JP2004004436A - Progressive refraction lens, spectacles for presbyopia and method for designing lens - Google Patents

Progressive refraction lens, spectacles for presbyopia and method for designing lens Download PDF

Info

Publication number
JP2004004436A
JP2004004436A JP2002238488A JP2002238488A JP2004004436A JP 2004004436 A JP2004004436 A JP 2004004436A JP 2002238488 A JP2002238488 A JP 2002238488A JP 2002238488 A JP2002238488 A JP 2002238488A JP 2004004436 A JP2004004436 A JP 2004004436A
Authority
JP
Japan
Prior art keywords
lens
progressive
power
point
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002238488A
Other languages
Japanese (ja)
Other versions
JP4239519B2 (en
Inventor
Akira Komatsu
小松 朗
Masaru Egawa
江川 優
Kazuhisa Kato
加藤 一寿
Tadayuki Kaga
加賀 唯之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2002238488A priority Critical patent/JP4239519B2/en
Publication of JP2004004436A publication Critical patent/JP2004004436A/en
Application granted granted Critical
Publication of JP4239519B2 publication Critical patent/JP4239519B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Eyeglasses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a progressive refraction lens which suppresses image distortion and blurring inevitably caused by a progressive refraction lens and can improve feeling of wear. <P>SOLUTION: A double-sided progressive lens using both the outer and inner surfaces as progressive surfaces is prepared, the face addition of the outer surface is made minus and progressive surface profile is designed so that the average surface refraction distributions of the outer and inner surfaces are made similar. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、像の揺れ・歪みを改善し、光学性能を向上させた累進屈折力レンズ、それをフレームに組み込んだ老視用眼鏡及びレンズの設計方法に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
主に遠距離の物体を見る時に使用する遠用部と、主に近距離の物体を見る時に使用する近用部と、遠用部と近用部との間に連続的に度数が変化する累進帯とを備える累進屈折面を有する累進屈折力レンズには、累進屈折面形状の設計に依らず、近用側方部に像の歪みやボケを生じる領域があり、使用者の装用感低下を招いていた。この光学的な欠陥は、累進屈折面を採用している以上必然的に生じるものであり、本質的にゼロにすることは困難である。従来からこの欠点を解消するために様々な取リ組みがなされてきている。
【0003】
その一つとして、眼鏡レンズの外面側又は内面側のどちらか一方に設けられていた累進面を両側に設けることによって光学性能を向上させる両面累進レンズのアイデアが、WO97/19383と特開2000−249992号公報に開示されている。
【0004】
WO97/19383では、レンズの加入度をAddとした時、外面(第1面)の面加入度A1が、
―(L・N/T)Add<A1<Add
を満たす両面累進レンズについて記載されている。但し、Lは頂間距離、Nはレンズの屈折率、Tはレンズの中心厚である。しかし、WO97/19383では、両面累進レンズの概念を提案しているが、それぞれの累進面の設計内容については述べられていない。
【0005】
特開2000−249992号公報では、内面(第2面)がリグレッシブ面となる場合、つまり、内面の面加入度A2が、A2<0となる場合について述べられている。この時、外面の面加入度A1は、Add<A1となる。さらに、特開2000−249992号公報では、外面のプログレッシブ面(面加入度A1がプラス)をソフト設計、内面のリグレッシブ面をハード設計にすることによって、外面・内面で発生する非点収差を相殺し、レンズとしての収差量を低減させるアイデアが開示されている。
【0006】
しかし、本発明者が詳細に検討したところ、このレンズ構成では、装用感の良い眼鏡レンズは得られないことが判明した。即ち、非点収差が相殺される領域は、レンズ面の中の限られた範囲でしかなく、それ以外の領域では、片面累進面のレンズよりもむしろ大きな非点収差が残される。また、非点収差量の変化が大きいので、像の歪みも局所的に大きくなり、装用感を大きく損なう状態となってしまう。
【0007】
本発明は、上記事情に鑑みてなされたもので、累進屈折力レンズに必然的に生じる像の歪みやボケを減少させ、装用感を向上させることができる累進屈折力レンズを提供することを目的とする。
【0008】
また、本発明は、かかる累進屈折力レンズをフレームに組み込んだ老視用眼鏡を提供することを目的とする。
【0009】
更に、本発明は、優れた装用感を有する累進屈折力レンズの設計方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
累進屈折力レンズの累進面は、古くは外面側に形成されていたが、その累進面を内面側に形成することによって、飛躍的に光学性能が向上することが判明した。この内面累進レンズの理論を応用し、さらに光学性能を向上させるために、本発明においては、外面と内面の両方に累進屈折面を形成した両面累進レンズとすると共に、外面の平均面屈折力を遠用部から近用部にかけて連続的に減少するように設定している。
【0011】
このような両面累進レンズの外面の平均面屈折力の変化をマイナスとする、即ち外面の面加入度をマイナスとすることにより、近用部の倍率差を小さくして、歪みを減少させることができる。
【0012】
また、レンズの両面に累進屈折面を設ける場合、両面の累進設計をほぼ同じとすることにより、不自然な揺れ・歪みが生じず光学性能が向上することを見い出した。
【0013】
さらに、両面累進の効果を発揮するためには、外面の遠用部中心における平均面屈折力PF1(D)と、外面の近用部中心における平均面屈折力PN1(D)の差(A1=PN1−PF1)がある程度の大きさが必要であるし、又あまり差が有りすぎると、レンズの外観上好ましくない。このため、A1の値が、−PF1−10.0<A1<−0.25(D) の範囲内にあることが好ましい。
【0014】
また、両面累進レンズでは、外面と内面のそれぞれに累進屈折面が形成されるため、これらの累進屈折面の遠用部視野範囲相互、近用部視野範囲相互及び累進帯相互が重なって見えることによって装用感が向上する。そのため、レンズによる屈折を考慮して、内面の累進屈折面を外面の累進屈折面よりもフィッティングポイント寄りにすることが好ましい。
【0015】
従って、請求項1記載の発明は、主に遠距離の物体を見る時に使用する遠用部と、主に近距離の物体を見る時に使用する近用部と、前記遠用部と前記近用部との間に連続的に度数が変化する累進帯とを備える累進屈折面を有する累進屈折力レンズにおいて、物体側の屈折面を第1面、使用者側の屈折面を第2面としたとき、前記第1面及び第2面の両方が累進屈折面に形成され、かつ、前記第1面の平均面屈折力が、前記遠用部から前記近用部にかけて連続的に減少していることを特徴とする累進屈折力レンズを提供する。但し、累進屈折面上のある点における平均面屈折力P(D)は、その点における曲率の最大値Cmax(1/m)、曲率の最小値Cmin(1/m)と、累進屈折面より物体側にある媒質の屈折率N1と使用者側にある媒質の屈折率N2を用いて、P=(N2−N1)(Cmax+Cmin)/2で定義される。
【0016】
請求項2記載の発明は、請求項1記載の累進屈折力レンズにおいて、前記第1面の前記遠用部中心における平均面屈折力PF1(D)と前記第1面の近用部中心における平均面屈折力PN1(D)の差を面加入度A1(=PN1−PF1)とし、前記第1面の任意の点における平均面屈折力P1とPF1との差をA1で割った値をS1とし、S1=(P1−PF1)/A1、前記第2面の前記遠用部中心における平均面屈折力PF2(D)と前記第2面の前記近用部中心における平均面屈折力PN2(D)の差を面加入度A2(PN2−PF2)とし、前記第1面の点に対応する前記第2面上の点における平均面屈折力P2と前記PF2との差をA2で割った値をS2としたとき、S2=(P2−PF2)/A2、レンズ面上の中心から40mmの範囲内で│S1−S2│≦0.25であることを特徴とする累進屈折力レンズを提供する。
【0017】
請求項3記載の発明は、請求項1又は2記載の累進屈折力レンズにおいて、前記第1面の前記遠用部中心における平均面屈折力をPF1(D)、前記第1面の前記近用部中心における平均面屈折力をPN1(D)とし、前記第1面の面加入度A1をA1=PN1−PF1とすると、−PF1−10.0<A1<−0.25(D)であることを特徴とする累進屈折力レンズを提供する。
【0018】
請求項4記載の発明は、請求項1〜3いずれかに記載の累進屈折力レンズにおいて、前記第2面の前記遠用部中心点を通るレンズの光軸との平行線が、前記第1面の前記遠用部中心点を通るレンズの光軸との平行線に対し、同じ位置か又はフィッティングポイント寄りの位置にあり、前記第2面の前記近用部中心点を通るレンズの光軸との平行線が、前記第1面の前記近用部中心点を通るレンズの光軸との平行線に対し、同じ位置か又はフィッティングポイント寄りの位置にあることを特徴とする累進屈折力レンズを提供する。
【0019】
請求項5記載の発明は、請求項1〜4いずれかに記載の累進屈折力レンズを玉型加工し、フレームに組み込んだことを特徴とする老視用眼鏡を提供する。
【0020】
請求項6記載の発明は、主に遠距離の物体を見る時に使用する遠用部と、主に近距離の物体を見る時に使用する近用部と、前記遠用部と前記近用部との間に連続的に度数が変化する累進帯とを備える累進屈折面を有する累進屈折力レンズのレンズ面形状を下記(1)〜(3)の条件を満たすように設計することを特徴とする眼鏡レンズの設計方法を提供する。
【0021】
(1)物体側の屈折面を第1面、使用者側の屈折面を第2面としたとき、レンズの両方の屈折面を前記累進屈折面として、前記第1面の面加入度A1をマイナスとし、前記第2面の面加入度A2をA2=Add−A1とする。但し、Addはレンズの加入度数である。
(2)前記第2面の前記遠用部中心点を通るレンズの光軸との平行線が、前記第1面の前記遠用部中心点を通るレンズの光軸との平行線に対し、同じ位置か又はフィッティングポイント寄りの位置にする。
(3)前記第2面の前記近用部中心点を通るレンズの光軸との平行線が、前記第1面の前記近用部中心点を通るレンズの光軸との平行線に対し、同じ位置か又はフィッティングポイント寄りの位置にする。
【0022】
【発明の実施の形態】
以下、本発明の実施の形態について説明するが、本発明は以下の実施の形態に限定されるものではない。
【0023】
累進屈折力レンズは、主に遠距離の物体を見る時に使用する遠用部と、主に近距離の物体を見る時に使用する近用部と、遠用部と近用部との間に連続的に度数が変化する累進帯とを備える累進屈折面を有する。累進屈折力レンズには、外面(第1面)にのみ累進屈折面を設けた外面累進レンズ、内面(第2面)にのみ累進屈折面を設けた内面累進レンズ、外面と内面の両面に累進屈折面を設けた両面累進レンズの3種類が存在する。
【0024】
かかる累進屈折力レンズでは、近用側方部に必然的に像の揺れ・歪みを生じる領域がある。これは、遠用部と近用部でレンズの度数が異なるために、見かけの像の大きさが異なることに起因している。像の歪みを抑えるためには、遠用部と近用部の像が、なるべく同じ大きさになれば良い。像の見かけの倍率(SM:Spectacle Magnification)は、近軸量を使って次式で表される。
【0025】
SM=Ms×Mp          ・・・   (1)
Ms=1/(1−tD/n) :シェイプファクタ−
Mp=1/(1−LP)   :パワ−ファクタ−
t:レンズの厚さ(m)、 n:屈折率、 D:外面の面屈折力(ディオプトリー:D)、 L:レンズから瞳までの距離(m)、 P:レンズの度数(ディオプトリー:D)
【0026】
遠用部の倍率と近用部の倍率を上式に従って計算し、その差を求めれば、側方部の歪みの程度が推察出来る。同じ度数、同じ加入度、ほぼ同じレンズ形状の外面累進レンズ、内面累進レンズ、両面累進レンズを比較した場合、遠用部と近用部のMpの差は、それぞれのレンズで皆同じである。これに対し、Msの値は、どの面に累進面が有るかによって、変わってくる。外面累進レンズでは、第1面(外面)の平均面屈折力が遠用部から近用部にかけて増加しているため、Msの値は、近用部で増加する。これに対し、内面累進レンズでは、第1面に球面を使用するため、平均面屈折力は遠用部でも近用部でも同じであり、Msの値も一定である。
【0027】
本発明による両面累進レンズでは、第1面(外面)の平均面屈折力P(D)が、遠用部から近用部にかけて連続的に減少している(リグレッシブ面)。これとは逆に、第2面(内面)の平均面屈折力は、遠用部から近用部にかけて連続的に増加している(プログレッシブ面)。これにより、Msの値も減少する。従って、本発明の両面累進レンズは内面累進レンズよりもさらに揺れ・歪みを低減させ、光学性能を向上させることが出来る。
【0028】
但し、累進曲面上のある点における平均面屈折力P(D)は、その点における曲率の最大値Cmax(1/m)、曲率の最小値Cmin(1/m)と、曲面より物体側にある媒質の屈折率N1と使用者側にある媒質の屈折率N2を用いて、P=(N2−N1)(Cmax+Cmin)/2で定義される。曲率は、その曲率中心が、面より使用者側に有る時に正、物体側に有る時に負の符号をとる。従って、眼鏡レンズがメニスカス形状をしている場合には、平均曲率(Cmax+Cmin)/2は、正の値となる。第1面であれば、面より物体側の媒質は空気なので、N1が1.0、N2がレンズ素材の屈折率になるので、Pの値は正になる。これに対し、第2面では、N1がレンズ素材の屈折率になり、N2が1.0になるので、Pの値は、負になる。
【0029】
図1は、外面累進レンズ、内面累進レンズ、本発明の両面累進レンズのそれぞれの遠用部と近用部の倍率比を示すグラフである。本発明の両面累進レンズは、従来の外面累進レンズ・内面累進レンズよりも倍率差が小さく、歪みが少なくなっていることが認められる。
【0030】
さらに、両面累進レンズの場合、第1面と第2面の両方に累進屈折面を形成するため、設計の自由度が高い。累進面設計が、装用感を左右する大きな要因である。累進面設計には、様々な要素が考えられるが、大きく分けると、明視域の広さを優先したハ−ド設計と歪みの低減を優先したソフト設計とがある。どの様な累進面設計が選択されるかは、使用者の好みや用途によって変わってくるが、両面累進レンズの場合、異なる性格の累進面設計を組み合わせると、非点収差や像の歪みが不自然になり、装用感が非常に悪くなることが判明した。特開2000−249992号公報では、第1面と第2面で発生する非点収差を相殺させ、収差量を低減させる目的で、加入度の少ないハ−ド設計と加入度の大きいソフト設計を組み合わせている。しかし、この場合、累進面上の1点を考えれば非点収差は相殺されるのだが、それ以外の場所に大きな非点収差が残ってしまう。そして残った非点収差の分布は従来の累進レンズとは大きく異なるため、像の歪みも非常に不自然になる。しかも、明視域の広さは、加入度の大きいソフト設計面によって制限されてしまうため、同じ加入度数の従来設計の外面累進レンズよりも狭くなる。
【0031】
このように両面累進レンズの場合、第1面と第2面の累進設計がなるべく相似している方が良い。そのためには、両方の面の平均面屈折力分布が相似している事が望ましい。具体的には、第1面の任意の点における平均面屈折力P1と遠用部中心における平均面屈折力PF1との差を第1面の加入度A1で割った値をS1とし、同様に第1面の点に対応する第2面上の点における平均面屈折力P2と遠用部中心における平均面屈折力PF2との差を第2面の加入度A2で割った値をS2とする。つまり、式で表現すると、S1=(P1−PF1)/A1、S2=(P2−PF2)/A2である。この時、累進面のタイプや面の加入度数に依らず、S1及びS2の値は、遠用中心点において0となり、近用中心点において1となり、それ以外の場所では、その間の値を取る。第1面と第2面の累進設計が相似しているためには、S1とS2の値が近い事が必要で、具体的には、レンズ中心から40mmの範囲内でS1とS2の差の絶対値│S1−S2│が0.25以内、好ましくは0.15以内、更に好ましくは0.10以内、最も好ましくは0.05以内であることが望ましい。
【0032】
また、両面累進の効果を発揮するためには、外面の遠用部中心における平均面屈折力PF1(D)と、外面の近用部中心における平均面屈折力PN1(D)の差(A1=PN1−PF1)、即ち加入度がある程度の大きさが必要であるし、又あまり差が有りすぎると、レンズの外観上好ましくない。このため、加入度A1の値が、
−PF1−10.0<A1<−0.25(D)
の範囲内にあることが好ましい。
【0033】
更に、両面累進レンズは、レンズの第1面と第2面の両方に累進屈折面が設けられていることから、これらの累進屈折面の遠用部視野範囲相互、近用部視野範囲相互及び累進帯相互が重なって見えることによって装用感が向上する。図2に示すように、フィッティングポイントFPから離れた点では、眼に入射する光線L1はレンズ10の中を斜めに通過する。そのため、第1面11と第2面12の累進設計が近似している場合、光軸との平行線L2を基準にして両面の累進屈折面を設けると、第1面11と第2面12の累進屈折面の遠用部視野範囲相互、近用部視野範囲相互及び累進帯相互が光学的にずれてしまい、装用感が悪くなる。このため、第2面12の遠用部中心点と近用部中心点NPとを対向する第1面の遠用部中心点と近用部中心点に対して光線の傾きを考慮してフィッティングポイント寄りの位置の図示しない遠用部中心点と近用部中心点NP’に設けることが望ましい。
【0034】
このような両面累進レンズのレンズ面形状の設計方法としては、次の(1)〜(3)の条件を満たすように設計することが好ましい。但し、下記(2)と(3)の順序は入れ替え可能である。
【0035】
(1)物体側の屈折面を第1面、使用者側の屈折面を第2面としたとき、レンズの両方の屈折面を累進屈折面として、第1面の面加入度A1をマイナスとし、第2面の面加入度A2をA2=Add−A1とする。但し、Addはレンズの加入度数である。
(2)第2面の遠用部中心点を通るレンズの光軸との平行線が、第1面の遠用部中心点を通るレンズの光軸との平行線に対し、同じ位置か又はフィッティングポイント寄りの位置にする。
(3)第2面の近用部中心点を通るレンズの光軸との平行線が、第1面の近用部中心点を通るレンズの光軸との平行線に対し、同じ位置か又はフィッティングポイント寄りの位置にする。
【0036】
以下に実際の設計例を参照しながら本発明を説明する。ただし、この設計例はほんの一例に過ぎず、本発明がこの例に限定されるものでは無い。
【0037】
【実施例】
球面度数0.0、乱視度数0.0、加入度2.0Dのレンズを、従来の方法と本発明による方法でそれぞれ構成した。実施例は、本発明に基づく両面累進レンズであり、第1面が面加入度−1.0Dであり、面平均屈折力が遠用部から近用部にかけて連続的に減少しているリグレッシブ累進面、第2面が面加入度+3.0Dのプログレッシブ累進面である。従来例1は、従来の外面累進レンズであり、第1面が面加入度+2.0Dの累進面、第2面が球面である。従来例2は、従来の内面累進レンズであり、第1面が球面、第2面が面加入度+2.0Dの累進面である。従来例3は、特開2000−249992号公報に基づく従来例の両面累進レンズであり、第1面が面加入度+3.0Dのプログレッシブ累進面、第2面が面加入度−1.0Dのリグレッシブ累進面である。
【0038】
実施例の両面累進レンズの第1面の面形状の座標値を図3に、第2面の面形状の座標値を図4にそれぞれ示す。面形状の座標軸は、第1面の最も凸になっている点を原点として光軸と直交する面の水平方向をx軸、垂直方向をy軸、光軸と平行なz軸であり、z軸は眼球側がプラスになっている。
【0039】
遠用部と近用部のそれぞれの像倍率を求め、それらの差を外面累進を基準にして改善率を求めた。また、最大収差量を求めた。更に、実施例と従来例3の│S1−S2│の最大値を求めた。結果を表1にまとめて示す。また、図5に、実施例の両面累進レンズの中心点から10mm下の水平線上の第1面と第2面の平均面屈折力分布のグラフを示す。図6に、従来例3の両面累進レンズのレンズ中心から10mm下の水平線上の第1面と第2面の平均面屈折力分布のグラフを示す。実施例の両面累進レンズの第1面の面収差分布を図7に、第2面の面収差分布を図8に、第1面と第2面の透過収差分布を図9に示す。従来例3の両面累進レンズの第1面の面収差分布を図10に、第2面の面収差分布を図11に、第1面と第2面の透過収差分布を図12に示す。
【0040】
【表1】

Figure 2004004436
【0041】
遠用部と近用部の倍率の差は、実施例では、0.0293、従来例1では0.0350、従来例2では、0.0312、従来例3では、0.0369となっている。従来例1を基準にして、従来例2では、10.9%の改善、実施例では、16.2%の改善となっているが、従来例3では、5.4%の悪化となっている。これは、従来例3と実施例の両方とも両面累進レンズであるが、第1面の平均面屈折力の変化A1が従来例3ではプラスであるのに対し、実施例ではマイナスであることが原因である。近用部の倍率差を小さくして、歪みを減少させるためには、第1面の平均面屈折力の変化がマイナスであることが必要である。
【0042】
また、レンズを透して見た時の最大収差量は、実施例で2.41D、従来例1で2.52D、従来例2で2.46Dと、同程度の量であるのに対し、従来例3では、3.52Dと多くなっている。
【0043】
図5に示すように、実施例の両面累進レンズの第1面のS1と第2面のS2とはほぼ一致し、│S1−S2│の最大値は0.02である。このことから、第1面の累進屈折面と第2面の累進屈折面とは設計が近似していることが認められる。
【0044】
また、図6に示すように、従来例3の両面累進レンズの│S1−S2│の最大値は0.29である。第1面の累進屈折面と第2面の累進屈折面の設計が異なることが認められる。図12に示した従来例3の透過収差図から、近用部の側方に不自然な収差領域が出来てしまうことが判る。これに対し、図9に示した実施例の透過収差図から、本発明の両面累進レンズは自然な収差分布になっていることが判る。不自然な収差分布が生じてしまう原因は、従来例3では、1面にソフト設計の累進面、2面にハ−ド設計の累進面を用いており、1面と2面の面収差分布が整合しておらず、うまく打ち消し合わない所が生じてしまうことにある。これを解決するためには、本発明の両面累進レンズのように、両面の平均面屈折力分布が相似していることが必要である。
【0045】
【発明の効果】
本発明の累進屈折力レンズは、累進屈折力レンズに必然的に生じる像の歪みやボケを減少させ、装用感を向上させることができる。
【0046】
本発明の老視用眼鏡は、かかる累進屈折力レンズを用いているため、装用感に優れる。
【0047】
本発明のレンズの設計方法によれば、装用感に優れる両面累進レンズを設計することができる。
【図面の簡単な説明】
【図1】外面累進レンズ、内面累進レンズ、両面累進レンズのそれぞれの遠用部に対する近用部の倍率を示すグラフである。
【図2】眼鏡レンズによる屈折により外面と内面との間に光軸との平行線を基準にするとずれが生じることを説明する概念図である。
【図3】実施例の両面累進レンズの第1面の面形状を示す座標値である。
【図4】実施例の両面累進レンズの第2面の面形状を示す座標値である。
【図5】実施例の両面累進レンズの面平均屈折力の分布を示すグラフである。
【図6】従来例3の両面累進レンズの面平均屈折力の分布を示すグラフである。
【図7】実施例の両面累進レンズの第1面の面収差分布図である。
【図8】実施例の両面累進レンズの第2面の面収差分布図である。
【図9】実施例の両面累進レンズの透過収差分布図である。
【図10】従来例3の両面累進レンズの第1面の面収差分布図である。
【図11】従来例3の両面累進レンズの第2面の面収差分布図である。
【図12】従来例3の両面累進レンズの透過収差分布図である。[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a progressive power lens with improved optical performance by improving image shaking and distortion, a presbyopic glasses incorporating the same in a frame, and a lens designing method.
[0002]
Problems to be solved by the prior art and the invention
The power changes continuously between the distance portion, which is mainly used when viewing an object at a long distance, the near portion, which is mainly used when viewing an object at a short distance, and the distance portion and the near portion. A progressive-power lens having a progressive-refractive surface with a progressive zone has a region where image distortion and blur occur on the side portion for near use, regardless of the design of the progressive-refractive surface shape, and the wearing comfort of the user is reduced. Was invited. This optical defect is inevitable as long as a progressive refraction surface is employed, and it is difficult to make it essentially zero. Conventionally, various approaches have been made to solve this drawback.
[0003]
As one of them, the idea of a double-sided progressive lens in which the optical performance is improved by providing progressive surfaces provided on either the outer surface or the inner surface of the spectacle lens on both sides has been disclosed in WO97 / 19383 and Japanese Patent Application Laid-Open No. 2000-1993. No. 2,499,992.
[0004]
In WO97 / 19383, when the addition of a lens is Add, the addition A1 of the outer surface (first surface) is:
-(LN / T) Add <A1 <Add
Are described. Here, L is the apex distance, N is the refractive index of the lens, and T is the center thickness of the lens. However, WO97 / 19383 proposes the concept of a double-sided progressive lens, but does not describe the design contents of each progressive surface.
[0005]
Japanese Patent Application Laid-Open No. 2000-249992 describes a case where the inner surface (second surface) is a regressive surface, that is, a case where the surface addition degree A2 of the inner surface is A2 <0. At this time, the outer surface addition degree A1 satisfies Add <A1. Further, in Japanese Patent Application Laid-Open No. 2000-249992, the astigmatism occurring on the outer surface and the inner surface is reduced by designing the progressive surface on the outer surface (surface addition A1 is positive) by a soft design and the regressive surface on the inner surface by a hard design. An idea to cancel out and reduce the amount of aberration as a lens is disclosed.
[0006]
However, the present inventor has studied in detail that it has been found that this lens configuration does not provide a spectacle lens with a good wearing feeling. That is, the region where astigmatism is canceled out is only a limited range in the lens surface, and in other regions, larger astigmatism is left than in a single-sided progressive surface lens. Further, since the change in the amount of astigmatism is large, the distortion of the image is locally large, and the feeling of wearing is greatly impaired.
[0007]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a progressive power lens that can reduce image distortion and blur that occur inevitably in the progressive power lens and can improve a feeling of wearing. And
[0008]
Another object of the present invention is to provide presbyopia glasses incorporating such a progressive-power lens in a frame.
[0009]
A further object of the present invention is to provide a method for designing a progressive-power lens having an excellent wearing feeling.
[0010]
[Means for Solving the Problems]
Although the progressive surface of the progressive-power lens was formed on the outer surface side in the old days, it was found that forming the progressive surface on the inner surface dramatically improved the optical performance. In order to further improve the optical performance by applying the theory of the inner surface progressive lens, in the present invention, in addition to a double-sided progressive lens having progressive refractive surfaces formed on both the outer surface and the inner surface, the average surface refractive power of the outer surface is reduced. It is set so that it decreases continuously from the distance portion to the near portion.
[0011]
By making the change in the average surface refractive power of the outer surface of such a double-sided progressive lens negative, that is, by making the surface addition of the outer surface negative, it is possible to reduce the magnification difference of the near portion and reduce distortion. it can.
[0012]
In addition, it has been found that when progressive refracting surfaces are provided on both surfaces of the lens, by making the progressive design of both surfaces substantially the same, unnatural shaking and distortion do not occur and the optical performance is improved.
[0013]
Further, in order to exhibit the effect of progressive progress on both surfaces, the difference between the average surface refractive power PF1 (D) at the center of the far portion of the outer surface and the average surface refractive power PN1 (D) at the center of the near portion of the outer surface (A1 = PN1-PF1) needs to have a certain size, and if there is too much difference, the appearance of the lens is not preferable. Therefore, it is preferable that the value of A1 be in the range of -PF1-10.0 <A1 <-0.25 (D).
[0014]
In addition, since a progressive refraction surface is formed on each of the outer surface and the inner surface in a double-sided progressive lens, the far vision portion, the near vision portion, and the corridor appear to overlap each other. The feeling of wearing is thereby improved. Therefore, in consideration of refraction by the lens, it is preferable that the inner progressive surface is closer to the fitting point than the outer progressive surface.
[0015]
Therefore, the invention according to claim 1 provides a distance portion mainly used when viewing an object at a long distance, a near portion mainly used when viewing an object at a short distance, the distance portion and the near portion. A progressive power lens having a progressive zone whose power continuously changes between the first and second portions, wherein the refracting surface on the object side is the first surface, and the refracting surface on the user side is the second surface. At this time, both the first surface and the second surface are formed as progressive refractive surfaces, and the average surface refractive power of the first surface decreases continuously from the distance portion to the near portion. A progressive power lens is provided. However, the average surface refractive power P (D) at a certain point on the progressive refraction surface is calculated from the maximum value Cmax (1 / m) of the curvature and the minimum value Cmin (1 / m) of the curvature at that point. Using the refractive index N1 of the medium on the object side and the refractive index N2 of the medium on the user side, it is defined as P = (N2-N1) (Cmax + Cmin) / 2.
[0016]
According to a second aspect of the present invention, in the progressive-power lens according to the first aspect, the average surface refractive power PF1 (D) at the center of the distance portion of the first surface and the average surface power at the center of the near portion of the first surface. The difference between the surface refractive powers PN1 (D) is defined as surface addition A1 (= PN1-PF1), and the value obtained by dividing the difference between the average surface refractive powers P1 and PF1 at any point on the first surface by A1 is defined as S1. , S1 = (P1-PF1) / A1, the average surface refractive power PF2 (D) at the center of the distance portion of the second surface and the average surface refractive power PN2 (D) at the center of the near portion of the second surface. Is defined as A2 (PN2-PF2), and the value obtained by dividing the difference between the average surface refractive power P2 and the PF2 at a point on the second surface corresponding to the point on the first surface by A2 is S2. S2 = (P2-PF2) / A2, 40 from the center on the lens surface Provides progressive addition lenses, characterized in that in the range of m is │S1-S2│ ≦ 0.25.
[0017]
According to a third aspect of the present invention, in the progressive-power lens according to the first or second aspect, the average surface refractive power at the center of the distance portion of the first surface is PF1 (D), and the near surface of the first surface is the near vision. Assuming that the average surface refractive power at the center of the portion is PN1 (D) and the surface addition A1 of the first surface is A1 = PN1-PF1, -PF1-10.0 <A1 <-0.25 (D). A progressive power lens is provided.
[0018]
According to a fourth aspect of the present invention, in the progressive-power lens according to any one of the first to third aspects, a line parallel to an optical axis of the lens passing through the center point of the distance portion on the second surface is the first lens. An optical axis of a lens which is located at the same position or a position close to a fitting point with respect to a line parallel to the optical axis of the lens passing through the distance portion center point of the surface, and passing through the near portion center point of the second surface; Wherein a parallel line with the lens is located at the same position or a position near a fitting point with respect to a parallel line with the optical axis of the lens passing through the near point center point of the first surface. I will provide a.
[0019]
According to a fifth aspect of the present invention, there is provided presbyopia spectacles, wherein the progressive-power lens according to any one of the first to fourth aspects is lens-shaped and assembled into a frame.
[0020]
The invention according to claim 6 is a distance portion mainly used when viewing a long distance object, a near portion mainly used when viewing a short distance object, the distance portion and the near portion. The progressive-power lens having a progressive refractive surface having a progressive zone whose power continuously changes during this period is designed so as to satisfy the following conditions (1) to (3). An eyeglass lens design method is provided.
[0021]
(1) When the refracting surface on the object side is the first surface and the refracting surface on the user side is the second surface, both refractive surfaces of the lens are the progressive refraction surfaces, and the surface addition A1 of the first surface is The surface addition A2 of the second surface is defined as A2 = Add-A1. Here, Add is the addition power of the lens.
(2) A parallel line with the optical axis of the lens passing through the distance portion center point of the second surface is parallel to an optical axis of the lens passing through the distance portion center point of the first surface. Either at the same position or near the fitting point.
(3) A parallel line with the optical axis of the lens passing through the near point center point of the second surface is parallel to an optical axis of the lens passing through the near point center point of the first surface. Either at the same position or near the fitting point.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described, but the present invention is not limited to the following embodiments.
[0023]
The progressive-power lens has a distance portion mainly used when viewing an object at a long distance, a near portion mainly used when viewing an object at a short distance, and a continuous portion between the distance portion and the near portion. And a progressive refracting surface having a progressively changing power. The progressive power lens includes an outer progressive lens having a progressive refractive surface only on the outer surface (first surface), an inner progressive lens having a progressive refractive surface only on the inner surface (second surface), and a progressive lens on both outer and inner surfaces. There are three types of double-sided progressive lenses having a refractive surface.
[0024]
In such a progressive-power lens, there is an area inevitably causing image shaking and distortion on the near side portion. This is due to the difference in apparent image size due to the difference in the power of the lens between the distance portion and the near portion. In order to suppress the image distortion, it is sufficient that the images of the distance portion and the near portion have the same size as much as possible. The apparent magnification (SM) of an image is represented by the following equation using paraxial amounts.
[0025]
SM = Ms × Mp (1)
Ms = 1 / (1-tD / n): shape factor-
Mp = 1 / (1-LP): power factor
t: lens thickness (m), n: refractive index, D: surface refractive power of the outer surface (diopter: D), L: distance from the lens to the pupil (m), P: lens power (diopter: D)
[0026]
By calculating the magnification of the distance portion and the magnification of the near portion in accordance with the above equation, and determining the difference, the degree of distortion of the side portion can be estimated. When comparing the outer surface progressive lens, the inner surface progressive lens, and the double-sided progressive lens having the same power, the same addition, and the almost same lens shape, the difference in Mp between the distance portion and the near portion is the same for each lens. On the other hand, the value of Ms changes depending on which surface has the progressive surface. In the outer surface progressive lens, since the average surface power of the first surface (outer surface) increases from the distance portion to the near portion, the value of Ms increases in the near portion. On the other hand, since the inner surface progressive lens uses a spherical surface as the first surface, the average surface refractive power is the same in the distance portion and the near portion, and the value of Ms is constant.
[0027]
In the double-sided progressive lens according to the present invention, the average surface refractive power P (D) of the first surface (outer surface) decreases continuously from the distance portion to the near portion (regressive surface). Conversely, the average surface power of the second surface (inner surface) increases continuously from the distance portion to the near portion (progressive surface). Thereby, the value of Ms also decreases. Therefore, the double-sided progressive lens of the present invention can further reduce shaking and distortion and improve optical performance as compared with the inner surface progressive lens.
[0028]
However, the average surface power P (D) at a certain point on the progressive surface is the maximum value Cmax (1 / m) of the curvature at that point, the minimum value Cmin (1 / m) of the curvature, and the value closer to the object side than the surface. Using the refractive index N1 of a certain medium and the refractive index N2 of the medium on the user side, it is defined as P = (N2-N1) (Cmax + Cmin) / 2. The curvature has a positive sign when the center of curvature is closer to the user than the surface, and has a negative sign when the center of curvature is closer to the object side. Therefore, when the spectacle lens has a meniscus shape, the average curvature (Cmax + Cmin) / 2 is a positive value. In the case of the first surface, since the medium on the object side of the surface is air, N1 is 1.0 and N2 is the refractive index of the lens material, so that the value of P is positive. On the other hand, on the second surface, N1 becomes the refractive index of the lens material, and N2 becomes 1.0, so that the value of P becomes negative.
[0029]
FIG. 1 is a graph showing the magnification ratio between the distance portion and the near portion of each of the outer surface progressive lens, the inner surface progressive lens, and the double-sided progressive lens of the present invention. It is recognized that the double-sided progressive lens of the present invention has a smaller magnification difference and less distortion than the conventional outer surface progressive lens and inner surface progressive lens.
[0030]
Furthermore, in the case of a double-sided progressive lens, since a progressive refraction surface is formed on both the first surface and the second surface, the degree of freedom in design is high. Progressive surface design is a major factor that affects the feeling of wearing. Various elements can be considered in the progressive surface design, and when roughly classified, there are a hard design in which priority is given to the size of the clear vision area and a software design in which reduction of distortion is prioritized. The choice of progressive surface design depends on the user's preference and application, but in the case of a double-sided progressive lens, astigmatism and image distortion do not occur when combining progressive surface designs of different characteristics. It turned out to be natural and the wearing feeling was very poor. Japanese Patent Application Laid-Open No. 2000-249992 discloses a hard design with a small addition and a software design with a large addition for the purpose of canceling astigmatism generated on the first surface and the second surface and reducing the aberration amount. Combined. However, in this case, if one point on the progressive surface is considered, astigmatism is canceled out, but large astigmatism remains in other places. Since the distribution of the remaining astigmatism is significantly different from that of the conventional progressive lens, image distortion becomes very unnatural. In addition, since the width of the clear visual field is limited by a soft design surface having a large addition power, the width is narrower than that of a conventionally designed outer surface progressive lens having the same addition power.
[0031]
As described above, in the case of a double-sided progressive lens, it is preferable that the progressive designs of the first surface and the second surface be as similar as possible. For this purpose, it is desirable that the average surface refractive power distribution of both surfaces be similar. Specifically, a value obtained by dividing the difference between the average surface power P1 at an arbitrary point on the first surface and the average surface power PF1 at the center of the distance portion by the addition A1 of the first surface is S1, and similarly, The value obtained by dividing the difference between the average surface power P2 at the point on the second surface corresponding to the point on the first surface and the average surface power PF2 at the center of the distance portion by the addition A2 of the second surface is S2. . That is, when expressed by an equation, S1 = (P1-PF1) / A1, and S2 = (P2-PF2) / A2. At this time, irrespective of the type of the progressive surface and the addition power of the surface, the values of S1 and S2 become 0 at the distance center point, become 1 at the near center point, and take a value between them at other places. . In order for the progressive design of the first surface and the second surface to be similar, it is necessary that the values of S1 and S2 are close to each other, and specifically, the difference between S1 and S2 within a range of 40 mm from the lens center. It is desirable that the absolute value | S1-S2 | is within 0.25, preferably within 0.15, more preferably within 0.10, and most preferably within 0.05.
[0032]
Further, in order to exhibit the effect of progressive progress on both surfaces, the difference between the average surface refractive power PF1 (D) at the center of the far portion of the outer surface and the average surface refractive power PN1 (D) at the center of the near portion of the outer surface (A1 = PN1-PF1), that is, a certain degree of addition is required, and if there is too much difference, the appearance of the lens is not preferable. Therefore, the value of the addition A1 becomes
-PF1-10.0 <A1 <-0.25 (D)
Is preferably within the range.
[0033]
Further, in the double-sided progressive lens, since the progressive refraction surfaces are provided on both the first surface and the second surface of the lens, these progressive refraction surfaces have a far vision portion, a near vision portion, and a near vision portion. Wearing sensation is improved by seeing the corridors overlap each other. As shown in FIG. 2, at a point away from the fitting point FP, the light ray L1 entering the eye passes obliquely through the lens 10. Therefore, when the progressive designs of the first surface 11 and the second surface 12 are similar, if the progressive refraction surfaces of both surfaces are provided with reference to the parallel line L2 to the optical axis, the first surface 11 and the second surface 12 In the progressive refraction surfaces, the far vision portions, the near vision portions, and the progressive zones are optically displaced from each other, resulting in a poor feeling of wearing. For this reason, the fitting of the distance portion center point and the near portion center point NP of the second surface 12 with respect to the distance portion center point and the near portion center point of the first surface facing each other is performed in consideration of the inclination of light rays. It is desirable to provide a near point central point NP 'and a near point central point (not shown) near the point.
[0034]
As a method of designing the lens surface shape of such a double-sided progressive lens, it is preferable to design so as to satisfy the following conditions (1) to (3). However, the order of the following (2) and (3) can be interchanged.
[0035]
(1) When the refractive surface on the object side is the first surface and the refractive surface on the user side is the second surface, both refractive surfaces of the lens are progressive refractive surfaces, and the surface addition A1 of the first surface is minus. , And the surface addition A2 of the second surface is set to A2 = Add-A1. Here, Add is the addition power of the lens.
(2) The parallel line with the optical axis of the lens passing through the far vision center point of the second surface is at the same position as the parallel line with the optical axis of the lens passing through the far vision center point of the first surface, or Position it near the fitting point.
(3) The parallel line with the optical axis of the lens passing through the near point center point of the second surface is at the same position as the parallel line with the optical axis of the lens passing through the near point center point of the first surface, or Position it near the fitting point.
[0036]
The present invention will be described below with reference to actual design examples. However, this design example is only one example, and the present invention is not limited to this example.
[0037]
【Example】
A lens having a spherical power of 0.0, an astigmatic power of 0.0, and an addition of 2.0 D was constructed by the conventional method and the method according to the present invention, respectively. The embodiment is a double-sided progressive lens according to the present invention, in which the first surface has a surface addition of -1.0 D and the surface average refractive power decreases continuously from the distance portion to the near portion. The progressive surface and the second surface are progressive progressive surfaces having a surface addition of + 3.0D. Conventional Example 1 is a conventional external surface progressive lens, in which the first surface is a progressive surface having a surface addition of +2.0 D, and the second surface is a spherical surface. Conventional Example 2 is a conventional inner surface progressive lens, in which the first surface is a spherical surface and the second surface is a progressive surface having a surface addition of + 2.0D. Conventional example 3 is a conventional double-sided progressive lens based on Japanese Patent Application Laid-Open No. 2000-249992, in which the first surface has a progressive addition surface of + 3.0D and the second surface has -1.0D of surface addition. It is a regressive progressive surface.
[0038]
FIG. 3 shows the coordinate values of the surface shape of the first surface of the double-sided progressive lens of Example, and FIG. 4 shows the coordinate values of the surface shape of the second surface. The coordinate axes of the surface shape are x-axis in the horizontal direction of the surface orthogonal to the optical axis, y-axis in the vertical direction, and z-axis parallel to the optical axis, with the most convex point of the first surface as the origin. The axis is positive on the eyeball side.
[0039]
The image magnification of each of the distance portion and the near portion was determined, and the improvement ratio was determined based on the difference between the image magnifications on the outer surface progressive. Further, the maximum aberration amount was obtained. Further, the maximum value of | S1−S2 | in the example and the conventional example 3 was obtained. The results are summarized in Table 1. FIG. 5 shows a graph of the average surface refractive power distribution of the first surface and the second surface on a horizontal line 10 mm below the center point of the double-sided progressive lens of Example. FIG. 6 shows a graph of the average surface refractive power distribution of the first surface and the second surface on a horizontal line 10 mm below the lens center of the double-sided progressive lens of Conventional Example 3. FIG. 7 shows the surface aberration distribution of the first surface, FIG. 8 shows the surface aberration distribution of the second surface, and FIG. 9 shows the transmission aberration distribution of the first surface and the second surface of the double-sided progressive lens of Example. FIG. 10 shows the surface aberration distribution of the first surface, FIG. 11 shows the surface aberration distribution of the second surface, and FIG. 12 shows the transmission aberration distribution of the first surface and the second surface of the double-sided progressive lens of Conventional Example 3.
[0040]
[Table 1]
Figure 2004004436
[0041]
The difference in magnification between the distance portion and the near portion is 0.0293 in the embodiment, 0.0350 in Conventional Example 1, 0.0312 in Conventional Example 2, and 0.0369 in Conventional Example 3. . On the basis of Conventional Example 1, Conventional Example 2 shows an improvement of 10.9%, and Example shows an improvement of 16.2%, whereas Conventional Example 3 shows a deterioration of 5.4%. I have. This is a double-sided progressive lens in both the conventional example 3 and the embodiment. However, the change A1 in the average surface refractive power of the first surface is positive in the conventional example 3 and negative in the embodiment. Responsible. In order to reduce the magnification difference of the near portion and reduce the distortion, it is necessary that the change in the average surface refractive power of the first surface is negative.
[0042]
The maximum amount of aberration when viewed through a lens is 2.41D in the embodiment, 2.52D in Conventional Example 1, and 2.46D in Conventional Example 2, which are approximately the same amount. In Conventional Example 3, the number is increased to 3.52D.
[0043]
As shown in FIG. 5, S1 on the first surface and S2 on the second surface of the double-sided progressive lens of Example are substantially the same, and the maximum value of | S1−S2 | is 0.02. From this, it is recognized that the progressive refraction surface of the first surface and the progressive refraction surface of the second surface are similar in design.
[0044]
As shown in FIG. 6, the maximum value of | S1−S2 | of the double-sided progressive lens of Conventional Example 3 is 0.29. It is recognized that the design of the first surface is different from that of the second surface. From the transmission aberration diagram of Conventional Example 3 shown in FIG. 12, it can be seen that an unnatural aberration region is formed on the side of the near portion. In contrast, the transmission aberration diagram of the embodiment shown in FIG. 9 shows that the double-sided progressive lens of the present invention has a natural aberration distribution. The cause of the unnatural aberration distribution is that in Conventional Example 3, the progressive surface of the soft design is used for one surface, the progressive surface of the hard design is used for one surface, and the surface aberration distribution of one surface and two surfaces is used. Are not consistent, and there are places where they do not cancel each other out. In order to solve this, it is necessary that the average surface refractive power distributions on both surfaces be similar, as in the case of the double-sided progressive lens of the present invention.
[0045]
【The invention's effect】
ADVANTAGE OF THE INVENTION The progressive-power lens of this invention can reduce the distortion and blur of the image which inevitably arise in a progressive-power lens, and can improve a feeling of wearing.
[0046]
Since the presbyopic glasses of the present invention use such progressive-power lenses, they are excellent in wearing feeling.
[0047]
According to the lens designing method of the present invention, it is possible to design a double-sided progressive lens excellent in wearing feeling.
[Brief description of the drawings]
FIG. 1 is a graph showing magnifications of a near portion with respect to a far portion of each of an outer surface progressive lens, an inner surface progressive lens, and a double-sided progressive lens.
FIG. 2 is a conceptual diagram illustrating that a shift occurs between an outer surface and an inner surface based on a parallel line with an optical axis due to refraction by an eyeglass lens.
FIG. 3 is a coordinate value showing a surface shape of a first surface of the double-sided progressive lens of Example.
FIG. 4 is a coordinate value showing a surface shape of a second surface of the double-sided progressive lens of Example.
FIG. 5 is a graph showing a distribution of surface average refractive power of the double-sided progressive lens of Example.
FIG. 6 is a graph showing a distribution of surface average refractive power of a double-sided progressive lens of Conventional Example 3.
FIG. 7 is a surface aberration distribution diagram of a first surface of the double-sided progressive lens according to the example.
FIG. 8 is a surface aberration distribution diagram of a second surface of the double-sided progressive lens according to the example.
FIG. 9 is a transmission aberration distribution diagram of the double-sided progressive lens of Example.
FIG. 10 is a surface aberration distribution diagram of a first surface of a double-sided progressive lens of Conventional Example 3.
11 is a surface aberration distribution diagram of a second surface of the double-sided progressive lens of Conventional Example 3. FIG.
FIG. 12 is a transmission aberration distribution diagram of a double-sided progressive lens of Conventional Example 3.

Claims (6)

主に遠距離の物体を見る時に使用する遠用部と、主に近距離の物体を見る時に使用する近用部と、前記遠用部と前記近用部との間に連続的に度数が変化する累進帯とを備える累進屈折面を有する累進屈折力レンズにおいて、
物体側の屈折面を第1面、使用者側の屈折面を第2面としたとき、前記第1面及び第2面の両方が累進屈折面に形成され、
かつ、前記第1面の平均面屈折力が、前記遠用部から前記近用部にかけて連続的に減少していることを特徴とする累進屈折力レンズ。
但し、累進屈折面上のある点における平均面屈折力P(D)は、その点における曲率の最大値Cmax(1/m)、曲率の最小値Cmin(1/m)と、累進屈折面より物体側にある媒質の屈折率N1と使用者側にある媒質の屈折率N2を用いて、
P=(N2−N1)(Cmax+Cmin)/2
で定義される。
The distance portion used mainly when viewing a long-distance object, the near portion used mainly when viewing a short-distance object, and the power is continuously between the distance portion and the near portion. A progressive power lens having a progressive refractive surface with a changing progressive zone,
When the object side refraction surface is a first surface and the user side refraction surface is a second surface, both the first surface and the second surface are formed as progressive refraction surfaces,
A progressive power lens wherein the average surface refractive power of the first surface continuously decreases from the distance portion to the near portion.
However, the average surface refractive power P (D) at a certain point on the progressive refraction surface is calculated from the maximum value Cmax (1 / m) of the curvature and the minimum value Cmin (1 / m) of the curvature at that point. Using the refractive index N1 of the medium on the object side and the refractive index N2 of the medium on the user side,
P = (N2-N1) (Cmax + Cmin) / 2
Is defined by
請求項1記載の累進屈折力レンズにおいて、
前記第1面の前記遠用部中心における平均面屈折力PF1(D)と前記第1面の近用部中心における平均面屈折力PN1(D)の差を面加入度A1(=PN1−PF1)とし、
前記第1面の任意の点における平均面屈折力P1とPF1との差をA1で割った値をS1とし、
S1=(P1−PF1)/A1
前記第2面の前記遠用部中心における平均面屈折力PF2(D)と前記第2面の前記近用部中心における平均面屈折力PN2(D)の差を面加入度A2(PN2−PF2)とし、
前記第1面の点に対応する前記第2面上の点における平均面屈折力P2と前記PF2との差をA2で割った値をS2としたとき、
S2=(P2−PF2)/A2
レンズ面上の中心から40mmの範囲内で
│S1−S2│≦0.25
であることを特徴とする累進屈折力レンズ。
The progressive-power lens according to claim 1,
The difference between the average surface refractive power PF1 (D) at the center of the distance portion of the first surface and the average surface refractive power PN1 (D) at the center of the near portion of the first surface is calculated as the surface addition A1 (= PN1-PF1). )age,
A value obtained by dividing the difference between the average surface refractive power P1 and PF1 at an arbitrary point on the first surface by A1 is S1,
S1 = (P1-PF1) / A1
The difference between the average surface refractive power PF2 (D) at the center of the distance portion of the second surface and the average surface refractive power PN2 (D) at the center of the near portion of the second surface is calculated as the surface addition A2 (PN2-PF2). )age,
When the difference between the average surface refractive power P2 at the point on the second surface corresponding to the point on the first surface and the PF2 divided by A2 is S2,
S2 = (P2-PF2) / A2
| S1−S2 | ≦ 0.25 within a range of 40 mm from the center on the lens surface
A progressive-power lens.
請求項1又は2記載の累進屈折力レンズにおいて、
前記第1面の前記遠用部中心における平均面屈折力をPF1(D)、前記第1面の前記近用部中心における平均面屈折力をPN1(D)とし、前記第1面の面加入度A1をA1=PN1−PF1とすると、
−PF1−10.0<A1<−0.25(D)
であることを特徴とする累進屈折力レンズ。
The progressive-power lens according to claim 1 or 2,
The average surface refractive power at the center of the distance portion of the first surface is PF1 (D), and the average surface refractive power at the center of the near portion of the first surface is PN1 (D), and the surface addition of the first surface is PN1 (D). If the degree A1 is A1 = PN1-PF1,
-PF1-10.0 <A1 <-0.25 (D)
A progressive-power lens.
請求項1〜3いずれかに記載の累進屈折力レンズにおいて、前記第2面の前記遠用部中心点を通るレンズの光軸との平行線が、前記第1面の前記遠用部中心点を通るレンズの光軸との平行線に対し、同じ位置か又はフィッティングポイント寄りの位置にあり、
前記第2面の前記近用部中心点を通るレンズの光軸との平行線が、前記第1面の前記近用部中心点を通るレンズの光軸との平行線に対し、同じ位置か又はフィッティングポイント寄りの位置にあることを特徴とする累進屈折力レンズ。
4. The progressive power lens according to claim 1, wherein a line parallel to an optical axis of the lens passing through the center point of the distance portion on the second surface is the center point of the distance portion on the first surface. At the same position or a position close to the fitting point with respect to a parallel line with the optical axis of the lens passing through,
The parallel line with the optical axis of the lens passing through the near point center point of the second surface is the same as the parallel line with the optical axis of the lens passing through the near point center point of the first surface. Or, a progressive-power lens located at a position near a fitting point.
請求項1〜4いずれかに記載の累進屈折力レンズを玉型加工し、フレームに組み込んだことを特徴とする老視用眼鏡。5. Presbyopia spectacles, wherein the progressive-power lens according to any one of claims 1 to 4 is lens-shaped and assembled into a frame. 主に遠距離の物体を見る時に使用する遠用部と、主に近距離の物体を見る時に使用する近用部と、前記遠用部と前記近用部との間に連続的に度数が変化する累進帯とを備える累進屈折面を有する累進屈折力レンズのレンズ面形状を下記(1)〜(3)の条件を満たすように設計することを特徴とする眼鏡レンズの設計方法。
(1)物体側の屈折面を第1面、使用者側の屈折面を第2面としたとき、レンズの両方の屈折面を前記累進屈折面として、前記第1面の面加入度A1をマイナスとし、前記第2面の面加入度A2をA2=Add−A1とする。但し、Addはレンズの加入度数である。
(2)前記第2面の前記遠用部中心点を通るレンズの光軸との平行線が、前記第1面の前記遠用部中心点を通るレンズの光軸との平行線に対し、同じ位置か又はフィッティングポイント寄りの位置にする。
(3)前記第2面の前記近用部中心点を通るレンズの光軸との平行線が、前記第1面の前記近用部中心点を通るレンズの光軸との平行線に対し、同じ位置か又はフィッティングポイント寄りの位置にする。
The distance portion used mainly when viewing a long-distance object, the near portion used mainly when viewing a short-distance object, and the power is continuously between the distance portion and the near portion. A spectacle lens designing method, characterized in that a progressive-power lens having a progressive surface having a changing progressive zone is designed so that the lens surface shape satisfies the following conditions (1) to (3).
(1) When the refracting surface on the object side is the first surface and the refracting surface on the user side is the second surface, both refractive surfaces of the lens are the progressive refraction surfaces, and the surface addition A1 of the first surface is The surface addition A2 of the second surface is defined as A2 = Add-A1. Here, Add is the addition power of the lens.
(2) A parallel line with the optical axis of the lens passing through the distance portion center point of the second surface is parallel to an optical axis of the lens passing through the distance portion center point of the first surface. Either at the same position or near the fitting point.
(3) A parallel line with the optical axis of the lens passing through the near point center point of the second surface is parallel to an optical axis of the lens passing through the near point center point of the first surface. Either at the same position or near the fitting point.
JP2002238488A 2002-03-27 2002-08-19 Progressive power lens, presbyopia glasses and lens design method Expired - Fee Related JP4239519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002238488A JP4239519B2 (en) 2002-03-27 2002-08-19 Progressive power lens, presbyopia glasses and lens design method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002089867 2002-03-27
JP2002238488A JP4239519B2 (en) 2002-03-27 2002-08-19 Progressive power lens, presbyopia glasses and lens design method

Publications (2)

Publication Number Publication Date
JP2004004436A true JP2004004436A (en) 2004-01-08
JP4239519B2 JP4239519B2 (en) 2009-03-18

Family

ID=30446169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002238488A Expired - Fee Related JP4239519B2 (en) 2002-03-27 2002-08-19 Progressive power lens, presbyopia glasses and lens design method

Country Status (1)

Country Link
JP (1) JP4239519B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7159982B2 (en) 2004-01-19 2007-01-09 Seiko Epson Corporation Method for providing design data and system for providing design data
US7175277B2 (en) 2004-01-19 2007-02-13 Seiko Epson Corporation Generation system of design data, generation method of design data, recording medium and program
US7914145B2 (en) 2005-05-19 2011-03-29 Tokai Optical Co., Ltd. Progressive power lens and manufacturing method therefor
WO2012115258A1 (en) 2011-02-23 2012-08-30 Seiko Epson Corporation Spectacle lens
EP2508937A1 (en) 2011-04-07 2012-10-10 Seiko Epson Corporation Progressive-power lens design method
JP2012198384A (en) * 2011-03-22 2012-10-18 Seiko Epson Corp Designing method for progressive refractive power lens and progressive refractive power lens
EP2574975A1 (en) 2011-09-30 2013-04-03 Seiko Epson Corporation Optical lens, method for designing optical lens, and apparatus for manufacturing optical lens
KR20130070551A (en) * 2011-12-19 2013-06-27 톰슨 라이센싱 Method and device for estimating the optical power of corrective lenses in a pair of eyeglasses worn by a spectator
WO2013132752A1 (en) 2012-03-05 2013-09-12 ホーヤ レンズ マニュファクチャリング フィリピン インク Lens set, lens design method, and lens manufacturing method
JP2014139680A (en) * 2006-07-20 2014-07-31 Nikon-Essilor Co Ltd Progressive refractive power lens design method, manufacturing method of the same and spectacle lens distribution system
JP2015505990A (en) * 2011-12-15 2015-02-26 エシロール アンテルナシオナル (コンパニー ジェネラル ドプティック) Method for determining a set of ophthalmic progressive lens and semi-finished lens blank
US10386652B2 (en) 2014-06-18 2019-08-20 Nikon-Essilor Co., Ltd. Lens design method, lens manufacturing method, storage medium, and lens design system
CN116679465A (en) * 2023-08-03 2023-09-01 苏州派视光学有限公司 Double-sided progressive addition lens and design method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012013742A (en) 2010-06-29 2012-01-19 Seiko Epson Corp Progressive refractive power eyeglass lens and design method thereof

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7175277B2 (en) 2004-01-19 2007-02-13 Seiko Epson Corporation Generation system of design data, generation method of design data, recording medium and program
US7159982B2 (en) 2004-01-19 2007-01-09 Seiko Epson Corporation Method for providing design data and system for providing design data
US7914145B2 (en) 2005-05-19 2011-03-29 Tokai Optical Co., Ltd. Progressive power lens and manufacturing method therefor
JP2014139680A (en) * 2006-07-20 2014-07-31 Nikon-Essilor Co Ltd Progressive refractive power lens design method, manufacturing method of the same and spectacle lens distribution system
JP5769914B2 (en) * 2006-07-20 2015-08-26 株式会社ニコン・エシロール Progressive power lens design method, manufacturing method, and spectacle lens supply system
WO2012115258A1 (en) 2011-02-23 2012-08-30 Seiko Epson Corporation Spectacle lens
US9010932B2 (en) 2011-02-23 2015-04-21 Hoya Lens Manufacturing Philippines Inc. Spectacle lens
JP2012198384A (en) * 2011-03-22 2012-10-18 Seiko Epson Corp Designing method for progressive refractive power lens and progressive refractive power lens
US9417462B2 (en) 2011-04-07 2016-08-16 Ehs Lens Philippines, Inc. Progressive power lens design method and progressive power lens design apparatus
EP2508937A1 (en) 2011-04-07 2012-10-10 Seiko Epson Corporation Progressive-power lens design method
JP2013076850A (en) * 2011-09-30 2013-04-25 Seiko Epson Corp Optical lens, method for designing optical lens, and manufacturing device of optical lens
US9581831B2 (en) 2011-09-30 2017-02-28 Ehs Lens Philippines, Inc. Optical lens, method for designing optical lens, and apparatus for manufacturing optical lens
EP2574975A1 (en) 2011-09-30 2013-04-03 Seiko Epson Corporation Optical lens, method for designing optical lens, and apparatus for manufacturing optical lens
JP2015505990A (en) * 2011-12-15 2015-02-26 エシロール アンテルナシオナル (コンパニー ジェネラル ドプティック) Method for determining a set of ophthalmic progressive lens and semi-finished lens blank
JP2013127621A (en) * 2011-12-19 2013-06-27 Thomson Licensing Method and device for estimating refractive power of correction lens of spectacles viewer is wearing
KR20130070551A (en) * 2011-12-19 2013-06-27 톰슨 라이센싱 Method and device for estimating the optical power of corrective lenses in a pair of eyeglasses worn by a spectator
KR102128407B1 (en) * 2011-12-19 2020-06-30 인터디지탈 매디슨 페이튼트 홀딩스 Method and device for estimating the optical power of corrective lenses in a pair of eyeglasses worn by a spectator
WO2013132752A1 (en) 2012-03-05 2013-09-12 ホーヤ レンズ マニュファクチャリング フィリピン インク Lens set, lens design method, and lens manufacturing method
US9746694B2 (en) 2012-03-05 2017-08-29 Ehs Lens Philippines, Inc. Lens set, method of designing lens and method of manufacturing lens
EP4137877A1 (en) 2012-03-05 2023-02-22 EHS Lens Philippines, Inc. Lens set, method of designing lens and method of manufacturing lens
US10386652B2 (en) 2014-06-18 2019-08-20 Nikon-Essilor Co., Ltd. Lens design method, lens manufacturing method, storage medium, and lens design system
CN116679465A (en) * 2023-08-03 2023-09-01 苏州派视光学有限公司 Double-sided progressive addition lens and design method thereof
CN116679465B (en) * 2023-08-03 2023-10-13 苏州派视光学有限公司 Double-sided progressive addition lens and design method thereof

Also Published As

Publication number Publication date
JP4239519B2 (en) 2009-03-18

Similar Documents

Publication Publication Date Title
JP4223290B2 (en) Progressive focus lens
JP3852116B2 (en) Progressive multifocal lens and spectacle lens
JP4973027B2 (en) Progressive power lens
JPH0690368B2 (en) Progressive multifocal lens and glasses
KR101877880B1 (en) A method for determining a progressive ophthalmic lens
JP4239519B2 (en) Progressive power lens, presbyopia glasses and lens design method
CN102445767B (en) Spectacle lens, spectacles, and method for manufacturing spectacle lens
JPH0990291A (en) Progressive multifocus lens
KR20140092338A (en) A method for determining an ophthalmic lens
JP2012185448A (en) Progressive refractive power lens
JP2018084788A (en) Progressive refractive power lens design method, and progressive refractive power lens
JP2004502963A (en) Progressive spectacle lens with low shaking movement
JP2001318346A (en) Progressive power lens
JP3690427B2 (en) Progressive multifocal lens and spectacle lens
WO2013137179A1 (en) Eyeglass lens and bifocal eyeglasses
US8684522B2 (en) Progressive-power lens and progressive-power lens design method
JP4243335B2 (en) Progressive power lens
JPH11125799A (en) Progressive focus lens for spectacles and spectacles using same
JPH06337380A (en) Progressive multifocus lens
JPH11295670A (en) Gradually progressive multifocus lens and production thereof
JP3601724B2 (en) Progressive focus lens
JP2002323681A (en) Method of manufacturing progressive multifocal lens
JP5749497B2 (en) Double-sided progressive lens, manufacturing method thereof, and manufacturing apparatus thereof
JP2000227579A (en) Inner progressive refractive lens
JP4034191B2 (en) Progressive power lens

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050801

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4239519

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees