもできる。この場合、CBNパウダー槽2のCBNパウダー量、吹き込まれる熱風の風速、風量を加減することで、CBNパウダーの浮遊密度が調整され、浮遊密度を調整することによって、アルミニウムメッキ層で被覆した鋼線10表面へのCBNパウダーの付着密度が調整される。
【0022】
加圧ダイス3は、要するに、アルミニウムメッキ層で被覆した鋼線10を通過させることでその外面を均等に加圧してアルミニウムメッキ層10aに付着した砥粒10bをアルミニウムメッキ層10aに押し込んで食い込ませるという作用を奏するものであればよい。この例は、入り口が大径で出口が小径の円錐ダイス孔を備えているものである。
【0023】
なお、ダイス3のダイス孔内面は硬質の砥粒と擦り合って摩耗するから、この内面にセラミック被覆して耐摩処理を施してもよい。
外周に円弧状溝を設けた2つの加圧ローラ30a,30bによって上記加圧手段を構成することもできる。この場合の2つの加圧ローラ30a,30bの円弧状溝で形成される円形加圧面の直径は、上記のダイス3の円錐ダイス孔の小径部の内径と等しい。鋼線外面に対する加圧力を一層均等にするために、図示の加圧ローラ30a,30bと90度回転面を違えたもう一対の加圧ローラ30a,30bを図示の加圧ローラ30a,30bの後方に配置して、上下方向及び左右方向から加圧することもできる。
ソーワイヤの断面形状は円形の他に、楕円形、トラック形、長方形など様々な形状のものがある。例えば楕円形の場合は、加圧手段の加圧面(例えば加圧ダイスのダイス孔の内面)の形状を楕円形状にすればよい。
【0024】
【発明の効果】
以上のとおり、この発明は適宜の方法で製造したアルミニウムメッキ層で被覆した鋼線を、加熱炉で加熱してアルミニウムメッキ層を軟化させ、これに砥粒を付着させ、付着した砥粒を加圧手段で加圧してその一部をアルミニウムメッキ層に食い込ませて、アルミニウムメッキ層が冷却して熱収縮して硬化することによる固着力を利用して砥粒をアルミニウムメッキ層に固着、保持させるものであるから、ソーワイヤの製造方法が簡単になり、また、ソーワイヤの製造工程での線速を高速にして生産性を向上させることができるので、ソーワイヤの製造コストを低下させることができる。
また、この発明の製造方法によるソーワイヤにおいては、砥粒が硬化したアルミニウムメッキ層に食い込んだ状態で固着、保持されるので、砥粒に対する保持力が強く、砥粒の脱落がなく、長期にわたって優れた切削性能が保持される。
【図面の簡単な説明】
【図1】実施例の模式図である。
【図2】図1の一部拡大図である。
【図3】鋼線の加圧手段の他の例の概略側面図である。
【符号の説明】
1・・・加熱炉
2・・・CBNパウダー槽(砥粒槽)
2a・・・CBNパウダー(砥粒)
3・・・加圧ダイス
4・・・冷却槽
10・・・アルミニウムメッキ層で被覆した鋼線
10a・・・メッキ層
10b・・・砥粒
11・・・ソーワイヤ
30a,30b・・・加圧ローラ
[0001]
[Industrial applications]
The present invention relates to a method of manufacturing a saw wire used for cutting expensive materials such as semiconductors, silicon wafers, crystal materials, and electric component materials represented by porcelain materials, and improves the productivity of the saw wires. The cost can be reduced.
[0002]
[Prior art]
In recent years, fixed abrasive type saw wires in which fine abrasive grains such as diamond are fixed to the surface of a thin metal wire have begun to be used. In this conventional fixed-abrasive saw wire, for example, a resin wire (thermosetting resin) is laminated on a metal wire whose diameter has been reduced by wire drawing, and the surface of the resin wire is densely diamond-bonded by the resin bond layer. Hard particles (hereinafter referred to as abrasive particles) such as particles, CBN abrasive particles, and hard fine fibers are fixed, or abrasive particles are fixed by embedding the abrasive particles in a plating layer. The former method of manufacturing a fixed abrasive type saw wire is a method in which a steel wire is passed through a resin bond in which abrasive grains are mixed, and a resin bond in which abrasive grains are mixed is attached to the surface thereof, and then cooled and hardened. There is a method of manufacturing a fixed abrasive grain saw wire in which the abrasive grains are suspended in a plating solution (such as a Ni plating solution) so that the abrasive grains adhere to the plating layer during plating (electroplating). is there.
[0003]
In the former case, if the distribution of the mixed abrasive grains in the resin bond is not uniform, the distribution of the abrasive grains attached to the saw wire surface becomes uneven, and in the latter case, the distribution of the abrasive grains in the plating solution is not uniform. Non-uniformity inevitably leads to non-uniformity, and in the former case, the abrasive grains are not sufficiently adhered to the metal wire surface, so the abrasive grains fall off during use and their distribution is rough. As a result, there is a problem that the cutting performance of the saw wire is reduced.
[0004]
In the latter case, the bonding strength of the abrasive grains to the metal wire surface is sufficient, and therefore, the cutting performance is maintained for a long time. However, it is necessary to fix and hold the abrasive grains with a sufficient bonding force. A plating layer must be formed to a thickness. In this plating process, a thin metal wire is passed through the plating solution at a very low speed, and the plating layer is grown to a required thickness during the plating process. In addition, there is a problem that the wire speed of the wire for plating is low, so that the productivity of the saw wire is low and the production cost is high.
[0005]
[Problems to be solved by the invention]
The present invention is fundamentally different from any of the conventional saw wire manufacturing methods, and has a new manufacturing method capable of improving the productivity by increasing the wire speed of the wire rod in the manufacturing process with a high bonding force to the abrasive grains and increasing the wire speed in the manufacturing process. The idea is to devise it.
[0006]
[Means for Solving the Problems]
The manufacturing method for solving the above-mentioned problem is constituted by the following (a) to (c).
(B) heating a steel wire covered with an aluminum plating layer of a required thickness to soften (semi-melt) the aluminum plating layer;
(B) passing the steel wire, whose aluminum plating layer has been heated and softened, through an abrasive grain bath to attach abrasive grains to its surface;
(C) Pressing the surface to which the abrasive grains have adhered, causing the abrasive grains on the surface to bite into the aluminum plating layer, and then cooling and hardening the aluminum plating layer to fix the abrasive grains to the aluminum plating layer.
[0007]
[Action]
The step of the above requirement (a), that is, a steel wire covered with an aluminum plating layer of a required thickness is fed into a heating furnace, and the aluminum plating layer is softened (to a semi-molten state). Preferably, the aluminum plating layer is formed by hot-dip plating.
Then, the step of requirement (b), that is, the steel wire covered with the aluminum plating layer is heated and passed through the abrasive grain bath in a state where the aluminum plating layer is softened. The step (b) is performed at an extremely high speed because the abrasive grains are merely attached to the softened aluminum plating layer.
Then, the abrasive grains adhered to the surface in the pressing step of the above requirement (c) are pushed into the heat-softened aluminum plating layer, and a part of the abrasive grains is cut into the aluminum plating layer. Since the aluminum plating layer is hardened while being thermally contracted by the subsequent cooling, the abrasive grains are firmly fixed and held in a state where a part of the abrasive grains is wrapped in the aluminum plating layer. At least the surface layer portion of the aluminum plating layer is changed to aluminum oxide (Al 2 O 3 ) and hardened in the course of the heating softening and cooling, so that the holding of the abrasive grains is strong.
[0008]
In the step of requirement (c), that is, the step of pressing the surface on which the abrasive grains are adhered and causing the abrasive grains on the surface to bite into the aluminum plating layer is made to pass through a small-diameter die hole or through a pressure roller. Since it is a simple pressurizing process, the process is performed at an extremely high speed. Then, the subsequent cooling step does not affect the linear velocity.
As described above, since the steps (a), (b), and (c) are all performed at a high speed, the production of a saw wire by this method is fast, and all the steps are simple processing steps and are low. Since it is performed at a cost, the manufacturing cost is extremely low as compared with the conventional one.
[0009]
Embodiment 1
Embodiment 1 relates to a solution (means for solving the above-mentioned problem), in which the thickness of the aluminum plating layer is 1/2 to 9/10 times the average diameter of the abrasive grains.
[0010]
[Action]
As a result, on average, individual abrasive grains are in a state where 9/10 to 1 / of the abrasive grains are cut into the aluminum layer, and the remaining portion is exposed. Cutting performance can be ensured for a long period of time, and abrasive grains can be reliably prevented from falling off.
[0011]
Embodiment 2
In a second embodiment, the solution is to heat the aluminum plating layer to 600 to 680 ° C. to soften it.
[0012]
[Action]
At the above heating temperature, the aluminum is in a semi-molten state, that is, a coexistence state of a solid phase and a liquid phase.
If the heating temperature is low, the adhesion of the abrasive grains to the aluminum plating layer decreases, and if the heating temperature is too high, the aluminum plating layer flows and deforms, causing the thickness of the plating layer to be non-uniform. There is a possibility that a portion where the holding power of the abrasive grains is insufficient due to the above.
By selecting the heating temperature within the above range, the thickness of the aluminum plating layer becomes uniform while ensuring sufficient adhesion of the abrasive grains to the aluminum plating layer, and the holding power of the abrasive grains by the aluminum plating layer is increased. The occurrence of missing parts is avoided.
[0013]
Embodiment 3
Embodiment 3 relates to a solution, in which abrasive grains are deposited in the abrasive grain tank, and a steel wire covered with an aluminum plating layer is passed through the deposited abrasive grains.
[0014]
[Action]
The abrasive grains are uniformly attached to the surface of the steel wire by a very simple method.
[0015]
Embodiment 4
Embodiment 4 relates to a solution in which abrasive grains are suspended in a gas in the abrasive grain tank, and a steel wire covered with the aluminum plating layer passes through the abrasive grains.
[0016]
[Action]
By adjusting the floating density of the abrasive grains in the abrasive grain tank and the distribution of the density, the final adhesion density of the abrasive grains to the surface of the steel wire passing through the abrasive grain tank is adjusted, and the adhesion density distribution is also adjusted. Can be made uniform.
[0017]
Embodiment 5
Embodiment 5 relates to a solution, in which a steel wire having abrasive grains adhered to the aluminum plating layer is passed through a conical die hole, and the surface to which the abrasive grains are adhered is pressed by the small diameter inner surface.
[0018]
Embodiment 6
The sixth embodiment is directed to a solution in which a steel wire having abrasive grains adhered to the aluminum plating layer is passed between two rolls having an outer circumferential groove having an arc-shaped cross section, and the inner surface of the arc-shaped groove is used to grind the steel wire. Pressing the surface to which the grains adhere.
[0019]
【Example】
Next, embodiments will be described with reference to the drawings.
The specifications of the saw wire vary depending on the purpose of use, such as a wire diameter of 0.02 to 0.50 mm and an average grain diameter of abrasive grains of 5 to 300 μm. And abrasive grains of cubic boron nitride (CBN) having an average particle diameter of 35 μm.
A steel wire 10 in which a 30 mm thick aluminum wire is applied to a steel wire having a wire diameter of 0.23 mm is sequentially fed into and passed through a heating furnace 1, a CBN powder tank (abrasive tank) 2, a pressure die 3, and a cooling tank 4. . As a result, the abrasive grains are fixed to the surface of the steel wire 10 covered with the aluminum plating layer, and the saw wire has a substantially uniform abrasive grain distribution.
[0020]
The temperature in the heating furnace 1 is controlled so that the temperature of the plating layer when leaving the heating furnace 1 in this manufacturing method is 660 ° C. (control range ± 5 ° C.). As a heating method using a heating furnace, heating using a normal electric furnace may be used, or high-frequency induction heating may be used.
The steel wire 10 covered with the aluminum plating layer passes through a substantially middle position of the CBN powder tank 2 on which the CBN powder 2a having an average particle diameter of 35 μm is deposited. The passage length L of the CBN powder tank 2 cannot be unconditionally determined because it is related to the linear velocity, the grain size of the abrasive grains, and the like, but may be adjusted so as to uniformly and sufficiently adhere to the plating layer 10a.
Further, the surface temperature of the plating layer 10a rapidly decreases when it comes into contact with the powder 2a in the CBN powder tank 2, and the adhesion of the powder 2a may decrease. In such a case, the CBN powder tank 2 may be heated so that the surface temperature of the plating layer 10a in the CBN powder tank 2 does not drop too much.
[0021]
Hot air may be blown into the CBN powder tank 2 to float the CBN powder 2a, and the steel wire 10 covered with the aluminum plating layer may pass through the floating layer. In this case, the floating density of the CBN powder is adjusted by adjusting the amount of the CBN powder in the CBN powder tank 2, the wind speed of the hot air to be blown, and the amount of the hot air to be blown. 10 The adhesion density of CBN powder on the surface is adjusted.
[0022]
In short, the pressing die 3 passes the steel wire 10 covered with the aluminum plating layer so that the outer surface thereof is evenly pressed to push the abrasive grains 10b adhered to the aluminum plating layer 10a into the aluminum plating layer 10a to bite the same. What is necessary is just to have the effect | action which is called. In this example, a conical die hole having a large entrance and a small exit is provided.
[0023]
In addition, since the inner surface of the die hole of the die 3 is worn by rubbing against hard abrasive grains, the inner surface may be coated with ceramic and subjected to an abrasion treatment.
The above-mentioned pressurizing means may be constituted by two pressurizing rollers 30a and 30b having arc-shaped grooves on the outer periphery. In this case, the diameter of the circular pressing surface formed by the arc-shaped grooves of the two pressing rollers 30a and 30b is equal to the inner diameter of the small diameter portion of the conical die hole of the die 3. In order to more evenly apply the pressing force to the outer surface of the steel wire, another pair of pressing rollers 30a, 30b having a 90-degree rotation surface different from the pressing rollers 30a, 30b shown in the drawing are arranged behind the pressing rollers 30a, 30b shown in the drawing. And pressurized in the vertical and horizontal directions.
The saw wire has various shapes such as an elliptical shape, a track shape, and a rectangular shape in addition to a circular shape. For example, in the case of an elliptical shape, the shape of the pressing surface of the pressing means (for example, the inner surface of the die hole of the pressing die) may be made elliptical.
[0024]
【The invention's effect】
As described above, according to the present invention, a steel wire covered with an aluminum plating layer manufactured by an appropriate method is heated in a heating furnace to soften the aluminum plating layer, and abrasive grains are attached thereto, and the attached abrasive grains are applied. A part of the aluminum plating layer is pressed into the aluminum plating layer by applying pressure, and the abrasive grains are fixed and held on the aluminum plating layer by utilizing the fixing force of cooling, heat shrinkage, and hardening of the aluminum plating layer. Therefore, the manufacturing method of the saw wire is simplified, and the productivity can be improved by increasing the linear speed in the manufacturing process of the saw wire, so that the manufacturing cost of the saw wire can be reduced.
Further, in the saw wire according to the manufacturing method of the present invention, since the abrasive grains are fixed and held in a state of biting into the hardened aluminum plating layer, the holding power against the abrasive grains is strong, the abrasive grains do not fall off, and are excellent for a long time. Cutting performance is maintained.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of an embodiment.
FIG. 2 is a partially enlarged view of FIG.
FIG. 3 is a schematic side view of another example of a steel wire pressing means.
[Explanation of symbols]
1 ... heating furnace 2 ... CBN powder tank (abrasive tank)
2a ... CBN powder (abrasive grains)
3 ... Pressing die 4 ... Cooling tank 10 ... Steel wire 10a coated with aluminum plating layer ... Plating layer 10b ... Abrasive grains 11 ... Saw wires 30a and 30b ... Pressure roller

Claims (7)

所要厚さのアルミニウムメッキ層で被覆した鋼線を加熱してそのアルミニウムメッキ層を軟化させ、アルミニウムメッキ層が加熱軟化した鋼線を砥粒槽を通過させて、その表面に砥粒を付着させ、砥粒が付着した表面を加圧して、表面の砥粒をアルミニウムメッキ層に食い込ませた後、アルミニウムメッキ層を冷却硬化させて砥粒をアルミニウムメッキ層に固着させるソーワイヤ製造方法。The steel wire coated with the aluminum plating layer of the required thickness is heated to soften the aluminum plating layer, and the steel wire heated and softened by the aluminum plating layer is passed through an abrasive grain bath to attach abrasive grains to its surface. A method of manufacturing a saw wire in which the surface to which the abrasive grains are adhered is pressed to cause the abrasive grains on the surface to bite into the aluminum plating layer, and then the aluminum plating layer is cooled and hardened to fix the abrasive grains to the aluminum plating layer. 上記アルミニウムメッキ層の厚さが上記砥粒の平均粒径の1/2〜9/10倍である請求項1記載のソーワイヤ製造方法。The saw wire manufacturing method according to claim 1, wherein the thickness of the aluminum plating layer is 1/2 to 9/10 times the average particle size of the abrasive grains. 上記アルミニウムメッキ層を600〜680℃に加熱して軟化させる請求項1記載のソーワイヤ製造方法。The saw wire manufacturing method according to claim 1, wherein the aluminum plating layer is heated to 600 to 680C to soften. 上記砥粒槽内に砥粒を堆積させ、堆積した砥粒の中をアルミニウムメッキを施した鋼線を通過させる請求項1記載のソーワイヤ製造方法。The method for producing a saw wire according to claim 1, wherein abrasive grains are deposited in the abrasive grain tank, and an aluminum-plated steel wire is passed through the deposited abrasive grains. 上記砥粒槽内で砥粒を気体で浮遊させ、この中を上記アルミニウムメッキ層で被覆した鋼線を通過させる請求項1記載のソーワイヤ製造方法。The saw wire manufacturing method according to claim 1, wherein the abrasive grains are suspended in a gas in the abrasive grain tank, and a steel wire covered with the aluminum plating layer is passed therethrough. 上記アルミニウムメッキ層に砥粒が付着した鋼線を円錐状のダイス孔を通過させて、その小径内面によって砥粒が付着した表面を加圧する請求項1記載のソーワイヤ製造方法。2. The saw wire manufacturing method according to claim 1, wherein the steel wire having the abrasive grains adhered to the aluminum plating layer is passed through a conical die hole, and the surface on which the abrasive grains are adhered is pressed by the small diameter inner surface. 上記アルミニウムメッキ層に砥粒が付着した鋼線を、断面円弧状の外周溝を備えた2つのロールの間を通過させて、その円弧状溝の内面によって砥粒が付着した表面を加圧する請求項1記載のソーワイヤ製造方法。A steel wire having abrasive grains attached to the aluminum plating layer is passed between two rolls having an outer circumferential groove having an arc-shaped cross section, and the inner surface of the arc-shaped groove presses the surface to which the abrasive grains are attached. Item 4. The saw wire manufacturing method according to Item 1.
JP2002168028A 2002-06-10 2002-06-10 Saw wire manufacturing method Pending JP2004009239A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002168028A JP2004009239A (en) 2002-06-10 2002-06-10 Saw wire manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002168028A JP2004009239A (en) 2002-06-10 2002-06-10 Saw wire manufacturing method

Publications (1)

Publication Number Publication Date
JP2004009239A true JP2004009239A (en) 2004-01-15

Family

ID=30435048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002168028A Pending JP2004009239A (en) 2002-06-10 2002-06-10 Saw wire manufacturing method

Country Status (1)

Country Link
JP (1) JP2004009239A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006123024A (en) * 2004-10-26 2006-05-18 Nakamura Choko:Kk Fixed abrasive grain type wire saw and its manufacturing method
JP2011098407A (en) * 2009-11-05 2011-05-19 Nakamura Choko:Kk Wire saw and manufacturing method of wire saw
JP2012056042A (en) * 2010-09-10 2012-03-22 Yuichiro Niizaki Method for manufacturing brush bristle material
US9028948B2 (en) 2009-08-14 2015-05-12 Saint-Gobain Abrasives, Inc. Abrasive articles including abrasive particles bonded to an elongated body, and methods of forming thereof
US9186816B2 (en) 2010-12-30 2015-11-17 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
US9211634B2 (en) 2011-09-29 2015-12-15 Saint-Gobain Abrasives, Inc. Abrasive articles including abrasive particles bonded to an elongated substrate body having a barrier layer, and methods of forming thereof
US9254552B2 (en) 2012-06-29 2016-02-09 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
US9278429B2 (en) 2012-06-29 2016-03-08 Saint-Gobain Abrasives, Inc. Abrasive article for abrading and sawing through workpieces and method of forming
US9375826B2 (en) 2011-09-16 2016-06-28 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
US9409243B2 (en) 2013-04-19 2016-08-09 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
US9533397B2 (en) 2012-06-29 2017-01-03 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
US9862041B2 (en) 2009-08-14 2018-01-09 Saint-Gobain Abrasives, Inc. Abrasive articles including abrasive particles bonded to an elongated body
US9878382B2 (en) 2015-06-29 2018-01-30 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
US9902044B2 (en) 2012-06-29 2018-02-27 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006123024A (en) * 2004-10-26 2006-05-18 Nakamura Choko:Kk Fixed abrasive grain type wire saw and its manufacturing method
US9028948B2 (en) 2009-08-14 2015-05-12 Saint-Gobain Abrasives, Inc. Abrasive articles including abrasive particles bonded to an elongated body, and methods of forming thereof
US9862041B2 (en) 2009-08-14 2018-01-09 Saint-Gobain Abrasives, Inc. Abrasive articles including abrasive particles bonded to an elongated body
JP2011098407A (en) * 2009-11-05 2011-05-19 Nakamura Choko:Kk Wire saw and manufacturing method of wire saw
JP2012056042A (en) * 2010-09-10 2012-03-22 Yuichiro Niizaki Method for manufacturing brush bristle material
US9186816B2 (en) 2010-12-30 2015-11-17 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
US9248583B2 (en) 2010-12-30 2016-02-02 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
US9375826B2 (en) 2011-09-16 2016-06-28 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
US9211634B2 (en) 2011-09-29 2015-12-15 Saint-Gobain Abrasives, Inc. Abrasive articles including abrasive particles bonded to an elongated substrate body having a barrier layer, and methods of forming thereof
US9278429B2 (en) 2012-06-29 2016-03-08 Saint-Gobain Abrasives, Inc. Abrasive article for abrading and sawing through workpieces and method of forming
US9533397B2 (en) 2012-06-29 2017-01-03 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
US9687962B2 (en) 2012-06-29 2017-06-27 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
US9254552B2 (en) 2012-06-29 2016-02-09 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
US9902044B2 (en) 2012-06-29 2018-02-27 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
US10596681B2 (en) 2012-06-29 2020-03-24 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
US9409243B2 (en) 2013-04-19 2016-08-09 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
US9878382B2 (en) 2015-06-29 2018-01-30 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
US10137514B2 (en) 2015-06-29 2018-11-27 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
US10583506B2 (en) 2015-06-29 2020-03-10 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming

Similar Documents

Publication Publication Date Title
JP2004009239A (en) Saw wire manufacturing method
JP2018199214A (en) Abrasive article and method of forming
TWI477356B (en) Abrasive article and method of forming
TWI556933B (en) Method for simultaneously cutting a multiplicity of wafers from a workpiece
WO2015029988A1 (en) Dicing device and dicing method
JP2007152486A (en) Manufacturing method of saw wire
JP2004261889A (en) Manufacturing method of fixed abrasive grains type saw wire
WO2007060984A1 (en) Resin-bonded superabrasive wheel and process for producing the same
TWI527666B (en) A method for manufacturing an adhesive composition for a resin bonded wire saw, and a method for manufacturing a resin bonded wire saw
TW201323154A (en) Product having abrasive particles and manufacturing method thereof
JP2004009238A (en) Saw wire manufacturing method and saw wire
TWI478782B (en) Design method of resin covered wire saws
CN101229625B (en) Method of splicing gem products polishing processing
TW201010825A (en) A diamond abrasive tool and manufacture method thereof
CN206550880U (en) A kind of diadust grinding block
JP2004058169A (en) Saw wire manufacturing method and saw wire
JP5915346B2 (en) Scribing wheel
KR102229135B1 (en) CMP pad conditioner with individually attached tips and method for producing the same
TW201722588A (en) Fastening method for abrasive particle of diamond saw wire further shortens time of electroplating and cladding operation and enhances adhesion of abrasive particles
KR100615709B1 (en) Manufacturing method for grinding and cutting tool
KR101092203B1 (en) Method manufacturing diamond wire for processing semiconductor materials and diamond wire manufactured by the method
KR20130033609A (en) Method for manufacturing wire saw for processing semiconductor and wire saw thereby
JP7381031B1 (en) Manufacturing method of SiC extension ingot
JP2607088B2 (en) Method of manufacturing curved pipe with inner metal lining
JP2016106046A (en) Producing method of scribing wheel