JP2004008838A - Catalyst for cleaning exhaust gas of internal combustion engine, method of cleaning exhaust gas and apparatus for cleaning exhaust gas - Google Patents

Catalyst for cleaning exhaust gas of internal combustion engine, method of cleaning exhaust gas and apparatus for cleaning exhaust gas Download PDF

Info

Publication number
JP2004008838A
JP2004008838A JP2002162290A JP2002162290A JP2004008838A JP 2004008838 A JP2004008838 A JP 2004008838A JP 2002162290 A JP2002162290 A JP 2002162290A JP 2002162290 A JP2002162290 A JP 2002162290A JP 2004008838 A JP2004008838 A JP 2004008838A
Authority
JP
Japan
Prior art keywords
exhaust gas
catalyst
internal combustion
combustion engine
active component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002162290A
Other languages
Japanese (ja)
Other versions
JP4039128B2 (en
Inventor
Masahito Kanae
金枝 雅人
Kojiro Okude
奥出 幸二郎
Hidehiro Iizuka
飯塚 秀宏
Hisao Yamashita
山下 寿生
Yuichi Kitahara
北原 雄一
Osamu Kuroda
黒田  修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2002162290A priority Critical patent/JP4039128B2/en
Publication of JP2004008838A publication Critical patent/JP2004008838A/en
Application granted granted Critical
Publication of JP4039128B2 publication Critical patent/JP4039128B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst for cleaning exhaust gas which is adaptive to lean-burn conditions, hardly induces the reaction of the NOx storage and adsorption components with water even when a large amount of water is included in the exhaust gas, and therefore, hardly induces a deterioration in the catalyst by SOx and maintains high NOx removal performance for a long period of time, and to provide an apparatus and a method for cleaning exhaust gas. <P>SOLUTION: The catalyst for cleaning exhaust gas contains a catalytic active component deposited on a porous carrier, wherein the catalytic active component contains at least one element selected from noble metals comprising Rh, Pt and Pd, at least one kind selected from alkaline metals and at least one kind selected from W, Mo and Zr, and a part or the whole of the alkali metals are present in the form of compound oxides having lower solubility with water than carbonates of the alkali metals. Exhaust gas with a lean air-fuel ratio is brought into contact with the above catalyst to remove nitrogen oxides. Further, exhaust gas having a rich or stoichiometric air-fuel ratio is brought into contact with the catalyst to rapidly reduce nitrogen oxides trapped on the catalyst surface to regenerate the catalyst. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、理論空燃比よりも燃料が希薄なリーンバーン状態で運転される内燃機関特に自動車エンジンの排ガスに含まれるNOxを浄化するのに好適な排ガス浄化触媒と排ガス浄化装置及び排ガス浄化方法に関する。
【0002】
【従来の技術】
自動車エンジンでは、近年、空燃比を燃料希薄とするリーンバーンエンジンが注目されている。ここで空燃比とはガス中の空気と燃料の比を表す。リーンバーンエンジンの排ガスに含まれる窒素酸化物(NOx)は、理論空燃比(ストイキ)用エンジンの排ガス浄化に従来使用されてきた三元触媒では浄化するのが難しい。そこで、リーンバーンエンジンから排出されるNOxを浄化できる排ガス浄化触媒の開発が進められている。
【0003】
また、自動車エンジンの排ガス中には硫黄酸化物(SOx)が含まれており、このSOxが触媒を被毒して排ガス浄化性能を低下させることから、SOxによって被毒されない触媒の開発が進められている。
【0004】
特開平11−319564号公報には、燃料希薄燃焼時に排ガス中のNOxを触媒の内部に吸蔵することによって排ガス中からNOxを除去する排ガス浄化触媒が記載されている。特開平10−212933号公報には、燃料希薄燃焼時に排ガス中のNOxを触媒の表面に化学吸着によって捕捉した上で還元するNOx吸着還元触媒が記載されている。また、特開2001−113176号公報にはSOxによる触媒被毒対策として、触媒表面に硫黄被毒防止層を設けることが示されており、特開平10−118458号公報にはTiを含有することによってSOx被毒を抑制することが示されている。
【0005】
【発明が解決しようとする課題】
本発明の目的は、リーンバーンで運転される内燃機関特に自動車エンジンの排ガスに含まれるNOxの浄化性能がすぐれ、しかも硫黄被毒されにくい排ガス浄化触媒,排ガス浄化方法及び排ガス浄化装置を提供することにある。
【0006】
【課題を解決するための手段】
本発明は、理論空燃比よりも希薄な空燃比で運転を行う内燃機関の排気系に、Rh,Pt,Pdからなる貴金属から選ばれた少なくとも1種と、アルカリ金属から選ばれた少なくとも1種と、W,Mo及びZrから選ばれた少なくとも1種を触媒活性成分として含み、アルカリ金属の一部或いは全部が該アルカリ金属の炭酸塩よりも水への溶解度の低い複合酸化物として含まれるNOx浄化触媒を備えたことにある。本発明では、前記触媒活性成分を担持するための多孔質担体を備える。多孔質担体を担持するための基材を備えてもよい。
【0007】
本発明の触媒において、Rh,Pt,Pdは一酸化窒素(NO)の酸化性能及びNOx還元性能を持たせるために含有する。Rh,Pt,Pdの少なくとも一種を含むことにより、触媒のNOx浄化性能が向上する。担持されるRh,Pt,Pdは一種でもよいが二種以上担持されている方が活性向上効果が高い。特にRh,Pt,Pdの3種を含むことが望ましい。貴金属同士が相互作用を及ぼしあって、酸化力及び還元力が強まり、排ガス浄化性能が向上するものと考えている。貴金属の担持量は多孔質担体1.9mol部に対して金属換算でPtの場合は0.002mol部以上0.05mol部以下、Rhの場合は0.0003mol部以上0.01mol部以下、Pdの場合は0.001部以上0.05mol部以下とすることが望ましい。貴金属の担持量が上記範囲に示す量より少ないと貴金属添加効果は小さく、上記範囲に示す量より多いと貴金属自身の比表面積が小さくなり、やはり貴金属添加効果が小さくなる。
【0008】
なお、本発明において、mol部とは、各成分のmol数換算での含有比率を表したものであり、例えばA成分0.8mol部に対してB成分の担持量が0.32mol部ということは、A成分の絶対量の多少に関わらず、mol数換算でAが0.8に対しBが0.32の割合で担持されていることを意味する。
【0009】
アルカリ金属は、金属或いは酸化物の形態で存在し、排ガス中のNOxを触媒表面上に引きつける、または捕捉する役割を持つ。アルカリ金属の担持量は多孔質担体1.9mol部に対して金属換算で、1種類当り0.05〜2mol部が好ましい。アルカリ金属担持量が一種類当り0.05mol部より少ない場合には、アルカリ金属担持による活性向上効果は必ずしも十分とはなり得ず、一方2mol部より多いとアルカリ金属自身の比表面積が低下するため好ましくない。アルカリ金属としては、Naが最も好適であるが、Li,K等でもよい。Na単独含有でも十分効果があるが、Naに加えてLi,Kが担持されていると更に活性が向上する。アルカリ金属を2種以上組み合わせることにより触媒に新たなNOx捕捉点が生じ、また更に触媒表面の塩基性度が高まるので水との反応が抑制される為と考えている。
【0010】
Mo,W,Zrの少なくとも1種は、アルカリ金属との複合酸化物を形成させて耐SOx性を高めるために含有する。SOxによる触媒の被毒は、排ガス中のSOが触媒と接触することにより酸化されてSOとなり、SOが排ガスに含まれるHO中に溶け込んで触媒に付着し、NOx吸蔵あるいは吸着成分が硫酸塩化することによって生じるものと考えられる。Mo,W又はZrとアルカリ金属との複合酸化物は、アルカリ金属を硫酸塩化しにくくする効果がある。Mo,W及びZrはそれぞれ単独の酸化物又は金属としても存在することができるが、これら自身でも耐水性があり、間接的にアルカリ金属の硫酸塩化を押さえる効果がる。触媒調製時のMo,W,Zrを混ぜる順序、或いは焼成温度等をコントロールすることにより、これらをアルカリ金属との複合酸化物の形態で存在させることができる。本発明において使用可能なアルカリ金属とMo,W又はZrとの複合酸化物としては、例えば下記がある。
【0011】
LiMo12,LiMo,LiMoO,γ−LiMoO,β−LiMoO,α−LiMoO,δ−LiMoO,LiMoO,β−LiMoO,Li0.1Mo,Li0.9Mo17,Li1.53MoO2.87,Li0.62MoO2.87,Li1.09MoO2.87,LiMo17,LiMo13,LiMo,LiMo,Li0.042MoO,LiMo13,LiMo10,LiMoO,β−LiMo,α−LiMo,LiZr,LiZrO,LiZrO,LiZrO,LiZrO,LiZr,LiZrO,NaMo,Na1.3Mo,Na0.9Mo,Na0.55Mo,Na1.4Mo,Na1.6Mo,Na1.9Mo,NaMoO,NaMoO,NaMo13,NaMo,NaMoO,Na0.88Mo17,Na0.9Mo17,NaMoO,Na,NaWO,NaWO,Na,NaWO,NaWO,Na,Na0.28WO,Na0.02WO2.8,Na13,Na0.1WO,Na19NaWO,NaWO,NaZrO,β−KMo22,KMo13,K0.3MoO,KMo,KMo,KMoO,KMoO,KMoO,KMoO,K0.85Mo17,KMo13,KMo10,KMo,K2.66MoO,KMoO,K10,K,KWO,KWO,K0.57WO,K19,K0.33WO,KWO,K25,K0.33WO3.165,K22,K10,K,K,K13,K,KWO,K,K2.66WO,KZr17,KZrO,β−KZr,α−KZr,KZr,KZr1124,γ−
Zr,KZrO
【0012】
Mo,W,Zrの担持量はアルカリ金属0.8mol部に対して元素換算で、少なくとも一種を各々0.05mol部以上1.0mol部以下とすることが好ましい。Mo,W,Zr担持量が0.05mol部より少ないとその効果は不十分となり、1.0mol部より多いと触媒の比表面積が低下するため好ましくない。
【0013】
本発明の触媒には、触媒活性成分として更にTi,アルカリ土類金属及び希土類金属の少なくとも1種を含有することができる。本発明の触媒にTiを含有することは非常に好ましく、耐SOx性の向上に顕著な効果がある。
【0014】
Tiとアルカリ金属との複合酸化物は、アルカリ金属と水分との反応を抑制する働きがある。特にTiとNaとの複合酸化物あるいはTiとKとの複合酸化物は、NOx捕捉材の耐水性を向上させ、結果として触媒の耐SOx性を向上させる働きがある。TiとNaとの複合酸化物は水への溶解度が水100gに対し2g程度と非常に低く、殆ど水と反応しない。アルカリ金属の原料,Tiの原料,触媒調製時のアルカリ金属,Tiを混ぜる順序、或いは焼成温度等をコントロールすることにより、Tiをアルカリ金属との複合酸化物の形態で存在させることができる。アルカリ金属を含む溶液とTiを含む溶液を同時に触媒に担持し、焼成することによりアルカリ金属とTiとの複合酸化物の生成が促進される。Tiの担持量は金属元素換算で、アルカリ金属0.8mol部に対して、Tiを0.32mol部〜1.0mol部含むのが好ましい。Ti担持量は0.32mol部以上、1mol部以下とすることが望ましい。0.32mol部よりも少ない場合には、耐SOx性向上の効果が少なく、1mol部より多いとTiが触媒表面を覆ってしまい触媒の比表面積が低下し、性能が低下するおそれがある。本発明において使用可能なTiとアルカリ金属との複合酸化物としては、例えば下記がある。
【0015】
LiTi,LiTi13,LiTi,LiTi,Li0.8Ti2.2,LiTi,LiTi,Li1.33Ti1.66,LiTiO,LiTi,LiTi,Li12Ti1040,Li0.5TiO,LiTiO,LiTiO,LiTi,NaTi,NaTi,NaTi13,NaTi12,Na0.23TiO,γ−NaTiO,NaTi19,NaTi,NaTiO,NaTi14,NaTiO,β−NaTiO,NaTiO,Na0.46TiO,NaTiO・HO,KTi,KTi17,KTi13,KTi11,KTi,KTi17,KTi16,KTiO,KTi,KTiO,KTi11
【0016】
アルカリ金属を含む溶液と、Tiを含む溶液と、Mo,W,Zrの少なくとも1種を同時に触媒に担持し、焼成することによりアルカリ金属の複合酸化物化の生成がより一層促進される。
【0017】
本発明の触媒は、触媒に流入する排ガスの空燃比がリーンの状態のときには排ガス中のNOxを捕捉するとともに一部のNOxをNへと還元する。空燃比がリーンの排ガスを流しつづけると、触媒のNOx浄化性能が徐々に低下するが、流入する排ガスの空燃比をリーンの状態からリッチ或いはストイキの状態に切り替えられることで、触媒に捕捉されていたNOxのNへの還元が急速に進み、再びリーン状態の排ガスに対して高いNOx浄化性能を有するようになる。
【0018】
従って、本発明では、内燃機関をリーンの状態で運転し、NOx浄化触媒による排ガス浄化性能が低下してきたならば内燃機関の運転状態をリーンの状態から一時的にストイキ又はリッチの状態に切り替えるようにした排ガス浄化方法を提供する。ストイキ又はリッチの状態で運転する時間は、数秒から数分例えば2秒から1分で十分である。
【0019】
本発明においてNOx捕捉還元とは、酸化雰囲気排ガス(リーン排ガス)中のNOxを捕捉し、その後還元雰囲気排ガス(ストイキ又はリッチ排ガス)中で同排ガス中に含まれる炭化水素,一酸化炭素,水素等の還元剤を用いて捕捉されたNOxを還元浄化することを言う。従って本発明の触媒にはNOxを捕捉する捕捉成分と捕捉されたNOxを還元剤により還元浄化する還元浄化成分が必要となる。アルカリ金属がNOx捕捉成分であり、貴金属が還元浄化成分である。
【0020】
アルカリ金属の複合酸化物の水への溶解度は、例えば25℃の飽和溶液100g中に溶けているNaのmol数は、NaCOが0.43molであるのに対し、
NaTiOは0.025mol、NaWOは0.29mol、NaMoOは0.33
Mol(NaTiOの値は実測、その他の値は、“化学便覧 基礎偏 改訂4版”社団法人 日本化学会偏、平成5年発行による。)である。アルカリ金属を複合酸化物化することにより、NaCO単独で存在するよりも水への溶解度が低くなることが分かる。
【0021】
多孔質担体は触媒活性成分の分散性を高める役割をする。多孔質担体を基材上に担持する場合には、基材1Lに対し多孔質担体の担持量を0.3mol部以上4
mol部以下とするのがNOx浄化性能を高める上で望ましい。多孔質担体の担持量が0.3mol部より少ないとNOx浄化性能が十分となり、4mol部より多いと多孔質担体自体の比表面積が低下するため好ましくない。多孔質担体としては、アルミナが最も望ましいが、チタニア,シリカ,シリカとアルミナの混合物,ジルコニア,マグネシア等を用いることもできる。これらの複合酸化物等を用いることもできる。基材はコージェライトが最適であるが、金属製のものを用いてもよい。本発明の触媒は、ハニカム構造等の基材に、触媒活性成分を担持した多孔質担体をコーティングして用いることができる。
【0022】
触媒活性成分として希土類金属の少なくとも1種を担持させると、触媒の活性が向上する。希土類金属には酸素を捕捉する機能がある。このため、NOxの酸化に寄与するものと考えている。希土類金属の担持量は多孔質担体1.9mol部に対して、金属元素換算で希土類元素1種類当り0.02〜1mol部が好ましい。
0.02mol部よりも少ない添加量では、効果が不十分であり、1.0mol部より多いと触媒の比表面積が低下するため好ましくない。添加する希土類元素としてはCeが最も好ましいが、La,Ce,Nd等も使用できる。
【0023】
触媒活性成分としてアルカリ土類金属を含有すると、耐水性が向上する。アルカリ土類金属は水との反応性が低いことと、アルカリ土類金属自身がNOxを捕捉する能力を持つ為と考えている。アルカリ土類金属の担持量は多孔質担体1.9mol部に対して金属換算で、一種類当り0.05mol部以上2mol部以下が好ましい。
【0024】
本発明の内燃機関は、排ガス流路に前記したNOx浄化触媒を備える。NOx浄化触媒に空燃比がリーンの排ガスと空燃比がストイキ又はリッチの排ガスを交互に流入させるために、本発明の内燃機関には排ガス浄化触媒の状態を評価して内燃機関をリーン運転状態からストイキもしくはリッチ運転状態に切り替え、その後再びリーン運転状態に戻す制御を行うエンジン制御ユニット(ECU)を備えることが望ましい。
【0025】
本発明のNOx浄化触媒は、Rh,Pt,Pdの少なくとも一種を含んでいるので、三元触媒機能(還元雰囲気ガス中のNOx浄化能力)もある。三元触媒機能を高める為にはNOx浄化触媒が酸素ストレージ機能を持っていることが望ましく、希土類金属特にCeを含有させることが望ましい。
【0026】
本発明による排ガス浄化触媒は、用途に応じ各種の形状で使用できる。アルミナ粉末等の多孔質担体に触媒活性成分を担持したものを、コージェライト,ステンレス等からなるハニカム構造の基材にコーティングして得られるハニカム形状が望ましいが、ペレット状,板状,粒状,粉末状等でも使用できる。
【0027】
本発明の触媒の調製方法は、含浸法,混練法,共沈法,ゾルゲル法,イオン交換法,蒸着法等の物理的調製方法や化学反応を利用した調製方法等いずれも適用可能である。
【0028】
排ガス浄化触媒の出発原料としては、硝酸化合物,酢酸化合物,錯体化合物,水酸化物,炭酸化合物,有機化合物などの種々の化合物や金属及び金属酸化物を用いることができる。
【0029】
【発明の実施の形態】
(実施例1)
アルミナ粉末及びアルミナの前駆体からなり硝酸酸性に調製したスラリーをコージェライト製ハニカム(400セル/inc)にコーティングした後、乾燥焼成して、ハニカムの見掛けの容積1リットルあたり1.9molのアルミナをコーティングしたアルミナコートハニカムを得た。該アルミナコートハニカムに第一回目含浸成分として硝酸Ce溶液を含浸した後、120℃で乾燥、続いて600℃で1時間焼成した。次に第二回目含浸成分として該Ce担持ハニカムに、酢酸Na溶液とジニトロジアンミンPt硝酸溶液と硝酸Rh溶液とW酸アンモニウム溶液の混合溶液を含浸し、120℃で乾燥、続いて600℃で1時間焼成した。
【0030】
以上により、アルミナ1.9molに対して、元素換算でCe0.2mol,Na0.8mol,Rh0.0014mol,Pt0.014mol,W0.2molを含有する実施例触媒1を得た。
【0031】
同様に、アルカリ金属については酢酸塩を、アルカリ土類金属については硝酸塩を、TiについてはTiOゾルを、Zrについては硝酸塩を、PdについてはジニトロジアンミンPd硝酸溶液を、Moについてはアンモニウム塩を用いて、実施例触媒2〜12を調製した。それぞれの実施例触媒の組成を表1に示す。例えば表中0.2Ceとはハニカムの見掛けの容積1リットルあたり元素換算でCeが0.2mol含まれていることを示す。また実施例触媒1〜12において、
Alの担持量はハニカム1L当り1.9molに統一し、Rh,Pt,Pdを含む場合の担持量はハニカム1L当りそれぞれRh0.0014mol,Pt0.014mol、Pd0.014molに統一した。以後特に断りが無い限りAl,Rh,Pt,Pdは実施例触媒,比較例触媒ともにこの担持量とする。表1においてはRh,Pt,Pdの担持量は省略して表記した。
【0032】
更に実施例触媒1と同様にして比較例触媒として、W,Mo,Zrを含まない触媒,アルカリ金属を含まない触媒,貴金属を含まない触媒等をそれぞれ調製した。それぞれの比較例触媒1〜3の組成を表1に示す。表中の表記法は実施例触媒と同様とした。
【0033】
【表1】

Figure 2004008838
【0034】
[試験例1]
(試験方法)
触媒の耐水性能を評価する為、上記触媒を各々300c.c.の水中に置き、その水を24h攪拌した。その後触媒を水中から取り出し120℃空気中で乾燥させた。その後は下記の方法で試験を行った。上記触媒に対して、次の条件でNOx浄化性能試験を行った。容量6c.c.のハニカム触媒を石英ガラス製反応管中に固定した。この反応管を電気炉中に導入し、反応管に導入されるガス温度が400℃となるように加熱制御した。反応管に導入されるガスは、自動車のエンジンが理論空燃比で運転されているときの排ガスを想定したモデルガス(以下ストイキモデルガス)と、自動車のエンジンがリーンバーン運転を行っているときの排ガスを想定したモデルガス(以下、リーンモデルガス)を3分毎に切り替えて導入した。ストイキモデルガスの組成は、NOx:1000ppm,C:600ppm,CO:0.5%,CO:5%,O:0.5%,H:0.3%,HO:10%,N:残部とした。リーンモデルガスの組成は、NOx:600ppm,C:500ppm,CO:0.1%,CO:10%,O:5%,HO:10%,N:残部とした。この時、NOx浄化率を次式により算出した。
【0035】
NOx浄化率(%)=((リーンに切り替え1分後に触媒に流入した総NOx量)−(リーンに切り替え1分後に触媒から流出した総NOx量))÷(リーンに切り替え1分後に触媒に流入した総NOx量)×100
以上のようにしてNOx浄化率を求める試験を試験例1とする。
【0036】
(試験結果)
実施例触媒1〜12及び比較例触媒1〜3を試験例1により評価した結果を表2に示す。実施例触媒1〜12は、比較例触媒1〜3よりもNOx浄化率が高く、耐水性能に優れている。
【0037】
【表2】
Figure 2004008838
【0038】
[試験例2]
(試験方法)
触媒の結晶状態を知るために、粉末XRD法を用いた。理学製広角X線回折装置RU200を用いた。測定条件は以下の通り。
【0039】
X線源       CuKα(50KV,150A)
スキャン角度範囲  5°〜100°
スキャンステップ  0.02°
スキャン速度    1°/min
(試験結果)
試験例2に従い、実施例触媒4,5,7と比較例触媒1の結晶状態を測定した。コージェライトが含まれていると、コージェライトのXRD peakが大きく、他のpeakが観測されなくなるので、実施例触媒4,5,7と比較例触媒1からそれぞれコージェライトを除外したものを粉末化してXRD測定を行った。
【0040】
実施例触媒4についてはNaとTiの複合酸化物に加えてNaとWの複合酸化物NaWOに起因する回折peakが確認された。実施例触媒5についてはNaとTiの複合酸化物に加えてNaとMoの複合酸化物NaMoOに起因する回折peakが確認された。実施例触媒7についてはKとTiの複合酸化物KTiに起因する回折peakが確認された。
【0041】
一方、比較例触媒1についてはNaCOに起因する回折peakが確認された。
【0042】
表2の結果と考え合わせて、触媒へのTi,W,Mo添加により、NaもしくはKとTi,W,Moとの複合化が生じ、溶解度の低い複合酸化物が生成した為触媒の耐水性が向上した事は明らかである。
【0043】
(実施例2)
実施例1と同様の方法で実施例触媒4,5についてTi含有量のみを変化させた触媒を調製した。試験は試験例1と同様とした。この場合、触媒に含まれているアルカリ金属量はハニカムの見掛けの容積1リットルあたり0.8mol(金属元素換算)である。
【0044】
(試験結果)
実施例触媒4,5についてTi含有量のみを変化させた触媒の、試験例1により評価した400℃でのNOx浄化率を図2に示す。グラフ横軸はハニカムの見掛けの容積1リットルあたりのTi含有量(金属元素換算)を示す。Tiの担持量がアルカリ金属0.8mol部に対して0.32mol部〜1.0mol部含む場合、400℃のNOx浄化率が60%を超え、高いNOx浄化率を示す。
【0045】
(実施例3)
実施例1と同様の方法で実施例触媒1,7について、それぞれNa含有量のみ、K含有量のみを変化させた触媒を調製した。試験は試験例1と同様とした。
【0046】
(試験結果)
実施例触媒1,7について、Na含有量のみ、K含有量のみをそれぞれ変化させた触媒の、試験例1により評価した400℃でのNOx浄化率をそれぞれ図3,図4に示す。それぞれグラフ横軸は順にハニカムの見掛けの容積1リットルあたりのNa,K含有量(金属元素換算)を示す。それぞれの触媒においてNa,Kの担持量が各々ハニカムの見掛けの容積1リットルあたり金属元素換算で0.05mol以上2mol以下のとき400℃のNOx浄化率が50%を超え、Na,Kが添加されていない場合よりも大きく活性が向上し、Na,K添加効果が得られる。
【0047】
(実施例4)
実施例1と同様の方法で実施例触媒9のRh,Pt,Pd含有量のみを変化させた触媒を調製した。試験は試験例1と同様とした。
【0048】
(試験結果)
実施例触媒9についてRh含有量のみ、Pt含有量のみ、Pd含有量のみをそれぞれ変化させた触媒の、試験例1により評価した400℃でのNOx浄化率をそれぞれ図5,図6,図7に示す。それぞれグラフ横軸は順に、ハニカムの見掛けの容積1リットルあたりのRh,Pt,Pd含有量(金属元素換算)を示す。Rh,Pt,Pdの担持量が、ハニカムの見掛けの容積1リットルあたり金属換算でそれぞれ、Rhの場合0.0003mol以上0.01mol以下、Ptの場合0.002mol以上0.05mol以下、Pdの場合0.001mol以上0.2mol以下のとき400℃のNOx浄化率が65%を超え、高いNOx浄化率が得られる。
【0049】
(実施例5)
実施例1と同様の方法で実施例触媒1に関してはW担持量のみを、実施例触媒2に関してはMo担持量のみを、実施例触媒3に関してはZr担持量のみを変化させた触媒を調製した。この場合、各々の触媒に含まれているアルカリ金属量はハニカムの見掛けの容積1リットルあたり0.8mol(元素換算)である。
【0050】
(試験結果)
実施例触媒1についてはW含有量のみ、実施例触媒2についてはMo含有量のみ、実施例触媒3についてはZr含有量のみをそれぞれ変化させた触媒の、試験例1により評価した400℃でのNOx浄化率をそれぞれ図8,図9,図10に示す。それぞれグラフ横軸は順に、ハニカムの見掛けの容積1リットルあたりのW,Mo,Zr含有量(元素換算)を示す。W,Mo,Zrの担持量がハニカムの見掛けの容積1リットルあたり元素換算で0.05mol以上1mol以下のときNOx浄化率が50%を超え、W,Mo,Zrが添加されていない比較例触媒1よりも大きく活性が向上し、W,Mo,Zr添加効果が得られる。
【0051】
(実施例6)
実施例1と同様の方法で実施例触媒10に関してはMg担持量のみを、実施例触媒11に関してはSr担持量のみを変化させた触媒を調製した。
【0052】
(試験結果)
実施例触媒10についてMg含有量のみ、実施例触媒11についてSr含有量のみをそれぞれ変化させた触媒を試験例1により評価した。Mg含有量のみ、Sr含有量のみを変化させた触媒の400℃でのNOx浄化率をそれぞれ図11,図12に示す。それぞれグラフ横軸は順にハニカムの見掛けの容積1リットルあたりのMg,Sr含有量(金属元素換算)を示す。Mg,Srの担持量がハニカムの見掛けの容積1リットルあたり元素換算で0.05mol以上2mol以下のとき、NOx浄化率が実施例触媒4よりも高く、Mg,Sr添加効果が得られる。
【0053】
(実施例7)
実施例1と同様の方法で実施例触媒4のCe添加量を変化させた触媒を調製した。試験は試験例1と同様とした。
【0054】
(試験結果)
試験例1により評価した400℃でのNOx浄化率を図13に示す。図13のグラフ横軸にはハニカムの見掛けの容積1リットルあたりのCe含有量(金属元素換算)を示す。Ceの担持量がハニカムの見掛けの容積1リットルあたり元素換算で0.02mol以上1mol以下のとき、それぞれ400℃のNOx浄化率が60%を超え、高いNOx浄化率が得られる。
【0055】
(実施例8)
実施例1と同様の方法で実施例触媒4においてAlコーティング量のみを変化させた触媒を調製した。
【0056】
(試験結果)
試験例1により評価した400℃でのNOx浄化率を図14に示す。図14のグラフ横軸にはハニカムの見掛けの容積1リットルあたりのAlのコーティング量を記した。Alコーティング量がAl換算でハニカム容積1Lに対して0.3mol以上4mol以下のとき400℃のNOx浄化率が60%を超え、高いNOx浄化率が得られる。
【0057】
(実施例9)
図1は実施例1〜8に記載の排ガス浄化触媒を用いた本発明の排ガス浄化装置を備えた内燃機関の一実施態様を示す全体構成図である。本発明の浄化装置はリーンバーン可能なエンジン99,エアフローセンサー2,スロットバルブ3等を擁する吸気系,酸素濃度センサー(又はA/Fセンサー)7,排ガス温度センサー8,触媒出口ガス温度センサー9,排ガス浄化触媒10等を擁する排気系及び制御ユニット(ECU)11等から構成される。ECUは入出力インターフェイスとしてのI/O,LSI,演算処理装置MPU、多数の制御プログラムを記憶させた記憶装置RAM及びROM,タイマーカウンター等により構成される。
【0058】
以上の排気浄化装置は以下のように機能する。エンジンへの吸入空気はエアクリーナー1によりろ過された後エアフローセンサー2により計量され、スロットバルブ3を経て、さらにインジェクター5から燃料噴射を受け混合気としてエンジン99に供給される。エアフローセンサー信号その他のセンサー信号はECU(Engine Control Unit)へ入力される。
【0059】
ECUでは内燃機関の運転状態及び排ガス浄化触媒の状態を評価して運転空燃比を決定し、インジェクター5の噴射時間等を制御して混合気の燃料濃度を所定値に設定する。シリンダーに吸入された混合気はECU11からの信号で制御される点火プラグ6により着火され燃焼する。燃焼排ガスは排気浄化系に導かれる。排気浄化系には排ガス浄化触媒10が設けられ、ストイキ運転時にはその三元触媒機能により排ガス中のNOx,HC,COを浄化し、また、リーン運転時にはNOx捕捉機能によりNOxを浄化すると同時に併せ持つ燃焼機能により、HC,COを浄化する。さらにECUの判定及び制御信号により、リーン運転時には排ガス浄化触媒のNOx浄化能力を常時判定して、NOx浄化能力が低下した場合燃焼の空燃比等をリッチ側にシフトして触媒のNOx捕捉能を回復させる。以上の操作により本装置ではリーン運転,ストイキ(含むリッチ)運転の全てのエンジン燃焼条件下における排ガスを効果的に浄化する。
【0060】
本実施例においても前述の実施例と同様に、酸素が過剰に存在する雰囲気下においても有害物質、特に窒素酸化物を高効率で浄化することができ、更に耐水性能に優れているため、SOxによる触媒劣化が生じ難く、高い浄化性能を長期間維持することができる。
【0061】
【発明の効果】
本発明によれば、酸素が過剰に存在する雰囲気下においても有害物質、特に窒素酸化物を高効率で浄化することができ、さらに耐水性能にも優れているため、SOxによる触媒劣化が生じ難く、高い浄化性能を長期間維持することができる。
【図面の簡単な説明】
【図1】本発明の排ガス浄化装置の一実施態様を示す構成図である。
【図2】Ti量と触媒の活性との関係を示したグラフである。
【図3】Na量と触媒の活性との関係を示したグラフである。
【図4】K量と触媒の活性との関係を示したグラフである。
【図5】Rh量と触媒の活性との関係を示したグラフである。
【図6】Pt量と触媒の活性との関係を示したグラフである。
【図7】Pd量と触媒の活性との関係を示したグラフである。
【図8】W量と触媒の活性との関係を示したグラフである。
【図9】Mo量と触媒の活性との関係を示したグラフである。
【図10】Zr量と触媒の活性との関係を示したグラフである。
【図11】Mg量と触媒の活性との関係を示したグラフである。
【図12】Sr量と触媒の活性との関係を示したグラフである。
【図13】Ce量と触媒の活性との関係を示したグラフである。
【図14】Al量と触媒の活性との関係を示したグラフである。
【符号の説明】
1…エアクリーナー、2…エアフローセンサー、3…スロットバルブ、5…インジェクター、6…点火プラグ、7…酸素濃度センサー(またはA/Fセンサー)、8…排ガス温度センサー、9…触媒出口ガス温度センサー、10…排ガス浄化触媒、11…ECU、99…エンジン。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an exhaust gas purifying catalyst, an exhaust gas purifying device, and an exhaust gas purifying method suitable for purifying NOx contained in exhaust gas of an internal combustion engine operated in a lean burn state in which the fuel is leaner than the stoichiometric air-fuel ratio, particularly an automobile engine. .
[0002]
[Prior art]
In recent years, a lean-burn engine that makes the air-fuel ratio fuel-lean has attracted attention as an automobile engine. Here, the air-fuel ratio indicates the ratio of air to fuel in the gas. It is difficult to purify nitrogen oxides (NOx) contained in the exhaust gas of a lean burn engine with a three-way catalyst conventionally used for purifying exhaust gas of a stoichiometric engine. Therefore, development of an exhaust gas purifying catalyst capable of purifying NOx discharged from a lean burn engine has been promoted.
[0003]
In addition, sulfur oxides (SOx) are contained in the exhaust gas of an automobile engine, and this SOx poisons the catalyst and reduces the exhaust gas purification performance. Therefore, the development of a catalyst that is not poisoned by SOx has been promoted. ing.
[0004]
Japanese Patent Application Laid-Open No. 11-319564 describes an exhaust gas purifying catalyst that removes NOx from exhaust gas by storing NOx in the exhaust gas during lean fuel combustion. Japanese Patent Application Laid-Open No. H10-212933 discloses a NOx adsorption reduction catalyst that reduces NOx in exhaust gas by chemisorption on the surface of the catalyst during lean fuel combustion and then reduces the NOx. Japanese Patent Application Laid-Open No. 2001-113176 discloses providing a sulfur poisoning prevention layer on the catalyst surface as a countermeasure against catalyst poisoning by SOx, and Japanese Patent Application Laid-Open No. 10-118458 discloses the use of Ti. Indicate that SOx poisoning is suppressed.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide an exhaust gas purifying catalyst, an exhaust gas purifying method, and an exhaust gas purifying apparatus which are excellent in the purification performance of NOx contained in exhaust gas of an internal combustion engine operated in a lean burn, particularly an automobile engine, and which are not easily poisoned by sulfur. It is in.
[0006]
[Means for Solving the Problems]
The present invention relates to an exhaust system of an internal combustion engine operating at an air-fuel ratio leaner than the stoichiometric air-fuel ratio, wherein at least one selected from noble metals consisting of Rh, Pt, and Pd and at least one selected from alkali metals are provided. NOx containing at least one selected from the group consisting of W, Mo and Zr as a catalytically active component, and part or all of an alkali metal contained as a composite oxide having a lower solubility in water than a carbonate of the alkali metal. It has a purification catalyst. In the present invention, a porous carrier for supporting the catalytically active component is provided. A substrate for supporting the porous carrier may be provided.
[0007]
In the catalyst of the present invention, Rh, Pt, and Pd are contained in order to have the oxidizing performance of nitric oxide (NO) and the NOx reducing performance. By including at least one of Rh, Pt, and Pd, the NOx purification performance of the catalyst is improved. Rh, Pt, and Pd may be supported by one kind, but the effect of improving activity is higher when two or more kinds are supported. In particular, it is desirable to include three types of Rh, Pt, and Pd. It is believed that the noble metals interact with each other, increasing the oxidizing power and reducing power, and improving the exhaust gas purification performance. The amount of the noble metal carried is 0.002 mol part or more and 0.05 mol part or less in the case of Pt, 0.0003 mol part or more and 0.01 mol part or less in the case of Rh, and Pd In this case, the content is desirably from 0.001 part to 0.05 mol part. When the supported amount of the noble metal is less than the above range, the effect of adding the noble metal is small.
[0008]
In the present invention, the term "mol part" refers to the content ratio of each component in terms of the number of moles. Means that, regardless of the absolute amount of the A component, A is 0.8 and B is 0.32 in the ratio of mol in terms of mol number.
[0009]
The alkali metal exists in the form of a metal or an oxide, and has a role of attracting or trapping NOx in the exhaust gas on the catalyst surface. The amount of the alkali metal to be carried is preferably 0.05 to 2 mol parts per metal per 1.9 mol part in terms of metal. If the amount of alkali metal supported is less than 0.05 mol part per type, the effect of improving the activity by the alkali metal support cannot always be sufficient, while if more than 2 mol part, the specific surface area of the alkali metal itself decreases. Not preferred. As the alkali metal, Na is most preferable, but Li, K or the like may be used. Although containing Na alone has a sufficient effect, the activity is further improved when Li and K are supported in addition to Na. It is considered that a new NOx trap point is generated in the catalyst by combining two or more kinds of alkali metals, and the basicity of the catalyst surface is further increased, so that the reaction with water is suppressed.
[0010]
At least one of Mo, W, and Zr is contained in order to form a complex oxide with an alkali metal to increase the SOx resistance. The poisoning of the catalyst by SOx is due to the SOx in the exhaust gas. 2 Is oxidized by contact with the catalyst to form SO 2 3 And SO 3 H contained in the exhaust gas 2 It is considered that this is caused by dissolving in O and adhering to the catalyst to cause NOx occlusion or sulfurization of the adsorbed component. The composite oxide of Mo, W or Zr and an alkali metal has an effect of making the alkali metal less likely to be sulfated. Mo, W and Zr can each exist as a single oxide or metal, but they themselves have water resistance and have an effect of indirectly suppressing the sulfation of alkali metals. By controlling the order of mixing Mo, W, and Zr during the preparation of the catalyst or the calcination temperature, these can be present in the form of a composite oxide with an alkali metal. Examples of the composite oxide of an alkali metal and Mo, W or Zr that can be used in the present invention include the following.
[0011]
Li 4 Mo 5 O 12 , Li 2 Mo 2 O 5 , LiMoO 2 , Γ-Li 4 MoO 5 , Β-Li 2 MoO 3 , Α-Li 2 MoO 3 , Δ-Li 4 MoO 5 , Li 2 MoO 4 , Β-Li 4 MoO 5 , Li 0.1 Mo 4 O 7 , Li 0.9 Mo 6 O 17 , Li 1.53 MoO 2.87 , Li 0.62 MoO 2.87 , Li 1.09 MoO 2.87 , Li 4 Mo 5 O 17 , Li 2 Mo 4 O 13 , Li 3 Mo 3 O 8 , Li 2 Mo 2 O 7 , Li 0.042 MoO 3 , Li 2 Mo 4 O 13 , LiMo 8 O 10 , Li 4 MoO 5 , Β-Li 6 Mo 2 O 7 , Α-Li 6 Mo 2 O 7 , Li 6 Zr 2 O 7 , Li 8 ZrO 6 , Li 2 ZrO 3 , Li 4 ZrO 4 , Li 2 ZrO 3 , Li 6 Zr 2 O 7 , Li 2 ZrO 3 , Na 2 Mo 3 O 6 , Na 1.3 Mo 2 O 4 , Na 0.9 Mo 2 O 4 , Na 0.55 Mo 2 O 4 , Na 1.4 Mo 2 O 4 , Na 1.6 Mo 2 O 4 , Na 1.9 Mo 2 O 4 , NaMoO 2 , Na 3 MoO 4 , Na 2 Mo 4 O 13 , Na 2 Mo 2 O 7 , Na 2 MoO 4 , Na 0.88 Mo 6 O 17 , Na 0.9 Mo 6 O 17 , Na 4 MoO 5 , Na 2 W 2 O 7 , Na 4 WO 5 , Na 6 WO 6 , Na 2 W 2 O 7 , Na 2 WO 4 , NaWO 3 , Na 2 W 2 O 7 , Na 0.28 WO 3 , Na 0.02 WO 2.8 , Na 2 W 4 O 13 , Na 0.1 WO 3 , Na 2 W 6 O 19 Na 2 WO 4 , Na 3 WO 4 , Na 2 ZrO 3 , Β-K 2 Mo 7 O 22 , K 2 Mo 4 O 13 , K 0.3 MoO 3 , KMo 4 O 6 , K 2 Mo 2 O 7 , KMoO 4 , K 4 MoO 5 , K 2 MoO 4 , K 2 MoO 4 , K 0.85 Mo 6 O 17 , K 2 Mo 4 O 13 , K 2 Mo 3 O 10 , K 6 Mo 2 O 9 , K 2.66 MoO 4 , K 4 MoO 5 , K 2 W 3 O 10 , K 2 W 2 O 7 , K 4 WO 5 , K 2 WO 4 , K 0.57 WO 3 , K 2 W 6 O 19 , K 0.33 WO 3 , K 2 WO 4 , K 2 W 8 O 25 , K 0.33 WO 3.165 , K 2 W 7 O 22 , K 2 W 3 O 10 , K 6 W 2 O 9 , K 2 W 2 O 7 , K 2 W 4 O 13 , K 6 W 2 O 9 , K 4 WO 5 , K 6 W 2 O 9 , K 2.66 WO 4 , K 2 Zr 8 O 17 , K 4 ZrO 4 , Β-K 2 Zr 2 O 5 , Α-K 2 Zr 2 O 5 , K 2 Zr 3 O 7 , K 4 Zr 11 O 24 , Γ-
K 2 Zr 2 O 5 , K 2 ZrO 3 .
[0012]
It is preferable that at least one of Mo, W, and Zr is carried in an amount of 0.05 mol part or more and 1.0 mol part or less in terms of element based on 0.8 mol part of the alkali metal. If the supported amount of Mo, W, and Zr is less than 0.05 mol part, the effect becomes insufficient, and if it is more than 1.0 mol part, the specific surface area of the catalyst is undesirably reduced.
[0013]
The catalyst of the present invention may further contain at least one of Ti, an alkaline earth metal and a rare earth metal as a catalytically active component. It is very preferable that the catalyst of the present invention contains Ti, which has a remarkable effect on improvement of SOx resistance.
[0014]
The composite oxide of Ti and an alkali metal has a function of suppressing the reaction between the alkali metal and moisture. In particular, a composite oxide of Ti and Na or a composite oxide of Ti and K has a function of improving the water resistance of the NOx trapping material, and as a result, improving the SOx resistance of the catalyst. The composite oxide of Ti and Na has a very low solubility in water of about 2 g per 100 g of water, and hardly reacts with water. By controlling the raw material of the alkali metal, the raw material of Ti, the alkali metal in preparing the catalyst, the mixing order of the Ti, or the calcination temperature, the Ti can be present in the form of a complex oxide with the alkali metal. By simultaneously supporting a solution containing an alkali metal and a solution containing Ti on a catalyst and baking the mixture, the formation of a composite oxide of an alkali metal and Ti is promoted. It is preferable that the supported amount of Ti includes 0.32 mol part to 1.0 mol part of Ti with respect to 0.8 mol part of alkali metal in terms of a metal element. It is desirable that the amount of supported Ti is not less than 0.32 mol part and not more than 1 mol part. When the amount is less than 0.32 mol part, the effect of improving the SOx resistance is small, and when the amount is more than 1 mol part, Ti covers the catalyst surface, the specific surface area of the catalyst decreases, and the performance may decrease. Examples of the composite oxide of Ti and alkali metal that can be used in the present invention include the following.
[0015]
Li 2 Ti 4 O 9 , Li 2 Ti 6 O 13 , Li 2 Ti 3 O 7 , LiTi 2 O 4 , Li 0.8 Ti 2.2 O 4 , LiTi 2 O 4 , Li 2 Ti 2 O 4 , Li 1.33 Ti 1.66 O 4 , Li 2 TiO 3 , Li 3 Ti 3 O 7 , Li 2 Ti 3 O 7 , Li 12 Ti 10 O 40 , Li 0.5 TiO 2 , Li 4 TiO 4 , LiTiO 2 , Li 2 Ti 3 O 7 , Na 2 Ti 3 O 7 , Na 2 Ti 4 O 9 , Na 2 Ti 6 O 13 , Na 4 Ti 5 O 12 , Na 0.23 TiO 2 , Γ-Na 2 TiO 3 , Na 2 Ti 9 O 19 , Na 4 Ti 3 O 8 , Na 4 TiO 4 , Na 8 Ti 5 O 14 , Na 2 TiO 3 , Β-Na 2 TiO 3 , NaTiO 2 , Na 0.46 TiO 2 , Na 2 TiO 4 ・ H 2 O, K 2 Ti 4 O 9 , K 2 Ti 8 O 17 , K 2 Ti 6 O 13 , K 6 Ti 4 O 11 , K 2 Ti 2 O 5 , K 3 Ti 8 O 17 , KTi 8 O 16 , K 4 TiO 4 , K 4 Ti 3 O 8 , K 2 TiO 3 , K 6 Ti 4 O 11 .
[0016]
By simultaneously supporting a solution containing an alkali metal, a solution containing Ti, and at least one of Mo, W, and Zr on a catalyst and calcining, the formation of a complex oxide of an alkali metal is further promoted.
[0017]
When the air-fuel ratio of the exhaust gas flowing into the catalyst is lean, the catalyst of the present invention captures NOx in the exhaust gas and converts some of the NOx into N2. 2 Reduce to If the air-fuel ratio continues to flow lean exhaust gas, the NOx purification performance of the catalyst gradually decreases.However, the air-fuel ratio of the flowing exhaust gas is switched from a lean state to a rich or stoichiometric state, so that the catalyst is trapped by the catalyst. NOx N 2 Reduction rapidly progresses, and the exhaust gas having a lean state again has high NOx purification performance.
[0018]
Therefore, in the present invention, the internal combustion engine is operated in a lean state, and if the exhaust gas purification performance of the NOx purification catalyst is reduced, the operating state of the internal combustion engine is temporarily switched from the lean state to the stoichiometric or rich state. An exhaust gas purification method is provided. It is sufficient that the operation time in the stoichiometric or rich state is several seconds to several minutes, for example, two seconds to one minute.
[0019]
In the present invention, the NOx trapping reduction refers to trapping NOx in an oxidizing atmosphere exhaust gas (lean exhaust gas), and then, in a reducing atmosphere exhaust gas (stoichiometric or rich exhaust gas), hydrocarbons, carbon monoxide, hydrogen, etc. contained in the exhaust gas. Means to reduce and purify the trapped NOx using the reducing agent. Therefore, the catalyst of the present invention requires a trapping component for trapping NOx and a reduction purification component for reducing and purifying the trapped NOx with a reducing agent. The alkali metal is a NOx trapping component, and the noble metal is a reduction purification component.
[0020]
The solubility of the alkali metal composite oxide in water is, for example, the number of moles of Na dissolved in 100 g of a saturated solution at 25 ° C. 2 CO 3 Is 0.43 mol,
Na 2 TiO 3 Is 0.025 mol, Na 2 WO 4 Is 0.29 mol, Na 2 MoO 4 Is 0.33
Mol (Na 2 TiO 3 The values of are based on actual measurements, and the other values are based on “Chemical Handbook Basic Partial Revised Fourth Edition”, The Chemical Society of Japan, published in 1993. ). By converting an alkali metal into a complex oxide, Na 2 CO 3 It can be seen that the solubility in water is lower than the presence alone.
[0021]
The porous carrier serves to enhance the dispersibility of the catalytically active component. When the porous carrier is supported on the substrate, the amount of the porous carrier supported is not less than 0.3 mol part per 1 L of the substrate.
It is desirable that the content be not more than mol part in order to enhance the NOx purification performance. If the supported amount of the porous carrier is less than 0.3 mol part, the NOx purification performance is sufficient, and if it is more than 4 mol part, the specific surface area of the porous carrier itself is undesirably reduced. As the porous carrier, alumina is most desirable, but titania, silica, a mixture of silica and alumina, zirconia, magnesia and the like can also be used. These composite oxides can also be used. Cordierite is optimal for the substrate, but metal may be used. The catalyst of the present invention can be used by coating a substrate having a honeycomb structure or the like with a porous carrier carrying a catalytically active component.
[0022]
When at least one rare earth metal is supported as a catalytically active component, the activity of the catalyst is improved. Rare earth metals have a function of capturing oxygen. For this reason, it is thought that it contributes to the oxidation of NOx. The amount of the rare earth metal to be supported is preferably 0.02 to 1 mol part per one rare earth element in terms of the metal element based on 1.9 mol part of the porous carrier.
If the amount is less than 0.02 mol part, the effect is insufficient, and if it is more than 1.0 mol part, the specific surface area of the catalyst is undesirably reduced. As the rare earth element to be added, Ce is most preferable, but La, Ce, Nd and the like can also be used.
[0023]
When an alkaline earth metal is contained as a catalytically active component, water resistance is improved. It is believed that the alkaline earth metal has low reactivity with water and that the alkaline earth metal itself has the ability to trap NOx. The amount of the supported alkaline earth metal is preferably 0.05 mol part or more and 2 mol part or less per kind, in terms of metal, based on 1.9 mol part of the porous carrier.
[0024]
The internal combustion engine of the present invention includes the above-mentioned NOx purification catalyst in the exhaust gas passage. In order to cause the exhaust gas having a lean air-fuel ratio and the exhaust gas having a stoichiometric or rich air-fuel ratio to flow alternately into the NOx purification catalyst, the internal combustion engine of the present invention evaluates the state of the exhaust gas purification catalyst and switches the internal combustion engine from the lean operation state. It is desirable to have an engine control unit (ECU) that performs control to switch to the stoichiometric or rich operation state and then return to the lean operation state again.
[0025]
Since the NOx purification catalyst of the present invention contains at least one of Rh, Pt, and Pd, it also has a three-way catalyst function (NOx purification ability in reducing atmosphere gas). In order to enhance the three-way catalyst function, it is desirable that the NOx purification catalyst has an oxygen storage function, and it is desirable that the NOx purification catalyst contains a rare earth metal, particularly Ce.
[0026]
The exhaust gas purifying catalyst according to the present invention can be used in various shapes depending on the application. A honeycomb shape obtained by coating a porous carrier such as alumina powder carrying a catalytically active component on a honeycomb structure base material made of cordierite, stainless steel, or the like is desirable, but pellets, plates, granules, and powders are preferred. It can be used in any form.
[0027]
As the method for preparing the catalyst of the present invention, any of a physical preparation method such as an impregnation method, a kneading method, a coprecipitation method, a sol-gel method, an ion exchange method, and a vapor deposition method, and a preparation method utilizing a chemical reaction can be applied.
[0028]
As starting materials for the exhaust gas purifying catalyst, various compounds such as nitric acid compounds, acetic acid compounds, complex compounds, hydroxides, carbonate compounds, and organic compounds, and metals and metal oxides can be used.
[0029]
BEST MODE FOR CARRYING OUT THE INVENTION
(Example 1)
A slurry made of alumina powder and alumina precursor and made acidic with nitric acid was prepared using a cordierite honeycomb (400 cells / inc.). 2 ), And dried and fired to obtain an alumina-coated honeycomb coated with 1.9 mol of alumina per liter of apparent volume of the honeycomb. The alumina-coated honeycomb was impregnated with a Ce nitrate solution as a first impregnating component, dried at 120 ° C, and then fired at 600 ° C for 1 hour. Next, as a second impregnating component, the Ce-supporting honeycomb was impregnated with a mixed solution of a Na acetate solution, a dinitrodiammine Pt nitric acid solution, a Rh nitrate solution, and an ammonium W acid solution, dried at 120 ° C, and then dried at 600 ° C. Fired for hours.
[0030]
Thus, Example Catalyst 1 containing 0.2 mol of Ce, 0.8 mol of Na, 0.0014 mol of Rh, 0.014 mol of Pt, and 0.2 mol of W with respect to 1.9 mol of alumina in terms of element was obtained.
[0031]
Similarly, acetates for alkali metals, nitrates for alkaline earth metals, and TiO for Ti 2 Example catalysts 2 to 12 were prepared using a sol, a nitrate for Zr, a dinitrodiammine Pd nitric acid solution for Pd, and an ammonium salt for Mo. Table 1 shows the composition of each example catalyst. For example, 0.2 Ce in the table indicates that 0.2 mol of Ce is contained per liter of apparent volume of the honeycomb in terms of element. In Examples Catalysts 1 to 12,
Al 2 O 3 Was uniformly set to 1.9 mol per 1 L of honeycomb, and the supported amount when Rh, Pt, and Pd were included was uniformly set to 0.0014 mol of Rh, 0.014 mol of Pt, and 0.014 mol of Pd per 1 L of honeycomb. Thereafter, unless otherwise specified, Al 2 O 3 , Rh, Pt, and Pd are the supported amounts for both the example catalyst and the comparative example catalyst. In Table 1, the amounts of Rh, Pt, and Pd carried are omitted.
[0032]
Further, in the same manner as in Example catalyst 1, as a comparative example catalyst, a catalyst containing no W, Mo, and Zr, a catalyst containing no alkali metal, and a catalyst containing no noble metal were prepared. Table 1 shows the compositions of the comparative catalysts 1 to 3. The notation in the table was the same as in the example catalyst.
[0033]
[Table 1]
Figure 2004008838
[0034]
[Test Example 1]
(Test method)
In order to evaluate the water resistance of the catalyst, each of the above catalysts was 300 c. c. And stirred the water for 24 h. Thereafter, the catalyst was taken out of water and dried in air at 120 ° C. Thereafter, the test was performed by the following method. A NOx purification performance test was performed on the catalyst under the following conditions. Capacity 6c. c. Was fixed in a quartz glass reaction tube. This reaction tube was introduced into an electric furnace, and heating was controlled so that the temperature of the gas introduced into the reaction tube became 400 ° C. The gas introduced into the reaction tube is model gas (hereinafter referred to as stoichiometric model gas) that assumes exhaust gas when the vehicle engine is operating at the stoichiometric air-fuel ratio, and gas when the vehicle engine is performing lean burn operation. A model gas that assumed exhaust gas (hereinafter, lean model gas) was switched and introduced every three minutes. The composition of the stoichiometric model gas is as follows: NOx: 1000 ppm, C 3 H 6 : 600 ppm, CO: 0.5%, CO 2 : 5%, O 2 : 0.5%, H 2 : 0.3%, H 2 O: 10%, N 2 : The remainder was used. The composition of the lean model gas is NOx: 600 ppm, C 3 H 6 : 500ppm, CO: 0.1%, CO 2 : 10%, O 2 : 5%, H 2 O: 10%, N 2 : The remainder was used. At this time, the NOx purification rate was calculated by the following equation.
[0035]
NOx purification rate (%) = ((total amount of NOx flowing into the catalyst one minute after switching to lean) − (total amount of NOx flowing out of the catalyst one minute after switching to lean)) ÷ (to the catalyst one minute after switching to lean) Total NOx inflow) x 100
The test for obtaining the NOx purification rate as described above is referred to as Test Example 1.
[0036]
(Test results)
Table 2 shows the results of the evaluation of Example Catalysts 1 to 12 and Comparative Example Catalysts 1 to 3 by Test Example 1. The catalysts of Examples 1 to 12 have a higher NOx purification rate than the catalysts of Comparative Examples 1 to 3, and are excellent in water resistance.
[0037]
[Table 2]
Figure 2004008838
[0038]
[Test Example 2]
(Test method)
In order to know the crystal state of the catalyst, a powder XRD method was used. A wide angle X-ray diffractometer RU200 manufactured by Rigaku was used. The measurement conditions are as follows.
[0039]
X-ray source CuKα (50KV, 150A)
Scan angle range 5 ° -100 °
Scan step 0.02 °
Scan speed 1 ° / min
(Test results)
In accordance with Test Example 2, the crystal states of Example Catalysts 4, 5, 7 and Comparative Example Catalyst 1 were measured. If cordierite is included, the XRD peak of cordierite is large and other peaks are not observed. Therefore, the catalysts obtained by excluding cordierite from the catalysts of Examples 4, 5, 7 and Comparative Example 1 were powdered. XRD measurement was performed.
[0040]
In Example Catalyst 4, in addition to the composite oxide of Na and Ti, the composite oxide of Na and W 2 WO 4 The diffraction peak caused by the above was confirmed. In Example Catalyst 5, in addition to the composite oxide of Na and Ti, the composite oxide of Na and Mo 2 MoO 4 The diffraction peak caused by the above was confirmed. Example Catalyst 7 is a composite oxide K of K and Ti 2 Ti 2 O 5 The diffraction peak caused by the above was confirmed.
[0041]
On the other hand, for Comparative Example Catalyst 1, Na 2 CO 3 The diffraction peak caused by the above was confirmed.
[0042]
Considering the results in Table 2, the addition of Ti, W, and Mo to the catalyst resulted in the compounding of Na or K with Ti, W, and Mo, and the formation of a composite oxide with low solubility. It is clear that has improved.
[0043]
(Example 2)
In the same manner as in Example 1, the catalysts of Examples 4 and 5 were prepared by changing only the Ti content. The test was the same as in Test Example 1. In this case, the amount of the alkali metal contained in the catalyst is 0.8 mol (in terms of metal element) per liter of the apparent volume of the honeycomb.
[0044]
(Test results)
FIG. 2 shows the NOx purification rates at 400 ° C. evaluated by Test Example 1 for the catalysts of Example catalysts 4 and 5 in which only the Ti content was changed. The horizontal axis of the graph indicates the Ti content (in terms of metal element) per 1 liter of the apparent volume of the honeycomb. When the supported amount of Ti includes 0.32 mol part to 1.0 mol part with respect to 0.8 mol part of the alkali metal, the NOx purification rate at 400 ° C. exceeds 60%, indicating a high NOx purification rate.
[0045]
(Example 3)
In the same manner as in Example 1, the catalysts of Examples 1 and 7 were prepared by changing only the Na content and the K content, respectively. The test was the same as in Test Example 1.
[0046]
(Test results)
FIGS. 3 and 4 show the NOx purification rates at 400 ° C. evaluated by Test Example 1 for the catalysts of Example Catalysts 1 and 7 in which only the Na content and only the K content were changed, respectively. The horizontal axis of each graph indicates the Na and K contents (in terms of metal elements) per 1 liter of apparent volume of the honeycomb in order. When the supported amount of Na and K in each catalyst is 0.05 mol or more and 2 mol or less in terms of metal element per apparent liter of honeycomb volume, the NOx purification rate at 400 ° C. exceeds 50%, and Na and K are added. In this case, the activity is greatly improved as compared with the case of not adding, and the effect of adding Na and K is obtained.
[0047]
(Example 4)
In the same manner as in Example 1, a catalyst was prepared in which only the Rh, Pt, and Pd contents of Example Catalyst 9 were changed. The test was the same as in Test Example 1.
[0048]
(Test results)
The NOx purification rates at 400 ° C. evaluated by Test Example 1 for the catalysts of Example Catalyst 9 in which only the Rh content, only the Pt content, and only the Pd content were respectively changed are shown in FIGS. 5, 6, and 7, respectively. Shown in The horizontal axis of the graph indicates the Rh, Pt, and Pd content (in terms of metal element) per liter of apparent volume of the honeycomb in order. The supported amounts of Rh, Pt, and Pd are expressed as metal per liter of apparent volume of the honeycomb in terms of metal, respectively. When the amount is 0.001 mol or more and 0.2 mol or less, the NOx purification rate at 400 ° C. exceeds 65%, and a high NOx purification rate can be obtained.
[0049]
(Example 5)
In the same manner as in Example 1, a catalyst was prepared in which only the amount of supported W was changed for Example Catalyst 1, only the amount of Mo was supported for Example Catalyst 2, and only the amount of Zr was changed for Example Catalyst 3. . In this case, the amount of the alkali metal contained in each catalyst is 0.8 mol (element conversion) per liter of the apparent volume of the honeycomb.
[0050]
(Test results)
The catalysts obtained by changing only the W content for the example catalyst 1, only the Mo content for the example catalyst 2, and only the Zr content for the example catalyst 3 were evaluated at 400 ° C. according to Test Example 1. The NOx purification rates are shown in FIGS. 8, 9, and 10, respectively. The horizontal axis of the graph indicates the W, Mo, and Zr contents (in terms of elements) per 1 liter of apparent volume of the honeycomb in order. When the supported amount of W, Mo, and Zr is 0.05 mol or more and 1 mol or less in terms of element per apparent liter of honeycomb volume, the NOx purification rate exceeds 50%, and a comparative catalyst to which W, Mo, and Zr are not added. The activity is improved more than 1, and the effect of adding W, Mo, and Zr can be obtained.
[0051]
(Example 6)
In the same manner as in Example 1, a catalyst was prepared in which only the amount of supported Mg was changed for Example Catalyst 10 and only the amount of supported Sr was changed for Example Catalyst 11.
[0052]
(Test results)
Test Example 1 evaluated a catalyst in which only the Mg content was changed for the example catalyst 10 and only the Sr content was changed for the example catalyst 11. FIGS. 11 and 12 show the NOx purification rates at 400 ° C. of the catalysts in which only the Mg content and only the Sr content were changed, respectively. The horizontal axis of the graph indicates the Mg and Sr contents (in terms of metal elements) per liter of apparent volume of the honeycomb in order. When the supported amount of Mg and Sr is 0.05 mol or more and 2 mol or less in terms of element per 1 liter of the apparent volume of the honeycomb, the NOx purification rate is higher than that of Example Catalyst 4, and the effect of adding Mg and Sr is obtained.
[0053]
(Example 7)
A catalyst was prepared in the same manner as in Example 1 except that the amount of Ce added to Example Catalyst 4 was changed. The test was the same as in Test Example 1.
[0054]
(Test results)
FIG. 13 shows the NOx purification rate at 400 ° C. evaluated by Test Example 1. The horizontal axis of the graph in FIG. 13 shows the Ce content (in terms of metal element) per 1 liter of the apparent volume of the honeycomb. When the amount of supported Ce is 0.02 mol or more and 1 mol or less in terms of element per 1 liter of apparent volume of the honeycomb, the NOx purification rate at 400 ° C. exceeds 60%, and a high NOx purification rate is obtained.
[0055]
(Example 8)
In the same manner as in Example 1, in Example Catalyst 4 2 O 3 A catalyst was prepared in which only the coating amount was changed.
[0056]
(Test results)
FIG. 14 shows the NOx purification rate at 400 ° C. evaluated by Test Example 1. The horizontal axis of the graph in FIG. 14 shows the Al per liter of apparent honeycomb volume. 2 O 3 Is shown. Al 2 O 3 Al coating amount 2 O 3 When the conversion is 0.3 mol or more and 4 mol or less with respect to 1 L of the honeycomb volume, the NOx purification rate at 400 ° C. exceeds 60%, and a high NOx purification rate can be obtained.
[0057]
(Example 9)
FIG. 1 is an overall configuration diagram showing an embodiment of an internal combustion engine equipped with the exhaust gas purifying apparatus of the present invention using the exhaust gas purifying catalyst described in Examples 1 to 8. The purifying apparatus of the present invention includes a lean burnable engine 99, an intake system having an air flow sensor 2, a slot valve 3, etc., an oxygen concentration sensor (or A / F sensor) 7, an exhaust gas temperature sensor 8, a catalyst outlet gas temperature sensor 9, An exhaust system having an exhaust gas purifying catalyst 10 and the like, a control unit (ECU) 11 and the like are provided. The ECU includes an I / O as an input / output interface, an LSI, an arithmetic processing unit MPU, a storage device RAM and ROM storing a large number of control programs, a timer counter, and the like.
[0058]
The above exhaust gas purification device functions as follows. The intake air to the engine is filtered by an air cleaner 1 and then measured by an air flow sensor 2, passes through a slot valve 3, is further injected with fuel from an injector 5, and is supplied to an engine 99 as a mixture. The airflow sensor signal and other sensor signals are input to an ECU (Engine Control Unit).
[0059]
The ECU evaluates the operating state of the internal combustion engine and the state of the exhaust gas purifying catalyst to determine the operating air-fuel ratio, controls the injection time of the injector 5, and sets the fuel concentration of the air-fuel mixture to a predetermined value. The air-fuel mixture sucked into the cylinder is ignited by an ignition plug 6 controlled by a signal from the ECU 11 and burns. The combustion exhaust gas is led to an exhaust gas purification system. The exhaust gas purification system is provided with an exhaust gas purification catalyst 10, which purifies NOx, HC, and CO in exhaust gas by a three-way catalytic function during stoichiometric operation, and purifies NOx by a NOx trapping function at the same time as lean operation to perform combustion. Purifies HC and CO by function. Further, based on the determination and control signal of the ECU, the NOx purification performance of the exhaust gas purification catalyst is constantly determined during the lean operation, and when the NOx purification performance decreases, the air-fuel ratio of combustion is shifted to the rich side to increase the NOx trapping performance of the catalyst. Let it recover. With the above operation, the present apparatus effectively purifies exhaust gas under all engine combustion conditions of lean operation and stoichiometric (including rich) operation.
[0060]
In this embodiment, as in the previous embodiment, harmful substances, particularly nitrogen oxides, can be purified with high efficiency even in an atmosphere in which oxygen is excessively present. The catalyst is less likely to be degraded, and high purification performance can be maintained for a long time.
[0061]
【The invention's effect】
According to the present invention, harmful substances, particularly nitrogen oxides, can be purified with high efficiency even in an atmosphere in which oxygen is excessively present, and furthermore, since they have excellent water resistance, catalyst deterioration due to SOx is unlikely to occur. , High purification performance can be maintained for a long time.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing one embodiment of an exhaust gas purifying apparatus of the present invention.
FIG. 2 is a graph showing the relationship between the amount of Ti and the activity of a catalyst.
FIG. 3 is a graph showing the relationship between the amount of Na and the activity of a catalyst.
FIG. 4 is a graph showing the relationship between the amount of K and the activity of a catalyst.
FIG. 5 is a graph showing the relationship between the amount of Rh and the activity of a catalyst.
FIG. 6 is a graph showing the relationship between the amount of Pt and the activity of a catalyst.
FIG. 7 is a graph showing the relationship between the amount of Pd and the activity of a catalyst.
FIG. 8 is a graph showing the relationship between the amount of W and the activity of a catalyst.
FIG. 9 is a graph showing the relationship between the amount of Mo and the activity of a catalyst.
FIG. 10 is a graph showing the relationship between the amount of Zr and the activity of a catalyst.
FIG. 11 is a graph showing the relationship between the amount of Mg and the activity of a catalyst.
FIG. 12 is a graph showing the relationship between the amount of Sr and the activity of a catalyst.
FIG. 13 is a graph showing the relationship between the amount of Ce and the activity of a catalyst.
FIG. 14: Al 2 O 3 4 is a graph showing the relationship between the amount and the activity of the catalyst.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Air cleaner, 2 ... Air flow sensor, 3 ... Slot valve, 5 ... Injector, 6 ... Spark plug, 7 ... Oxygen concentration sensor (or A / F sensor), 8 ... Exhaust gas temperature sensor, 9 ... Catalyst outlet gas temperature sensor Reference numeral 10: Exhaust gas purification catalyst, 11: ECU, 99: Engine.

Claims (16)

内燃機関から排出された空燃比がリーンの排ガス及び空燃比がリッチ或いはストイキの排ガスを浄化する排ガス浄化触媒において、多孔質担体に担持された触媒活性成分を有し、前記触媒活性成分がRh,Pt,Pdからなる貴金属から選ばれた少なくとも1種と、アルカリ金属から選ばれた少なくとも1種と、W,
Mo及びZrから選ばれた少なくとも1種を有し、前記アルカリ金属の少なくとも一部を、アルカリ金属炭酸塩よりも水への溶解度の低い複合酸化物として含むことを特徴とする内燃機関排ガス浄化触媒。
An exhaust gas purifying catalyst for purifying an exhaust gas with a lean air-fuel ratio and an exhaust gas with a rich or stoichiometric air-fuel ratio discharged from an internal combustion engine has a catalytically active component supported on a porous carrier, and the catalytically active component is Rh, At least one selected from noble metals consisting of Pt and Pd, at least one selected from alkali metals,
An exhaust gas purification catalyst for an internal combustion engine, comprising at least one selected from Mo and Zr, wherein at least a part of the alkali metal is contained as a composite oxide having a lower solubility in water than an alkali metal carbonate. .
請求項1において、前記触媒活性成分として更にTiを含み、該Tiの少なくとも一部を前記アルカリ金属との複合酸化物として含むことを特徴とする内燃機関排ガス浄化触媒。2. The exhaust gas purifying catalyst for an internal combustion engine according to claim 1, further comprising Ti as the catalytically active component, wherein at least a part of the Ti is included as a composite oxide with the alkali metal. 請求項1又は2において、前記触媒活性成分として更に希土類金属の少なくとも一種を含むことを特徴とする内燃機関排ガス浄化触媒。3. The exhaust gas purifying catalyst for an internal combustion engine according to claim 1, further comprising at least one rare earth metal as the catalytically active component. 請求項1〜3のいずれか1つにおいて、前記触媒活性成分として更にアルカリ土類金属から選ばれた少なくとも1種を含むことを特徴とする内燃機関排ガス浄化触媒。4. The exhaust gas purifying catalyst for an internal combustion engine according to claim 1, further comprising at least one selected from alkaline earth metals as the catalytically active component. 請求項1〜4のいずれか1つにおいて、前記アルカリ金属の2種以上を含むことを特徴とする内燃機関排ガス浄化触媒。The exhaust gas purifying catalyst for an internal combustion engine according to any one of claims 1 to 4, wherein the catalyst comprises two or more of the alkali metals. 請求項1〜5のいずれか1つにおいて、前記多孔質担体がAlであることを特徴とする内燃機関排ガス浄化触媒。In any one of claims 1 to 5, an internal combustion engine exhaust gas purifying catalyst, wherein the porous carrier is characterized in that is Al 2 O 3. 請求項1〜6のいずれか1つにおいて、前記多孔質担体を担持する基材を有することを特徴とする排ガス浄化触媒。The exhaust gas purifying catalyst according to any one of claims 1 to 6, further comprising a substrate supporting the porous carrier. 内燃機関から排出された空燃比がリーンの排ガス及び空燃比がリッチ或いはストイキの排ガスを浄化する排ガス浄化触媒において、多孔質担体に担持された触媒活性成分を有し、前記触媒活性成分がRh,Pt,Pdからなる貴金属から選ばれた少なくとも1種を前記多孔質担体1.9mol部に対して金属元素換算でRhを0.0003〜0.01mol部、Ptを0.002〜0.05mol部、Pdを0.001〜0.05mol部含み、アルカリ金属から選ばれた少なくとも1種を前記多孔質担体1.9mol部に対して金属元素換算で1種類当り0.05〜2mol部含み、W,
Mo及びZrから選ばれた少なくとも1種を金属元素換算でアルカリ金属0.8Mol部に対してそれぞれ0.05mol部〜1.0mol部含み、前記アルカリ金属の少なくとも一部をアルカリ金属炭酸塩よりも水への溶解度の低い複合酸化物として含むことを特徴とする内燃機関排ガス浄化触媒。
An exhaust gas purifying catalyst for purifying an exhaust gas with a lean air-fuel ratio and an exhaust gas with a rich or stoichiometric air-fuel ratio discharged from an internal combustion engine has a catalytically active component supported on a porous carrier, and the catalytically active component is Rh, At least one noble metal selected from the group consisting of Pt and Pd is used in an amount of 0.0003 to 0.01 mol part of Rh and 0.002 to 0.05 mol part of Pt in terms of a metal element based on 1.9 mol part of the porous carrier. , Pd in an amount of 0.001 to 0.05 mol part, and at least one selected from alkali metals is contained in an amount of 0.05 to 2 mol parts per kind in terms of a metal element based on 1.9 mol part of the porous carrier. ,
At least one selected from Mo and Zr is contained in an amount of 0.05 mol part to 1.0 mol part with respect to 0.8 mol part of the alkali metal in terms of the metal element, and at least a part of the alkali metal is more than the alkali metal carbonate. An exhaust gas purifying catalyst for an internal combustion engine, wherein the catalyst is contained as a composite oxide having low solubility in water.
請求項8において、前記触媒活性成分として更にTiを金属元素換算でアルカリ金属0.8mol部に対して0.32mol部〜1.0mol部含み、該Tiの少なくとも一部をアルカリ金属との複合酸化物として含むことを特徴とする内燃機関排ガス浄化触媒。9. The method according to claim 8, wherein the catalytically active component further contains Ti in an amount of 0.32 mol to 1.0 mol based on 0.8 mol of the alkali metal in terms of a metal element, and at least a part of the Ti is a complex oxide with the alkali metal. An exhaust gas purifying catalyst for an internal combustion engine, characterized in that the catalyst is contained as a substance. 請求項8または9において、前記触媒活性成分として更に希土類金属を前記多孔質担体1.9mol部に対して金属元素換算で1種類当り0.02〜1mol部含むことを特徴とする内燃機関排ガス浄化触媒。10. The exhaust gas purification method for an internal combustion engine according to claim 8, wherein the catalytically active component further comprises a rare earth metal in an amount of 0.02 to 1 mol part per metal element conversion based on 1.9 mol part of the porous carrier. catalyst. 請求項8〜10のいずれか1つにおいて、前記触媒活性成分として更にアルカリ土類金属を前記多孔質担体1.9mol部に対して金属元素換算で1種類当り0.05〜2mol部含むことを特徴とする内燃機関排ガス浄化触媒。The method according to any one of claims 8 to 10, wherein an alkaline earth metal is further contained as the catalytically active component in an amount of 0.05 to 2 mol parts per one metal element conversion with respect to 1.9 mol part of the porous carrier. A catalyst for purifying exhaust gas of an internal combustion engine. 請求項8〜11のいずれか1つにおいて、前記多孔質担体を担持する基材を有し、前記多孔質担体を該基材1Lに対し0.3〜4mol部含むことを特徴とする内燃機関排ガス浄化触媒。The internal combustion engine according to any one of claims 8 to 11, further comprising a base material for supporting the porous carrier, wherein the porous carrier is included in an amount of 0.3 to 4 mol per 1 L of the base material. Exhaust gas purification catalyst. 空燃比がリーンと、リッチ又はストイキとの間で切り替えられる内燃機関の排ガス流路に、多孔質担体に触媒活性成分が担持された排ガス浄化触媒を有し、前記触媒活性成分がRh,Pt,Pdからなる貴金属から選ばれた少なくとも1種と、アルカリ金属から選ばれた少なくとも1種と、W,Mo及びZrから選ばれた少なくとも1種を有し、前記アルカリ金属の少なくとも一部をアルカリ金属炭酸塩よりも水への溶解度の低い複合酸化物として含むことを特徴とする内燃機関の排ガス浄化装置。An exhaust gas purifying catalyst in which a catalytically active component is supported on a porous carrier is provided in an exhaust gas passage of an internal combustion engine in which an air-fuel ratio is switched between lean and rich or stoichiometric, and the catalytically active component is Rh, Pt, At least one selected from noble metals composed of Pd, at least one selected from alkali metals, and at least one selected from W, Mo and Zr, wherein at least a part of the alkali metals is an alkali metal An exhaust gas purifying apparatus for an internal combustion engine, characterized in that it is contained as a composite oxide having a lower solubility in water than a carbonate. 請求項13において、前記触媒活性成分として更にTiと希土類金属とアルカリ土類金属から選ばれた少なくとも1種を有することを特徴とする内燃機関の排ガス浄化装置。14. The exhaust gas purifying apparatus for an internal combustion engine according to claim 13, further comprising at least one selected from Ti, a rare earth metal, and an alkaline earth metal as the catalytically active component. 内燃機関から排出された排ガスを該内燃機関の排ガス流路に設置された排ガス浄化触媒により浄化するようにした排ガス浄化方法において、前記排ガス浄化触媒が多孔質担体に担持された触媒活性成分を有し、該触媒活性成分がRh,Pt,Pdからなる貴金属から選ばれた少なくとも1種と、アルカリ金属から選ばれた少なくとも1種と、W,Mo及びZrから選ばれた少なくとも1種を有し、前記アルカリ金属の少なくとも一部をアルカリ金属炭酸塩よりも水への溶解度の低い複合酸化物として含み、該排ガス浄化触媒に空燃比がリーンの燃焼排ガスと空燃比がリッチ又はストイキの排ガスを交互に接触させることを特徴とする内燃機関の排ガス浄化方法。An exhaust gas purifying method for purifying exhaust gas discharged from an internal combustion engine by an exhaust gas purifying catalyst provided in an exhaust gas passage of the internal combustion engine, wherein the exhaust gas purifying catalyst has a catalytically active component supported on a porous carrier. The catalytically active component has at least one selected from noble metals consisting of Rh, Pt, and Pd, at least one selected from alkali metals, and at least one selected from W, Mo, and Zr. Wherein at least a part of the alkali metal is contained as a composite oxide having a lower solubility in water than the alkali metal carbonate, and the exhaust gas purifying catalyst alternately uses a combustion exhaust gas having a lean air-fuel ratio and an exhaust gas having a rich air-fuel ratio or a stoichiometric exhaust gas. A method for purifying exhaust gas of an internal combustion engine, comprising: 請求項15において、前記触媒活性成分として更にTiと希土類金属とアルカリ土類金属から選ばれた少なくとも1種を有することを特徴とする内燃機関の排ガス浄化方法。16. The exhaust gas purification method for an internal combustion engine according to claim 15, further comprising at least one selected from Ti, a rare earth metal, and an alkaline earth metal as the catalytically active component.
JP2002162290A 2002-06-04 2002-06-04 Exhaust gas purification catalyst, exhaust gas purification method and exhaust gas purification device for internal combustion engine Expired - Fee Related JP4039128B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002162290A JP4039128B2 (en) 2002-06-04 2002-06-04 Exhaust gas purification catalyst, exhaust gas purification method and exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002162290A JP4039128B2 (en) 2002-06-04 2002-06-04 Exhaust gas purification catalyst, exhaust gas purification method and exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2004008838A true JP2004008838A (en) 2004-01-15
JP4039128B2 JP4039128B2 (en) 2008-01-30

Family

ID=30431067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002162290A Expired - Fee Related JP4039128B2 (en) 2002-06-04 2002-06-04 Exhaust gas purification catalyst, exhaust gas purification method and exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4039128B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006136755A (en) * 2004-11-10 2006-06-01 Ichimura Fukuyo Catalytic substance for cleaning exhaust gas and exhaust gas cleaning apparatus obtained by fixing the substance thereto
WO2006103914A1 (en) * 2005-03-29 2006-10-05 Yanmar Co., Ltd. Exhaust gas purifier
JP2006272116A (en) * 2005-03-29 2006-10-12 Yanmar Co Ltd Exhaust gas purifying apparatus
WO2009139609A3 (en) * 2008-05-16 2010-03-11 포항공과대학교 산학협력단 Catalyst for removing nox from exhaust gas of lean-burning automobiles or incinerators

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006136755A (en) * 2004-11-10 2006-06-01 Ichimura Fukuyo Catalytic substance for cleaning exhaust gas and exhaust gas cleaning apparatus obtained by fixing the substance thereto
WO2006103914A1 (en) * 2005-03-29 2006-10-05 Yanmar Co., Ltd. Exhaust gas purifier
JP2006272116A (en) * 2005-03-29 2006-10-12 Yanmar Co Ltd Exhaust gas purifying apparatus
WO2009139609A3 (en) * 2008-05-16 2010-03-11 포항공과대학교 산학협력단 Catalyst for removing nox from exhaust gas of lean-burning automobiles or incinerators
KR101098247B1 (en) 2008-05-16 2011-12-23 포항공과대학교 산학협력단 Catalyst for removing NOx in the emission gases of lean burn engines and stationary sources

Also Published As

Publication number Publication date
JP4039128B2 (en) 2008-01-30

Similar Documents

Publication Publication Date Title
JP4852035B2 (en) Nitrogen oxide storage catalyst made from nitrogen oxide storage material
JP4590733B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the catalyst
JP3952617B2 (en) Exhaust gas purification device, exhaust gas purification method and exhaust gas purification catalyst for internal combustion engine
JPH10286462A (en) Catalyst of purifying exhaust gas
JP3544400B2 (en) Exhaust gas purification catalyst
JP3640130B2 (en) Exhaust gas purification catalyst and method for producing the same
JP3766568B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP4039128B2 (en) Exhaust gas purification catalyst, exhaust gas purification method and exhaust gas purification device for internal combustion engine
JP2003144926A (en) Catalyst for cleaning exhaust gas of internal combustion engine, exhaust gas cleaning method and exhaust gas cleaning apparatus
JP4254208B2 (en) Internal combustion engine exhaust gas purification device, purification method and catalyst
JP4352586B2 (en) Internal combustion engine having exhaust gas purification catalyst
JP3965793B2 (en) Exhaust gas purification device, exhaust gas purification method and exhaust gas purification catalyst for internal combustion engine
JP3825264B2 (en) Internal combustion engine exhaust gas purification catalyst, internal combustion engine using the same, and exhaust gas purification method therefor
JP3925015B2 (en) Internal combustion engine exhaust gas purification device, purification method, and purification catalyst
JP4852793B2 (en) Exhaust gas purification device and exhaust gas purification catalyst for internal combustion engine
JP2002168117A (en) Exhaust emission control system
JP2003200061A (en) Exhaust gas purifying catalyst and exhaust gas purifying device
JP5051009B2 (en) NOx storage reduction catalyst
JP2007084391A (en) Exhaust gas purifying device for automobile and hydrogen producing catalyst
JP2001046835A (en) NOx ABSORBING AND CLEANING MATERIAL AND EXHAUST GAS CLEANING CATALYST USING THE SAME
JP2000325787A (en) Manufacture of exhaust gas cleaning catalyst
JP2000262897A (en) Exhaust gas purifying catalyst and exhaust gas purifying method
JP4556084B2 (en) Exhaust gas purification catalyst
JP2000157865A (en) Gas purifying catalyst carrier
JPH11290686A (en) Exhaust gas cleaning catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040830

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071029

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees