JP2004009012A - Microporous membrane and method for manufacturing the same - Google Patents

Microporous membrane and method for manufacturing the same Download PDF

Info

Publication number
JP2004009012A
JP2004009012A JP2002169618A JP2002169618A JP2004009012A JP 2004009012 A JP2004009012 A JP 2004009012A JP 2002169618 A JP2002169618 A JP 2002169618A JP 2002169618 A JP2002169618 A JP 2002169618A JP 2004009012 A JP2004009012 A JP 2004009012A
Authority
JP
Japan
Prior art keywords
microporous membrane
layered silicate
poor solvent
modified layered
microporous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002169618A
Other languages
Japanese (ja)
Inventor
Ikuya Miyamoto
宮本 郁也
Ramesshubabu P
P.ラメッシュバブ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2002169618A priority Critical patent/JP2004009012A/en
Publication of JP2004009012A publication Critical patent/JP2004009012A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a microporous membrane having high dynamic strength such as strength and ductility, and having excellent water permeability performance. <P>SOLUTION: In the microporous membrane, the laminated structures of denatured laminar silicate is finely dispersed in the state that these structures are disrupted by peeling. The microporous membrane can be manufactured by bringing a dope containing a polymeric compound, for example, polyvinylidene fluoride and the denatured laminar silicate, for example, synthetic fluorinated mica which is the laminar silicate denatured by dioctadecyl dimethyl ammonium bromide into contact with a poor solvent to cause wet solidification. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、油水分離、液ガス分離、上下水の浄化、ウイルスや細菌等の除去、濃縮又は培地、薬液や処理水等から微粒子を除去する産業プロセス用フィルター、リチウムイオン電池等のセパレーター、ポリマー電池用の固体電解質支持体等、広範囲な用途に利用できる微多孔膜及びその製造方法に関する。
【0002】
【従来の技術】
近年、微多孔膜は様々な用途において需要が伸びている。例えば、リチウムイオン2次電池用セパレーター等の用途に注目が集まっている。従来はセパレーターの材質としては、耐薬品性を考慮して、ポリエチレンやポリプロピレン等のポリオレフィン系ポリマーが使用されてきた。ポリオレフィン系セパレーターは高強度という利点を有する反面、その耐薬品性故に電解液との親和性に乏しい。
【0003】
しかし、近年では電解液との高い親和性を有するポリフッ化ビニリデン高分子化合物やポリアクリロニトリル高分子化合物を材質とする試みが見られるようになった。ポリフッ化ビニリデン等の高分子化合物をセパレーターの材質として使用すると、その高い親和性故に、極めて高いイオン伝導性が期待でき、注目を浴びている。
しかし、従来のポリフッ化ビニリデン製の微多孔膜は強度が低かったため、電極と重ね合わせて電池を作製する際に、電極表面の突起物等により損傷を受け、内部短絡等のトラブルを起こすことが問題となっていた。したがって、ポリフッ化ビニリデン高分子化合物本来の高いイオン伝導性という利点を活かせないのが現状であり、ポリオレフィン系セパレーター並みの高強度微多孔膜の開発が切望されている。
【0004】
ポリフッ化ビニリデン製微多孔膜のその他の用途としては、油水分離や液ガス分離に用いる分離膜、上下水の浄化を目的とする分離膜等、血漿分画製剤やバイオ医薬品等の製剤から細菌やウィルス等の病原体を除去する分離膜、薬液や処理水等から微粒子や固形不純物を除去する産業プロセスフィルター等のように、何れも高いろ過圧に耐えうる高強度微多孔膜を必要とする用途へ適用できる。
ポリフッ化ビニリデン製微多孔膜の一般的製造方法としては、いわゆる湿式法と呼ばれる非溶媒誘起型相分離による技術が従来より多数開示されており、例えば、特開昭58−91732号公報及び特開昭59−16503号公報には、孔径が小さく、透水性能の高い微多孔膜の製造法が開示されている。非溶媒誘起型相分離により形成された微多孔膜は、空孔率が高く、透水性能に優れるが、膜の力学強度が極めて低いという問題があった。
【0005】
【発明が解決しようとする課題】
本発明の課題は、強度、伸度等の力学強度が高く、かつ、透水性能に優れた微多孔膜を提供することにある。
【0006】
【課題を解決するための手段】
本発明者らは、上記の目的を達成するために鋭意検討を重ねた結果、微多孔膜中に、積層構造が崩壊した状態の変性層状ケイ酸塩を微分散させることよって、透水性能を落とすことなく、力学強度が高い微多孔膜が得られることを見出した。特に、高分子化合物として、ポリフッ化ビニリデン(PVDF)を用いた場合は、膜の湿式製法において、その溶媒や凝固条件を最適化することによって、著しく高い力学強度を有する微多孔膜を得ることができることを見出した。
【0007】
すなわち、本発明は以下のとおりである。
(1) 変性層状ケイ酸塩の積層構造が剥離によって崩壊した状態で微分散していることを特徴とする微多孔膜。
(2) 微多孔膜を構成する高分子化合物がポリフッ化ビニリデンであることを特徴とする(1)に記載の微多孔膜。
(3) 高分子化合物と変性層状ケイ酸塩を含有するドープを貧溶媒に接触させ、湿式凝固させることを特徴とする(1)に記載の微多孔膜の製造方法。
(4) 溶媒がN−メチルピロリドンであり、貧溶媒として水を用いることを特徴とする(3)に記載の微多孔膜の製造方法。
(5) 貧溶媒である水の温度が50℃以上であることを特徴とする(3)又は(4)に記載の微多孔膜の製造方法
(6) ドープを貧溶媒に接触させる前に、50℃〜120℃で乾式凝固させることを特徴とする(3)〜(5)のいずれか1つに記載の微多孔膜の製造方法。
【0008】
以下に、本発明の微多孔膜及びその製法について詳細に説明する。
本発明に用いられる変性層状ケイ酸塩は、タルク、ピロフィライト、スメクタイト、バーミキュライト、マイカ等の2:1型の粘土鉱物を、後に述べるように、適切な変性剤で処理したものであり、これらの中でも、スメクタイト及び合成マイカが好ましい。
スメクタイトとして、モンモリロナイト、ヘクトライト、バイデライト、サポナイト等が挙げられる。これらは、天然鉱物を精製したもの、水熱合成、溶融合成、、焼成合成等によって得られたもの等である。
【0009】
層状ケイ酸塩の変性法には限定は無く、様々な方法を用いることができる。例えば、層状ケイ酸塩の各層の負電荷と水素結合できる化合物を層間に挿入する方法、層状ケイ酸塩の末端のシラノール基をカップリング剤処理する方法等が挙げられる。層間挿入法のための化合物には限定はなく、有機化合物及び無機化合物、例えば、長鎖のアルコール、カルボン酸、界面活性剤、シランカップリング剤等が用いられるが、中でも、界面活性剤が好ましい。
【0010】
界面活性剤として、アニオン性、カチオン性、ノニオン性及び両性の界面活性剤を用いることができる。好ましくはカチオン性及びノニオン性界面活性剤、より好ましくはカチオン性界面活性剤である。
カチオン性界面活性剤の例としては、ドデシルトリメチルアンモニウムブロマイド又はクロライド、オクタデシルトリメチルアンモニウム塩等の4級アンモニウム塩、オクタデシルトリメチルアミン等のアミン類等が挙げられる。アミンの場合は、適量の酸を添加することによって使用可能となる。
【0011】
非イオン性界面活性剤の例として、親水部にエチレンオキサイド、プロピレンオキサイド又はその共重合体、水酸基等をもち、疎水部として、長鎖の飽和又は不飽和のアルキル基等をもつ化合物が挙げられる。このような化合物として、例えば、ポリエチレングリコールステアリルエーテル、ポリエチレングリコールラウリルエーテル等のポリエチレングリコールのエーテル類、ポリエチレングリコールステアレート、ポリエチレングリコールラウレート等のポリエチレングリコールのカルボン酸エステル類等が挙げられる。
【0012】
界面活性剤による変性方法としては、水又はアルコールに膨潤させた層状ケイ酸塩と、エタノール、メタノール、水等の溶媒に溶解した界面活性剤を混合した後、得られる変性層状ケイ酸塩を濾別、洗浄、乾燥する方法が挙げられる。
界面活性剤として非イオン性界面活性剤を用いる場合は、別法として、非イオン性界面活性剤の融点、又はガラス転移点より10〜50℃高い温度で層状ケイ酸塩と混合後、同温度で一定時間放置する方法がある。この方法では、溶融状態又は運動性の高い状態の非イオン性界面活性剤が層状ケイ酸塩の層間に侵入する。この方法は、上記の溶媒法に比べて、著しく製造コストが低い。
【0013】
本発明において、変性層状ケイ酸塩の積層構造が剥離によって崩壊した状態で微分散しているとは、微多孔膜のX線回折において、変性層状ケイ酸塩の層間距離に相当するピークが消失している状態をいう。
これを、図1を例に説明する。図1の曲線1は、実施例1に説明するように、カチオン性界面活性剤ジオクタデシルジメチルアンモニウムブロマイドで変性した変性層状ケイ酸塩を含有するPVDF微多孔膜のX線回折プロファイルである。図1の曲線2は、原料である変性層状ケイ酸塩のX線回折プロファイルである。図1の1と2を対比すると、図1の1には、図1の2で示すように、原料である変性層状ケイ酸塩が示すピークが認められない。このような状態が、変性層状ケイ酸塩の積層構造が剥離によって崩壊して微分散している状態である。
【0014】
一方、図1の3曲線は、比較例3に示すように、実施例1とは異なる層状ケイ酸塩を含有する微多孔膜のX線である。この場合は、図1の曲線4で示すように、原料である層状ケイ酸塩のピーク位置と全く同じ位置にピークを示し、積層構造が崩壊して微分散していないことを示している。
変性層状ケイ酸塩が微分散していない場合には、孔径及び孔形状が不均一となり、安定した透水性能及び力学物性が得られない。
【0015】
変性層状ケイ酸塩が微分散した微多孔膜を得るためには、変性層状ケイ酸塩の変性法を高分子化合物に併せて選ぶことが好ましい。具体的には、ドープ調製前の変性層状ケイ酸塩の層間距離(h0)を調製することが好ましく、h0が0.6〜2.0nmの場合には、有機化微多孔膜中に微分散しやすい。
層間距離(h0)は、以下の式に基づいて算出する。
h0(nm)=d(nm)−0.95                  (1)
ここで、0.95nmは、変性層状ケイ酸塩のシート1枚の厚みで、どの変性層状ケイ酸塩を用いても値は殆ど変わらない。dは、X線回折測定によって、変性変性層状ケイ酸塩の001面の底面反射に相当するピーク位置(2θ)からBraggの式を用いて算出することができる。
【0016】
d=0.154/2sinθ             (2)
h0は、例えば、界面活性剤を変性剤として用いる場合は、その疎水部の鎖長によって制御することができる。一般的には、鎖長が長い程、h0は大きくなる。カチオン性界面活性剤を用いる場合は、アンモニウム塩のヘッドグループ(1級、2級or3級)によってもh0を変化させることができる。同じ界面活性剤を用いる場合でも、イオン交換量(charge exchange capacity:CEC)の異なる層状ケイ酸塩を用いることによって、h0を制御することができる。
【0017】
変性層状ケイ酸塩の添加量には限定はないが、好ましくは、高分子化合物に対して0.01〜40質量部、より好ましくは0.1〜10質量部、最も好ましくは0.5〜5質量部である。
本発明の微多孔膜を構成する基本となる高分子化合物の種類には限定はなく、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリアクリロニトリル、ポリスルフォン、ポリフッ化ビニリデン、ポリテトラフルオロエチレン等を用いることができるが、ポリフッ化ビニリデンを用いた場合、力学強度向上の効果が大きくなるので好ましい。
【0018】
本発明の微多孔膜は、湿式法又は溶融法により製造することができ。湿式法により製造することが好ましい。
湿式法により製造する場合、高分子化合物と変性層状ケイ酸塩を含有するドープを貧溶媒に接触させて、湿式凝固して微多孔膜を製造する。
本発明の微多孔膜の製造に用いられるドープは、溶媒、高分子化合物及び変性層状ケイ酸塩を含む。これらの組成比は、製造する膜の構造によって異なるが、好ましくは60〜98質量部/1〜40質量部/0.05〜2.0質量部、より好ましくは70〜80質量部/19.0〜28.5質量部/0.5〜1.5質量部である。
【0019】
溶媒は、高分子化合物を溶解することができ、かつ、変性層状ケイ酸塩を微分散できるものを用いる。例えば、高分子化合物として、ポリフッ化ビニリデンを用いる場合、溶媒として、N−メチルピロリドン(NMP)、ジメチルアセトアミド、ジメチルフォルムアミド、ジメチルスルフォキシド、トルエン等が用いられるが、溶解性及び高分散性の観点からNMPが好ましい。
高分子化合物を溶媒に溶解させる方法、及び変性層状ケイ酸塩を溶媒に微分散させる方法には限定はなく、通常の方法を用いることができる。すなわち、高分子化合物、変性層状ケイ酸塩及び溶媒を所定濃度で混合し、スリーワンモーター、スターラー等で攪拌する。攪拌時間は、濃度、種類によって異なるが、おおよそ1〜10時間である。その際、加熱攪拌することが好ましい。高分子化合物の溶解及び変性層状ケイ酸塩の分散状態は目視で判定する。この他に、変性層状ケイ酸塩の分散液及び高分子化合物溶液をそれぞれ調製して所定濃度になるように混合してドープを調整してもよい。
【0020】
ドープと接触させる貧溶媒とは、ドープ中の高分子化合物を溶解しない溶媒のことを意味する。貧溶媒は、溶媒の種類によって大きく変化するが、ポリフッ化ビニリデン/NMP系の場合を例にとると、水、エタノール、メタノール、又はこれらの混合溶媒が好ましい。中でも、水を用いた場合に、力学強度及び透水性能に優れた微多孔膜が得られる。
貧溶媒の温度は、得られる膜の物性に大きな影響を及ぼす。貧溶媒の種類やドープの種類にも依存するが、貧溶媒の温度が高いほど、微多孔膜の力学物性が向上する。貧溶媒の温度が50℃以上の条件から得られた微多孔膜は、著しく力学強度が高い。
【0021】
ドープを貧溶媒に接触させる方法には制限はなく、通常、工業的に用いられる方法が使用できる。例えば、中空糸型の微多孔膜の場合、ドープを中空ノズルから貧溶媒中に吐出させ、必要に応じて、水洗処理や延伸処理をしながら巻き取る方法であれば、いずれの紡糸方法(緯引き、縦引き、流管)も採用できる。フィルムの場合は、スリット紡口、アプリケーター等で流延成膜した後、貧溶媒に浸漬させ、水洗/乾燥させることにより微多孔膜を得ることができる。乾燥温度、及び乾燥時間には限定はないが、30℃から60℃で1時間くらいが好ましい。また、貧溶媒を一種以上組み合わせ、多段で使用してもよい。ドープと貧溶媒との接触時間は限定されない。
【0022】
微多孔膜の製造において、ドープを貧溶媒に接触させる前に、50〜120℃で乾式凝固させて微多孔膜を製造する方法について説明する。この方法は、上記の方法と同様に、中空ノズルからドープを吐出させた後、貧溶媒に接触させる前に加熱処理によって乾式凝固プロセス導入する。フィルムの場合は、スリット紡口、アプリケーター等で流延成膜し、所定の温度で乾式凝固を施した後、貧溶媒に接触させる。その後の水洗、乾燥方法については上述と同様の方法を採用できる。
乾式凝固温度が50℃以上120℃以下の場合には、得られる微多孔膜の力学強度は著しく高くなる。乾式凝固温度が120℃を越えると、ゲル化が進行して、微多孔膜が得られにくくなる。乾式凝固時間は、高分子化合物や貧溶媒の種類によっても異なるが、おおよそ、10秒から20分である。
【0023】
次に、溶融法について説明する。溶融法の場合は、特開昭58−93734号公報に示されるような一般的な方法を適用することができる。すなわち、高分子化合物及びシリカに代表される親水性無機微粉体を混合した後、溶融成型し、次いで、その成型物から親水性無機粉体を抽出する方法である。この高分子化合物にあらかじめ変性層状ケイ酸塩を混合しておくことにより、公知の方法と同じ方法で微多孔膜を製造することができる。
無機粉体がシリカの場合には、抽出液は、通常、アルカリ水溶液が用いられるが、この抽出過程で変性層状ケイ酸塩は抽出されず、微多孔膜のセル壁に微分散したまま残存する。
【0024】
【発明の実施の形態】
以下に、実施例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例により限定されるものではない。
本発明で用いる評価法は以下のとおりである。
(1)変性層状ケイ酸塩の分散状態の評価
変性層状ケイ酸塩の分散状態は、X線回折測定によって判定する。
X線測定は、微多孔膜をリガク社製X線回折装置を用いて行う。
分散状態は以下のように○、×で分類する。本発明における微分散とは、○の状態を意味する。
○:X線回折測定において、図1の曲線1に示すように、変性層状ケイ酸塩の0
01面のピークが消失している。
×:X線回折測定において、図1の曲線3に示すように、変性層状ケイ酸塩の0
01面のピークが存在する。
【0025】
(2)破断強度測定
破断強度(kgf/cm)及び伸度(%)は、幅10mmの短冊状片の試料を用いて、ASTMD882に準拠して測定する。
(3)空孔率測定
微多孔膜の体積(cm)と質量(g)を測定し、得られた結果から次式を用いて空孔率(%)を計算する。
空孔率=100×(1−質量/(高分子化合物の密度×体積))
【0026】
【実施例1】
カチオン性界面活性剤(ジオクタデシルジメチルアンモニウムブロマイド、Aldrich社製)7.57gをエタノール100gに溶解した(A液とする)。次に、層状ケイ酸塩である合成フッ素化マイカ(DMA、トピー工業社製、CEC=90meq/100g)10gを脱イオン水500gにホモミキサーを用いて分散させた(B液とする)。A液とB液を50℃で12時間混合した。得られた沈殿を濾別し、エタノールで数回洗浄後、100℃で5時間真空乾燥して変性層状ケイ酸塩1を得た。この変性層状ケイ酸塩0.4gを市販のN−メチルピロリドン(NMP)80gに添加し、マグネチックスターラーを用いて3時間攪拌した。これに、ポリフッ化ビニリデン(PVDF:solef(登録商標)6010、San Diego Plastis社製)19.6gを添加し、スリーワンモーターを用いて60℃で6時間攪拌してドープを得た。このドープを20cm×20cmのガラス板上にスパイラルバーコーター(wet膜厚:175μm)を用いてキャストした。そのガラス板を、貧溶媒である25℃の脱イオン水3L中に浸漬し、5分凝固させた。その後、50℃で30分乾燥してPVDF微多孔膜を得た。
【0027】
【実施例2】
実施例1の変性層状ケイ酸塩を、市販の変性層状ケイ酸塩(closite(登録商標)93A、Southern Clay社製)に代えた以外は実施例1と同様の手法でPVDF微多孔膜を得た。
【実施例3】
実施例1の貧溶媒(脱イオン水)の温度が48℃であること以外は実施例1と同様の方法でPVDF微多孔膜を得た。
【実施例4】
実施例1の貧溶媒(脱イオン水)の温度が50℃であること以外は実施例1と同様の方法でPVDF微多孔膜を得た。
【0028】
【実施例5】
実施例1の貧溶媒(脱イオン水)温度が80℃であること以外は実施例1と同様の方法でPVDF微多孔膜を得た。
【実施例6】
実施例5において、ガラス板上にキャストした溶液を貧溶媒に浸漬する前に、110℃のホットプレート上で、4分乾式凝固する以外は実施例5と同じ条件でPVDF微多孔膜を得た。
【実施例7】
実施例6において乾式凝固時間が10分であること以外は実施例6と同じ条件で微多孔膜を得た。
【0029】
【比較例1】
変性層状ケイ酸塩を使わないこと以外は実施例1と同様の方法でPVDF微多孔膜を得た。
【比較例2】
変性層状ケイ酸塩として、市販の有機化モンモリロナイト(Closite(登録商標)25A、SouthernClay社製)を用いる以外は実施例1と同様の方法でPVDF微多孔膜を得た。
【比較例3】
変性層状ケイ酸塩のかわりに未処理の層状ケイ酸塩(合成フッ素化マイカ(DMA、トピー工業社製、CEC=90meq/100g)を用いた以外は実施例1と同様の方法でPVDF微多孔膜を得た。
【0030】
【比較例4】
貧溶媒(脱イオン水)の温度が48℃であること以外は比較例1と同様の方法でPVDF微多孔膜を得た。
【比較例5】
貧溶媒(脱イオン水)の温度が50℃であること以外は比較例1と同様の方法でPVDF微多孔膜を得た。
【比較例6】
貧溶媒(脱イオン水)温度が80℃であること以外は比較例1と同様の方法でPVDF微多孔膜を得た。
上記の実施例及び比較例に基づき、表1には、微分散の効果、表2には、湿式法における凝固温度の効果、表3には、湿式凝固に先立つ乾式凝固の効果を示す。
【0031】
【表1】

Figure 2004009012
【0032】
【表2】
Figure 2004009012
【0033】
【表3】
Figure 2004009012
【0034】
【発明の効果】
本発明の微多孔膜は、高い空孔率を有し、高強度を示す。
【図面の簡単な説明】
【図1】微多孔膜及び変性層状ケイ酸塩のX線回折チャート。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to oil-water separation, liquid-gas separation, purification of water and sewage, removal of viruses and bacteria, concentration or culture media, filters for industrial processes for removing fine particles from chemical solutions, treated water, etc., separators for lithium ion batteries, polymers The present invention relates to a microporous membrane that can be used for a wide range of applications such as a solid electrolyte support for a battery and a method for producing the same.
[0002]
[Prior art]
In recent years, demand for microporous membranes has been increasing in various applications. For example, attention has been focused on applications such as separators for lithium ion secondary batteries. Conventionally, as a material of the separator, a polyolefin-based polymer such as polyethylene or polypropylene has been used in consideration of chemical resistance. Polyolefin-based separators have the advantage of high strength, but have poor affinity for electrolytes due to their chemical resistance.
[0003]
However, in recent years, attempts have been made to use a polyvinylidene fluoride polymer compound or a polyacrylonitrile polymer compound having a high affinity for an electrolyte. When a polymer compound such as polyvinylidene fluoride is used as a material for the separator, extremely high ionic conductivity can be expected due to its high affinity, and it has attracted attention.
However, the conventional microporous membrane made of polyvinylidene fluoride has low strength, and when a battery is manufactured by overlapping with an electrode, it may be damaged by protrusions on the electrode surface and cause troubles such as an internal short circuit. Had been a problem. Therefore, at present, it is not possible to take advantage of the inherent high ion conductivity of the polyvinylidene fluoride polymer compound, and there is a strong demand for the development of a high-strength microporous membrane comparable to a polyolefin-based separator.
[0004]
Other uses of polyvinylidene fluoride microporous membranes include separation membranes used for oil-water separation and liquid-gas separation, separation membranes for purifying water and sewage, and bacteria, For applications that require a high-strength microporous membrane that can withstand high filtration pressure, such as separation membranes that remove pathogens such as viruses and industrial process filters that remove fine particles and solid impurities from chemical solutions and treated water. Applicable.
As a general method for producing a microporous membrane made of polyvinylidene fluoride, a number of techniques using a non-solvent-induced phase separation called a so-called wet method have been conventionally disclosed. For example, JP-A-58-91732 and JP-A-58-91732. JP-A-59-16503 discloses a method for producing a microporous membrane having a small pore size and high water permeability. The microporous membrane formed by non-solvent induced phase separation has high porosity and excellent water permeability, but has a problem that the mechanical strength of the membrane is extremely low.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a microporous membrane having high mechanical strength such as strength and elongation and excellent in water permeability.
[0006]
[Means for Solving the Problems]
The present inventors have conducted intensive studies in order to achieve the above object, and as a result, in a microporous film, a finely-dispersed modified layered silicate in a state in which a laminated structure is collapsed, thereby lowering water permeability. It has been found that a microporous membrane having high mechanical strength can be obtained without any problem. In particular, when polyvinylidene fluoride (PVDF) is used as the polymer compound, it is possible to obtain a microporous membrane having extremely high mechanical strength by optimizing the solvent and coagulation conditions in the membrane wet process. I found what I can do.
[0007]
That is, the present invention is as follows.
(1) A microporous membrane characterized in that the laminated structure of the modified layered silicate is finely dispersed in a state of being collapsed by peeling.
(2) The microporous membrane according to (1), wherein the polymer compound constituting the microporous membrane is polyvinylidene fluoride.
(3) The method for producing a microporous membrane according to (1), wherein the dope containing the polymer compound and the modified layered silicate is brought into contact with a poor solvent and wet-solidified.
(4) The method for producing a microporous membrane according to (3), wherein the solvent is N-methylpyrrolidone and water is used as the poor solvent.
(5) The method for producing a microporous membrane according to (3) or (4), wherein the temperature of water as the poor solvent is 50 ° C. or higher. (6) Before contacting the dope with the poor solvent, The method for producing a microporous membrane according to any one of (3) to (5), wherein dry coagulation is performed at 50 ° C to 120 ° C.
[0008]
Hereinafter, the microporous membrane of the present invention and its manufacturing method will be described in detail.
The modified layered silicate used in the present invention is obtained by treating a 2: 1 type clay mineral such as talc, pyrophyllite, smectite, vermiculite, and mica with an appropriate modifier as described later. Among them, smectite and synthetic mica are preferable.
Examples of smectite include montmorillonite, hectorite, beidellite, saponite and the like. These are those obtained by purifying natural minerals, hydrothermal synthesis, melt synthesis, calcination synthesis and the like.
[0009]
The method for modifying the layered silicate is not limited, and various methods can be used. For example, a method of inserting a compound capable of hydrogen bonding with a negative charge of each layer of the layered silicate between layers, a method of treating a silanol group at a terminal of the layered silicate with a coupling agent, and the like can be given. The compound for the intercalation method is not limited, and an organic compound and an inorganic compound, for example, a long-chain alcohol, a carboxylic acid, a surfactant, a silane coupling agent and the like are used. Among them, a surfactant is preferable. .
[0010]
As the surfactant, anionic, cationic, nonionic and amphoteric surfactants can be used. Preferred are cationic and nonionic surfactants, and more preferred are cationic surfactants.
Examples of the cationic surfactant include quaternary ammonium salts such as dodecyltrimethylammonium bromide or chloride, octadecyltrimethylammonium salt, and amines such as octadecyltrimethylamine. In the case of an amine, it can be used by adding an appropriate amount of an acid.
[0011]
Examples of the nonionic surfactant include a compound having ethylene oxide, propylene oxide or a copolymer thereof, a hydroxyl group or the like in a hydrophilic part, and a compound having a long-chain saturated or unsaturated alkyl group or the like as a hydrophobic part. . Examples of such compounds include ethers of polyethylene glycol such as polyethylene glycol stearyl ether and polyethylene glycol lauryl ether, and carboxylic acid esters of polyethylene glycol such as polyethylene glycol stearate and polyethylene glycol laurate.
[0012]
As a modification method with a surfactant, a layered silicate swelled in water or alcohol is mixed with a surfactant dissolved in a solvent such as ethanol, methanol, or water, and the resulting modified layered silicate is filtered. Another method includes washing and drying.
When a nonionic surfactant is used as the surfactant, as an alternative, after mixing with the layered silicate at a temperature 10 to 50 ° C. higher than the melting point of the nonionic surfactant or the glass transition point, the same temperature is applied. There is a method of leaving for a certain period of time. In this method, a nonionic surfactant in a molten state or a high mobility state penetrates between layers of the layered silicate. This method has a significantly lower production cost than the solvent method described above.
[0013]
In the present invention, the fact that the laminated structure of the modified layered silicate is finely dispersed in a state of being collapsed by peeling means that a peak corresponding to the interlayer distance of the modified layered silicate disappears in X-ray diffraction of the microporous film. The state that is doing.
This will be described with reference to FIG. Curve 1 in FIG. 1 is the X-ray diffraction profile of a PVDF microporous membrane containing a modified layered silicate modified with the cationic surfactant dioctadecyldimethylammonium bromide, as described in Example 1. Curve 2 in FIG. 1 is an X-ray diffraction profile of a modified phyllosilicate as a raw material. When 1 and 2 in FIG. 1 are compared with each other, as shown by 2 in FIG. 1, a peak shown by the modified layered silicate as a raw material is not observed in 1 in FIG. Such a state is a state in which the layered structure of the modified layered silicate is disintegrated and finely dispersed by peeling.
[0014]
On the other hand, the three curves in FIG. 1, as shown in Comparative Example 3, are X-rays of a microporous film containing a layered silicate different from that in Example 1. In this case, as shown by the curve 4 in FIG. 1, a peak is shown at exactly the same position as the peak position of the layered silicate as the raw material, indicating that the laminated structure has collapsed and is not finely dispersed.
When the modified layered silicate is not finely dispersed, the pore diameter and the pore shape become uneven, and stable water permeability and mechanical properties cannot be obtained.
[0015]
In order to obtain a microporous membrane in which the modified layered silicate is finely dispersed, it is preferable to select a modification method of the modified layered silicate in accordance with the polymer compound. Specifically, it is preferable to adjust the interlayer distance (h0) of the modified layered silicate before the preparation of the dope, and when h0 is 0.6 to 2.0 nm, it is finely dispersed in the organized microporous film. It's easy to do.
The interlayer distance (h0) is calculated based on the following equation.
h0 (nm) = d (nm)-0.95 (1)
Here, 0.95 nm is the thickness of one sheet of the modified layered silicate, and the value hardly changes regardless of which modified layered silicate is used. d can be calculated from the peak position (2θ) corresponding to the bottom reflection of the 001 plane of the modified denatured layered silicate by X-ray diffraction measurement using Bragg's formula.
[0016]
d = 0.154 / 2 sin θ (2)
For example, when a surfactant is used as a denaturant, h0 can be controlled by the chain length of the hydrophobic part. Generally, h0 increases as the chain length increases. When a cationic surfactant is used, h0 can also be changed by the ammonium salt head group (primary, secondary or tertiary). Even when the same surfactant is used, h0 can be controlled by using layered silicates having different charge exchange capacities (CEC).
[0017]
The amount of the modified phyllosilicate is not limited, but is preferably 0.01 to 40 parts by mass, more preferably 0.1 to 10 parts by mass, and most preferably 0.5 to 10 parts by mass based on the polymer compound. 5 parts by mass.
There is no limitation on the type of the high molecular compound constituting the microporous membrane of the present invention, and polyolefins such as polyethylene and polypropylene, polyacrylonitrile, polysulfone, polyvinylidene fluoride, polytetrafluoroethylene and the like can be used. However, the use of polyvinylidene fluoride is preferable because the effect of improving the mechanical strength is increased.
[0018]
The microporous membrane of the present invention can be produced by a wet method or a melting method. It is preferable to produce by a wet method.
In the case of production by a wet method, a dope containing a polymer compound and a modified layered silicate is brought into contact with a poor solvent, and wet-solidified to produce a microporous membrane.
The dope used for producing the microporous membrane of the present invention contains a solvent, a polymer compound and a modified layered silicate. These composition ratios vary depending on the structure of the film to be produced, but are preferably 60 to 98 parts by mass / 1 to 40 parts by mass / 0.05 to 2.0 parts by mass, more preferably 70 to 80 parts by mass / 19. 0 to 28.5 parts by mass / 0.5 to 1.5 parts by mass.
[0019]
As the solvent, one that can dissolve the polymer compound and finely disperse the modified layered silicate is used. For example, when polyvinylidene fluoride is used as the polymer compound, N-methylpyrrolidone (NMP), dimethylacetamide, dimethylformamide, dimethylsulfoxide, toluene, or the like is used as a solvent, but the solubility and the high dispersibility are used. From the viewpoint of NMP, NMP is preferred.
The method for dissolving the polymer compound in the solvent and the method for finely dispersing the modified layered silicate in the solvent are not limited, and ordinary methods can be used. That is, a polymer compound, a modified layered silicate and a solvent are mixed at a predetermined concentration, and the mixture is stirred with a three-one motor, a stirrer, or the like. The stirring time varies depending on the concentration and type, but is generally about 1 to 10 hours. In that case, it is preferable to heat and stir. The dissolution of the polymer compound and the dispersion state of the modified layered silicate are visually determined. Alternatively, a dope may be prepared by preparing a dispersion of the modified layered silicate and a polymer compound solution and mixing them to a predetermined concentration.
[0020]
The poor solvent to be brought into contact with the dope means a solvent that does not dissolve the polymer compound in the dope. The poor solvent varies greatly depending on the type of the solvent. For example, in the case of a polyvinylidene fluoride / NMP system, water, ethanol, methanol, or a mixed solvent thereof is preferable. Above all, when water is used, a microporous membrane excellent in mechanical strength and water permeability can be obtained.
The temperature of the poor solvent greatly affects the physical properties of the obtained film. Although it depends on the type of poor solvent and the type of dope, the higher the temperature of the poor solvent, the better the mechanical properties of the microporous membrane. The microporous membrane obtained under the condition that the temperature of the poor solvent is 50 ° C. or higher has remarkably high mechanical strength.
[0021]
There is no limitation on the method of bringing the dope into contact with the poor solvent, and a method usually used industrially can be used. For example, in the case of a hollow fiber type microporous membrane, any spinning method (weft) may be used as long as the dope is discharged from a hollow nozzle into a poor solvent and, if necessary, wound up while being washed or stretched. Pulling, vertical drawing, flow tube). In the case of a film, a microporous film can be obtained by casting a film with a slit spinner, an applicator, or the like, immersing the film in a poor solvent, and washing / drying with water. The drying temperature and the drying time are not limited, but preferably from 30 ° C. to 60 ° C. for about 1 hour. Further, one or more poor solvents may be combined and used in multiple stages. The contact time between the dope and the poor solvent is not limited.
[0022]
A method for producing a microporous membrane by dry coagulation at 50 to 120 ° C. before contacting a dope with a poor solvent in producing a microporous membrane will be described. In this method, as in the above method, after the dope is discharged from the hollow nozzle, a dry coagulation process is introduced by heat treatment before the dope is brought into contact with the poor solvent. In the case of a film, the film is cast by a slit spinner, an applicator, or the like, subjected to dry coagulation at a predetermined temperature, and then brought into contact with a poor solvent. As for the subsequent washing and drying methods, the same methods as described above can be employed.
When the dry coagulation temperature is 50 ° C. or more and 120 ° C. or less, the mechanical strength of the obtained microporous membrane becomes extremely high. If the dry coagulation temperature exceeds 120 ° C., gelation proceeds and it becomes difficult to obtain a microporous membrane. The dry coagulation time varies depending on the type of the high molecular compound or the poor solvent, but is approximately 10 seconds to 20 minutes.
[0023]
Next, the melting method will be described. In the case of the melting method, a general method as disclosed in JP-A-58-93734 can be applied. That is, this is a method in which a polymer compound and a hydrophilic inorganic fine powder represented by silica are mixed, melt-molded, and then the hydrophilic inorganic powder is extracted from the molded product. By preliminarily mixing the modified layered silicate with this polymer compound, a microporous membrane can be produced by the same method as a known method.
When the inorganic powder is silica, the aqueous extract is usually an aqueous alkaline solution, but the modified layered silicate is not extracted during this extraction process and remains finely dispersed on the cell walls of the microporous membrane. .
[0024]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described specifically with reference to examples, but the present invention is not limited to these examples.
The evaluation method used in the present invention is as follows.
(1) Evaluation of dispersion state of modified layered silicate The dispersion state of modified layered silicate is determined by X-ray diffraction measurement.
The X-ray measurement is performed on the microporous membrane using an X-ray diffractometer manufactured by Rigaku Corporation.
The dispersion state is classified as “O” or “X” as follows. Fine dispersion in the present invention means a state of ○.
:: In the X-ray diffraction measurement, as shown by curve 1 in FIG.
The peak on the 01 plane has disappeared.
×: In the X-ray diffraction measurement, as shown by curve 3 in FIG.
There is a peak on the 01 plane.
[0025]
(2) Measurement of Breaking Strength Breaking strength (kgf / cm 2 ) and elongation (%) are measured using a sample of a strip having a width of 10 mm in accordance with ASTM D882.
(3) Measurement of Porosity The volume (cm 3 ) and the mass (g) of the microporous membrane are measured, and the porosity (%) is calculated from the obtained result using the following equation.
Porosity = 100 × (1−mass / (density of polymer compound × volume))
[0026]
Embodiment 1
7.57 g of a cationic surfactant (dioctadecyldimethylammonium bromide, manufactured by Aldrich) was dissolved in 100 g of ethanol (referred to as solution A). Next, 10 g of synthetic fluorinated mica (DMA, manufactured by Topy Industries, CEC = 90 meq / 100 g), which is a layered silicate, was dispersed in 500 g of deionized water using a homomixer (referred to as solution B). The solution A and the solution B were mixed at 50 ° C. for 12 hours. The resulting precipitate was separated by filtration, washed several times with ethanol, and dried under vacuum at 100 ° C. for 5 hours to obtain a modified layered silicate 1. 0.4 g of this modified layered silicate was added to 80 g of commercially available N-methylpyrrolidone (NMP) and stirred for 3 hours using a magnetic stirrer. 19.6 g of polyvinylidene fluoride (PVDF: solef (registered trademark) 6010, manufactured by San Diego Plastis) was added thereto, and the mixture was stirred at 60 ° C. for 6 hours using a three-one motor to obtain a dope. This dope was cast on a glass plate of 20 cm × 20 cm using a spiral bar coater (wet film thickness: 175 μm). The glass plate was immersed in 3 L of deionized water at 25 ° C., which is a poor solvent, and solidified for 5 minutes. Thereafter, drying was performed at 50 ° C. for 30 minutes to obtain a PVDF microporous membrane.
[0027]
Embodiment 2
A microporous PVDF membrane was obtained in the same manner as in Example 1, except that the modified layered silicate of Example 1 was replaced with a commercially available modified layered silicate (closite (registered trademark) 93A, manufactured by Southern Clay). Was.
Embodiment 3
A microporous PVDF membrane was obtained in the same manner as in Example 1, except that the temperature of the poor solvent (deionized water) in Example 1 was 48 ° C.
Embodiment 4
A microporous PVDF membrane was obtained in the same manner as in Example 1, except that the temperature of the poor solvent (deionized water) in Example 1 was 50 ° C.
[0028]
Embodiment 5
A microporous PVDF membrane was obtained in the same manner as in Example 1 except that the temperature of the poor solvent (deionized water) in Example 1 was 80 ° C.
Embodiment 6
In Example 5, a microporous PVDF membrane was obtained under the same conditions as in Example 5, except that the solution cast on the glass plate was immersed in a poor solvent for 4 minutes on a hot plate at 110 ° C. for 4 minutes. .
Embodiment 7
A microporous membrane was obtained under the same conditions as in Example 6 except that the dry coagulation time was 10 minutes.
[0029]
[Comparative Example 1]
A microporous PVDF membrane was obtained in the same manner as in Example 1 except that the modified layered silicate was not used.
[Comparative Example 2]
A microporous PVDF membrane was obtained in the same manner as in Example 1 except that a commercially available organized montmorillonite (Closite (registered trademark) 25A, manufactured by Southern Clay) was used as the modified layered silicate.
[Comparative Example 3]
PVDF microporous in the same manner as in Example 1 except that an untreated layered silicate (synthetic fluorinated mica (DMA, manufactured by Topy Industries, CEC = 90meq / 100g)) was used instead of the modified layered silicate. A membrane was obtained.
[0030]
[Comparative Example 4]
A microporous PVDF membrane was obtained in the same manner as in Comparative Example 1 except that the temperature of the poor solvent (deionized water) was 48 ° C.
[Comparative Example 5]
A PVDF microporous membrane was obtained in the same manner as in Comparative Example 1 except that the temperature of the poor solvent (deionized water) was 50 ° C.
[Comparative Example 6]
A microporous PVDF membrane was obtained in the same manner as in Comparative Example 1 except that the temperature of the poor solvent (deionized water) was 80 ° C.
Table 1 shows the effect of fine dispersion, Table 2 shows the effect of solidification temperature in the wet method, and Table 3 shows the effect of dry solidification prior to the wet solidification, based on the above Examples and Comparative Examples.
[0031]
[Table 1]
Figure 2004009012
[0032]
[Table 2]
Figure 2004009012
[0033]
[Table 3]
Figure 2004009012
[0034]
【The invention's effect】
The microporous membrane of the present invention has high porosity and high strength.
[Brief description of the drawings]
FIG. 1 is an X-ray diffraction chart of a microporous membrane and a modified layered silicate.

Claims (6)

変性層状ケイ酸塩の積層構造が剥離によって崩壊した状態で微分散していることを特徴とする微多孔膜。A microporous membrane characterized in that the laminated structure of the modified layered silicate is finely dispersed in a state of being collapsed by peeling. 微多孔膜を構成する高分子化合物がポリフッ化ビニリデンであることを特徴とする請求項1記載の微多孔膜。2. The microporous membrane according to claim 1, wherein the polymer compound constituting the microporous membrane is polyvinylidene fluoride. 高分子化合物と変性層状ケイ酸塩を含有するドープを貧溶媒に接触させ、湿式凝固させることを特徴とする請求項1記載の微多孔膜の製造方法。2. The method for producing a microporous membrane according to claim 1, wherein the dope containing the polymer compound and the modified layered silicate is brought into contact with a poor solvent to perform wet coagulation. 溶媒がN−メチルピロリドンであり、貧溶媒として水を用いることを特徴とする請求項3記載の微多孔膜の製造方法。4. The method for producing a microporous membrane according to claim 3, wherein the solvent is N-methylpyrrolidone, and water is used as the poor solvent. 貧溶媒である水の温度が50℃以上であることを特徴とする請求項3又は4記載の微多孔膜の製造方法The method for producing a microporous membrane according to claim 3, wherein the temperature of water as a poor solvent is 50 ° C. or higher. ドープを貧溶媒に接触させる前に、50〜120℃で乾式凝固させることを特徴とする請求項3〜5のいずれか1項に記載の微多孔膜の製造方法。The method for producing a microporous membrane according to any one of claims 3 to 5, wherein the dope is dry coagulated at 50 to 120 ° C before contacting the dope with a poor solvent.
JP2002169618A 2002-06-11 2002-06-11 Microporous membrane and method for manufacturing the same Withdrawn JP2004009012A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002169618A JP2004009012A (en) 2002-06-11 2002-06-11 Microporous membrane and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002169618A JP2004009012A (en) 2002-06-11 2002-06-11 Microporous membrane and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2004009012A true JP2004009012A (en) 2004-01-15

Family

ID=30436121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002169618A Withdrawn JP2004009012A (en) 2002-06-11 2002-06-11 Microporous membrane and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2004009012A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005073302A1 (en) * 2004-01-30 2005-08-11 Nitto Denko Corporation Porous film and method for preparation thereof
JP2008515668A (en) * 2004-10-06 2008-05-15 ザ リサーチ ファウンデーション オブ ステイト ユニバーシティー オブ ニューヨーク High flow rate and low adhesion filtration media
CN102468465A (en) * 2010-11-08 2012-05-23 索尼公司 Shrink resistant microporous membrane and battery separator
WO2017109092A1 (en) * 2015-12-23 2017-06-29 Solvay Specialty Polymers Italy S.P.A. Porous polymer membranes comprising silicate
CN113851704A (en) * 2021-09-24 2021-12-28 中化学南方建设投资有限公司 Preparation method of polymer electrolyte membrane

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005073302A1 (en) * 2004-01-30 2005-08-11 Nitto Denko Corporation Porous film and method for preparation thereof
JP2005213425A (en) * 2004-01-30 2005-08-11 Nitto Denko Corp Porous film and method for producing the same
JP4623626B2 (en) * 2004-01-30 2011-02-02 日東電工株式会社 Porous membrane and method for producing the same
JP2008515668A (en) * 2004-10-06 2008-05-15 ザ リサーチ ファウンデーション オブ ステイト ユニバーシティー オブ ニューヨーク High flow rate and low adhesion filtration media
CN102468465A (en) * 2010-11-08 2012-05-23 索尼公司 Shrink resistant microporous membrane and battery separator
JP2012104291A (en) * 2010-11-08 2012-05-31 Sony Corp Shrinkage-resistant microporous film and battery separator
WO2017109092A1 (en) * 2015-12-23 2017-06-29 Solvay Specialty Polymers Italy S.P.A. Porous polymer membranes comprising silicate
CN108697992A (en) * 2015-12-23 2018-10-23 索尔维特殊聚合物意大利有限公司 Include the apertured polymeric film of silicate
CN113851704A (en) * 2021-09-24 2021-12-28 中化学南方建设投资有限公司 Preparation method of polymer electrolyte membrane
CN113851704B (en) * 2021-09-24 2023-12-15 中化学南方建设投资有限公司 Preparation method of polymer electrolyte membrane

Similar Documents

Publication Publication Date Title
WO2005073302A1 (en) Porous film and method for preparation thereof
CN103007791B (en) A kind of preparation method of Positively charged composite nanofiltration membrane
US11731087B2 (en) Polymer composition containing sulfonated carbon nanotube and sulfonated graphene oxide for fabricating hydrophilic separation membrane
CN105552279B (en) A kind of method that method of electrostatic spinning prepares the anti-overcharge battery diaphragm of high thermal stability
JPWO2006087859A1 (en) Aromatic polyamide porous film, method for producing aromatic polyamide porous film, and secondary battery
US8828541B2 (en) Titanium dioxide doped with fluorine and process for the production thereof
EP2601702B1 (en) Hybrid membranes containing titanium dioxide doped with fluorine
CN102114390A (en) Reinforced type polyvinylidene fluoride hollow fiber hydrophobic membrane and preparation method thereof
WO2012061963A1 (en) Porous membrane and preparation method thereof
JP2021097052A5 (en)
JP5318385B2 (en) Porous membrane made of vinylidene fluoride resin and method for producing the same
WO2004106232A1 (en) Lithium sulfide powder, method for producing same and inorganic solid electrolyte
CN113745757A (en) Preparation method of lithium battery safety diaphragm material
JPH11319522A (en) Finely porous membrane and manufacture thereof
JP2004009012A (en) Microporous membrane and method for manufacturing the same
CN104247088B (en) The purposes of resin, resin combination, nonaqueous electrolytic solution secondary battery distance piece and its manufacture method and nonaqueous electrolytic solution secondary battery
CN104190264A (en) Preparation method for hollow fiber ultrafiltration membrane with chelation function
CN110917902A (en) Graphene polyacrylonitrile hollow fiber membrane and preparation method thereof
JP4564758B2 (en) Method for producing vinylidene fluoride resin porous membrane
CN113797773B (en) Molybdenum disulfide oxide-graphene oxide-PEI composite ceramic nanofiltration membrane and preparation method thereof
TW202000748A (en) Porous microsphere and method for preparing the same
RU2440181C2 (en) Porous membrane from vinylidene fluoride resin and method of its production
CN114079124B (en) Organic-inorganic composite lithium ion battery diaphragm and preparation method thereof
KR102425089B1 (en) Manuafcturing method of bohemite for lithium secondary battery separator coating agent
CN114405286A (en) Ion-crosslinked amphoteric ion exchange membrane, preparation method and application thereof in selective electrodialysis

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050906