JP2004004110A - Heating resistor type air-flow rate measuring module - Google Patents

Heating resistor type air-flow rate measuring module Download PDF

Info

Publication number
JP2004004110A
JP2004004110A JP2003202167A JP2003202167A JP2004004110A JP 2004004110 A JP2004004110 A JP 2004004110A JP 2003202167 A JP2003202167 A JP 2003202167A JP 2003202167 A JP2003202167 A JP 2003202167A JP 2004004110 A JP2004004110 A JP 2004004110A
Authority
JP
Japan
Prior art keywords
flow path
sub
passage
measuring device
type air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003202167A
Other languages
Japanese (ja)
Other versions
JP3793765B2 (en
Inventor
Shinya Igarashi
五十嵐 信弥
Chihiro Kobayashi
小林 千尋
Hiroshi Hirayama
平山  宏
Takayuki Saito
斉藤 孝行
Nobukatsu Arai
荒井 信勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Automotive Systems Engineering Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Car Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Car Engineering Co Ltd filed Critical Hitachi Ltd
Priority to JP2003202167A priority Critical patent/JP3793765B2/en
Publication of JP2004004110A publication Critical patent/JP2004004110A/en
Application granted granted Critical
Publication of JP3793765B2 publication Critical patent/JP3793765B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heating resistor type air-flow rate measuring device which is superior in cost reduction in internal combustion engine and in mountability. <P>SOLUTION: In an analysis method for the phase length of polyphase body, an accessory air passageway is integrated with a part of a module and is structured to provide a single module with all the functions necessary for the heating resistance type air-flow rate measuring device. It is one kind of module of the heating resistance type air-flow rate measuring device and can be mounted in each engine, and cost reduction, including the system cost of the internal combastion engine, can be attained. Furtheremore, it can be mounted in an air cleaner and the like of a air suction system and the heating resistor type air-flow meter of superior mountability can be provide. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の吸気系を構成してその吸入空気流量を測定する空気流量測定装置に係り、特に自動車のエンジンに吸入される空気流量を測定するのに適する発熱抵抗式空気流量測定装置に関する。
【0002】
【従来の技術】
本発明に最も近い公知例として、特許公報平4−75385号記載の空気流量計がある。しかし、特許公報平4−75385号では、主流路,副流路及び回路部の取付固定法については開示されておらず、また、副流路が主流路内をブリッジ状に両端支持される構造となっているため、本発明の第一の目的である回路部と副流路部を一体のモジュール化し、主流路の大きさによらず標準化したモジュールを種々の内燃機関に適用可能な構造とはなっていない。また、副流路の構造が複雑になるため計測精度の劣化が懸念され、数部品を結合して形成する必要が生じるためコストが高くなること等から実用化に適するものには至っていない。さらに、主流路が吸気系の異なる位置に配置されることによる環境の変化への対応やモジュールと主流路の取付ばらつきへの対応について十分考慮した構造とはなっていない。
【0003】
【発明が解決しようとする課題】
本発明は、発熱抵抗式空気流量測定装置の最大の課題である内燃機関のシステムコストの低減を達成するために、回路部と副流路部を一体化したモジュールに発熱抵抗式空気流量測定装置のほとんどの機能を持たせ、そのモジュールをひとつの製品として取り扱えるようにしたものである。また、これを真に実用化可能とするために、小形,軽量化,環境変化や取付ばらつきによる計測精度悪化の低減を図り、さらに取り扱い性の向上を図ったものである。
【0004】
【課題を解決するための手段】
内燃機関のシステムコストを低減するために、発熱抵抗式空気流量測定装置のコスト低減と他の吸気系部品との一体化によるシステムの部品点数の削減を図っている。まず、回路部と副流路部を一体化したモジュールとすることによって、比較的コストの高い流量計ボディを単純管路である主流路と主流路の壁面に設けた穴と回路の固定面で構成し、大幅なコスト低減を可能とした。また、副流路を構成する部品の形状も単純化及び小型化し、回路部との一体化も容易とし、回路部と副流路部を結合する部品の一体化を図り空気流量測定装置のコスト低減を達成した。さらに、流量計ボディの形状が単純化されたため、流量計ボディを別部材で作成せず他の吸気系部品と一体に形成することを可能とし、システムの部品点数を削減した。また、主流路の設定される位置や主流路の大きさが変わっても標準化したモジュールを適用可能としている。
【0005】
小形・軽量化のためには、副流路をその機能を損なうことなく、副流路形状の単純化,曲がり流路による通路全長の維持,感温抵抗体の副流路の直角曲がり部への配置,副流路の主流方向に垂直な第2通路を主流方向より主流と垂直な方向が長い断面形状とすることなどで副流路の主流方向長さを低減し、副流路の主流方向に垂直な第2通路も短く抑えて副流路を構成する部材を小型・軽量化するとともに、主流路中の副流路構成部材の占める割合を小さくし、副流路形状も圧力損失を生じにくくすることで主流路の断面積を大きくせずにすむ構造として主流路の小型・軽量化を可能としている。また、副流路を挿入するための主流路壁面の穴は、副流路を構成する部材の幅と長さの比を大きくしないようにして径の小さい円形とすることを可能として、挿入穴の形成を容易化し、回路の小型化に対応できるようにした。
【0006】
環境変化への対応としては、主流路内の空気の流れが吸気系の位置によって変化することへの対応と、空気流量測定装置の置かれる位置による温度変化への対応を図っている。主流路中に脈動流が生じることによる計測誤差に対しては、副流路をL字形の曲がり流路とし、主流方向に平行な第1通路と垂直な第2通路の長さの比を最適化しており、逆流の発生に対しては、副流路の出口開口面を主流方向と平行な面に形成し、出口部の上流にひさし状の突起を設けている。主流路の偏流による計測誤差に対しては、副流路の入口開口面を受皿状とし、出口上流に傾斜面を設けるとともに、主流路中の副流路の出入口の配置を最適化している。主流路の乱流,旋回流に対しては、副流路の全長を十分長くし、第1通路の断面積に対して第2通路の断面積を大きくすることを可能とし、出口上流に両側に壁のある傾斜面を設けている。温度変化に対しては、吸入空気の温度を計測する感温抵抗体をベース部材から離れた位置で副流路の直角曲がり部の内側コーナの近くに固定し、発熱抵抗体は感温抵抗体よりもベース部材に近い位置に固定している。また、発熱抵抗体の固定位置による計測精度の悪化を防止するために、副流路の入口開口部の受皿状の底面と第1通路が作るコーナから発熱抵抗体の間隔を適正化している。
【0007】
モジュールの主流路への取付ばらつきに対しては、副流路を構成する部材の副流路部のベース部材と平行な断面の外形を長方形あるいは台形等副流路の入口開口面のある主流方向と垂直な面と主流方向と平行な面が設けられる形状とすること、副流路の出口開口面を主流方向と平行な面に形成し、入口開口面の出口方向を堀り込んだ受皿状としていることにより対応している。
【0008】
取り扱い性の向上に対しては、回路部と副流路部が一体のモジュールとなっていること、主流路の挿入穴はベース部材で覆いかくされる大きさとし、Oリング,パッキンガスケット等により、挿入穴部からの空気もれを防止可能としていること、Oリングを装着する溝を形成しOリング付のモジュール化を達成していること及びモジュールを主流路に着脱可能に固定していることにより対応している。
【0009】
回路部と副流路部を一体化したモジュールとし、そのモジュールに発熱抵抗式空気流量測定装置のほとんどの機能を持たせたことにより、モジュールはひとつの製品として取り扱えるものとなった。これにより、内燃機関を取りまとめる企業、例えば自動車メーカは、安価な発熱抵抗式空気流量測定装置を得ることができ、また、吸気系の自由なレイアウトが可能となる。
【0010】
モジュールは、電子回路を回路ハウジング及びカバーにより保護し、発熱抵抗体及び感温抵抗体は副流路構成部材により保護されているため、取り扱いによる事故を防止している。
【0011】
副流路をL字形の曲がり流路とすることにより、副流路の全長を十分に長く設定できるため、副流路の出口部の主流路の空気の流れの乱れによる発熱抵抗体付近の空気の流れへの影響を軽減している。また、副流路の出口上流に両側に壁のある傾斜面を設けた構造により、副流路出口部の主流路の流れを方向性の整った慣性力の強い安定した流れと、主流路の流れの乱れ自体を低減している。副流路の入口開口面を主流路の流れ方向に垂直な面に開口し、出口開口面を主流方向に平行な面に開口しているのは、入口に動圧を受け出口を静圧で引くようにして出入口間の圧力差を高め、副流路に流入する空気の流速を高めて副流路内の流れを安定化するためである。さらに、副流路の第2通路の断面形状を幅広くしているのは、副流路構成部材の主流方向の長さを短く抑えながら断面積を確保して副流路が直角に曲がることで生じる流れのはく離による第2通路の流れ面積の減少を補い、副流路に流入する空気の流速減少を防止して発熱抵抗体付近の流れを安定化するためである。このように、副流路内、特に発熱抵抗体付近の流れを安定化することにより空気流量測定装置の出力ノイズを減少し計測精度を高める効果がある。また、L字形の副流路は、主流路に脈動流が生じた時の発熱抵抗体の放熱特性の非線形性と応答遅れにより生じるマイナス誤差を、副流路の出入口間の主流路の相対長さに対して副流路の長さを長くとり造流路内の流れに慣性効果を持たせることで脈動時の出力をプラス変化させて前記マイナス誤差を相殺し、脈動による出力誤差を低減する効果がある。副流路の第1通路の長さに対して第2通路の長さを2倍としているのは、前記のL字形副流路における慣性効果の度合を前記マイナス誤差を相殺するのに最適な長さ比としたものである。さらに、副流路の出口開口面をベース部材と平行な面に設け、副流路構成部材を回路側に固定した片持ち構造としているため、主流路の壁面に回路部を固定することで副流路部も主流路に固定され、片持ちのため主流路の大きさが異なる場合でも主流路の中心と回路部取付面の間隔を一定にすることにより、主流路の中心と副流路の出入口の位置を変えずに標準化したモジュールを適用することが可能である。
【0012】
発熱抵抗体を第1通路中に、感温抵抗体を直角曲がり部に配置するのは、第1通路の長さを短く抑えることを可能とするためで、両抵抗体を近接して配置することによる熱的流れ的干渉を防止し、発熱抵抗体は流れの安定化を図りやすい第1通路に配置することで計測誤差を低減している。第1通路の長さを短くして副流路構成部材の主流と変更な長さを短くできると、その長さを、副流路構成部材の幅が空気流量計の圧力損失の増加が問題とならない程度に小さくても2倍以内とすることができるため、主流路の壁面に設ける副流路を差し込むための挿入穴を比較的小さな円形とできるため、挿入穴の形成が容易となり、主流路形成の複雑化,大型化を防止できる。また、挿入穴はベース部材に覆いかくされる大きさにできるため、回路部のさらなる小型化に対する余裕を確保でき、ベース部材の底面と主流路の外壁の回路部固定面の間を、Oリング,パッキン,ガスケットなどでシールし、挿入穴部から主流路内外の空気もれを防止でき、空気もれによる計測誤差を防止できる。また、挿入穴を円形としているのでOリングによる径シールも可能である。
【0013】
ベース部材を基準にして、ターミナルをホルダに保持してベース部材を貫通するように固定し、ベース部材の上面に電子回路,回路ハウジングを固定し、回路ハウジングの上面をカバーで覆い、ベース部材の下面のターミナルあるいはホルダに発熱抵抗体及び感温抵抗体を固定し、副流路構成部材に設けた穴にホルダ及びターミナルを挿入して、発熱抵抗体と感温抵抗体が副流路内に位置するように副流路構成部材をホルダあるいはベース部材に固定する方法は、製造が容易であり、生産コストの低減が図れる。さらに、ベース部材と回路ハウジング,ベース部材とホルダ等の一体化が可能であるため、部品の点数の削減が可能で一層のコスト低減が図れる。また、各部品の固定は、インサート成形,接着,溶着等固定のための追加部品を要せずに行える構造となっている。さらに、副流路構成部材とホルダあるいはベース部材の接合面に溝を形成することができ、その溝にOリングを装着しておけば挿入穴のシールのためのOリングを脱落の心配無しに一体化したモジュールが得られ、取り扱い性をより向上したモジュールが得られる。
【0014】
副流路構成部材の副流路部のベース部材と平行な断面の外形を長方形あるいは台形等副流路の入口開口面のある主流方向と垂直な面と主流方向と平行な面のある形状とすることにより、モジュールを主流路へ取り付けた時のモジュール回転方向に対する取付角度のばらつきによる計測誤差を低減できる。主流路の流れ方向に対してモジュールの取付角度が曲がっていると副流路の入口開口面の有効面積(主流方向に垂直な断面に投影した面積)が減少するため、副流路へ流入する空気流量が減少しマイナス側の出力誤差を引き起こすように作用する。反面、副流路構成部材の主流に平行な面は、モジュールの取付角度が曲がっていると主流路の有効面積を減少するため、副流路へ流入する空気流量を増加しプラス側の出力誤差を引き起こすように作用するため、両作用が相殺されてモジュール取付角度のばらつきによる計測誤差を低減できる。一般的な主流路の断面積及び副流路構成部材の大きさを考慮すると、副流路入口開口部の幅に対して主流方向に平行な面の主流方向長さを約2倍程度とすると上記の相殺効果が適切となる。副流路構成部材の副流路部のベース部材と平行な断面の外形と、台形あるいは台形と長方形を組み合わせた形状としているのは、上記の取付角度の影響低減効果を損なわず、また、第2通路の断面積を減少させずに副流路構成部材の上面に生じる動圧を減少し、空気流量測定装置の圧力損失を低減するためである。さらに、副流路構成部材の下流底面を円弧状にしているのは、下流のはく離渦を小さくし圧力損失を低減するためと、第2通路の断面も一辺を円弧状として拡大することも可能なためである。前記副流路の断面外形の最も長い対角線の長さと主流路の壁面に設けた円形の挿入穴の直径をほぼ同じにしているのは、挿入穴を小さく抑えるためである。
【0015】
副流路の入口開口面の出口方向を堀り下げた受皿状にしているのは、主流路の広範囲の部分から副流路に空気を取り込むようにし、主流路中に偏流が生じた時の計測誤差を低減することが第1の目的である。この偏流時の計測誤差の低減作用は、副流路出口上流の傾斜面にもある。偏流により、出口上流の流速が速くなると傾斜面の下流に生じるはく離域が広がり、副流路出口の吸い出し効果が大きくなって副流路に流入する空気流量が増加し、反対に出口上流の流速が遅くなると出口のはく離域が小さくなり副流路に流入する空気流量が減少するため、副流路の入口開口面の上流流速の変化による副流路流入流量の影響度とうまく相殺し合う位置関係に出入口を設置すると偏流による計測誤差が低減できる。この作用が最も有効となるのは、第1通路を主流路の中心から偏心した位置に設け、主流路の中心付近を含む範囲に受皿状の部分を広げ、副流路の出口を主流路の中心に対して入口の反対部分に設けた時である。また、この受皿状の入口開口部は、回路固定面や主流路壁面の挿入穴が傾いたことによる副流路構成部材の上下流方向の傾きばらつきによる計測誤差の低減効果がある。副流路の出口方向が主流路の上流方向に傾くと、出口開口面は主流路の上流側から見えるようになる方向に傾くため、出口開口面に若干の動圧が生じる、あるいは負圧が減少するため、副流路の出入口間の圧力差が小さくなり副流路へ流入する空気流量が減少し、マイナスの計測誤差を生じるように作用する。一方、受皿状の開口面は第1通路が下流になる方向に傾くため、主流路の中心付近の流れをより副流路へ導きやすくするとともに、第1通路中に生じるはく離域が大きくなり発熱抵抗体付近の流速を速めるためプラス側の計測誤差を生じるように作用する。この両作用は互いに相殺し合うため、上記の副流路構成部材の傾きばらつきによる計測誤差を低減できる。反対に出口が下流側になるように傾くと、出口部は負圧が大きくなり、入口部は副流路に空気の取り入れにくい方向に傾くとともに第1通路内のはく離域を小さくするため、出入口の作用が相殺し合って計測誤差を低減できる。
【0016】
感温抵抗体を第1通路の中心線よりベース部材から離れる位置に固定するのは、感温抵抗体を直角曲がり部の中で最も流速の速い内側コーナ近くに位置させ、吸気温度の検出精度を向上させるとともに、吸入空気温度と空気流量測定装置の周囲の温度に差が生じるような温度環境下において、ターミナルやホルダを介しての熱伝導により、例えば周囲温度が高い時、周囲からホルダ及びターミナルを伝わった熱により感温抵抗体の温度が吸気温度より高くなるような吸気温度検出誤差を減少する作用を持たせるためである。感温抵抗体が吸気温度より高く誤計測するとプラス側の流量計測誤差を生じる。一方、発熱抵抗体は、周囲温度が高い環境下ではターミナル及びボルダへの熱伝導による放熱量が減少するためマイナス側の流量計測誤差を生じるように作用する。従って、両抵抗体への影響度を等しくすれば吸気温度と周囲温度が異なる環境での計測誤差を低減できる。実際には、両抵抗体の温度の違いにより、熱伝導の影響度及び空気への熱伝達による影響度が異なるため、単純に発熱抵抗体と感温抵抗体のターミナル及びホルダの熱抵抗を等しくしても不十分であり、感温抵抗体側は熱抵抗を大きくし、発熱抵抗体側は感温抵抗体側より熱抵抗を小さくすると良い。感温抵抗体をベース部材より離れた位置に固定し、発熱抵抗体を感温抵抗体よりベース部材に近づけて固定することにより、上記の温度環境下での計測誤差を低減するための両抵抗体の適切な熱的バランスを容易に得ることができる。
【0017】
発熱抵抗体の第1通路内の配置位置は、第1通路内の主流内、すなわち流速が速く安定した流れの中に配置する必要がある。従って、上記のような温度環境を考慮した発熱抵抗体の配置に際しても、感温抵抗体との位置関係のみでなく第1通路中の位置に対しても配慮しなければならない。単純円管通路であれば主流はその中心付近となるが、受皿状の開口面を持つ直角曲がり通路での第1通路中の主流の位置を決定する要因として、受皿状入口開口面の底面と第1通路によって形成される第1のコーナにより生じるはく離流により主流を管路中心よりもベース部材方向に動かす作用と、直角曲がり部で内側コーナ(第2のコーナ)近くの流速が速くなることにより主流を管路中心よりもベース部材から離れる方向に動かす作用がある。すなわち、前記第1のコーナと第2のコーナの位置関係が第1通路内の主流の位置に影響し、両コーナを結ぶ壁面である第1通路のベース部材から最も離れた内壁と発熱抵抗体との間隔を適切にとれば、発熱抵抗体を第1通路の主流中に配置することができる。一般的な副流路の大きさでは、第1通路のベース部材から最も離れた内壁から上記第1のコーナと第2のコーナの間隔の1/2〜1倍ベース部材方向に離れた部分が第1通路の主流の範囲となる。
【0018】
第1通路の断面形状を半円と長方形を組み合わせた形とするのは、発熱抵抗体と感温抵抗体の位置関係を適切としながら、発熱抵抗体を第1通路の主流内に配置するためのひとつの手段である。すなわち、発熱抵抗体の位置は感温抵抗体との関係から最適化し、第1通路の主流の位置を発熱抵抗体付近に動かすために、前記第1のコーナと第2のコーナを持つベース部材から最も離れた第1通路内壁の位置を自由に設定できる形状としたものである。
【0019】
以上のように、本発明の副流路部の構成には、環境変化や取付ばらつき及び装着性に対する多くの機能を持たせているが、副流路構成部材は、複数の部品を組み合わせる必要が無く、ひとつのプラスチック成形品として形成可能な単純な形状を維持している。従って、モジュール自体のコストを安く抑えることを可能としている。また、主流路の形状を単純化できたこと、モジュールがひとつの製品として取り扱うことが可能な機能,構造となっていること、環境変化や取付ばらつきにも対応できること等から、他の吸気系部品に主流路を一体化することが可能となり、また、モジュールの標準化も可能なことから内燃機関のシステムコストの低減も達成できる。さらに、モジュールは、回路部を主流路外壁に取り付けるだけで主流路に固定可能としているので装着性が良く、着脱可能に固定することも容易である。着脱可能な固定とすれば、市場での故障等への対応もモジュール部のみを交換することで容易に対応できる。
【0020】
【発明の実施の形態】
以下、本発明の実施例を図1〜図14により説明する。
【0021】
図1は本発明の一実施例の横断面図であり、図2はその上流側(左側)から見た外観図である。
【0022】
ベース部材7の上面には、電子回路8及び回路ハウジング9が固定され、外部機器と電気的に接続するためのコネクタ11は回路ハウジング9に一体化され、回路ハウジング9の上面はカバー10によって覆われている。電子回路8と電気的に接続しているターミナル13はベース部材7の下面方向に引き出され、発熱抵抗体1と感温抵抗体2がターミナル13と電気的に接続されて固定されている。副流路3は、ベース部材7と垂直な面に開口する入口開口面301と、入口開口面からベース部材と平行に延びる第1通路302と、ベース部材と垂直な方向に延びる第1通路の約2倍の長さを有する第2通路304と、ベース部材と垂直な面に開口する出口開口面305及び第1通路302と第2通路304の交点部分にあたる直角曲がり部303によって構成されるL字形の流路であり、発熱抵抗体1が第1通路302内に、感温抵抗体2が直角曲がり部303内に位置するように、副流路構成部材4がベース部材7に固定される。上記によって、発熱抵抗式空気流量測定装置の回路部と副流路部を一体化したモジュールが構成される。
【0023】
一方、主流路5を構成する流量計ボディ6の壁面には、副流路構成部材4を差し込むための挿入穴14及びベース部材7を取り付ける取付固定面15が設けられている。この流量計ボディ6に、副流路3の第1通路302が主流路5の流れ方向17と平行になるように副流路構成部材4を挿入穴14から主流路5内に差し込み、挿入穴14の周囲がシールされるように取付固定面15とベース部材7の底面の間にゴムパッキン16をはさんでベース部材7が主流路外壁にネジ18により固定されている。
【0024】
上記実施例に対して、さらに種々の環境下における計測精度の悪化を低減する構成及び副流路構成部材とベース部材の固定法を具体化した実施例の横断面図を図3に、その上流側(左側)から見た外観図を図4に示す。
【0025】
ターミナル13がホルダ19の内部を貫通するようにターミナル13をホルダ19と一体化し、ベース部材7の穴部を通してベース部材7とホルダ19が固定される。ここで、ターミナル13とホルダ19及びベース部材7の種々の固定法を挙げると、ターミナル13及びベース部材7が金属製でホルダ19がプラスチック製で、ホルダ19の成形時にターミナル13とベース部材7をインサート成形することにより3者を一体化する方法,ターミナル13とホルダ19をインサート成形しベース部材7と接着等により固定する方法、あるいは、図3では別部材として示しているが、ベース部材7とホルダ19をひとつのプラスチック成形品としてターミナル13をインサート成形する方法、及び、最も部品点数を少なくするために、回路ハウジング9とベース部材7とホルダ19をひとつのプラスチック成形品としてターミナル13をインサート成形する方法等がある。電子回路8は、ベース部材7あるいはホルダ19の上面に固定され、ターミナル13とワイヤ等の導電性部材22を介して電気的に接続される。また、回路ハウジング9もベース部材7の上面に固定され、回路ハウジング9の上面はカバー10を固定することによって覆われる。
【0026】
一方、ターミナル13の電子回路8の反対端部には、発熱抵抗体1及び感温抵抗体2が電気的に接続固定される。本実施例では、感温抵抗体2を副流路3の直角曲がり部303の内部でその内側コーナ近くに位置するように固定し、発熱抵抗体1は副流路3の第1通路302内で感温抵抗体2よりもベース部材7に近い位置になるように固定して、温度変化の激しい環境においても計測誤差を低減できる構成としている。
【0027】
副流路構成部材4には、前記第一の実施例と同様に入口開口面301,第1通路302,直角曲がり部303,第2通路304,出口開口面305から構成されるL字形の流路に加えて、副流路3内に取り込む空気を広範囲、特に主流路5の中心付近から導くことを目的とした周囲に壁を残して堀り込んだ受皿状入口 306,出口部の流れを安定化することを目的とした両側に壁のある傾斜面307とその傾斜面の先端を出口開口面305より下方に出張らせた出口庇308、及び、ホルダ19を挿入する穴401とホルダ19との接合面402が設けられている。また、副流路3の第1通路302は、発熱抵抗体1の固定位置を温度影響を優先して第1通路302の中心よりもベース部材7に近付く方向として、第1通路302の流れと垂直な断面中で流速が比較的速く流れの安定した範囲を発熱抵抗体1の固定部に持ってくるために、半円形と長方形を合わせた断面形状とし、受皿状入口306の底面と第1通路302の作るコーナと直角曲がり部303の内側コーナの間隔に対して前記両コーナをつなぐ第1通路302の内壁と発熱抵抗体1の間隔が1/2から1(同間隔)となるようにしている。さらに、第2通路304と平行な肉盗み穴403を設け、副流路構成部材4を均肉化しプラスチック成形のひけによる形状変化を防止するとともに、材料費及び重量を低減している。
【0028】
この副流路構成部材4は、ホルダ挿入穴401にホルダ19を差し込み、接合面402でホルダ19と接着固定される。ここで、ホルダ19に設けた段差と副流路構成部材の接合面402により溝部404が形成される。この溝部404はOリング20の装着溝であり、Oリング20により主流路壁面の挿入穴14がシールされる構成となっている。上記により、回路部と副流路部及び挿入穴シール用のOリングが一体化したモジュールが構成される。
【0029】
これを前記第一の実施例と同様に流量計ボディ6に固定することにより、発熱抵抗式空気流量測定装置が完成される。本実施例では挿入穴シール用のOリングがモジュールに装着されているため、ゴムパッキンは不要である。本実施例では、回路ハウジング9をベース部材7とともにネジ18にて固定し回路ハウジングの固定強度を増加したものを示しており、また、流量計ボディ6の主流路5の入口面に整流格子21を装着し、さらに計測精度を改善したものを示している。
【0030】
図5は第二の実施例で示した発熱抵抗式空気流量測定装置の回路部と副流路部を一体化したモジュールの横断面図で、図6はその下方(出口方向)から見た外観図である。
【0031】
副流路構成部材4のベース部材7と平行な断面の外形は、ホルダ19の挿入部が円形で、副流路部が第1通路の流れ方向と垂直な辺の長さに対して第1通路の流れ方向と平行な辺の長さが1〜2倍になっている長方形としている。また、ホルダ19の主流路壁面の挿入穴14に差し込まれる部分の外形も円形としており、その直径を副流路部の長方形断面の対角線の長さとほぼ等しくしているため、主流路壁面に設ける挿入穴を比較的小さな円形とすることができる。さらに、副流路の入口開口面301の第2通路304の流れ方向と垂直な開口幅は、前記副流路部の長方形断面の第1通路302と平行な辺の長さの約1/2としており、第2通路304の断面形状は、第1通路302と平行な辺より垂直な辺の方が長い長方形としている。
【0032】
図7及び図8は、図6と同様に図5の下方から見た外観図である。図7は、ホルダ19の主流路壁面の挿入穴14に差し込まれる部分のベース部材7と平行な断面の外形は図6と同じ直径の円形とし、副流路の第2通路304の形状も図6と等しくして、副流路構成部材4の副流路部のベース部材7と平行な断面の外形を台形と長方形を組み合わせた形状としたものである。図8は、さらに第2通路の下流側底面及び副流路部の断面外形の下流側底面を円弧状としたものである。
【0033】
図9はエンジンの吸入空気量をコントロールするバルブ23を有するスロットルボディ24に図5に示したモジュールを挿入して成る発熱抵抗式空気流量測定装置を示したものである。流量計測部はバルブ上流に配置しており、空気の流れは図示左側から右側へ流れる。副空気通路を持つスロットルボディ一体形発熱抵抗式空気流量計は、既に製品化されているが、副空気通路部材がスロットルボディと一体で構成されているか、又は、モジュールの回路を覆うハウジング部材がスロットルボディと一体で構成されておりスロットルボディの構造がかなり複雑化してしまう。これに対し、図9に示す本発明の実施例によればハウジング部材及び副空気通路部材がモジュールと一体化されているため、スロットルボディの構造を簡素化することが可能となる。また、スロットルバルブを持たない吸気系(例えばディーゼル車)ではモジュールを直接インテークマニホールドへ装着することも可能である。
【0034】
図10は、エンジンルーム内に配置されるエアクリーナの一部に図5に示したモジュールを取り付けた実施例を示したものである。エアクリーナは新規空気を取込むための導入ダクト25を有する上流側ケース部材26と吸気ダクト30とエアクリーナを接続するための接続ダクト28を有する下流側ケース部材27で空気中のダストを除去するためのフィルタ29をはさみ込んで固定する構造である。当然ではあるが空気の流れは図示矢印の様に流れ、接続ダクト28にはフィルタ29によりダストが除去されたクリーンな空気が流れる。ここで、接続ダクト28の一部に発熱抵抗式空気流量測定装置の副空気通路部を挿入するための挿入穴14があいており、これをネジ等を使って接続ダクト28とモジュールとを機械的に固定する。これにより、前記した主空気通路を構成するボディの代りに接続ダクト28の様なエアクリーナの一部分を使って主空気通路を構成することが可能となりボディを必要としないモジュール単体での安価な発熱抵抗式空気流量測定装置を提供することが可能となる。
【0035】
図11に示す例は基本的には図10と同様にエアクリーナの一部に図5に示すモジュールを取り付けた実施例を示したものである。図10では下流側ケース部材27の外側に設けた接続ダクト28の一部に発熱抵抗式空気流量測定装置のモジュール部を取り付けたが、図11では、下流側ケース部材27の内側にダクト31が設けられており、ダクト31の一部に挿入穴14を設けモジュールを取り付けた例を示したものである。尚、図にはダクト31の先端部分は空気の流れを整流化するためにベルマウス状にしている。本構造の様に発熱抵抗式空気流量測定装置のモジュールをエアクリーナ内部に入れることにより図10に示した接続ダクト28に相当する部分の長さを短くできるため、吸気系のコンパクト化を図ることが可能である。尚図10に示した接続ダクト28及び図11に示したダクト31は図示ではエアクリーナ下流側ケース部材27と一体で記述したが各々別体で製作し後から機械的強度を保つ様に固定してもかまわない。
【0036】
図12は別の実施例を示す発熱抵抗式空気流量測定装置の横断面であり、図 13はその上流側(左側)から見た図である。図3〜図4との相違は主空気通路を構成するボディ32の内径を大きくしたものである。ボディ内径を大きくすると単純に考えれば、副空気通路の内、流量を計測するための発熱抵抗体1が配置される第1通路302及び入口開口面301がボディ壁面近くに片寄ってしまう。この場合、仮にボディ32の上流側の形状(エアクリーナ及びダクト形状)によりボディ32内において空気の流れに偏流が生じた場合、壁面に近い場所においてはその偏流によって発熱抵抗式空気流量測定装置の計測誤差を生じてしまう。通常管内を流れる流速分布は管の中心部分が最も流速が速く、壁面に近づくにつれておそくなる様に放物線に近い分布を示す。すなわち管内の中心では平均流速より流速は速く壁面ではおそくなり、流速の平均値は中心よりズレた位置で計測することが望まれる。このため、本発明品においては副空気通路の出入口を管中心からズラして平均流速の値を副空気通路に取込む様にしている(副空気通路内を流れる流速値を決めるのは出入口の圧力差であり出入口共に管中心よりズラす必要が有る)。しかし、偏流の大部分はこの最も流速の速い位置が中心位置からズレてしまい、中心に対し一方が速い流速の値を示し、他方はおそい流速の値を示してしまう。このため速い流速分布の位置に副空気通路の入口開口面301が有ると、平均流速よりプラス側の計測誤差が生じ、逆におそい位置に有るとマイナス側の計測誤差を生じる。
【0037】
この様にボディ32の内径を大きくした場合においても偏流による計測誤差をおさえるためにボディ32にベース部材7を取り付ける取付面33を図示の様にボディ32外径より掘下げて、かつ、ボディ32内壁がモジュール取付部において異径となる様な形状とし、ボディ32内径の中心に対し出入口までの各々の距離がほぼ同じ様になる様な構造としたものである。尚この場合、ボディ32内壁がモジュール取付部において内壁が凸となる様になるため、その部分の上下流は空気の流れを極力乱さない様に図示34,35の様にゆるやかに傾斜させることが望まれる。
【0038】
最後に、図14を使い電子燃料噴射方式の内燃機関に本発明品を適用した一実施例を示す。
【0039】
エアクリーナ100から吸入された吸入空気101は、発熱抵抗式空気流量測定装置102のボディ,吸気ダクト103,スロットルボディ104及び燃料が供給されるインジェクタ105を備えたマニホールド106を経て、エンジンシリンダ107に吸入される。一方エンジンシリンダで発生したガス108は排気マニホールド109を経て排出される。
【0040】
発熱抵抗式空気流量計の回路モジュール110から出力される空気流量信号,スロットル角度センサ111から出力されるスロットルバルブ開度信号,排気マニホールド109に設けられた酸素濃度計112から出力される酸素濃度信号及びエンジン回転速度計113から出力される回転速度信号を入力するコントロールユニット114はこれらの信号を演算して最適な燃料噴射量とアイドルエアコントロールバルブ開度を求め、その値を前記インジェクタ105及びアイドルエアコントロールバルブ115を制御する。
【0041】
【発明の効果】
発熱抵抗式空気流量測定装置としてのほとんどの機能をモジュールに持たせることにより、モジュールを1つの製品として扱え、例えば、エアクリーナの一部や、吸気ダクトの一部等にモジュールを取り付けることにより、発熱抵抗式空気流量測定装置としての機能を十分に果すことができさらに、1種類のモジュールを各エンジンに流用できるためマッチング等が容易となり、内燃機関のシステムコストの低減を達成することが可能となる。
【0042】
また、従来の主空気通路を構成するボディを要する発熱抵抗式空気流量測定においてもコストの内、大きなウェイトを占めていたボディを単純な筒状にすることができる。また、上記した様に1種類のモジュールに発熱抵抗式空気流量測定装置としての機能を持たせることにより、ボディのメイン径のみにより搭載エンジンの排気量に応じた発熱抵抗式空気流量測定装置の標準化及びシリーズ化ができ、これらの効果により従来の副空気通路一体のボディを有する発熱抵抗式空気流量測定装置と比べ約10〜20%程度コスト低減可能となる。
【0043】
さらに、市場において、発熱抵抗式空気流量測定装置に何らかの異常が生じた場合においてもモジュール単品だけの交換で済むため市場における発熱抵抗式空気流量測定装置の取扱い性の向上を図ることが可能となる。
【図面の簡単な説明】
【図1】本発明の一実施例を示す発熱抵抗式空気流量測定装置の横断面図。
【図2】図1を空気の流れの上流側から見た図。
【図3】計測精度向上を目的とした一実施例を示す発熱抵抗式空気流量測定装置の横断面。
【図4】図3を空気の流れの上流側から見た図。
【図5】図3のモジュール単品図。
【図6】図5を副空気通路の出口方向から見た図。
【図7】図6に対し副空気通路の上流側形状を変えた一実施例。
【図8】図7に対し副空気通路の上流側形状を変えた一実施例。
【図9】本発明の一実施例を示すスロットルボディ一体形発熱抵抗式空気流量測定装置の横断面図。
【図10】本発明の一実施例を示す発熱抵抗式空気流量測定装置一体形エアクリーナの横断面図。
【図11】本発明の一実施例を示す発熱抵抗式空気流量測定装置内蔵形エアクリーナの横断面図。
【図12】本発明の一実施例を示すボディ内径を広げた場合の発熱抵抗式空気流量測定装置の横断面図。
【図13】図12を空気の流れの上流側から見た図。
【図14】本発明品を用いた内燃機関の制御システム図。
【符号の説明】
1…発熱抵抗体、2…感温抵抗体、3…副流路、4…副流路構成部材、5…主流路、6…流量計ボディ、7…ベース部材、8…電子回路、9…回路ハウジング、10…カバー、11…コネクタ、13…ターミナル、14…挿入穴、15…取付固定面、16…ゴムパッキン、17…流れ方向、18…ネジ、19…ホルダ、20…Oリング、21…整流格子、22…導電性部材、23…バルブ、24, 104…スロットルボディ、25…導入ダクト、26…上流側ケース部材、27…下流側ケース部材、28…接続ダクト、29…フィルタ、30…吸気ダクト、31…ダクト、32…ボディ、33…取付面、100…エアクリーナ、101…吸入空気、102…発熱抵抗式空気流量測定装置、103…吸気ダクト、105…インジェクタ、106…マニホールド、107…エンジンシリンダ、108…ガス、109…排気マニホールド、110…回路モジュール、111…スロットル角度センサ、112…酸素濃度計、113…回転速度計、114…コントロールユニット、115…アイドルエアコントロールバルブ、301…入口開口面、302…第1通路、303…直角曲がり部、304…第2通路、305…出口開口面、306…受皿状入口、307…傾斜面、308…出口庇、401…ホルダ挿入穴、402…接合面、403…肉盗み穴、404…溝部。
[0001]
TECHNICAL FIELD OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air flow rate measuring device which constitutes an intake system of an internal combustion engine and measures an intake air flow rate thereof, and more particularly to a heating resistance type air flow rate measuring device suitable for measuring an air flow rate taken into an automobile engine. About.
[0002]
[Prior art]
As a known example closest to the present invention, there is an air flow meter described in Japanese Patent Publication No. 4-75385. However, Japanese Patent Application Laid-Open No. 4-75385 does not disclose a method for mounting and fixing the main flow path, the sub flow path, and the circuit portion. Therefore, the first object of the present invention is a module that integrates the circuit section and the sub-flow path section into an integrated module, and has a structure that can apply a standardized module to various internal combustion engines regardless of the size of the main flow path. Not. In addition, the structure of the sub-channel becomes complicated, and there is a concern that the measurement accuracy may be degraded. Since it is necessary to form the sub-channel by connecting several parts, the cost is increased, and thus it is not suitable for practical use. Furthermore, the structure does not sufficiently take into account a change in the environment due to the main flow path being arranged at a different position in the intake system or a change in the mounting variation between the module and the main flow path.
[0003]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION The present invention relates to a heating resistance type air flow measuring device which is a module integrating a circuit section and a sub-flow path portion in order to achieve a reduction in system cost of an internal combustion engine, which is the greatest problem of the heating resistance type air flow measuring device. It has almost all the functions of, so that the module can be handled as a single product. Further, in order to make this a truly practical application, the miniaturization, weight reduction, reduction of measurement accuracy deterioration due to environmental changes and mounting variations are aimed at, and further improvement in handling is achieved.
[0004]
[Means for Solving the Problems]
In order to reduce the system cost of the internal combustion engine, the cost of the heating resistance type air flow measuring device is reduced, and the number of system components is reduced by integrating with the other intake system components. First, by using a module in which the circuit section and the sub-flow path section are integrated, a relatively expensive flowmeter body can be mounted on the main flow path, which is a simple conduit, with the holes provided on the wall of the main flow path and the fixing surface of the circuit. With this configuration, significant cost reductions have been made possible. In addition, the shape of the components constituting the sub flow path is simplified and reduced in size, the integration with the circuit section is facilitated, and the components connecting the circuit section and the sub flow path section are integrated to reduce the cost of the air flow measurement device. Reduction achieved. Furthermore, since the shape of the flowmeter body has been simplified, the flowmeter body can be formed integrally with other intake system components without being formed as a separate member, thereby reducing the number of system components. Further, even if the position where the main flow path is set or the size of the main flow path changes, a standardized module can be applied.
[0005]
In order to reduce the size and weight, the sub flow path is simplified without impairing its function, the length of the sub flow path is maintained by the curved flow path, and the sub flow path of the temperature sensitive resistor is bent at a right angle. The length of the sub-flow passage in the main flow direction is reduced by making the second passage perpendicular to the main flow direction of the sub-flow passage have a cross-sectional shape in which the direction perpendicular to the main flow is longer than the main flow direction. The second passage perpendicular to the direction is also kept short to reduce the size and weight of the members constituting the sub flow passage, reduce the proportion of the sub flow passage constituent members in the main flow passage, and reduce the pressure loss in the sub flow passage shape. By making it less likely to occur, it is possible to reduce the size and weight of the main flow path as a structure that does not increase the cross-sectional area of the main flow path. In addition, the hole in the main flow path wall surface for inserting the sub flow path can be formed in a circular shape with a small diameter so as not to increase the ratio of the width to the length of the member constituting the sub flow path. Simplifies the formation of the circuit and can be adapted to miniaturization of the circuit.
[0006]
As a response to environmental changes, a response to the change in the flow of air in the main flow path depending on the position of the intake system and a response to a temperature change depending on the position where the air flow measurement device is placed. For measurement errors caused by pulsating flow in the main flow path, the sub flow path is an L-shaped curved flow path, and the ratio of the length of the first passage parallel to the main flow direction and the length of the second passage perpendicular to the main flow direction is optimized. To prevent backflow, the outlet opening surface of the sub flow path is formed in a plane parallel to the main flow direction, and an eave-shaped projection is provided upstream of the outlet portion. With respect to the measurement error due to the drift of the main flow path, the inlet opening surface of the sub flow path has a saucer shape, an inclined surface is provided upstream of the outlet, and the arrangement of the entrance and exit of the sub flow path in the main flow path is optimized. With respect to the turbulent flow and swirling flow of the main flow path, the total length of the sub flow path is made sufficiently long so that the cross-sectional area of the second flow path can be made larger than the cross-sectional area of the first flow path. There is an inclined surface with a wall. For temperature changes, a temperature-sensitive resistor that measures the temperature of the intake air is fixed near the inner corner of the right-angled bend of the sub flow path at a position away from the base member, and the heating resistor is a temperature-sensitive resistor It is fixed at a position closer to the base member. Further, in order to prevent the measurement accuracy from being deteriorated due to the fixing position of the heating resistor, the interval between the heating resistor and the corner formed by the first passage and the saucer-shaped bottom surface of the sub flow path is optimized.
[0007]
Regarding the variation in the mounting of the module to the main flow path, the external shape of the cross-section parallel to the base member of the sub-flow path part of the member forming the sub-flow path should be rectangular or trapezoidal. And a shape parallel to the main flow direction, with a surface perpendicular to the main flow direction and a surface parallel to the main flow direction. It is responded by doing.
[0008]
In order to improve the handling, the circuit section and the sub flow path are integrated modules, the insertion hole of the main flow path is sized to be covered by the base member, and inserted by O-ring, packing gasket, etc. By being able to prevent air leakage from the hole, by forming a groove for mounting an O-ring to achieve modularization with an O-ring, and by detachably fixing the module to the main flow path Yes, it is.
[0009]
By making the module integrated with the circuit section and the sub-flow path section, and having the module with most of the functions of the heating resistance type air flow measurement device, the module can be handled as a single product. As a result, a company that integrates internal combustion engines, for example, an automobile manufacturer, can obtain an inexpensive heating resistance type air flow measuring device, and a free layout of the intake system becomes possible.
[0010]
In the module, the electronic circuit is protected by the circuit housing and the cover, and the heating resistor and the temperature-sensitive resistor are protected by the sub-flow path constituent members, thereby preventing accidents due to handling.
[0011]
By making the sub flow path an L-shaped curved flow path, the total length of the sub flow path can be set sufficiently long, so that the air near the heating resistor due to the turbulence of the air flow in the main flow path at the outlet of the sub flow path To reduce the impact on the flow. In addition, the structure in which the inclined surface having walls on both sides is provided upstream of the outlet of the sub-flow passage, the flow of the main flow passage at the outlet of the sub-flow passage has a stable flow with a strong directional inertia force, The turbulence itself is reduced. The inlet opening of the sub flow path is opened in a plane perpendicular to the flow direction of the main flow path, and the outlet opening face is opened in a plane parallel to the main flow direction. This is to increase the pressure difference between the inlet and outlet by pulling, to increase the flow velocity of the air flowing into the sub flow path, and to stabilize the flow in the sub flow path. Furthermore, the reason why the cross-sectional shape of the second passage of the sub-flow passage is widened is that the sub-flow passage is bent at a right angle while securing the cross-sectional area while keeping the length of the sub-flow passage component in the main flow direction short. This is for compensating for the decrease in the flow area of the second passage due to the separation of the generated flow, preventing the flow velocity of the air flowing into the sub-flow passage from decreasing, and stabilizing the flow near the heating resistor. As described above, by stabilizing the flow in the sub flow path, particularly in the vicinity of the heating resistor, there is an effect that the output noise of the air flow measuring device is reduced and the measurement accuracy is improved. In addition, the L-shaped sub-flow path reduces the negative error caused by the non-linearity of the heat radiation characteristic of the heating resistor and the response delay when a pulsating flow occurs in the main flow path, and reduces the relative length of the main flow path between the entrance and exit of the sub-flow path. On the other hand, by increasing the length of the sub-flow path and by giving an inertial effect to the flow in the flow path, the output at the time of pulsation is positively changed, thereby canceling out the negative error and reducing the output error due to the pulsation. effective. The reason why the length of the second passage is twice as long as the length of the first passage of the sub-flow passage is that the degree of the inertia effect in the L-shaped sub-flow passage is optimal for canceling the minus error. It is a length ratio. Furthermore, since the outlet opening surface of the sub flow path is provided on a surface parallel to the base member and the sub flow path constituting member has a cantilever structure fixed to the circuit side, the circuit section is fixed to the wall surface of the main flow path. The flow path is also fixed to the main flow path, and even when the size of the main flow path is different due to cantilevering, the distance between the center of the main flow path and the mounting surface of the circuit section is kept constant, so that the center of the main flow path and the sub flow path are It is possible to apply a standardized module without changing the position of the doorway.
[0012]
The reason why the heating resistor is disposed in the first passage and the temperature-sensitive resistor is disposed in the right-angled bent portion is that the length of the first passage can be reduced, and both resistors are disposed close to each other. Therefore, the measurement error is reduced by arranging the heating resistor in the first passage which is easy to stabilize the flow. If the length of the first passage can be shortened to shorten the main flow and the changed length of the sub flow path component, the length of the sub flow path component may be reduced by increasing the pressure loss of the air flow meter. Even if it is small enough not to be too small, it can be within twice, so that the insertion hole for inserting the sub flow path provided on the wall of the main flow path can be made relatively small circular, so that the insertion hole can be easily formed, It is possible to prevent the road from becoming complicated and large. Further, since the insertion hole can be sized so as to be covered by the base member, a margin for further miniaturization of the circuit portion can be secured, and the O-ring and the O-ring are provided between the bottom surface of the base member and the circuit portion fixing surface of the outer wall of the main flow path. Sealing with a packing, gasket, or the like can prevent air leakage inside and outside the main flow path from the insertion hole, and can prevent measurement errors due to air leakage. Further, since the insertion hole is formed in a circular shape, a diameter seal using an O-ring is also possible.
[0013]
With the base member as a reference, the terminal is held by a holder and fixed so as to penetrate the base member, an electronic circuit and a circuit housing are fixed to the upper surface of the base member, and the upper surface of the circuit housing is covered with a cover. Fix the heating resistor and the temperature-sensitive resistor to the terminal or holder on the lower surface, insert the holder and the terminal into the hole provided in the sub-flow path component, and the heating resistor and the temperature-sensitive resistor enter the sub-flow path. The method of fixing the sub-flow path constituent member to the holder or the base member so as to be located is easy to manufacture and can reduce the production cost. Further, since the base member and the circuit housing, and the base member and the holder can be integrated, the number of parts can be reduced, and the cost can be further reduced. In addition, the components can be fixed without additional components for fixing such as insert molding, bonding, welding, and the like. Furthermore, a groove can be formed in the joint surface between the sub-flow path constituent member and the holder or the base member, and if an O-ring is attached to the groove, the O-ring for sealing the insertion hole does not have to be dropped. An integrated module is obtained, and a module with improved handling properties is obtained.
[0014]
The external shape of the cross-section parallel to the base member of the sub-flow path part of the sub-flow path component member is a rectangular or trapezoidal shape having a surface perpendicular to the main flow direction with the entrance opening surface of the sub flow channel and a shape having a surface parallel to the main flow direction. By doing so, it is possible to reduce measurement errors due to variations in the mounting angle with respect to the module rotation direction when the module is mounted on the main flow path. If the mounting angle of the module is bent with respect to the flow direction of the main flow path, the effective area of the inlet opening surface of the sub flow path (the area projected on a cross section perpendicular to the main flow direction) decreases, so that it flows into the sub flow path. It acts to reduce the air flow rate and cause a negative output error. On the other hand, if the mounting angle of the module is bent, the surface of the sub flow path component that is parallel to the main flow will reduce the effective area of the main flow path, increasing the air flow rate flowing into the sub flow path and increasing the output error on the plus side. Therefore, the two effects cancel each other out, and a measurement error due to a variation in the module mounting angle can be reduced. Considering the general cross-sectional area of the main flow path and the size of the sub-flow path constituent members, the length in the main flow direction of the plane parallel to the main flow direction is about twice as large as the width of the sub-flow path inlet opening. The above-mentioned offset effect becomes appropriate. The external shape of the cross-section parallel to the base member of the sub-flow path portion of the sub-flow path component member, and the shape of a trapezoid or a combination of a trapezoid and a rectangle, do not impair the effect of reducing the effect of the mounting angle, and This is for reducing the dynamic pressure generated on the upper surface of the sub-flow path constituting member without reducing the cross-sectional area of the two passages, thereby reducing the pressure loss of the air flow measuring device. In addition, the downstream bottom surface of the sub flow path component is formed in an arc shape in order to reduce downstream separation vortex and reduce pressure loss, and it is also possible to enlarge the cross section of the second passage so that one side is formed in an arc shape. That is why. The reason why the length of the longest diagonal line of the cross-sectional shape of the sub flow path and the diameter of the circular insertion hole provided in the wall surface of the main flow path are made substantially the same is to keep the insertion hole small.
[0015]
The shape of the saucer with the exit direction of the inlet opening face of the sub flow path dug down is to take air into the sub flow path from a wide area of the main flow path, and when a drift occurs in the main flow path The first object is to reduce measurement errors. The effect of reducing the measurement error at the time of the drift is also present on the inclined surface upstream of the sub flow path outlet. If the flow velocity at the outlet upstream increases due to the drift, the separation area generated downstream of the inclined surface expands, the suction effect at the outlet of the sub flow passage increases, the air flow rate flowing into the sub flow passage increases, and conversely, the flow velocity at the outlet upstream When the flow rate becomes slower, the separation area at the outlet becomes smaller and the air flow rate flowing into the sub-flow path decreases, so that the position where the influence of the flow rate of the sub-flow path flow rate due to the change in the upstream flow velocity at the inlet opening surface of the sub-flow path well cancels out If an entrance is installed in the relationship, measurement errors due to drift can be reduced. This action is most effective when the first passage is provided at a position eccentric from the center of the main flow passage, the pan-shaped portion is expanded to include the vicinity of the center of the main flow passage, and the outlet of the sub flow passage is connected to the main flow passage. This is when it is provided at the opposite part of the entrance to the center. In addition, the tray-shaped inlet opening has an effect of reducing measurement errors due to variations in the inclination in the upstream and downstream directions due to the inclination of the insertion holes in the circuit fixing surface and the main channel wall surface. When the exit direction of the sub flow path is inclined in the upstream direction of the main flow path, the exit opening surface is inclined in a direction that can be seen from the upstream side of the main flow path, so that a slight dynamic pressure is generated in the exit opening surface, or a negative pressure is generated. Due to the decrease, the pressure difference between the inlet and outlet of the sub flow path is reduced, and the flow rate of air flowing into the sub flow path is reduced, thereby acting to cause a negative measurement error. On the other hand, the pan-shaped opening surface is inclined in a direction in which the first passage is located downstream, so that the flow near the center of the main flow passage is more easily guided to the sub flow passage, and the separation area generated in the first passage is increased, thereby generating heat. In order to increase the flow velocity near the resistor, it acts to cause a measurement error on the plus side. Since these two effects cancel each other, a measurement error due to the variation in inclination of the sub flow path component can be reduced. Conversely, if the outlet is inclined so that the outlet is on the downstream side, the outlet will have a large negative pressure, and the inlet will be inclined in the direction in which it is difficult to take in air into the sub-flow passage, and the separation area in the first passage will be reduced. Can cancel each other to reduce the measurement error.
[0016]
The temperature-sensitive resistor is fixed at a position farther from the base member than the center line of the first passage, because the temperature-sensitive resistor is located near the inner corner where the flow velocity is the fastest in the right angle bend, and the detection accuracy of the intake air temperature is determined. In a temperature environment where there is a difference between the intake air temperature and the ambient temperature of the air flow measurement device, heat conduction through the terminals and the holder allows, for example, when the ambient temperature is high, the holder and the This is to reduce the intake air temperature detection error such that the temperature of the temperature sensitive resistor becomes higher than the intake air temperature due to the heat transmitted through the terminal. If the temperature-sensitive resistor erroneously measures higher than the intake air temperature, a positive-side flow rate measurement error occurs. On the other hand, the heating resistor acts to cause a negative flow measurement error in a high ambient temperature environment because the amount of heat radiation due to heat conduction to the terminal and the boulder decreases. Therefore, if the degree of influence on both resistors is made equal, a measurement error in an environment where the intake air temperature and the ambient temperature are different can be reduced. Actually, the influence of the heat conduction and the influence of the heat transfer to the air are different due to the difference in temperature between the two resistors, so simply the heat resistance of the terminal and the holder of the heating resistor and the temperature sensitive resistor are simply made equal. However, it is not sufficient that the thermal resistance is higher on the temperature-sensitive resistor side and smaller on the heat-generating resistor side than on the temperature-sensitive resistor side. By fixing the temperature-sensitive resistor at a position distant from the base member and fixing the heating resistor closer to the base member than the temperature-sensitive resistor, the two resistors for reducing the measurement error under the above temperature environment are used. A proper thermal balance of the body can be easily obtained.
[0017]
It is necessary to arrange the heating resistor in the first passage in the main flow in the first passage, that is, in a stable flow having a high flow velocity. Therefore, when arranging the heating resistor in consideration of the temperature environment as described above, it is necessary to consider not only the positional relationship with the temperature sensitive resistor but also the position in the first passage. In the case of a simple circular pipe passage, the main flow is near the center, but as a factor that determines the position of the main flow in the first passage in the right-angled curved passage having a saucer-shaped opening surface, the bottom surface of the saucer-like inlet opening surface and The action of moving the main flow toward the base member rather than the center of the pipe due to the separation flow generated by the first corner formed by the first passage, and the flow velocity near the inner corner (second corner) at the right-angled bend is increased. This has the effect of moving the main flow in a direction away from the base member rather than the center of the pipeline. That is, the positional relationship between the first corner and the second corner affects the position of the main flow in the first passage, and the inner wall farthest from the base member of the first passage, which is the wall connecting the two corners, and the heating resistor If the distance between them is appropriately set, the heating resistor can be arranged in the mainstream of the first passage. In a general size of the sub-flow path, a portion separated from the inner wall of the first passage farthest from the base member in the direction of the base member by 1/2 to 1 times the interval between the first corner and the second corner. This is the range of the main flow of the first passage.
[0018]
The cross-sectional shape of the first passage is a combination of a semicircle and a rectangle because the heat-generating resistor is arranged in the mainstream of the first passage while the positional relationship between the heat-generating resistor and the temperature-sensitive resistor is made appropriate. Is one of the means. That is, the position of the heating resistor is optimized in relation to the temperature-sensitive resistor, and the base member having the first corner and the second corner is moved in order to move the mainstream position of the first passage near the heating resistor. The shape is such that the position of the inner wall of the first passage farthest from the inner wall can be freely set.
[0019]
As described above, the configuration of the sub-channel portion of the present invention has many functions with respect to environmental changes, mounting variations, and mountability. However, the sub-channel component member needs to combine a plurality of components. And maintain a simple shape that can be formed as one plastic molded product. Therefore, the cost of the module itself can be reduced. In addition, other intake system components have been simplified because the shape of the main flow path has been simplified, the module has a function and structure that can be handled as one product, and it can cope with environmental changes and mounting variations. In addition, since the main flow path can be integrated, and the modules can be standardized, the system cost of the internal combustion engine can be reduced. Furthermore, since the module can be fixed to the main flow path only by attaching the circuit portion to the outer wall of the main flow path, the module has good mountability and is easily removably fixed. If detachable fixing is used, it is possible to easily cope with a failure in the market by replacing only the module part.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described below with reference to FIGS.
[0021]
FIG. 1 is a cross-sectional view of one embodiment of the present invention, and FIG. 2 is an external view seen from the upstream side (left side).
[0022]
An electronic circuit 8 and a circuit housing 9 are fixed to an upper surface of the base member 7, and a connector 11 for electrically connecting to an external device is integrated with the circuit housing 9. The upper surface of the circuit housing 9 is covered by a cover 10. Has been done. The terminal 13 that is electrically connected to the electronic circuit 8 is drawn out toward the lower surface of the base member 7, and the heating resistor 1 and the temperature-sensitive resistor 2 are electrically connected to the terminal 13 and fixed. The sub flow path 3 includes an inlet opening surface 301 that opens in a plane perpendicular to the base member 7, a first passage 302 extending parallel to the base member from the inlet opening surface, and a first passage 302 extending in a direction perpendicular to the base member. L constituted by a second passage 304 having a length of about twice, an outlet opening surface 305 opening in a plane perpendicular to the base member, and a right-angled bent portion 303 corresponding to an intersection of the first passage 302 and the second passage 304. The sub-flow channel forming member 4 is fixed to the base member 7 such that the heating resistor 1 is located in the first passage 302 and the temperature-sensitive resistor 2 is located in the right-angled bent portion 303. . As described above, a module in which the circuit section and the sub flow path section of the heating resistance type air flow measuring device are integrated is configured.
[0023]
On the other hand, on the wall surface of the flow meter body 6 that forms the main flow path 5, an insertion hole 14 for inserting the sub flow path component 4 and a mounting fixing surface 15 for mounting the base member 7 are provided. The sub flow path component 4 is inserted into the main flow path 5 from the insertion hole 14 so that the first passage 302 of the sub flow path 3 is parallel to the flow direction 17 of the main flow path 5 into the flow meter body 6. The base member 7 is fixed to the outer wall of the main flow channel by a screw 18 with a rubber packing 16 interposed between the attachment fixing surface 15 and the bottom surface of the base member 7 so that the periphery of the base 14 is sealed.
[0024]
FIG. 3 is a cross-sectional view of an embodiment in which a configuration for reducing deterioration of measurement accuracy under various environments and a method for fixing the sub-flow path constituent member and the base member to the above embodiment are further illustrated. FIG. 4 shows an external view as viewed from the side (left side).
[0025]
The terminal 13 is integrated with the holder 19 so that the terminal 13 passes through the inside of the holder 19, and the base member 7 and the holder 19 are fixed through the hole of the base member 7. Here, various fixing methods of the terminal 13 and the holder 19 and the base member 7 will be described. The terminal 13 and the base member 7 are made of metal and the holder 19 is made of plastic. A method of integrating the three members by insert molding, a method of insert-molding the terminal 13 and the holder 19 and fixing the terminal 13 and the holder 19 to the base member 7 by adhesion or the like, or FIG. A method of insert-molding the terminal 13 with the holder 19 as one plastic molded product, and insert molding of the terminal 13 with the circuit housing 9, the base member 7, and the holder 19 as one plastic molded product in order to minimize the number of parts. There are ways to do that. The electronic circuit 8 is fixed to the upper surface of the base member 7 or the holder 19 and is electrically connected to the terminal 13 via a conductive member 22 such as a wire. The circuit housing 9 is also fixed to the upper surface of the base member 7, and the upper surface of the circuit housing 9 is covered by fixing the cover 10.
[0026]
On the other hand, the heating resistor 1 and the temperature-sensitive resistor 2 are electrically connected and fixed to the terminal 13 at the opposite end of the electronic circuit 8. In the present embodiment, the temperature-sensitive resistor 2 is fixed so as to be located near the inner corner inside the right-angled bent portion 303 of the sub flow path 3, and the heating resistor 1 is located in the first passage 302 of the sub flow path 3. The temperature sensor 2 is fixed at a position closer to the base member 7 than the temperature-sensitive resistor 2, so that a measurement error can be reduced even in an environment where the temperature changes drastically.
[0027]
As in the first embodiment, an L-shaped flow formed by an inlet opening surface 301, a first passage 302, a right-angled bent portion 303, a second passage 304, and an outlet opening surface 305 is provided in the sub-flow path constituting member 4. In addition to the path, the flow of the pan-shaped inlet 306 and the outlet part dug out leaving a wall around the purpose of guiding the air taken into the sub-flow path 3 from a wide area, particularly near the center of the main flow path 5 is described. An inclined surface 307 having walls on both sides for the purpose of stabilization, an exit eave 308 having the tip of the inclined surface traveled below the exit opening surface 305, a hole 401 for inserting the holder 19, and the holder 19 Is provided. In addition, the first passage 302 of the sub flow path 3 sets the fixing position of the heating resistor 1 to be closer to the base member 7 than the center of the first passage 302 with priority given to temperature influence, and the flow of the first passage 302 In order to bring the range where the flow velocity is relatively high in the vertical cross section and the flow is stable to the fixed portion of the heating resistor 1, the cross section is formed by combining a semicircle and a rectangle, and the bottom of the pan-shaped inlet 306 and the first The distance between the inner wall of the first passage 302 connecting the two corners and the heating resistor 1 is set to 1/2 to 1 (the same distance) with respect to the distance between the corner formed by the passage 302 and the inner corner of the right-angled bent portion 303. ing. In addition, a wall-throat hole 403 parallel to the second passage 304 is provided to make the sub-flow path constituting member 4 uniform in thickness, to prevent a shape change due to sink in plastic molding, and to reduce material cost and weight.
[0028]
The holder 19 is inserted into the holder insertion hole 401, and the sub-channel forming member 4 is bonded and fixed to the holder 19 at the joint surface 402. Here, a groove 404 is formed by the step provided on the holder 19 and the joint surface 402 of the sub-flow path component. The groove 404 is a mounting groove for the O-ring 20, and has a configuration in which the O-ring 20 seals the insertion hole 14 on the wall of the main flow path. As described above, a module in which the circuit section, the sub-flow path section, and the O-ring for insertion hole sealing are integrated is configured.
[0029]
By fixing this to the flow meter body 6 in the same manner as in the first embodiment, a heating resistance type air flow measuring device is completed. In this embodiment, since the O-ring for sealing the insertion hole is mounted on the module, no rubber packing is required. In this embodiment, the circuit housing 9 is fixed together with the base member 7 with screws 18 to increase the fixing strength of the circuit housing, and a rectifying grid 21 is provided on the inlet face of the main flow path 5 of the flowmeter body 6. Is shown, and the measurement accuracy is further improved.
[0030]
FIG. 5 is a cross-sectional view of a module in which a circuit section and a sub-flow path section of the heating resistance type air flow measuring device shown in the second embodiment are integrated, and FIG. FIG.
[0031]
The external shape of the cross section parallel to the base member 7 of the sub flow path component member 4 is such that the insertion portion of the holder 19 is circular, and the sub flow path portion has the first length with respect to the length of the side perpendicular to the flow direction of the first passage. It is a rectangle in which the length of the side parallel to the flow direction of the passage is 1-2 times. In addition, the outer shape of the portion of the holder 19 to be inserted into the insertion hole 14 on the main flow path wall surface is also circular, and the diameter thereof is substantially equal to the length of the diagonal line of the rectangular cross section of the sub flow path portion. The insertion hole can be a relatively small circle. Further, the opening width of the inlet opening surface 301 of the sub-flow path perpendicular to the flow direction of the second passage 304 is about の of the length of the side parallel to the first passage 302 of the rectangular cross section of the sub-flow path portion. The cross-sectional shape of the second passage 304 is a rectangle whose vertical side is longer than the side parallel to the first passage 302.
[0032]
7 and 8 are external views as viewed from below in FIG. 5, similarly to FIG. FIG. 7 is a cross-sectional view of a portion of the holder 19 that is inserted into the insertion hole 14 on the wall of the main channel parallel to the base member 7 and has the same diameter as that of FIG. 6, the outer shape of the cross-section of the sub-flow path component member 4 parallel to the base member 7 is formed by combining a trapezoid and a rectangle. FIG. 8 is a view in which the downstream bottom surface of the second passage and the downstream bottom surface of the cross-sectional outline of the sub-passage portion are formed in an arc shape.
[0033]
FIG. 9 shows a heating resistance type air flow measuring device in which the module shown in FIG. 5 is inserted into a throttle body 24 having a valve 23 for controlling the intake air amount of the engine. The flow measuring unit is disposed upstream of the valve, and the flow of air flows from left to right in the figure. Throttle body integrated heating resistance type air flowmeter with sub air passage has already been commercialized, but the sub air passage member is formed integrally with the throttle body, or the housing member that covers the module circuit is It is formed integrally with the throttle body, which considerably complicates the structure of the throttle body. On the other hand, according to the embodiment of the present invention shown in FIG. 9, since the housing member and the auxiliary air passage member are integrated with the module, the structure of the throttle body can be simplified. Further, in an intake system without a throttle valve (for example, a diesel vehicle), the module can be directly mounted on the intake manifold.
[0034]
FIG. 10 shows an embodiment in which the module shown in FIG. 5 is attached to a part of an air cleaner arranged in an engine room. The air cleaner is provided with an upstream case member 26 having an introduction duct 25 for taking in new air and a downstream case member 27 having a connection duct 28 for connecting the intake duct 30 and the air cleaner. This is a structure in which the filter 29 is inserted and fixed. As a matter of course, the flow of air flows as shown by the arrow in the figure, and clean air from which dust has been removed by the filter 29 flows through the connection duct 28. Here, a part of the connection duct 28 has an insertion hole 14 for inserting the auxiliary air passage part of the heating resistance type air flow measuring device, and the connection hole 28 is screwed to connect the connection duct 28 and the module mechanically. Fixed. This makes it possible to form the main air passage by using a part of the air cleaner such as the connection duct 28 instead of the body forming the main air passage described above. It becomes possible to provide a type air flow measuring device.
[0035]
The example shown in FIG. 11 basically shows an embodiment in which the module shown in FIG. 5 is attached to a part of the air cleaner similarly to FIG. In FIG. 10, the module part of the heating resistance type air flow measuring device is attached to a part of the connection duct 28 provided outside the downstream case member 27, but in FIG. 11, the duct 31 is provided inside the downstream case member 27. This is an example in which an insertion hole 14 is provided in a part of the duct 31 and a module is attached. In the figure, the tip of the duct 31 is formed in a bell mouth shape in order to rectify the flow of air. By inserting the module of the heating resistance type air flow measuring device inside the air cleaner as in this structure, the length of the portion corresponding to the connection duct 28 shown in FIG. 10 can be shortened, and the intake system can be made compact. It is possible. Although the connection duct 28 shown in FIG. 10 and the duct 31 shown in FIG. 11 are shown integrally with the air cleaner downstream case member 27 in the drawing, they are manufactured separately and fixed so as to maintain the mechanical strength after they are manufactured. It doesn't matter.
[0036]
FIG. 12 is a cross section of a heating resistance type air flow measuring device showing another embodiment, and FIG. 13 is a diagram viewed from the upstream side (left side). The difference from FIGS. 3 and 4 is that the inner diameter of the body 32 constituting the main air passage is increased. If it is simply considered that the inside diameter of the body is increased, the first passage 302 in which the heating resistor 1 for measuring the flow rate is arranged and the inlet opening surface 301 of the auxiliary air passage are offset near the body wall. In this case, if the air flow in the body 32 has a drift due to the upstream shape (air cleaner and duct shape) of the body 32, the drift is generated near the wall surface by the heating resistance air flow measurement device due to the drift. An error will occur. Normally, the flow velocity distribution flowing in the pipe shows a distribution close to a parabola such that the flow velocity is the highest at the center of the pipe and becomes slower as approaching the wall. That is, the flow velocity is faster than the average flow velocity at the center in the pipe and slows down on the wall surface, and it is desired that the average value of the flow velocity be measured at a position shifted from the center. For this reason, in the product of the present invention, the value of the average flow velocity is taken into the sub air passage by shifting the entrance and exit of the sub air passage from the center of the pipe. This is a pressure difference, and it is necessary to shift both the entrance and exit from the center of the pipe). However, in most of the drifts, the position where the flow velocity is the fastest is shifted from the center position, and one of them shows a value of a fast flow velocity with respect to the center, and the other shows a value of a slow flow velocity. For this reason, if the inlet opening surface 301 of the sub air passage is located at the position of the fast flow velocity distribution, a measurement error on the plus side is generated from the average flow velocity, and conversely, if it is located at a slow position, a measurement error on the minus side is generated.
[0037]
In this way, even if the inner diameter of the body 32 is increased, the mounting surface 33 for attaching the base member 7 to the body 32 is dug down from the outer diameter of the body 32 as shown in FIG. Are formed so as to have different diameters at the module mounting portion, and the distance from the center of the inner diameter of the body 32 to the entrance is substantially the same. In this case, since the inner wall of the body 32 becomes convex at the module mounting portion, the upper and lower portions of the body may be gently inclined as shown in FIGS. 34 and 35 so as to minimize disturbance of the air flow. desired.
[0038]
Finally, FIG. 14 shows an embodiment in which the product of the present invention is applied to an electronic fuel injection type internal combustion engine.
[0039]
The intake air 101 sucked from the air cleaner 100 is sucked into the engine cylinder 107 through the body of the heating resistance type air flow measuring device 102, the intake duct 103, the throttle body 104, and the manifold 106 having the injector 105 to which fuel is supplied. Is done. On the other hand, gas 108 generated in the engine cylinder is discharged through an exhaust manifold 109.
[0040]
An air flow signal output from the circuit module 110 of the heating resistance type air flow meter, a throttle valve opening signal output from the throttle angle sensor 111, and an oxygen concentration signal output from the oximeter 112 provided in the exhaust manifold 109 The control unit 114, which inputs the rotational speed signals output from the engine tachometer 113, calculates these signals to determine the optimal fuel injection amount and the idle air control valve opening, and uses these values as the injector 105 and the idle The air control valve 115 is controlled.
[0041]
【The invention's effect】
The module can be treated as a single product by having most of the functions as a heating resistance type air flow measuring device in the module. For example, by attaching the module to a part of the air cleaner or a part of the intake duct, The function as a resistance type air flow measuring device can be sufficiently performed, and furthermore, one type of module can be used for each engine, so that matching and the like can be easily performed, and the system cost of the internal combustion engine can be reduced. .
[0042]
Further, in the conventional heating resistance air flow measurement that requires a body constituting the main air passage, the body occupying a large weight among the costs can be formed into a simple cylindrical shape. In addition, as described above, by providing one type of module with a function as a heating resistance type air flow measuring device, standardization of the heating resistance type air flow measuring device according to the displacement of the mounted engine only by the main diameter of the body. With these effects, the cost can be reduced by about 10 to 20% as compared with a conventional heating resistance type air flow measuring device having a body having an integral sub air passage.
[0043]
Furthermore, even in the case where any abnormality occurs in the heating resistance type air flow measuring device in the market, only the module itself needs to be replaced, so that the handleability of the heating resistance type air flow measuring device in the market can be improved. .
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a heating resistance type air flow measuring device showing an embodiment of the present invention.
FIG. 2 is a diagram of FIG. 1 viewed from an upstream side of an air flow.
FIG. 3 is a cross-sectional view of a heating resistance type air flow measuring device showing an embodiment for improving measurement accuracy.
FIG. 4 is a view of FIG. 3 viewed from an upstream side of an air flow.
FIG. 5 is a diagram of a single module of FIG. 3;
FIG. 6 is a view of FIG. 5 as viewed from an outlet direction of a sub air passage.
7 is an embodiment in which the shape of the upstream side of the sub air passage is changed from FIG.
FIG. 8 shows an embodiment in which the shape of the upstream side of the sub air passage is changed from FIG.
FIG. 9 is a cross-sectional view of a throttle body-integrated heating resistance type air flow measuring device showing an embodiment of the present invention.
FIG. 10 is a cross-sectional view of an air cleaner integrated with a heating resistance type air flow measuring device showing an embodiment of the present invention.
FIG. 11 is a cross-sectional view of an air cleaner with a built-in heating resistance type air flow measuring device showing an embodiment of the present invention.
FIG. 12 is a cross-sectional view of a heating resistance type air flow measuring device when an inner diameter of a body is increased according to an embodiment of the present invention.
FIG. 13 is a view of FIG. 12 as viewed from the upstream side of the flow of air.
FIG. 14 is a control system diagram of an internal combustion engine using the product of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Heating resistor, 2 ... Temperature sensing resistor, 3 ... Sub flow path, 4 ... Sub flow path constituent member, 5 ... Main flow path, 6 ... Flow meter body, 7 ... Base member, 8 ... Electronic circuit, 9 ... Circuit housing, 10 cover, 11 connector, 13 terminal, 14 insertion hole, 15 mounting surface, 16 rubber packing, 17 flow direction, 18 screw, 19 holder, 20 O-ring, 21 ... Rectifying grid, 22 ... Conductive member, 23 ... Valve, 24, 104 ... Throttle body, 25 ... Introduction duct, 26 ... Upstream case member, 27 ... Downstream case member, 28 ... Connection duct, 29 ... Filter, 30 ... intake duct, 31 ... duct, 32 ... body, 33 ... mounting surface, 100 ... air cleaner, 101 ... intake air, 102 ... heating resistance type air flow measuring device, 103 ... intake duct, 105 ... injector, 106 ... Manifold, 107 ... Engine cylinder, 108 ... Gas, 109 ... Exhaust manifold, 110 ... Circuit module, 111 ... Throttle angle sensor, 112 ... Oxygen meter, 113 ... Rotameter, 114 ... Control unit, 115 ... Idle air control Valve: 301: inlet opening surface, 302: first passage, 303: right angle bent portion, 304: second passage, 305: outlet opening surface, 306: saucer-shaped inlet, 307: inclined surface, 308: outlet eave, 401 ... Holder insertion hole, 402: joining surface, 403: meat hole, 404: groove.

Claims (36)

内燃機関の吸気通路を構成する主流路と、内部に発熱抵抗体と感温抵抗体とを有する副流路と、前記発熱抵抗体及び前記感温抵抗体と電気的に接続された電子回路とを備えた発熱抵抗式空気流量測定装置において、前記副流路を構成する部材は前記電子回路のベースに固定されているとともに、前記ベースと平行な面に前記副流路の出口部が形成されていることを特徴とする発熱抵抗式空気流量測定装置。A main flow path constituting an intake passage of the internal combustion engine, a sub flow path having a heating resistor and a temperature sensitive resistor therein, and an electronic circuit electrically connected to the heating resistor and the temperature sensitive resistor. In the heating resistance type air flow measuring device provided with, the member constituting the sub-flow path is fixed to the base of the electronic circuit, and the outlet of the sub-flow path is formed on a surface parallel to the base. A heating resistance type air flow measuring device, characterized in that: 内燃機関の吸気通路を構成する主流路と、内部に発熱抵抗体と感温抵抗体を備えた副流路と、前記発熱抵抗体及び感温抵抗体と電気的に接続した電子回路を有する発熱抵抗式空気流量測定装置において、
板状のベース部材の片面に前記電子回路及び電子回路を内装保護する回路ハウジングを固定し、前記ベース部材の電子回路固定面の反対側に前記発熱抵抗体及び感温抵抗体を固定し、前記ベース部材と垂直な面に開口する入口開口面から前記ベース部材と平行に形成される流路である第1通路と、前記ベース部材と平行な面に開口する出口開口面へ続く前記ベース部材と垂直に形成される流路である第2通路からなるL字形の副流路を、前記発熱抵抗体と感温抵抗体が前記副流路中に位置するように固定して、回路部と副流路部を一体のモジュール化し、前記主流路の壁面に設けた穴から前記副流路部を主流路中に挿入し、前記ベース部材あるいは前記回路ハウジングを主流路外壁面に固定してなることを特徴とする発熱抵抗式空気流量測定装置。
Heat generation having a main flow path constituting an intake passage of an internal combustion engine, a sub flow path having a heating resistor and a temperature-sensitive resistor therein, and an electronic circuit electrically connected to the heating resistor and the temperature-sensitive resistor. In the resistance type air flow measurement device,
Fixing the electronic circuit and a circuit housing for internally protecting the electronic circuit on one surface of a plate-shaped base member, fixing the heating resistor and the temperature-sensitive resistor on the opposite side of the electronic circuit fixing surface of the base member, A first passage that is a flow path formed in parallel with the base member from an inlet opening surface that opens in a plane perpendicular to the base member, and the base member that continues to an outlet opening surface that opens in a plane parallel to the base member. An L-shaped sub-flow path composed of a second flow path, which is a vertically formed flow path, is fixed so that the heating resistor and the temperature-sensitive resistor are located in the sub-flow path, and a circuit unit and a sub-flow path are fixed. The flow path unit is formed as an integrated module, the sub flow path unit is inserted into the main flow path from a hole provided in the wall surface of the main flow path, and the base member or the circuit housing is fixed to the outer wall surface of the main flow path. Heat generation resistance type air flow measurement characterized by Location.
請求項2において、前記副流路の前記第1通路の長さに対して、前記第2通路を約2倍の長さとしていることを特徴とする発熱抵抗式空気流量測定装置。3. The heating resistance type air flow measuring device according to claim 2, wherein the length of the second passage is approximately twice as long as the length of the first passage of the sub flow passage. 請求項2または3において、前記副流路を構成する部材の副流路部の前記ベース部材と平行な断面の外形は、前記主流路の流れ方向に垂直な幅に対して、主流路の流れ方向に平行な長さが1〜2倍の範囲であることを特徴とする発熱抵抗式空気流量測定装置。4. The main flow path according to claim 2, wherein an outer shape of a cross section of the sub flow path portion of the sub flow path member parallel to the base member has a width perpendicular to a flow direction of the main flow path. A heating resistance type air flow measuring device, wherein a length parallel to a direction is in a range of 1 to 2 times. 請求項2ないし4のいずれかにおいて、前記発熱抵抗体は前記副流路の第1通路中に位置し、前記感温抵抗体は前記第1通路と第2通路の交点である直角曲がり部に位置していることを特徴とする発熱抵抗式空気流量測定装置。The heating resistor according to any one of claims 2 to 4, wherein the heating resistor is located in a first passage of the sub-flow passage, and the temperature-sensitive resistor is provided at a right-angled bent portion which is an intersection of the first passage and the second passage. A heating resistance type air flow measuring device, which is located. 請求項2ないし5のいずれかにおいて、前記副流路の第2通路の前記ベース部材と平行な断面形状は、前記主流路の流れ方向と平行な長さより、主流路の流れ方向に垂直な長さの方が長い形状としていることを特徴とする発熱抵抗式空気流量測定装置。6. The cross-sectional shape of the second passage of the sub-flow passage parallel to the base member according to any one of claims 2 to 5, wherein the cross-sectional shape of the second passage is more perpendicular to the flow direction of the main flow passage than the length of the second flow passage being parallel to the flow direction of the main flow passage. An exothermic resistance type air flow measuring device, characterized in that the shape is longer. 請求項2ないし6のいずれかにおいて、前記主流路の壁面に設けた副流路部を挿入するための穴は、前記ベース部材により覆いかくされることを特徴とする発熱抵抗式空気流量測定装置。7. The heat-resistance air flow measuring device according to claim 2, wherein a hole provided in a wall surface of the main flow passage for inserting a sub-flow passage portion is covered by the base member. 請求項2ないし7のいずれかにおいて、前記回路部と副流路部を一体化したモジュールは、前記主流路に着脱可能に取り付けられることを特徴とする発熱抵抗式空気流量測定装置。The heating resistance type air flow measuring device according to any one of claims 2 to 7, wherein the module in which the circuit portion and the sub flow passage portion are integrated is detachably attached to the main flow passage. 請求項2ないし8のいずれかにおいて、前記発熱抵抗体及び感温抵抗体と、前記電子回路を電気的に接続するターミナルは、絶縁材からなるホルダに保持されて前記ベース部材を貫通するように固定され、前記発熱抵抗体及び感温抵抗体は前記ターミナルあるいは前記ホルダに固定され、前記副流路を構成する部材に設けられた挿入穴に前記ホルダ及び前記ターミナルを差し込んで、前記発熱抵抗体及び感温抵抗体が副流路内に位置するように前記副流路を構成する部材を前記ベース部材あるいは前記ホルダに固定してなることを特徴とする発熱抵抗式空気流量測定装置。The terminal according to any one of claims 2 to 8, wherein the terminal for electrically connecting the heating resistor and the temperature-sensitive resistor to the electronic circuit is held by a holder made of an insulating material and penetrates the base member. The heating resistor and the temperature-sensitive resistor are fixed to the terminal or the holder, and the holder and the terminal are inserted into insertion holes provided in a member that constitutes the sub-flow path. And a heating resistance type air flow measuring device, wherein a member constituting the sub flow path is fixed to the base member or the holder so that the temperature sensitive resistor is located in the sub flow path. 請求項9において、前記ホルダは前記ベース部材と一体のプラスチック成形品であることを特徴とする発熱抵抗式空気流量測定装置。The heating resistance type air flow measuring device according to claim 9, wherein the holder is a plastic molded product integrated with the base member. 請求項2ないし10のいずれかにおいて、前記ベース部材は箱状に形成されており、前記回路ハウジングを兼ねていることを特徴とする発熱抵抗式空気流量測定装置。The heating resistance type air flow measuring device according to any one of claims 2 to 10, wherein the base member is formed in a box shape, and also serves as the circuit housing. 請求項2ないし11のいずれかにおいて、前記副流路を構成する部材はプラスチック成形品であり、前記ホルダあるいは前記ベース部材に接着あるいは溶着により固定されていることを特徴とする発熱抵抗式空気流量測定装置。The heating resistance air flow rate according to any one of claims 2 to 11, wherein the member constituting the sub-flow path is a plastic molded product, and is fixed to the holder or the base member by adhesion or welding. measuring device. 請求項2ないし12のいずれかにおいて、前記ホルダあるいは前記ベース部材と、前記副流路を構成する部材の接合部に、両者を組み合わせることによって形成される溝を設け、その溝部にOリングを装着していることを特徴とする発熱抵抗式空気流量測定装置。13. A groove formed by combining the holder or the base member and a member constituting the sub-flow path according to claim 2, and an O-ring is attached to the groove. A heating resistance type air flow measuring device characterized in that: 請求項2ないし13のいずれかにおいて、前記主流路の壁面に設けた挿入穴は円形であり、前記ホルダ、前記副流路構成部材あるいは前記ベース部材の前記挿入穴に差し込まれる部分の円形外壁と前記挿入穴の内壁間をOリングによりシールしていることを特徴とする発熱抵抗式空気流量測定装置。The insertion hole provided in the wall surface of the main flow path according to any one of claims 2 to 13, wherein the insertion hole is circular, and the holder, the sub flow path constituent member, or a circular outer wall of a portion inserted into the insertion hole of the base member. A heat-resistance air flow measuring device, wherein an inner wall of the insertion hole is sealed by an O-ring. 請求項2ないし13のいずれかにおいて、前記ベース部材あるいは前記ホルダと、前記主流路の外壁面の間をOリング,パッキンあるいはガスケット等によりシールしていることを特徴とする発熱抵抗式空気流量測定装置。14. A heat-resistance air flow measuring device according to claim 2, wherein a space between the base member or the holder and an outer wall surface of the main flow path is sealed with an O-ring, a packing, a gasket, or the like. apparatus. 請求項2ないし15のいずれかにおいて、前記副流路構成部材の副流路部の前記ベース部材と平行な断面の外形は、略長方形であることを特徴とする発熱抵抗式空気流量測定装置。The heating resistance type air flow measuring device according to any one of claims 2 to 15, wherein an outer shape of a cross section of the sub flow path component of the sub flow path component member that is parallel to the base member is substantially rectangular. 請求項16において、前記副流路部の前記ベース部材と平行な断面の外形は、前記副流路の入口開口面のある辺が短辺となる台形、あるいは台形と長方形を組み合わせた形状としていることを特徴とする発熱抵抗式空気流量測定装置。In claim 16, the outer shape of the cross section of the sub flow passage portion parallel to the base member has a trapezoidal shape in which a side having an entrance opening surface of the sub flow passage is a short side, or a shape obtained by combining a trapezoid and a rectangle. A heating resistance type air flow measuring device, characterized in that: 請求項16または17において、前記副流路部の断面外形の前記主流路の下流側となる底面を円弧状にしていることを特徴とする発熱抵抗式空気流量測定装置。The heating resistance type air flow measuring device according to claim 16 or 17, wherein a bottom surface on a downstream side of the main flow path in a cross-sectional shape of the sub flow path portion is formed in an arc shape. 請求項16ないし18のいずれかにおいて、前記主流路の壁面に設ける挿入穴は、前記副流路部の断面外形の最も長い対角線の長さとほぼ同じ内径の円形であることを特徴とする発熱抵抗式空気流量測定装置。19. The heating resistor according to claim 16, wherein the insertion hole provided in the wall surface of the main flow path is a circle having an inner diameter substantially equal to a length of a longest diagonal of a cross-sectional shape of the sub flow path. Type air flow measuring device. 請求項16ないし19のいずれかにおいて、前記副流路の入口開口幅に対して前記副流路部の断面外形の前記入口開口面から前記主流路の下流側底面との長さを約2倍としていることを特徴とする発熱抵抗式空気流量測定装置。20. The length of the cross-sectional shape of the sub-flow path portion from the inlet opening surface to the downstream bottom surface of the main flow path is about twice as large as the inlet opening width of the sub-flow path. A heating resistance type air flow measuring device, characterized in that: 請求項2ないし20のいずれかにおいて、前記副流路の入口開口面が、前記副流路の出口方向に向けて延びる周囲に壁を残して堀り込んだ受皿状に形成されていることを特徴とする発熱抵抗式空気流量測定装置。In any one of claims 2 to 20, the inlet opening surface of the sub-flow path is formed in a saucer shape dug out leaving a wall around the extension extending toward the outlet direction of the sub-flow path. Characteristic heat flow resistance type air flow measurement device. 請求項21において、前記副流路の第1通路は前記主流路の中心線よりベース部材に近い位置に設定され、前記副流路の入口開口面の受皿状の堀り込み部分は前記主流路の中心線を含む範囲に形成されていることを特徴とする発熱抵抗式空気流量測定装置。22. The main passage according to claim 21, wherein the first passage of the sub-flow passage is set at a position closer to a base member than a center line of the main flow passage. A heating resistance type air flow measuring device, wherein the air flow measuring device is formed in a range including a center line of the air flow. 前記請求項2ないし22のいずれかにおいて、前記副流路の出口の前記主流路の上流部に、両側に壁のある傾斜面を前記副流路構成部材に一体に形成していることを特徴とする発熱抵抗式空気流量測定装置。23. The method according to claim 2, wherein an inclined surface having walls on both sides is formed integrally with the sub-flow path constituting member at an upstream portion of the main flow path at an outlet of the sub-flow path. Heating resistance type air flow measurement device. 請求項2ないし23のいずれかにおいて、前記副流路の出口の前記主流路の上流部に、ひさし状の突起を前記副流路構成部材に一体に形成していることを特徴とする発熱抵抗式空気流量測定装置。24. The heating resistor according to claim 2, wherein an eave-shaped protrusion is formed integrally with the sub-flow path component at an upstream portion of the main flow path at an outlet of the sub-flow path. Type air flow measuring device. 請求項2ないし24のいずれかにおいて、前記感温抵抗体は、前記副流路の第1通路の中心軸よりも前記ベース部材から離れた位置に固定されていることを特徴とする発熱抵抗式空気流量測定装置。The heating resistance type according to any one of claims 2 to 24, wherein the temperature-sensitive resistor is fixed at a position farther from the base member than a center axis of the first passage of the sub-flow path. Air flow measurement device. 請求項2ないし25のいずれかにおいて、前記発熱抵抗体は、前記感温抵抗体よりも前記ベース部材に近い位置に固定されていることを特徴とする発熱抵抗式空気流量測定装置。26. The heating resistance type air flow measuring device according to claim 2, wherein the heating resistor is fixed at a position closer to the base member than the temperature sensitive resistor. 請求項21ないし26のいずれかにおいて、前記発熱抵抗体と、前記副流路の第1通路の前記ベース部材より最も離れた壁面の間隔が、前記受皿状開口部の底面と前記第1通路により形成されるコーナと、前記副流路の直角曲がり部の内側コーナの距離の1/2〜1の範囲としていることを特徴とする発熱抵抗式空気流量測定装置。27. The space according to claim 21, wherein a distance between the heat generating resistor and a wall surface of the first passage of the sub flow passage farthest from the base member is determined by a bottom surface of the tray-shaped opening and the first passage. A heating resistance type air flow measuring device, wherein a distance between a corner to be formed and an inner corner of a right-angled bent portion of the sub-flow path is in a range of 1/2 to 1. 請求項27において、前記副流路の第1通路のその流れ方向に垂直な断面の形状が、前記ベース部材に近い部分が半円形で前記ベース部材から離れた部分が長方形となっている半円と長方形を組み合わせた形状となっていることを特徴とする発熱抵抗式空気流量測定装置。28. The semicircle according to claim 27, wherein a cross section of the first passage of the sub flow path perpendicular to the flow direction has a semicircular shape near a base member and a rectangular shape away from the base member. A heating resistance type air flow measuring device, characterized in that the shape is a combination of a rectangle and a rectangle. 請求項1ないし28のいずれかにおいて、前記主流路をエアクリーナのハウジングと一体に形成していることを特徴とする発熱抵抗式空気流量測定装置。29. The heating resistance type air flow measuring device according to claim 1, wherein the main flow path is formed integrally with a housing of the air cleaner. 請求項1ないし28のいずれかにおいて、主流路をスロットルボディと一体に形成していることを特徴とする発熱抵抗式空気流量測定装置。29. The heat-resistance air flow measuring device according to claim 1, wherein the main flow passage is formed integrally with the throttle body. 請求項1ないし28のいずれかにおいて、主流路をエンジンのインテークマニホールド構成物に一体に形成していることを特徴とする発熱抵抗式空気流量測定装置。29. The heating resistance type air flow measuring device according to claim 1, wherein the main flow passage is formed integrally with an intake manifold component of the engine. 請求項1ないし31のいずれかにおいて、主流路の大きさが変化しても、副流路の出入口の主流路内配置位置が主流路の中心に対して一定となるように、主流路の中心とベース部材あるいはハウジングの固定面の長さを主流路の大きさによらず一定としていることを特徴とする発熱抵抗式空気流量測定装置。The center of the main flow path according to any one of claims 1 to 31, such that even if the size of the main flow path changes, the position of the entrance of the sub flow path in the main flow path is constant with respect to the center of the main flow path. Wherein the length of the fixed surface of the base member or the housing is constant regardless of the size of the main flow path. 内燃機関の吸気通路を構成する主流路と、内部に発熱抵抗体と感温抵抗体とを有する副流路とを備えた発熱抵抗式空気流量測定装置において、
前記副流路は前記主流路の軸方向流路と半径方向流路とから構成され、
前記軸方向流路の断面形状は半円と長方形を組み合せた形状であることを特徴とする発熱抵抗式空気流量測定装置。
In a heating resistance type air flow measurement device including a main flow path constituting an intake passage of an internal combustion engine, and a sub flow path having a heating resistor and a temperature-sensitive resistor therein,
The sub flow path is configured by an axial flow path and a radial flow path of the main flow path,
The cross-sectional shape of the axial flow path is a combination of a semicircle and a rectangle.
請求項33において、前記副流路を構成する部材は前記発熱抵抗体が電気的に接続された電子回路のベースに固定されていることを特徴とする発熱抵抗式空気流量測定装置。34. The heating resistance type air flow measurement device according to claim 33, wherein a member forming the sub flow path is fixed to a base of an electronic circuit to which the heating resistor is electrically connected. 請求項34において、前記副流路の出口部は前記ベースと平行な面に形成されていることを特徴とする発熱抵抗体空気流量測定装置。35. The heating resistor air flow measuring device according to claim 34, wherein an outlet of the sub-flow path is formed on a surface parallel to the base. 請求項1ないし35のいずれか記載の発熱抵抗式空気流量装置を用いて内燃機関の制御を行うことを特徴とする内燃機関の制御システム。An internal combustion engine control system for controlling an internal combustion engine using the heating resistance type air flow device according to any one of claims 1 to 35.
JP2003202167A 2003-07-28 2003-07-28 Heat generation resistance type air flow measurement module Expired - Lifetime JP3793765B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003202167A JP3793765B2 (en) 2003-07-28 2003-07-28 Heat generation resistance type air flow measurement module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003202167A JP3793765B2 (en) 2003-07-28 2003-07-28 Heat generation resistance type air flow measurement module

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001200288A Division JP3716193B2 (en) 2001-07-02 2001-07-02 Heat resistance type air flow measuring device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006019962A Division JP3867106B2 (en) 2006-01-30 2006-01-30 Air flow measurement module

Publications (2)

Publication Number Publication Date
JP2004004110A true JP2004004110A (en) 2004-01-08
JP3793765B2 JP3793765B2 (en) 2006-07-05

Family

ID=30438505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003202167A Expired - Lifetime JP3793765B2 (en) 2003-07-28 2003-07-28 Heat generation resistance type air flow measurement module

Country Status (1)

Country Link
JP (1) JP3793765B2 (en)

Also Published As

Publication number Publication date
JP3793765B2 (en) 2006-07-05

Similar Documents

Publication Publication Date Title
JP3193837B2 (en) Heating resistance type flow measurement device
JP2010043883A (en) Mass air flow measurement device
CN101319952A (en) Intake air mass flow measurement device
JP6069504B2 (en) Temperature / humidity sensor
JP4752472B2 (en) Air flow measurement device
JP3260552B2 (en) Heating resistance type air flow measurement device
JP3782650B2 (en) Air flow measurement device
JPWO2020202791A1 (en) Physical quantity detector
JP3716193B2 (en) Heat resistance type air flow measuring device
JP4006463B2 (en) Flow rate measuring module and internal combustion engine control method
JP4512616B2 (en) Air flow measurement module
JP3561219B2 (en) Heating resistance type flow measurement device
JP2004004110A (en) Heating resistor type air-flow rate measuring module
JP3867106B2 (en) Air flow measurement module
JP3593011B2 (en) Heating resistance type flow measurement device
JP3593042B2 (en) Heating resistance type flow measurement device
JP2009085855A (en) Flow-measuring device and control system for internal combustion engine
JP2000002573A (en) Gas flow rate measuring apparatus
JPH0943020A (en) Heating resistance-type flow-rate measuring apparatus
JPH08297039A (en) Heating element type air flow measuring apparatus
JPH10281836A (en) Heating resistor type air flow rate measuring equipment
JP2000213974A (en) Heat resistant flow rate measuring device and internal combustion engine control device
JP3612503B2 (en) Air flow measurement device
JP2003042823A (en) Air flow rate-measuring instrument and air cleaner for composing the same
JP2001059759A (en) Exothermic resistance type flow rate measuring apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060410

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090414

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140414

Year of fee payment: 8

EXPY Cancellation because of completion of term
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350