JP2004009106A - Composition for moderate temperature soldering, and method for soldering - Google Patents

Composition for moderate temperature soldering, and method for soldering Download PDF

Info

Publication number
JP2004009106A
JP2004009106A JP2002166874A JP2002166874A JP2004009106A JP 2004009106 A JP2004009106 A JP 2004009106A JP 2002166874 A JP2002166874 A JP 2002166874A JP 2002166874 A JP2002166874 A JP 2002166874A JP 2004009106 A JP2004009106 A JP 2004009106A
Authority
JP
Japan
Prior art keywords
metal component
soldering
component powder
temperature
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002166874A
Other languages
Japanese (ja)
Other versions
JP3877300B2 (en
Inventor
Katsuhiko Igarashi
五十嵐 克彦
Toru Sotomi
外海 透
Ryuji Ninomiya
二宮 隆二
Junichi Matsunaga
松永 純一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
TDK Corp
Original Assignee
Mitsui Mining and Smelting Co Ltd
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd, TDK Corp filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2002166874A priority Critical patent/JP3877300B2/en
Publication of JP2004009106A publication Critical patent/JP2004009106A/en
Application granted granted Critical
Publication of JP3877300B2 publication Critical patent/JP3877300B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composition for soldering free from lead in which the soldering is possible at the temperature similar to the soldering temperature of tin-lead alloy solder and the junction property after soldering is good, and a method for soldering using such a composition. <P>SOLUTION: The composition for soldering is free from lead and includes a first metal component powder and a second metal component powder, and the melting point of the first metal component powder is 120°C or higher and lower than 183°C, the melting point of the second metal component powder is 183 to 260°C, the content of the first metal component powder is 25 to 57 mass %, the content of the second metal component powder is 43 to 75 mass %, the ratio of u2/u1 of average particle size u1 of the first metal component powder to the average particle size u2 of the second metal component powder is 0.4 to 0.9. In the method for soldering using the above component, the soldering is carrying out by melting the first metal component powder at the temperature at which the second metal component powder does not melt and dispersing the second metal component powder into the first metal component powder to make an alloy. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は中温はんだ付け用組成物及びはんだ付け方法に関し、より詳しくは、鉛を含有せず、はんだ付け時、例えばリフローソルダリング時に合金化してはんだ付け時の温度よりも高い溶融温度を持つ合金を形成し得る中温はんだ付け用組成物及びはんだ付け方法に関する。
【0002】
【従来の技術】
従来の中温用はんだ合金は鉛を含有しており、はんだ付けの際にはんだの溶融により有毒ガスが発生するので、作業者に与える影響が懸念されていた。更に、近年、マイクロエレクトロニクス部品のはんだ付けが増加しており、それに伴って、廃棄されたICチップやプリント配線基板等からの鉛の溶出量が多くなり、地下水の汚染、鉛中毒等の環境問題が生じてきた。この為、無鉛はんだの要望が高まっている。
現在種々の無鉛はんだが開発され、提案されているが、はんだ付け可能温度が錫−鉛合金はんだのはんだ付け温度よりも高い等の欠点がある。
【0003】
【発明が解決しようとする課題】
本発明は、錫−鉛合金はんだのはんだ付け温度と同程度の温度で、具体的には150〜230℃の温度ではんだ付けが可能であり、濡れ性が良く、はんだ付け後の接合部特性も良好であり、鉛を含有しない中温はんだ付け組成物を提供することを目的としている。
また、本発明は、上記のような中温はんだ付け組成物を用いるはんだ付け方法を提供することを目的としている。
【0004】
【課題を解決するための手段】
本発明者等は上記の目的を達成するために鋭意検討した結果、中温はんだ付け用組成物として、溶融温度が低い第一金属成分粉末と溶融温度が中程度の第二金属成分粉末とを特定の相対量で含有し、第一金属成分粉末の平均粒径と第二金属成分粉末の平均粒径との粒径比が特定の範囲内にあることにより、はんだ付け時、例えばリフローソルダリング時に合金化する金属粉末組成物を用いることにより上記の目的が達成されることを見いだし、本発明を完成した。
【0005】
即ち、本発明の中温はんだ付け用組成物は、鉛を含有せず、第一金属成分粉末及び第二金属成分粉末を含み、第一金属成分粉末の溶融温度が120℃以上183℃未満であり、第二金属成分粉末の溶融温度が183〜260℃であり、第一金属成分粉末と第二金属成分粉末との合計量を基準にして第一金属成分粉末の含有量が25〜57質量%であり、第二金属成分粉末の含有量が43〜75質量%であり、第一金属成分粉末の平均粒径をu1 、第二金属成分粉末の平均粒径をu2 とした時の粒径比u2 /u1 が0.4〜0.9の範囲内にあることを特徴とする。
【0006】
また、本発明のはんだ付け方法は、上記の本発明の中温はんだ付け用組成物を用いてはんだ付けする方法であって、第二金属成分粉末が溶融しない温度で第一金属成分粉末を溶融させ、その第一金属成分溶融物中に第二金属成分粉末を拡散させ、合金化させてはんだ付けすることを特徴とする。
【0007】
【発明の実施の形態】
以下、本発明の実施の形態について詳細に説明する。
本発明においては、第一金属成分粉末として溶融温度が120℃以上183℃未満の範囲内の金属成分粉末(単一金属又は合金)を用いる。この条件を満足する第一金属成分粉末としては、例えば、Sn−Bi系、Sn−In系、Ag−In系、Cu−In系、Bi−In系、Sb−In系、Zn−In系、Ni−In系等の合金粉末、例えば、二元合金、三元合金、四元合金等の合金粉末等を挙げることができる。
【0008】
本発明においては、第二金属成分粉末として溶融温度が183〜260℃の範囲内の金属成分粉末(単一金属又は合金)を用いる。この条件を満足する第二金属成分粉末としては、例えば、Sn単独、SnとAg、Cu、In、Bi、Sb、Au、Zn及び/又はNiとの合金、InとAg、Cu、Bi、Sb、Au、Zn及び/又はNiとの合金、BiとAu及び/又はZnとの合金の粉末等を挙げることができる。
【0009】
本発明の中温はんだ付け用組成物は、錫−鉛合金はんだのはんだ付け温度と同程度の温度で、具体的には150〜230℃の温度ではんだ付けできることを目的としており、それで、第一金属成分粉末及び第二金属成分粉末を含む本発明の中温はんだ付け用組成物のはんだ付け可能温度が、第一金属成分と第二金属成分とからなる合金の溶融温度よりも低いことが好ましい。そのためには第一金属成分粉末の種類と第二金属成分粉末の種類との組合せ及び第一金属成分粉末と第二金属成分粉末との相対量は溶融状態の第一金属成分中に第二金属成分粉末が拡散して合金を形成し得る種類の組合せ及び相対量であり、具体的には第一金属成分粉末と第二金属成分粉末との合計量を基準にして第一金属成分粉末の含有量が25〜57質量%、好ましくは30〜55質量%であり、第二金属成分粉末の含有量が43〜75質量%、好ましくは45〜70質量%であることが必要である。このような第一金属成分粉末と第二金属成分粉末との種類の組合せ及び第一金属成分粉末と第二金属成分粉末との相対量については、既に知られている合金状態図を参照して適切に選定することができる。なお、本発明において、「溶融状態」とは完全に液相となっている状態だけでなく、一部分固相が残っている状態をも包含する。
【0010】
本発明の中温はんだ付け用組成物においては、上記したように、はんだ付け可能温度が第一金属成分と第二金属成分とからなる合金の溶融温度よりも低いことが好ましいのであり、そのためには、第一金属成分粉末の平均粒径をu1 、第二金属成分粉末の平均粒径をu2 とした時の粒径比u2 /u1 が0.4〜0.9の範囲内、好ましくは0.45〜0.8の範囲内にあることが必須であることが多数の実験により実証されている。粒径比u2 /u1 が0.4未満である場合や、0.9を超える場合には、はんだ付け可能温度が、第一金属成分と第二金属成分とからなる合金の溶融温度より低くならない場合が多いことが多数の実験により実証されている。
【0011】
本発明においては、製造、分級の容易性、コスト、はんだ付け組成物の性能等の点で、並びに粒径比u2 /u1 が0.4〜0.9の範囲内であることを考慮すると、第一金属成分粉末の平均粒径が20〜60μmであることが好ましく、第二金属成分粉末の平均粒径が8〜54μmであることが好ましい。
【0012】
また、本発明の中温はんだ付け用組成物は、その使用態様に応じて粉末状態のものであっても、圧縮成形した固形物であっても、フラックスを含有するペースト状態のものであってもよい。
更に、本発明の中温はんだ付け用組成物は、微量の第三金属成分粉末を含有することができる。第三金属成分粉末としてP、Si、Ge及びGaを挙げることができ、それらの群より選ばれる少なくとも1種を用いることができる。
【0013】
本発明のはんだ付け方法においては、上記した本発明の中温はんだ付け用組成物を用い、リフローソルダリング等により第二金属成分粉末が溶融しない温度で第一金属成分粉末を溶融させる。この溶融状態の第一金属成分中に第二金属成分が拡散する。即ち、第二金属成分粉末ははんだ付け温度では溶融しないが、溶融した第一金属成分の溶融物がこの第二金属成分粉末の周囲を覆うので、その溶融物中に第二金属成分が拡散して合金化が進み、均一な組成、ほぼ均一な組成或いは第二金属成分粉末の一部が拡散しないで島状に残った組成の合金となる。本発明において、「溶融させる」とは完全に液相となっている状態にする場合だけでなく、一部分固相が残っている状態にする場合も包含する。
【0014】
本発明の好ましい態様のはんだ付け方法においては、150℃以上の温度であるが、第一金属成分と第二金属成分とからなる合金の溶融温度以下又は230℃以下の温度でリフローソルダリングを実施する。
【0015】
【実施例】
以下に、実施例及び比較例に基づいて本発明を具体的に説明する。
実施例1及び比較例1
第一金属成分粉末として、アトマイジング及び分級によって、Sn−58Bi(溶融温度139℃)からなる平均粒径がそれぞれ35μm、45μm及び64μmの微粉末を用意し、第二金属成分粉末として、アトマイジング及び分級によって、Sn−3.5Ag(溶融温度221℃)からなる平均粒径がそれぞれ16μm、20μm、28μm、35μm及び63μmの微粉末を用意した。
【0016】
第一金属成分粉末及び第二金属成分粉末を第1表に示す割合(含有量)、第1表に示す粒径比となる組み合わせで機械的に混合した。次いで、この混合物80質量部と、ロジン50質量%、カルビトール35質量%、ハロゲン化水素酸アミン塩5質量%及びワックス10質量%からなるフラックス20質量部とを混合してはんだ付け用組成物(ペースト)を調製した。各々の粒径比のはんだ付け組成物は次の組み合わせで調製した。第一金属成分粉末の平均粒径をu1 、第二金属成分粉末の平均粒径をu2 とした時の粒径比u2 /u1 として、0.25=16μm/64μm、0.31=20μm/64μm、0.36=16μm/45μm、0.46=16μm/35μm、0.57=20μm/35μm、0.62=28μm/45μm、0.80=28μm/35μm、1.0=35μm/35μm、1.4=63μm/45μm、1.8=63μm/35μm。
【0017】
得られた各々のはんだ付け用組成物の組成は第1表に示す通りであり、そのような組成物の合金化で生成する合金の溶融温度は第1表に示す通りである。
各々のはんだ付け用組成物をセラミック板上に載せ、徐々に加熱して、各々のはんだ付け用組成物の合金化で生成する合金の溶融温度まで加熱した。各々のはんだ付け用組成物の溶融状態を肉眼で観察し、各々のはんだ付け用組成物の合金化で生成する合金の溶融温度よりも低い温度で全体が溶融した場合(即ち、各々のはんだ付け用組成物の合金化で生成する合金の溶融温度よりも低い温度ではんだ付けが可能な場合)を○、その他の場合を×、観察していない場合を−として第1表に示す。
【0018】
【表1】

Figure 2004009106
【0019】
生成合金の溶融温度を縦軸にとり、粒径比を横軸にとって第1表に示すデータを図面上プロットすると図1に示す通りとなる。図1から明らかなように、粒径比が0.4〜0.9の範囲内、好ましくは0.45〜0.8の範囲内で、且つ生成合金の溶融温度が175〜200℃の範囲内、好ましくは177〜196℃の範囲内で、各々のはんだ付け用組成物は、各々のはんだ付け用組成物の合金化で生成する合金の溶融温度よりも低い温度で全体が溶融し、はんだ付けが可能である。
【0020】
また、第一金属成分粉末の含有量を縦軸にとり、生成合金の溶融温度を横軸にとってその両者の相関関係をプロットすると図2に示す通りとなる。図2から明らかなように、生成合金の溶融温度がそれぞれ175℃、177℃、196℃及び200℃となる場合の第一金属成分粉末の含有量はそれぞれ57質量%、55質量%、30質量%及び25質量%である。
【0021】
従って、各々のはんだ付け用組成物の合金化で生成する合金の溶融温度よりも低い温度で全体が溶融し、はんだ付けが可能となるはんだ付け用組成物は、粒径比が0.4〜0.9の範囲内、好ましくは0.45〜0.8の範囲内で、且つ第一金属成分粉末の含有量が25〜57質量%の範囲内、好ましくは30〜55質量%の範囲内である。
【0022】
実施例2及び比較例2
第一金属成分粉末として、アトマイジング及び分級によって、Sn−58Bi(溶融温度139℃)からなる平均粒径がそれぞれ35μm及び45μmの微粉末を用意し、第二金属成分粉末として、アトマイジング及び分級によって、Sn−5Sb(溶融温度245℃)からなる平均粒径がそれぞれ20μm及び63μmの微粉末を用意した。
【0023】
第一金属成分粉末及び第二金属成分粉末を第2表に示す割合(含有量)、第2表に示す粒径比となる組み合わせで機械的に混合した。次いで、この混合物80質量部と、ロジン50質量%、カルビトール35質量%、ハロゲン化水素酸アミン塩5質量%及びワックス10質量%からなるフラックス20質量部とを混合してはんだ付け用組成物(ペースト)を調製した。
【0024】
得られた各々のはんだ付け用組成物の組成は第2表に示す通りであり、そのような組成物の合金化で生成する合金の溶融温度は第2表に示す通りである。
各々のはんだ付け用組成物をセラミック板上に載せ、徐々に加熱して、各々のはんだ付け用組成物の合金化で生成する合金の溶融温度まで加熱した。各々のはんだ付け用組成物の溶融状態を肉眼で観察し、各々のはんだ付け用組成物の合金化で生成する合金の溶融温度よりも低い温度で全体が溶融した場合(即ち、各々のはんだ付け用組成物の合金化で生成する合金の溶融温度よりも低い温度ではんだ付けが可能な場合)を○、その他の場合を×として第2表に示す。
【0025】
【表2】
Figure 2004009106
【0026】
第2表のデータから明らかなように、第一金属成分粉末及び第二金属成分粉末の組成範囲が本発明の範囲内にあり、且つ粒径比u2 /u1 が本発明の範囲内にある場合には、はんだ付け用組成物の合金化で生成する合金の溶融温度よりも低い温度ではんだ付けが可能である。しかしながら、第一金属成分粉末及び第二金属成分粉末の組成範囲が本発明の範囲外にあるか、又は粒径比u2 /u1 が本発明の範囲外にある場合には、はんだ付け用組成物の合金化で生成する合金の溶融温度よりも低い温度でははんだ付けはできない。
【0027】
実施例3及び比較例3
第一金属成分粉末として、アトマイジング及び分級によって、Sn−30In(溶融温度125℃)からなる平均粒径がそれぞれ35μm及び45μmの微粉末を用意し、第二金属成分粉末として、アトマイジング及び分級によって、Sn−0.7Cu(溶融温度227℃)からなる平均粒径がそれぞれ20μm及び63μmの微粉末を用意した。
【0028】
第一金属成分粉末及び第二金属成分粉末を第3表に示す割合(含有量)、第3表に示す粒径比となる組み合わせで機械的に混合した。次いで、この混合物80質量部と、ロジン50質量%、カルビトール35質量%、ハロゲン化水素酸アミン塩5質量%及びワックス10質量%からなるフラックス20質量部とを混合してはんだ付け用組成物(ペースト)を調製した。
【0029】
得られた各々のはんだ付け用組成物の組成は第3表に示す通りであり、そのような組成物の合金化で生成する合金の溶融温度は第3表に示す通りである。
各々のはんだ付け用組成物をセラミック板上に載せ、徐々に加熱して、各々のはんだ付け用組成物の合金化で生成する合金の溶融温度まで加熱した。各々のはんだ付け用組成物の溶融状態を肉眼で観察し、各々のはんだ付け用組成物の合金化で生成する合金の溶融温度よりも低い温度で全体が溶融した場合(即ち、各々のはんだ付け用組成物の合金化で生成する合金の溶融温度よりも低い温度ではんだ付けが可能な場合)を○、その他の場合を×として第3表に示す。
【0030】
【表3】
Figure 2004009106
【0031】
第3表のデータから明らかなように、第一金属成分粉末及び第二金属成分粉末の組成範囲が本発明の範囲内にあり、且つ粒径比u2 /u1 が本発明の範囲内にある場合には、はんだ付け用組成物の合金化で生成する合金の溶融温度よりも低い温度ではんだ付けが可能である。しかしながら、第一金属成分粉末及び第二金属成分粉末の組成範囲が本発明の範囲外にあるか、又は粒径比u2 /u1 が本発明の範囲外にある場合には、はんだ付け用組成物の合金化で生成する合金の溶融温度よりも低い温度でははんだ付けはできない。
【0032】
実施例4
紙フェノール系樹脂基板を用いてプリント基板を作製した。また、実施例1に記載のようにして調製した第4表に示す組成、粒径比となるはんだ付け用組成物(ペースト)を調製した。
【0033】
上記のプリント基板上に0.25mm間隔で上記のはんだペーストを、各箇所でのペーストの塗布量が0.5mgとなるように塗布した。それらのはんだペースト上にC0603(縦0.6mm×横0.3mm×厚み0.1mm)の積層セラミックコンデンサの両端子部が来るようにして載せ、第4表に示すリフロー温度のリフロー炉に滞留時間が10分となるように通炉してリフローソルダリングを実施した。各リフロー温度毎に10個の試料を用いた。
【0034】
固着強度については、チップ側面から押し、はんだが破壊される時点での押し圧力を測定して固着強度とした。なお、実用上必要な固着強度は10N以上である。それらの測定結果は第4表に示す通りであった。
【0035】
【表4】
Figure 2004009106
【0036】
【発明の効果】
本発明の中温はんだ付け用組成物は鉛を含有しない中温はんだ付け用組成物であり、本発明のはんだ付け方法を用いることにより、リフローソルダリング時に合金化してはんだ付け時の温度よりも高い溶融温度を持つ合金を形成する。従って、比較的低い温度ではんだ付け作業を行なうことができる。
【図面の簡単な説明】
【図1】生成合金の溶融温度を縦軸にとり、粒径比を横軸にとって実施例1及び比較例1で得たデータをプロットした図である。
【図2】第一金属成分粉末の含有量を縦軸にとり、生成合金の溶融温度を横軸にとってその両者の相関関係をプロットした図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a medium-temperature soldering composition and a soldering method, and more particularly, to an alloy that does not contain lead and has a melting temperature higher than the temperature at the time of soldering, for example, alloying at the time of soldering, for example, reflow soldering. TECHNICAL FIELD The present invention relates to a medium-temperature soldering composition and a soldering method capable of forming a solder paste.
[0002]
[Prior art]
Conventional solder alloys for medium temperature use contain lead, and melting of the solder generates toxic gas at the time of soldering. Furthermore, in recent years, the soldering of microelectronic components has been increasing, and as a result, the amount of lead eluted from discarded IC chips, printed wiring boards, etc. has increased, and environmental problems such as groundwater contamination and lead poisoning have occurred. Has arisen. For this reason, the demand for lead-free solder is increasing.
Currently, various lead-free solders have been developed and proposed, but have drawbacks such as the solderable temperature is higher than the soldering temperature of the tin-lead alloy solder.
[0003]
[Problems to be solved by the invention]
The present invention can be soldered at a temperature similar to the soldering temperature of the tin-lead alloy solder, specifically, at a temperature of 150 to 230 ° C., has good wettability, and has good joint characteristics after soldering. The object is to provide a medium-temperature soldering composition containing no lead.
Another object of the present invention is to provide a soldering method using the above-mentioned medium-temperature soldering composition.
[0004]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to achieve the above object, and as a result, specified a first metal component powder having a low melting temperature and a second metal component powder having a medium melting temperature as a medium-temperature soldering composition. In the relative amount of, the average particle diameter of the first metal component powder and the average particle diameter of the second metal component powder is within a specific range, during soldering, for example, during reflow soldering The present inventors have found that the above objects can be achieved by using a metal powder composition to be alloyed, and have completed the present invention.
[0005]
That is, the medium-temperature soldering composition of the present invention does not contain lead, includes a first metal component powder and a second metal component powder, and has a melting temperature of 120 ° C or higher and lower than 183 ° C. The melting temperature of the second metal component powder is 183 to 260 ° C., and the content of the first metal component powder is 25 to 57% by mass based on the total amount of the first metal component powder and the second metal component powder. Wherein the content of the second metal component powder is 43 to 75% by mass, the average particle size of the first metal component powder is u 1 , and the average particle size of the second metal component powder is u 2 diameter ratio u 2 / u 1, characterized in that the in the range of 0.4 to 0.9.
[0006]
Further, the soldering method of the present invention is a method of soldering using the medium-temperature soldering composition of the present invention, wherein the first metal component powder is melted at a temperature at which the second metal component powder does not melt. The second metal component powder is diffused in the first metal component melt, alloyed, and soldered.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
In the present invention, a metal component powder (single metal or alloy) having a melting temperature in the range of 120 ° C. or more and less than 183 ° C. is used as the first metal component powder. As the first metal component powder satisfying this condition, for example, Sn-Bi-based, Sn-In-based, Ag-In-based, Cu-In-based, Bi-In-based, Sb-In-based, Zn-In-based, Alloy powders such as Ni-In alloys, for example, alloy powders such as binary alloys, ternary alloys, and quaternary alloys can be given.
[0008]
In the present invention, a metal component powder (single metal or alloy) having a melting temperature in the range of 183 to 260 ° C is used as the second metal component powder. Examples of the second metal component powder satisfying this condition include Sn alone, an alloy of Sn and Ag, Cu, In, Bi, Sb, Au, Zn and / or Ni, In and Ag, Cu, Bi, and Sb. , Au, Zn and / or Ni, and alloy powder of Bi with Au and / or Zn.
[0009]
The purpose of the medium-temperature soldering composition of the present invention is to enable soldering at a temperature similar to the soldering temperature of the tin-lead alloy solder, specifically, at a temperature of 150 to 230 ° C. The solderable temperature of the medium-temperature soldering composition of the present invention containing the metal component powder and the second metal component powder is preferably lower than the melting temperature of the alloy composed of the first metal component and the second metal component. For this purpose, the combination of the type of the first metal component powder and the type of the second metal component powder, and the relative amounts of the first metal component powder and the second metal component powder are determined by mixing the second metal component in the molten first metal component. The combination and relative amount of the types in which the component powders can diffuse to form an alloy, specifically, the content of the first metal component powder based on the total amount of the first metal component powder and the second metal component powder It is necessary that the amount is 25 to 57% by mass, preferably 30 to 55% by mass, and the content of the second metal component powder is 43 to 75% by mass, preferably 45 to 70% by mass. For the combination of the types of the first metal component powder and the second metal component powder and the relative amounts of the first metal component powder and the second metal component powder, refer to the known alloy phase diagram. Can be properly selected. In the present invention, the “molten state” includes not only a state in which a liquid phase is completely formed but also a state in which a solid phase partially remains.
[0010]
In the medium-temperature soldering composition of the present invention, as described above, it is preferable that the solderable temperature is lower than the melting temperature of the alloy composed of the first metal component and the second metal component. , in the range of the average particle diameter of the first metal component powder u 1, particle size ratio u 2 / u 1 when the average particle diameter of the second metal component powder was u 2 is 0.4 to 0.9, Numerous experiments have demonstrated that it is essential that it is preferably in the range of 0.45 to 0.8. When the particle size ratio u 2 / u 1 is less than 0.4 or more than 0.9, the solderable temperature is lower than the melting temperature of the alloy composed of the first metal component and the second metal component. Many experiments have demonstrated that they often do not decrease.
[0011]
In the present invention, it is considered that the particle size ratio u 2 / u 1 is in the range of 0.4 to 0.9 in view of easiness of production and classification, cost, performance of the soldering composition, and the like. Then, the average particle size of the first metal component powder is preferably 20 to 60 μm, and the average particle size of the second metal component powder is preferably 8 to 54 μm.
[0012]
Further, the medium-temperature soldering composition of the present invention may be in the form of a powder depending on the use mode, may be a solid formed by compression molding, or may be in the form of a paste containing flux. Good.
Furthermore, the composition for medium temperature soldering of the present invention can contain a trace amount of third metal component powder. Examples of the third metal component powder include P, Si, Ge, and Ga, and at least one selected from the group can be used.
[0013]
In the soldering method of the present invention, the first metal component powder is melted at a temperature at which the second metal component powder does not melt by reflow soldering or the like, using the above-described medium-temperature soldering composition of the present invention. The second metal component diffuses into the molten first metal component. That is, the second metal component powder does not melt at the soldering temperature, but the molten first metal component melts around the second metal component powder, so that the second metal component diffuses into the melt. Alloying proceeds to form an alloy having a uniform composition, a substantially uniform composition, or a composition in which a part of the second metal component powder does not diffuse and remains in an island shape. In the present invention, “melting” includes not only a state in which the solid phase is completely in a liquid phase but also a state in which a solid phase is partially left.
[0014]
In the soldering method according to a preferred embodiment of the present invention, the reflow soldering is performed at a temperature of 150 ° C. or higher, but not higher than the melting temperature of the alloy composed of the first metal component and the second metal component or 230 ° C. or lower. I do.
[0015]
【Example】
Hereinafter, the present invention will be specifically described based on Examples and Comparative Examples.
Example 1 and Comparative Example 1
Fine powder of Sn-58Bi (melting temperature: 139 ° C.) having average particle diameters of 35 μm, 45 μm, and 64 μm, respectively, was prepared as the first metal component powder by atomization and classification, and was atomized as the second metal component powder. By classification, fine powders of Sn-3.5Ag (melting temperature: 221 ° C.) having average particle diameters of 16 μm, 20 μm, 28 μm, 35 μm, and 63 μm were prepared.
[0016]
The first metal component powder and the second metal component powder were mechanically mixed in a combination having a ratio (content) shown in Table 1 and a particle size ratio shown in Table 1. Next, 80 parts by mass of this mixture, 20 parts by mass of a flux composed of 50% by mass of rosin, 35% by mass of carbitol, 5% by mass of an amine salt of hydrohalic acid and 10% by mass of a wax, are mixed, and the composition for soldering is mixed. (Paste) was prepared. The soldering compositions of each particle size ratio were prepared in the following combinations. Assuming that the average particle size of the first metal component powder is u 1 and the average particle size of the second metal component powder is u 2 , the particle size ratio u 2 / u 1 is 0.25 = 16 μm / 64 μm, 0.31 = 20 μm / 64 μm, 0.36 = 16 μm / 45 μm, 0.46 = 16 μm / 35 μm, 0.57 = 20 μm / 35 μm, 0.62 = 28 μm / 45 μm, 0.80 = 28 μm / 35 μm, 1.0 = 35 μm / 35 μm, 1.4 = 63 μm / 45 μm, 1.8 = 63 μm / 35 μm.
[0017]
The composition of each of the obtained soldering compositions is as shown in Table 1, and the melting temperatures of the alloys formed by alloying such compositions are as shown in Table 1.
Each soldering composition was placed on a ceramic plate and gradually heated to the melting temperature of the alloy formed by alloying each soldering composition. The molten state of each soldering composition is visually observed, and the whole is melted at a temperature lower than the melting temperature of the alloy formed by alloying each soldering composition (that is, each soldering composition is melted). Table 1 shows the case where soldering can be performed at a temperature lower than the melting temperature of the alloy formed by alloying the composition for use) as ○, x as other cases, and-as not observed.
[0018]
[Table 1]
Figure 2004009106
[0019]
The data shown in Table 1 are plotted on the drawing with the melting temperature of the formed alloy on the vertical axis and the particle size ratio on the horizontal axis, as shown in FIG. As is clear from FIG. 1, the particle size ratio is in the range of 0.4 to 0.9, preferably in the range of 0.45 to 0.8, and the melting temperature of the formed alloy is in the range of 175 to 200 ° C. , Preferably within the range of 177 to 196 ° C, each soldering composition melts entirely at a temperature lower than the melting temperature of the alloy formed by alloying each soldering composition, Can be attached.
[0020]
FIG. 2 is a graph plotting the content of the first metal component powder on the vertical axis and the melting temperature of the formed alloy on the horizontal axis, and plotting the correlation between the two. As is clear from FIG. 2, when the melting temperatures of the formed alloys are 175 ° C., 177 ° C., 196 ° C., and 200 ° C., respectively, the content of the first metal component powder is 57% by mass, 55% by mass, and 30% by mass, respectively. % And 25% by mass.
[0021]
Therefore, the entire composition is melted at a temperature lower than the melting temperature of the alloy produced by alloying each soldering composition, and the solderable composition capable of being soldered has a particle size ratio of 0.4 to 0.4. Within the range of 0.9, preferably within the range of 0.45 to 0.8, and the content of the first metal component powder within the range of 25 to 57% by mass, preferably within the range of 30 to 55% by mass. It is.
[0022]
Example 2 and Comparative Example 2
Fine powder of Sn-58Bi (melting temperature: 139 ° C.) having an average particle diameter of 35 μm and 45 μm, respectively, was prepared as the first metal component powder by atomizing and classification, and was atomized and classified as the second metal component powder. Thus, fine powders of Sn-5Sb (melting temperature: 245 ° C.) having average particle diameters of 20 μm and 63 μm, respectively, were prepared.
[0023]
The first metal component powder and the second metal component powder were mechanically mixed in a combination having a ratio (content) shown in Table 2 and a particle size ratio shown in Table 2. Next, 80 parts by mass of this mixture, 20 parts by mass of a flux composed of 50% by mass of rosin, 35% by mass of carbitol, 5% by mass of an amine salt of hydrohalic acid and 10% by mass of a wax, are mixed, and the composition for soldering is mixed. (Paste) was prepared.
[0024]
The composition of each of the obtained soldering compositions is as shown in Table 2, and the melting temperatures of the alloys formed by alloying such compositions are as shown in Table 2.
Each soldering composition was placed on a ceramic plate and gradually heated to the melting temperature of the alloy formed by alloying each soldering composition. The molten state of each soldering composition is visually observed, and the whole is melted at a temperature lower than the melting temperature of the alloy formed by alloying each soldering composition (that is, each soldering composition is melted). Table 2 shows the case where soldering can be performed at a temperature lower than the melting temperature of the alloy formed by alloying the composition for use) as ○, and the other cases as ×.
[0025]
[Table 2]
Figure 2004009106
[0026]
As is clear from the data in Table 2, the composition ranges of the first metal component powder and the second metal component powder are within the scope of the present invention, and the particle size ratio u 2 / u 1 is within the scope of the present invention. In some cases, soldering can be performed at a temperature lower than the melting temperature of the alloy formed by alloying the soldering composition. However, when the composition range of the first metal component powder and the second metal component powder is out of the range of the present invention, or the particle size ratio u 2 / u 1 is out of the range of the present invention, the soldering agent is used for soldering. Soldering cannot be performed at a temperature lower than the melting temperature of the alloy formed by alloying the composition.
[0027]
Example 3 and Comparative Example 3
Fine powder of Sn-30In (melting temperature 125 ° C.) having an average particle size of 35 μm and 45 μm, respectively, was prepared as the first metal component powder by atomizing and classification, and was atomized and classified as the second metal component powder. Thus, fine powders of Sn-0.7Cu (melting temperature: 227 ° C.) having average particle diameters of 20 μm and 63 μm were prepared.
[0028]
The first metal component powder and the second metal component powder were mechanically mixed in a combination having a ratio (content) shown in Table 3 and a particle size ratio shown in Table 3. Next, 80 parts by mass of this mixture, 20 parts by mass of a flux composed of 50% by mass of rosin, 35% by mass of carbitol, 5% by mass of an amine salt of hydrohalic acid and 10% by mass of a wax, are mixed, and the composition for soldering is mixed. (Paste) was prepared.
[0029]
The composition of each of the obtained soldering compositions is as shown in Table 3, and the melting temperatures of the alloys formed by alloying such compositions are as shown in Table 3.
Each soldering composition was placed on a ceramic plate and gradually heated to the melting temperature of the alloy formed by alloying each soldering composition. The molten state of each soldering composition is visually observed, and the whole is melted at a temperature lower than the melting temperature of the alloy formed by alloying each soldering composition (that is, each soldering composition is melted). Table 3 shows the case where soldering can be performed at a temperature lower than the melting temperature of the alloy formed by alloying the composition for use) as ○, and the other cases as ×.
[0030]
[Table 3]
Figure 2004009106
[0031]
As is clear from the data in Table 3, the composition ranges of the first metal component powder and the second metal component powder are within the scope of the present invention, and the particle size ratio u 2 / u 1 is within the scope of the present invention. In some cases, soldering can be performed at a temperature lower than the melting temperature of the alloy formed by alloying the soldering composition. However, when the composition range of the first metal component powder and the second metal component powder is out of the range of the present invention, or the particle size ratio u 2 / u 1 is out of the range of the present invention, the soldering agent is used for soldering. Soldering cannot be performed at a temperature lower than the melting temperature of the alloy formed by alloying the composition.
[0032]
Example 4
Printed circuit boards were prepared using paper phenolic resin substrates. Further, a soldering composition (paste) having the composition and particle size ratio shown in Table 4 prepared as described in Example 1 was prepared.
[0033]
The solder paste was applied on the printed circuit board at intervals of 0.25 mm so that the applied amount of the paste at each location was 0.5 mg. The two terminals of a C0603 (0.6 mm long × 0.3 mm wide × 0.1 mm thick) multilayer ceramic capacitor are placed on the solder paste so that both terminals come and stay in a reflow furnace at the reflow temperature shown in Table 4. Reflow soldering was performed by passing the furnace so that the time became 10 minutes. Ten samples were used for each reflow temperature.
[0034]
With respect to the fixing strength, the pressure was applied from the side of the chip, and the pressing force at the time when the solder was broken was measured to determine the fixing strength. The fixing strength required for practical use is 10 N or more. The measurement results were as shown in Table 4.
[0035]
[Table 4]
Figure 2004009106
[0036]
【The invention's effect】
The medium-temperature soldering composition of the present invention is a lead-free medium-temperature soldering composition.By using the soldering method of the present invention, the composition is alloyed during reflow soldering and melts at a temperature higher than the temperature during soldering. Form an alloy with temperature. Therefore, the soldering operation can be performed at a relatively low temperature.
[Brief description of the drawings]
FIG. 1 is a diagram plotting data obtained in Example 1 and Comparative Example 1 with the melting temperature of a formed alloy on the vertical axis and the particle size ratio on the horizontal axis.
FIG. 2 is a diagram plotting the content of a first metal component powder on the vertical axis and the melting temperature of the formed alloy on the horizontal axis, and plotting the correlation between the two.

Claims (10)

鉛を含有せず、第一金属成分粉末及び第二金属成分粉末を含み、第一金属成分粉末の溶融温度が120℃以上183℃未満であり、第二金属成分粉末の溶融温度が183〜260℃であり、第一金属成分粉末と第二金属成分粉末との合計量を基準にして第一金属成分粉末の含有量が25〜57質量%であり、第二金属成分粉末の含有量が43〜75質量%であり、第一金属成分粉末の平均粒径をu1 、第二金属成分粉末の平均粒径をu2 とした時の粒径比u2 /u1 が0.4〜0.9の範囲内にあることを特徴とする中温はんだ付け用組成物。It does not contain lead, contains the first metal component powder and the second metal component powder, the melting temperature of the first metal component powder is 120 ° C. or more and less than 183 ° C., and the melting temperature of the second metal component powder is 183 to 260 ° C, the content of the first metal component powder is 25 to 57 mass% based on the total amount of the first metal component powder and the second metal component powder, and the content of the second metal component powder is 43% by mass. And the average particle size of the first metal component powder is u 1 , and the average particle size of the second metal component powder is u 2, and the particle size ratio u 2 / u 1 is 0.4 to 0. 9. A medium temperature soldering composition, which is in the range of 9. 第一金属成分粉末の含有量が30〜55質量%であり、第二金属成分粉末の含有量が45〜70質量%であり、粒径比u2 /u1 が0.45〜0.8の範囲内にある請求項1記載の中温はんだ付け用組成物。The content of the first metal component powder is 30 to 55% by mass, the content of the second metal component powder is 45 to 70% by mass, and the particle size ratio u 2 / u 1 is 0.45 to 0.8. 2. The composition for medium temperature soldering according to claim 1, wherein 第一金属成分粉末の平均粒径が20〜60μmであり、第二金属成分粉末の平均粒径が8〜54μmである請求項1〜2の何れかに記載の中温はんだ付け用組成物。The medium temperature soldering composition according to any one of claims 1 to 2, wherein the first metal component powder has an average particle size of 20 to 60 µm, and the second metal component powder has an average particle size of 8 to 54 µm. 第一金属成分粉末がSn−Bi系、Sn−In系、Ag−In系、Cu−In系、Bi−In系、Sb−In系、Zn−In系又はNi−In系の合金粉末である請求項1〜3の何れかに記載の中温はんだ付け用組成物。The first metal component powder is a Sn-Bi-based, Sn-In-based, Ag-In-based, Cu-In-based, Bi-In-based, Sb-In-based, Zn-In-based or Ni-In-based alloy powder. The medium temperature soldering composition according to claim 1. 第二金属成分粉末が
Sn単独の粉末、又は
Snと、Ag、Cu、In、Bi、Sb、Au、Zn及びNiの少なくとも1種とを含む合金、
Inと、Ag、Cu、Bi、Sb、Au、Zn及びNiの少なくとも1種とを含む合金、及び
Biと、Au及びZnの少なくとも1種とを含む合金
からなる群から選ばれる合金の粉末である請求項1〜4の何れかに記載の中温はんだ付け用組成物。
An alloy in which the second metal component powder contains Sn alone or Sn and at least one of Ag, Cu, In, Bi, Sb, Au, Zn, and Ni;
An alloy containing In and at least one of Ag, Cu, Bi, Sb, Au, Zn and Ni; and an alloy powder selected from the group consisting of an alloy containing Bi and at least one of Au and Zn. The medium-temperature soldering composition according to claim 1.
中温はんだ付け用組成物が粉末状態である請求項1〜5の何れかに記載の中温はんだ付け用組成物。The medium-temperature soldering composition according to any one of claims 1 to 5, wherein the medium-temperature soldering composition is in a powder state. 中温はんだ付け用組成物がペースト状態である請求項1〜5の何れかに記載の中温はんだ付け用組成物。The medium-temperature soldering composition according to claim 1, wherein the medium-temperature soldering composition is in a paste state. 請求項1〜7の何れかに記載の中温はんだ付け用組成物を用いてはんだ付けする方法であって、第二金属成分粉末が溶融しない温度で第一金属成分粉末を溶融させ、その第一金属成分溶融物中に第二金属成分を拡散させ、合金化させてはんだ付けすることを特徴とするはんだ付け方法。A method for soldering using the medium-temperature soldering composition according to any one of claims 1 to 7, wherein the first metal component powder is melted at a temperature at which the second metal component powder does not melt, and the first metal component powder is melted. A soldering method, wherein a second metal component is diffused in a metal component melt, alloyed, and soldered. 150℃以上の温度であるが、第一金属成分と第二金属成分とからなる合金の溶融温度以下の温度でリフローソルダリングを実施する請求項8記載のはんだ付け方法。9. The soldering method according to claim 8, wherein the reflow soldering is performed at a temperature of 150 ° C. or higher, but not higher than the melting temperature of the alloy comprising the first metal component and the second metal component. 150〜230℃の温度でリフローソルダリングを実施する請求項8記載のはんだ付け方法。The soldering method according to claim 8, wherein the reflow soldering is performed at a temperature of 150 to 230C.
JP2002166874A 2002-06-07 2002-06-07 Medium temperature soldering composition and soldering method Expired - Fee Related JP3877300B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002166874A JP3877300B2 (en) 2002-06-07 2002-06-07 Medium temperature soldering composition and soldering method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002166874A JP3877300B2 (en) 2002-06-07 2002-06-07 Medium temperature soldering composition and soldering method

Publications (2)

Publication Number Publication Date
JP2004009106A true JP2004009106A (en) 2004-01-15
JP3877300B2 JP3877300B2 (en) 2007-02-07

Family

ID=30434291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002166874A Expired - Fee Related JP3877300B2 (en) 2002-06-07 2002-06-07 Medium temperature soldering composition and soldering method

Country Status (1)

Country Link
JP (1) JP3877300B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005254254A (en) * 2004-03-09 2005-09-22 Toshiba Corp Lead-free solder, its manufacturing method and electronic component
US7017795B2 (en) * 2003-11-03 2006-03-28 Indium Corporation Of America Solder pastes for providing high elasticity, low rigidity solder joints
JP2008027588A (en) * 2006-07-18 2008-02-07 Asahi Kasei Electronics Co Ltd Conductive filler, and intermediate-temperature soldering material
WO2008056676A1 (en) * 2006-11-06 2008-05-15 Victor Company Of Japan, Limited Lead-free solder paste, electronic circuit board using lead-free solder paste, and method for manufacturing electronic circuit board
JP2011167761A (en) * 2010-01-25 2011-09-01 Mitsubishi Materials Corp Au-Sn ALLOY SOLDER PASTE, AND Au-Sn ALLOY SOLDER FORMED THEREBY
CN103273218A (en) * 2013-06-17 2013-09-04 东莞市宝拓来金属有限公司 Soldering tin material used for automotive glass hot-coating belts and application of soldering tin material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7017795B2 (en) * 2003-11-03 2006-03-28 Indium Corporation Of America Solder pastes for providing high elasticity, low rigidity solder joints
JP2005254254A (en) * 2004-03-09 2005-09-22 Toshiba Corp Lead-free solder, its manufacturing method and electronic component
JP2008027588A (en) * 2006-07-18 2008-02-07 Asahi Kasei Electronics Co Ltd Conductive filler, and intermediate-temperature soldering material
JP4662483B2 (en) * 2006-07-18 2011-03-30 旭化成イーマテリアルズ株式会社 Conductive filler and medium temperature solder material
WO2008056676A1 (en) * 2006-11-06 2008-05-15 Victor Company Of Japan, Limited Lead-free solder paste, electronic circuit board using lead-free solder paste, and method for manufacturing electronic circuit board
JP2011167761A (en) * 2010-01-25 2011-09-01 Mitsubishi Materials Corp Au-Sn ALLOY SOLDER PASTE, AND Au-Sn ALLOY SOLDER FORMED THEREBY
CN103273218A (en) * 2013-06-17 2013-09-04 东莞市宝拓来金属有限公司 Soldering tin material used for automotive glass hot-coating belts and application of soldering tin material

Also Published As

Publication number Publication date
JP3877300B2 (en) 2007-02-07

Similar Documents

Publication Publication Date Title
JP5533876B2 (en) Solder paste, bonding method using the same, and bonding structure
CN101208173B (en) Lead-free solder paste and its manufacture method
EP2017031B1 (en) Solder paste
CN100491053C (en) Solder paste and printed circuit board
JP5067163B2 (en) Solder paste and solder joint
DK2147740T3 (en) Lead-free solder paste
CN107848078B (en) Brazing alloy, solder paste, and electronic circuit board
WO2012066795A1 (en) Electroconductive material, method of connection with same, and connected structure
WO2013038817A1 (en) Electroconductive material, and connection method and connection structure using same
WO2013038816A1 (en) Electroconductive material, and connection method and connection structure using same
WO2008056676A1 (en) Lead-free solder paste, electronic circuit board using lead-free solder paste, and method for manufacturing electronic circuit board
JP2002224880A (en) Solder paste and electronic device
TWI695893B (en) Solder paste
JP2003311469A (en) Solder paste, electronic parts and step soldering method
JP3782743B2 (en) Solder composition, soldering method and electronic component
JP2004009106A (en) Composition for moderate temperature soldering, and method for soldering
JPH11138292A (en) Nonleaded solder paste
JP3654161B2 (en) Solder paste and soldering method
JP4081073B2 (en) Soldering method
JPH01241395A (en) Cream solder
JP2018144076A (en) Metal powder for producing solder bump, paste for producing solder bump and production method of solder bump
JP2005125408A (en) Solder composition
JPH091381A (en) Solder joining method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050302

A977 Report on retrieval

Effective date: 20060718

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20060802

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20060928

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20061025

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061030

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees