JP2004004032A - Precision measurement method and apparatus for tension at high-speed deformation or compressive stress - Google Patents

Precision measurement method and apparatus for tension at high-speed deformation or compressive stress Download PDF

Info

Publication number
JP2004004032A
JP2004004032A JP2003102936A JP2003102936A JP2004004032A JP 2004004032 A JP2004004032 A JP 2004004032A JP 2003102936 A JP2003102936 A JP 2003102936A JP 2003102936 A JP2003102936 A JP 2003102936A JP 2004004032 A JP2004004032 A JP 2004004032A
Authority
JP
Japan
Prior art keywords
output rod
tensile
test piece
compressive stress
impact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003102936A
Other languages
Japanese (ja)
Other versions
JP3938757B2 (en
Inventor
Hiroshi Yoshida
吉田 博司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003102936A priority Critical patent/JP3938757B2/en
Publication of JP2004004032A publication Critical patent/JP2004004032A/en
Application granted granted Critical
Publication of JP3938757B2 publication Critical patent/JP3938757B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To meter a stress at material deformation with high precision by ablating about unsteady vibration at the time of high-speed deformation characteristic of impact, in high-speed deformation characteristic of a material which serves as evaluation criterion about impact simulation or impact safety design. <P>SOLUTION: The precision measurement method of the tension at high-speed deformation or the compressive stress gives the rate of strain of more than 10<SP>2</SP>/s, while restraining less than 200mm from free-standing ends of the above-mentioned outgoing rod 2 in testing process, to which plate also meters stress of test specimen for test specimen 1 of round bar, based on the elastic deformation of the mounting a girder metal outgoing rod 2. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【産業上の利用分野】
本発明は、衝突安全に用いられる部材設計に必要な材料特性計測方法及び装置に関し、詳しくは部材の衝突変形モードを決める10%までの低ひずみ領域での材料の高速変形特性の精密計測に関する。
【0002】
【従来の技術】
近年、自動車業界では、衝突時の乗員への傷害を低減しうる車体構造の開発が急務の課題となっている。この課題の解決のために、計算機上で自動車の衝突のシミュレーションを行い、安全基準をクリアする設計を行うシステムの開発が急速に進んできている。従って、現在ではこの衝突のシミュレーションの精度が衝突安全設計の成否のカギとなっている。しかし、衝突時は自動車の部材が高速で変形するため、部材を構成する材料の高速の変形特性を精密に計測し、シミュレーションに導入しない限り、高精度な衝突特性を予測するシミュレーションは成立しないことになる。
【0003】
上記の材料の高速の変形特性に関して、通常の準静的な引張試験と比べて試験速度が100万倍にも達するため、試験中に衝撃弾性波が発生し、試験片の変形応力の計測系にこの衝撃弾性波が重なり正確な材料の高速変形特性が計測できないという問題がある。従来からこの問題の解決のため特許文献1にあるように、試験片の平行部でなくつかみ部にひずみゲージを貼付し、このひずみゲージ出力から別に校正したロードセル出力/ゲージ出力比を用いて試験片の変形応力を計測する方法があった。これは試験片平行部よりつかみ部の方が断面積は広く衝撃弾性波の影響が少なくなるが、本質的に衝撃弾性波を除去できるわけではなく、測定精度向上につながっていなかった。
【0004】
また、非特許文献1などにあるように、細長い弾性棒で衝撃弾性波を棒の長手方向に逃がすことにより、試験変形時の応力のみを計測すること可能にする、いわゆるKolsky法が高速変形の試験法として標準的に使われているが、構造的に精度管理が難しく、図1に示すような応力−ひずみ曲線の降伏点付近に衝撃に起因すると考えられる初期応力ピークが発生することが問題であった。この初期応力ピークは、材料の降伏応力のひずみ速度依存により高速変形下で発生する因子もあり、衝撃因子と重なり問題解決を困難にしていた。このため、この初期応力ピークを除いた高速変形特性をシミュレーションに導入していたため、衝突解析の精度、しいては衝突安全の最適な設計の信頼性を低下させていた。
【0005】
【特許文献1】
特開平10−318894号公報
【非特許文献1】
SAE TECHNICAL PAPER #960019(1996年10月発行、発行所:Society of Automotive Engineer)
【0006】
【発明が解決しようとする課題】
本発明は、衝突シミュレーションや衝突安全設計について評価基準となる材料の高速変形特性において、高速変形特有の衝撃時の非定常な振動を除去し、材料変形時の応力を高精度に計測する方法及び装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記の課題を解決するため、本発明にかかる計測方法及び装置は、以下の通りである。
(1)板材または丸棒の試験片を取付けた金属製出力棒の弾性変形に基づいて試験片の応力を計測する試験方法において、前記出力棒の端部から200mm以内を拘束しながら、10 /s以上のひずみ速度を付与することを特徴とする高速変形時の引張又は圧縮応力の精密計測方法。
(2)板材または丸棒の試験片を取付けた金属製出力棒の弾性変形に基づいて試験片の応力を計測する試験方法において、前記出力棒の直径D[mm]として前記出力棒の端部からL≦15D[mm]となる位置Lを拘束しながら、10 /s以上のひずみ速度を付与することを特徴とする高速変形時の引張又は圧縮応力の精密計測方法。
(3)出力棒の上下両面を固定冶具で接するように拘束することを特徴とする前記(1)又は(2)記載の高速変形時の引張又は圧縮応力の精密計測方法。
(4)下記(1)式を満足する抑え力F[N]で出力棒を拘束することを特徴とする前記(1)〜(3)の何れか1項に記載の高速変形時の引張又は圧縮応力の精密計測方法。
1.0×10 ×E ≦ F ≦ 1.5×10 ×E   (1)
ここで、D:出力棒の直径[mm]、r:出力棒の半径[mm]=D/2
:出力棒のヤング率[N/mm
(5)出力棒の下面のみ固定冶具で拘束し、出力棒の上面から(1)式を満足する抑え力F[N]でテープを用いて拘束することを特徴とする前記(1)又は(2)記載の高速変形時の引張又は圧縮応力の精密計測方法。
(6)先端に板材または丸棒の試験片の取付手段を有する金属製出力棒と、前記試験片に衝撃を与えるインパクト・ブロックと、前記インパクト・ブロックに衝撃を付与するハンマーと、前記ハンマーが前記インパクト・ブロックに衝突するようガイドするレールと、前記出力棒の先端近傍を拘束する固定冶具を有することを特徴とする高速変形時の引張又は圧縮応力の精密計測装置。
(7)固定冶具が出力棒の上下両面に接するように設置されていることを特徴とする前記(6)記載の高速変形時の引張又は圧縮応力の精密計測装置。
(8)出力棒と接する固定冶具の面のヤング率が出力棒と同等以上であることを特徴とする前記(6)又は(7)記載の高速変形時の引張又は圧縮応力の精密計測方法。
(9) 出力棒と接する固定冶具が、半径R≧1.0[mm]の円柱状であり、出力棒と直交し点接触することを特徴とする前記(7)又は(8)記載の高速変形時の引張又は圧縮応力の精密計測装置。
(10)出力棒の下面側にのみ固定冶具が設置され、出力棒を固定冶具に押し付けるように、出力棒を上面から拘束する固定テープを有すること特徴とする前記(6)記載の高速変形時の引張又は圧縮応力の精密計測装置。
(11)第2の固定冶具を出力棒の端部から50D≦L≦75Dとなる位置L[mm]に設置することを特徴とする前記(6)〜(10)の何れか1項に記載の高速変形時の引張又は圧縮応力の精密計測装置。
(12) 板材または丸棒の試験片を取付けた金属製出力棒の弾性変形に基づいて試験片の応力を計測する試験方法において、前記出力棒に棒軸方向に沿って試験前に予め張力を付与しながら、10 /s以上のひずみ速度を付与することを特徴とする高速変形時の引張又は圧縮応力の精密計測方法。
(13) 下記(2)式を満足する張力F[N]を付与することを特徴とする前記(12)記載の高速変形時の引張又は圧縮応力の精密計測方法。
9.5×(D/2) ≦ F ≦ YP/2   (2)
ここで、D:出力棒の直径[mm]、YP:試験片の降伏荷重[N]
(14) 前記(6)〜(11)の何れか1項に記載の装置を用いて前記(12)または(13)記載の方法を実施することを特徴とする高速変形時の引張又は圧縮応力の精密計測方法。
(15) 先端に板材または丸棒の試験片の取付手段を有する金属製出力棒と、前記試験片に衝撃を与えるインパクト・ブロックと、前記インパクト・ブロックに衝撃を付与するハンマーと、前記ハンマーが前記インパクト・ブロックに衝突するようガイドするレールを有する装置を用いて、試験時の前記出力棒の断面の中心が、試験時の引張または圧縮の軸線に対して、A ≦ 0.5mmとなる範囲A[mm]を満たしながら、10 /s以上のひずみ速度を付与することを特徴とする高速変形時の引張又は圧縮応力の精密計測方法。
【0008】
【発明の実施の形態】
以下、図面を用いて本発明を詳細に説明する。
計測に用いた高速引張り試験機は、one bar方式であり、図2に概略構造を示す。装置は、試験片1、荷重計測のための出力棒2、試験片1に衝撃引張りを入力するためのハンマー3、インパクト・ブロック4、ハンマー3がインパクト・ブロック4に衝突するようにガイドするレール9からなる。
【0009】
出力棒2の先端には、試験片1(幅5mm、長さ10mm)を固定するためアタッチメント5が取付けられ、試験片1はピン6及び接着剤によりアタッチメント5と固定され、試験片1のもう一方はタブ7により補強され、インパクト・ブロック4とピン6により固定されている。ハンマー3で衝撃を与えたインパクト・ブロック4により試験片1に最大10/s以上のひずみ速度を与えることが出来る。図2に(a)高速引張試験の初期状態、ハンマー3がインパクト・ブロック4に衝突した状態(b)、試験片が破断した状態(c)を示す。
試験では、応力波の伝達の状況を解析するために、出力棒2上に図3に示すように、3箇所にゲージ8を取付け、同時計測を行った。ゲージ8の取付け箇所はそれぞれ出力棒端部から50mm、100mm、770mmとした。実験に用いた材料は、引張り強度レベルが440MPa級の鋼材と7000系ジュラルミンである。
この試験機について、図4に示す全体モデル及び試験片締結部の詳細モデルによりFEM解析を行い、衝撃時の弾性波の伝導・分散が試験片変形の応力波伝導に及ぼす影響を調べた。この解析結果に基づき、従来の試験方法が有していた高速変形特有の応力・ひずみ曲線上の初期応力ピークの改善効果について、本発明を検証した。
【0010】
比較例として、固定冶具を設けずに試験を行った際の解析結果を図5に示す。図5から各測定点での応力波形がほぼ同じことから、出力棒中の応力波の伝わりは均一であり、応力波の伝達途中で棒の振動などで発生するものではないことが分かる。従って、初期応力ピークは、衝撃試験に起因するもとのしても、試験片付近の初期の衝撃によって発生していることになる。
この原因として、インパクト・ブロックと試験片の間で衝撃引張り力の入力時に、衝撃に振動波形も伝わる可能性が考えられるが、図4の試験片締結部の詳細モデルでのFEM解析から、衝撃時の振動が試験片を介して出力棒に伝わるような現象は現れないことが分かった。実験でも、インパクト・ブロック4と試験片1の締結方法を様々に変えても系統的な初期応力ピークの減少は観測されないため、この影響は小さいことが確認された。
従って、初期応力ピークへの衝撃試験の影響は、試験片から出力棒締結部分及び出力棒端部の振動が原因となることが判明した。締結部分は、断面積変化から応力波の分散が起きるが、この影響は小さく、断面積を徐々に変化させた試験片での実測結果でも、ほとんど変化が見られなかった。
【0011】
次に、出力棒端部の振動の影響であるが、図4のFEM解析上で振動によるピークへの影響を調べた。この結果、図6に示すように、出力棒端部で局所的に横振動を起こしていることが分かった。
図6の横振動は、1000倍に拡大して示しているため、実際の振動は数十mmと非常に小さいが、動的な現象のため、つりあい状態の振動でなく、発生する範囲が極めて局所的になり、この横振動が出力棒の軸方向への伸縮の弾性変形となり、初期ピークに相当する振動を起こしていることが判明した。
【0012】
図7は、この振動で発生した弾性応力波のFEM解析上でのコンタ図である。棒端部で発生した振動によるピークはそのまま引張り時の荷重波形に重なり、平面波として伝わっているのが分かる。図8は、このときの応力波の波形であるが実験で見られたものと同様のピークが再現されているのが分かる。
従って、この振動によるピークを除去するためには、棒端部での振動を抑えることが重要となるが、振動の発生を抑えるためには、ブロックとハンマーの衝撃入力の制御が必要となり安定したピーク除去が困難となる。
そこで、たとえ振動が発生するような衝撃入力になっても、振動発生を抑えるように固定冶具10を棒端部近傍に設置する。図9に示すように、ハンマー3がインパクト・ブロック4に衝突する際に固定冶具10とハンマー3が干渉しないように、ハンマー3の一部に空隙を設け、その内部に固定冶具10を小径ロール等として設置すれば良い。
【0013】
前記(1)に係る発明では、衝突シミュレーションに必要な材料の10/s以上のひずみ速度の高速引張または圧縮の変形応力を、出力棒を用いて計測する際に、出力棒の端部から200mm以内を拘束することにより、金属棒の衝撃による振動を除去し、特に、衝撃試験特有の計測応力に現れる初期応力を除去した高精度な材料の変形応力を計測することが出来る。本来は、計測の精度管理のため、試験装置、試験片の取付け位置を精密に制御する必要があるのに対し、本発明により精密な精度管理に代わって簡単に計測精度・再現性を確保することができる。
出力棒の端部から200mmより離れた位置を拘束すると衝撃による振動を除去する効果が弱くなるので、200mm以内とする。
【0014】
また、前記(2)に係る発明では、前記出力棒の直径D[mm]として前記出力棒の端部からL≦15D[mm]となる位置L[mm]を拘束しながら、試験を行う。
L>15D[mm]となると、前記(1)と同じく、衝撃による振動を除去する効果が弱くなるので、L≦15D[mm]とする。L≦15D[mm]でかつ、200mm以上となる場合は、前記(1)で規定する。
【0015】
前記(3)に係る発明では、出力棒の上下両面を固定冶具で接するように拘束する。これにより、インパクト・ブロックの衝撃入力時に発生する棒端部の非定常な上下振動を抑制することができるため、振動による初期応力ピークのない試験片の引張応力を計測できる。
【0016】
前記(4)に係る発明では、出力棒を(1)式を満足する抑え力F[N]で拘束する。(1)式はFEM解析と実際の計測により最適範囲として求めた式であり、(1)式を満たすと、振動を抑制するのに十分な拘束力を付与できるので、初期応力ピークのない高精度な引張試験の応力を計測できる。(1)式の範囲を外れると、拘束力が不十分のため、初期応力ピークを除去できないか,拘束力が大きくなりすぎるため,引張試験の応力の伝達を阻害することになる。また、上記(1)式を満たす拘束力であれば、この抑え力は常に同じ大きさでなくとも、この算定式を満たす範囲であれば効果は同じで再現性の良い計測ができる。
【0017】
前記(5)に係る発明では、出力棒の下面のみ固定冶具で拘束し、出力棒の上面から(1)式を満足する抑え力F[N]でテープを用いて拘束する。このように拘束すると、はじめに一度だけ,(1)式を満足する抑え力F[N]についてテープの張力を貼付位置から決めるだけでよいので、簡単に安定した初期応力ピークのない応力計測を再現できる。
【0018】
前記(6)に係る装置は、先端に板材または丸棒の試験片の取付手段を有する金属製出力棒と、試験片に衝撃を与えるインパクト・ブロックと、インパクト・ブロックに衝撃を与えるハンマーと、ハンマーがインパクト・ブロックに衝突するようガイドするレールと、出力棒の先端近傍を拘束する固定冶具を有する。出力棒の先端近傍を拘束する固定冶具を有すると、出力棒の自重撓みや、インパクト・ブロックの衝撃時の飛び出し方向が出力棒の軸線から外れることにより発生する出力棒の振動を抑えるため、試験装置の精密な位置決め・精度管理を行うことなく、安定した初期応力ピークが発生しない高精度な応力計測ができる。固定冶具の設置位置は出力棒端部の非定常な振動を抑制する効果が機能するためには、出力棒の端部から200mm以内とし、出力棒径が異なるときに出力棒の振動抑制の効果を最も大きくするためには、出力棒の端部からL≦15D[mm]となる位置L[mm]に設置することが好ましい。
【0019】
前記(7)に係る発明では、前記(3)に係る発明と同じ理由により、固定冶具が出力棒の上下両面に接するように設置する。
【0020】
前記(8)に係る発明では、出力棒と接する固定冶具の面のヤング率が出力棒と同等以上とする。これにより、出力棒の軸方向の応力波が伝達するのを阻害せず軸方向外の振動を抑えるので、振動による初期応力ピークの発生を抑制できる。固定冶具の面のヤング率が出力棒より小さいと、出力棒の軸方向の応力波が伝達するのを阻害するため、試験片本来の変形応力より計測応力が過小となるので好ましくない。
【0021】
前記(9)に係る発明では、出力棒と接する固定冶具が、中心軸を棒と直交させた半径R≧1.0[mm]の一組の円筒状とする。これにより、出力棒と固定冶具は点接触になるので、固定冶具と出力棒との摩擦の影響を小さくし、軸方向の応力波の伝達を阻害することなく出力棒の振動を抑制できる。
【0022】
前記(10)に係る発明では、前記(5)に係る発明と同じ理由により、出力棒の下面側にのみ固定冶具が設置され、出力棒を固定冶具に押し付けるように、出力棒を上面から拘束する固定テープを設置することとする。
【0023】
前記(11)に係る発明では、第2の固定冶具を出力棒の端部から50D≦L≦75Dとなる位置L[mm]に設置する。これにより、出力棒の自重撓みの抑制及び第1の固定冶具と連動した振動抑制の効果が得られるので、ばらつきのない安定した振動抑制による初期応力ピーク発生の抑制ができる。第2の固定冶具の設置位置が出力棒の端部から50Dより端部側になると、第1の固定冶具による振動抑制の効果の領域に入るため、第2の固定冶具を設置する効果が弱くなるので、好ましくない。また、75Dより離れると、自重撓みの抑制効果がなくなると同時に第1の固定冶具との連動が取れなくなり、振動の抑制効果がなくなるので、好ましくない。
【0024】
前記(12)に係る発明では、出力棒に棒軸方向に沿って試験前に予め張力を付与しながら、10/s以上のひずみ速度を付与することにより、前記(1)に係る発明と同じ理由により、インパクト・ブロックの衝撃入力時に発生する棒端部の非定常な上下振動を抑制することができるため、振動による初期応力ピークのない試験片の引張応力を計測できる。
【0025】
前記(13)に係る発明では、試験前に予め出力棒を(2)式を満足する張力F[N]で張力を付与しながら、10/s以上のひずみ速度を付与する。(2)式はFEM解析と実際の計測により最適範囲として求めた式であり、(2)式を満たすと、振動を抑制するのに十分な張力を付与できるので、初期応力ピークのない高精度な引張試験の応力を計測できる。(2)式の範囲を外れると、張力が不十分のため、初期応力ピークを除去できないか,張力が大きくなりすぎるため,試験片の応力計測の精度を低下させることになる。また、上記(2)式を満たす拘束力であれば、この抑え力は常に同じ大きさでなくとも、この算定式を満たす範囲であれば効果は同じで再現性の良い計測ができる。
【0026】
前記(14)に係る発明では、前記(6)〜(11)の何れか1項に規定した出力棒の端部の固定治具を有する装置を用いて、前記(12)または(13)に規定した出力棒に予め張力を付与する方法を組合わせることにより、双方の振動抑制効果が得られることから、振動による初期応力ピークを確実に、除去することが出来る。
【0027】
前記(15)に係る発明では、試験時の出力棒の断面の中心が、試験時の引張または圧縮の軸線に対して、A ≦ 0.5となる範囲A[mm]を満たすように出力棒をおよび試験片、インパクト・ブロックを設置し、引張または圧縮の荷重入力方向を範囲Aに入るように設定しながら、10/s以上のひずみ速度を付与する。これにより、前記(1)に係る発明で説明したように、振動発生原因を除外する厳密な精度管理の条件を満たすことになり、振動による初期応力ピークのない試験片の引張応力を計測できる。
尚、本発明において、高速変形時の圧縮応力を測定するには、図10に示すように、ハンマーを試験片と反対方向からインパクト・ブロックに衝突させればよい。その後の解析は引張応力と同様にすればよい。
【0028】
【実施例】
図9は、固定冶具10の模式図であり、出力棒2に対して、点接触になるように固定冶具10を棒端部近傍に取付けた。試験材の材質は440MPa級の鋼材である。
具体的には、出力棒2の直径12mmに対し、固定冶具10の位置Lを棒端部から100mmと決定し、固定冶具の材質を棒と同等のヤング率を持つS45C材とし、固定冶具10の形状を半径5mmとし、固定冶具10による出力棒2の抑え力を300Nと決めて計測を実施した。この結果、固定冶具10を取付けたときの応力波形は、図11のようになり、ピークを除去できたことが分かる。比較例の図3の波形と比較したのが、図12であり、応力波形が大幅に改善されたのが分かる。残ったピークについては、材料特性としての降伏応力ピークとなる。実際に予ひずみを与えた試験片では、この改良でも比較的大きなピークが見られ、初期応力ピークがすべて棒の振動によるものではなく、上降伏応力の発生の影響も大きいことも分かった。
【0029】
また、材質が大きく異なるジュラルミンA7075T6材においても、図9に示す固定冶具10を取付け、応力の計測を行った。
具体的には、出力棒2の直径12mmに対し、固定冶具10の位置Lを棒端部から100mmと決定し、固定冶具10の材質を棒と同等のヤング率を持つS45C材とし、固定冶具10の形状を半径5mmとし、固定冶具10による出力棒2の抑え力を300Nと決めて計測を実施した。この結果、ジュラルミンのA7075T6材での固定冶具による初期応力ピークの除去効果は図13のようになり、材料が変わっても同じ効果を得ることができた。
【0030】
図14は、前記(12)および(13)に係る発明の、張力を付与する方法を実施する装置の図面であり、治具11は装置本体とは別に固定されており、この治具11によりインパクト・ブロック4を固定し、出力棒2をインパクト・ブロック4と反対の端面から反対方向に試験前に予め張力Fを付与する。これによる初期応力ピークの除去効果は図15のようになり、材料が変わっても同じ効果を得ることができた。
さらに、前記(14)に係る発明について、前記(6)記載の装置用いて前記(13)の方法を実施することにより、予め張力Fと固定治具の抑え力Fを付与したときの初期応力ピークの除去効果は図16のようになり、材料が変わっても同じ効果を得ることができた。
また、前記(15)に係る発明について、図17に示すように、試験時の出力棒の断面の中心が、試験時の引張または圧縮の軸線に対して、A ≦ 0.5となる範囲A[mm]になるように、出力棒の自重撓みとインパクト・ブロックの発射方向を調整しながら試験を実施した。このように精密に調整したとき、初期応力ピークの除去効果は図18のようになり、材料が変わっても同じ効果を得ることができた。
【0031】
この固定冶具による非定常な動的振動の抑制効果は、実施例で示したone bar方式の高速引張試験機はもとより、2本の金属棒を用いるKolsky法に対しても有効であり、また、金属棒を用いない油圧サーボタイプや検力台方式に対しても試験片や試験片接続冶具に適用することにより有効である。固定冶具は、最も効果の大きい上下方向について規定しているが、衝撃入力方向によっては、あらゆる方向で、固定冶具が非定常振動を抑制する効果が得られる。さらに、引張または圧縮の応力計測のみならず、溶接部強度や構造物の変形強度を計測するときにもこの方法が適用できることは言うまでもない。
【0032】
【発明の効果】
本発明に基づいて高精度な材料の高速変形特性を計測し、更に、この特性を導入することによる高精度な衝突シミュレーションを行うことにより、従来行われていた自動車全体設計または部材設計時に衝突安全性を確保するための試作部材による試行錯誤を省略することができ、試作のためのコストを大幅に軽減するだけでなく、設計にかかる時間も短縮することができる。また、材料の精密な高速変形特性から衝突安全基準をクリアする最小限の材料の使用量を精密に予測することができ、従来、安全性確保のための余分な材料使用を削減し、製造時の材料コスト削減を行うことができるだけでなく、自動車軽量化により燃費を向上させることが出来る。
【図面の簡単な説明】
【図1】従来の試験方法による応力―ひずみ曲線を示す図である。
【図2】従来のone bar方式高速引張試験の計測方法を示す図である。
【図3】出力棒中の応力波の伝達を計測するひずみゲージを示す図である。
【図4】初期応力ピークの発生を解析する有限要素モデルを示す図である。
【図5】従来の試験法による応力波の伝わりを示す図である。
【図6】有限要素法解析による棒端部の局所的な非定常振動を示す図である。
【図7】引張試験の応力波に先行する非定常振動による応力波を示す図である。
【図8】有限要素法解析により再現された初期ピークと実験値を示す図である。
【図9】初期応力ピークを除去するための固定冶具を示す図である。
【図10】one bar方式での圧縮試験の方法を示す図である。
【図11】固定冶具により初期応力ピークが除去された応力波の伝わりを示す図である。
【図12】固定冶具により高精度に計測された440MPa級鋼板の応力と改良前との比較を示す図である。
【図13】固定冶具により高精度に計測されたA7075T6材の応力と改良前との比較を示す図である。
【図14】出力棒に試験前に予め張力を付与する方法を示す図である。
【図15】出力棒に予め張力を付与することにより高精度に測定された590MPa級鋼板の応力と改良前との比較を示す図である。
【図16】出力棒に予め張力を付与し、さらに固定冶具と用いることにより高精度に測定された780MPa級鋼板の応力と改良前との比較を示す図である。
【図17】出力棒の自重撓みやインパクト・ブロックの発射方向における精密な設置の条件を示す図である。
【図18】出力棒や試験条件を精密に設置・制御したときの高精度に測定された270MPa級鋼板の応力と改良前との比較を示す図である。
【符号の説明】
1 試験片
2 出力棒
3 ハンマー
4 インパクト・ブロック
5 アタッチメント
6 ピン
7 タブ
8 歪ゲージ
9 レール
10 固定冶具
11 張力付与用の固定冶具
[0001]
[Industrial applications]
The present invention relates to a method and an apparatus for measuring material properties required for designing a member used for collision safety, and more particularly, to precise measurement of high-speed deformation characteristics of a material in a low strain region of up to 10% which determines a collision deformation mode of a member.
[0002]
[Prior art]
In recent years, in the automobile industry, development of a vehicle body structure that can reduce injuries to occupants at the time of collision has become an urgent issue. In order to solve this problem, the development of a system that simulates an automobile collision on a computer and performs a design that satisfies safety standards is rapidly progressing. Therefore, the accuracy of the collision simulation is currently the key to the success or failure of the collision safety design. However, since automobile components deform at high speed during a collision, a simulation that predicts high-precision collision characteristics cannot be established unless the high-speed deformation characteristics of the materials that make up the components are accurately measured and introduced into the simulation. become.
[0003]
As for the high-speed deformation characteristics of the above materials, the test speed reaches 1,000,000 times as compared with the normal quasi-static tensile test, so that an impact elastic wave is generated during the test, and a system for measuring the deformation stress of the test piece. In addition, there is a problem that the high-speed deformation characteristics of the material cannot be accurately measured because the impact elastic waves overlap. Conventionally, to solve this problem, as described in Patent Document 1, a strain gauge is attached to a grip portion instead of a parallel portion of a test piece, and a test is performed using a load cell output / gauge output ratio separately calibrated from the strain gauge output. There was a method of measuring the deformation stress of a piece. This means that the grip portion has a larger cross-sectional area than the parallel portion of the test piece and is less affected by the impact elastic wave, but it does not essentially eliminate the impact elastic wave and has not led to an improvement in measurement accuracy.
[0004]
Further, as described in Non-Patent Document 1, the so-called Kolsky method, which allows only a stress at the time of test deformation to be measured by allowing a shock elastic wave to escape in a longitudinal direction of the elongated elastic rod, is called a Kolsky method. Although it is used as a standard test method, it is difficult to control the precision structurally, and there is a problem that an initial stress peak, which is considered to be caused by an impact, occurs near the yield point of the stress-strain curve as shown in FIG. Met. This initial stress peak has a factor that occurs under high-speed deformation due to the strain rate dependence of the yield stress of the material, and overlaps with the impact factor, making it difficult to solve the problem. For this reason, the high-speed deformation characteristic excluding the initial stress peak was introduced into the simulation, which reduced the accuracy of the collision analysis and, consequently, the reliability of the optimal design for collision safety.
[0005]
[Patent Document 1]
JP-A-10-318894
[Non-patent document 1]
SAE TECHNICAL PAPER # 960019 (October 1996, Issued by: Society of Automobile Engineer)
[0006]
[Problems to be solved by the invention]
The present invention provides a method for measuring the stress at the time of material deformation with high accuracy by removing unsteady vibration at the time of impact peculiar to high-speed deformation in the high-speed deformation characteristics of the material which is an evaluation standard for collision simulation and collision safety design, and It is intended to provide a device.
[0007]
[Means for Solving the Problems]
In order to solve the above problems, a measuring method and an apparatus according to the present invention are as follows.
(1) In a test method for measuring the stress of a test piece based on the elastic deformation of a metal output rod to which a test piece of a plate or a round bar is attached, the test method is performed while restraining within 200 mm from the end of the output rod.2A precise method for measuring tensile or compressive stress during high-speed deformation, wherein a strain rate of / s or more is applied.
(2) In a test method for measuring stress of a test piece based on elastic deformation of a metal output rod to which a test piece of a plate material or a round bar is attached, an end of the output rod is defined as a diameter D [mm] of the output rod. While restricting the position L where L ≦ 15D [mm] from2A precise method for measuring tensile or compressive stress during high-speed deformation, wherein a strain rate of / s or more is applied.
(3) The method for accurately measuring tensile or compressive stress during high-speed deformation according to (1) or (2), wherein the upper and lower surfaces of the output rod are constrained to be in contact with a fixing jig.
(4) The output rod is restrained by a restraining force F [N] that satisfies the following expression (1). Precise measurement method of compressive stress.
1.0 × 10 5× Ebr2≦ F ≦ 1.5 × 10 3× Ebr2(1)
Here, D: diameter [mm] of the output rod, r: radius [mm] of the output rod = D / 2
Eb: Young's modulus of output rod [N / mm2]
(5) The above (1) or (1), wherein only the lower surface of the output rod is constrained by a fixing jig and the upper surface of the output rod is constrained using a tape with a restraining force F [N] satisfying the expression (1). 2) A precise method for measuring tensile or compressive stress during high-speed deformation described in the above.
(6) a metal output rod having a plate or round bar test piece mounting means at the tip, an impact block for applying an impact to the test piece, a hammer for applying an impact to the impact block, and the hammer A precision measuring device for tensile or compressive stress during high-speed deformation, comprising: a rail for guiding the impact block so as to collide with the impact block; and a fixing jig for restraining a vicinity of a tip of the output rod.
(7) The precision measuring device for tensile or compressive stress during high-speed deformation according to (6), wherein the fixing jig is installed so as to be in contact with both upper and lower surfaces of the output rod.
(8) The method for accurately measuring tensile or compressive stress during high-speed deformation according to (6) or (7), wherein the Young's modulus of the surface of the fixing jig in contact with the output rod is equal to or greater than that of the output rod.
(9) The high speed as described in (7) or (8) above, wherein the fixing jig in contact with the output rod has a cylindrical shape with a radius R ≧ 1.0 [mm] and is orthogonal to the output rod and in point contact. Precision measuring device for tensile or compressive stress during deformation.
(10) The fixing jig is installed only on the lower surface side of the output rod, and has a fixing tape for restraining the output rod from the upper surface so as to press the output rod against the fixing jig. Precision measuring device for tensile or compressive stress.
(11) Move the second fixing jig from the end of the output rod to 50D ≦ L2Position L where ≦ 75D2The precision measuring device for tensile or compressive stress during high-speed deformation according to any one of (6) to (10), wherein the device is installed at [mm].
(12) In a test method for measuring the stress of a test piece based on the elastic deformation of a metal output rod to which a test piece of a plate or a round bar is attached, a tension is previously applied to the output rod along the rod axis direction before the test. 10 while giving2A precise method for measuring tensile or compressive stress during high-speed deformation, wherein a strain rate of / s or more is applied.
(13) Tension F that satisfies the following equation (2)2[N] is provided, wherein the method for accurately measuring tensile or compressive stress at the time of high-speed deformation according to the above (12).
9.5 × (D / 2)2≦ F2≦ YP / 2 (2)
Here, D: diameter of output rod [mm], YP: yield load of test piece [N]
(14) A tensile or compressive stress at the time of high-speed deformation, wherein the method according to (12) or (13) is performed using the apparatus according to any one of (6) to (11). Precision measurement method.
(15) {circle around (1)} A metal output rod having means for attaching a test piece of a plate or a round bar at the tip, an impact block for applying an impact to the test piece, a hammer for applying an impact to the impact block, and the hammer comprising: The range in which the center of the cross section of the output rod at the time of testing is A ≦ 0.5 mm with respect to the axis of tension or compression at the time of testing, using a device having a rail that guides the impact block to collide with the impact block. While satisfying A [mm], 102A precise method for measuring tensile or compressive stress during high-speed deformation, wherein a strain rate of / s or more is applied.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the drawings.
The high-speed tensile tester used for the measurement was of the one bar type, and its schematic structure is shown in FIG. The apparatus includes a test piece 1, an output rod 2 for measuring a load, a hammer 3 for inputting an impact tension to the test piece 1, an impact block 4, and a rail for guiding the hammer 3 to collide with the impact block 4. Consists of nine.
[0009]
Attachment 5 is attached to the tip of the output rod 2 to fix the test piece 1 (width 5 mm, length 10 mm). The test piece 1 is fixed to the attachment 5 by pins 6 and an adhesive. One is reinforced by a tab 7 and fixed by an impact block 4 and a pin 6. The impact block 4 impacted by the hammer 3 applies a maximum of 103/ S or more. FIG. 2A shows an initial state of the high-speed tensile test, a state where the hammer 3 collides with the impact block 4, and a state where the test piece is broken (c).
In the test, in order to analyze the state of transmission of the stress wave, gauges 8 were attached to three places on the output rod 2 as shown in FIG. The mounting points of the gauge 8 were respectively 50 mm, 100 mm, and 770 mm from the end of the output rod. The materials used in the experiment were a steel material having a tensile strength level of 440 MPa and 7000 duralumin.
With this tester, FEM analysis was performed using the entire model shown in FIG. 4 and a detailed model of the test piece fastening portion, and the effect of the conduction and dispersion of the elastic wave upon impact on the stress wave conduction of the test piece deformation was examined. Based on the analysis results, the present invention was verified on the effect of improving the initial stress peak on the stress-strain curve peculiar to the high-speed deformation, which the conventional test method had.
[0010]
As a comparative example, FIG. 5 shows an analysis result when a test was performed without providing a fixing jig. From FIG. 5, it can be seen that the transmission of the stress wave in the output rod is uniform, and is not generated by the vibration of the rod during the transmission of the stress wave, since the stress waveforms at the respective measurement points are almost the same. Therefore, even if the initial stress peak is caused by the impact test, it is generated by the initial impact near the test piece.
As a cause, it is considered that when an impact tensile force is input between the impact block and the test piece, a vibration waveform may be transmitted to the impact. However, from the FEM analysis of the detailed model of the test piece fastening portion in FIG. It was found that the phenomenon that the vibration at the time was transmitted to the output rod through the test piece did not appear. Even in the experiment, it was confirmed that even if the fastening method of the impact block 4 and the test piece 1 was variously changed, a systematic decrease in the initial stress peak was not observed, so that this influence was small.
Therefore, it was found that the impact of the impact test on the initial stress peak was caused by vibration of the output rod fastening portion and the output rod end from the test piece. At the fastening portion, the dispersion of the stress wave occurs due to the change in the cross-sectional area, but this effect is small, and almost no change was observed even in the actual measurement result of the test piece in which the cross-sectional area was gradually changed.
[0011]
Next, regarding the influence of the vibration at the end of the output rod, the influence of the vibration on the peak was examined on the FEM analysis in FIG. As a result, as shown in FIG. 6, it was found that lateral vibration was locally generated at the end of the output rod.
Since the lateral vibration in FIG. 6 is shown enlarged 1000 times, the actual vibration is very small as several tens of mm, but due to a dynamic phenomenon, not a vibration in a balanced state but an extremely large range is generated. It became clear that this lateral vibration became elastic deformation due to expansion and contraction of the output rod in the axial direction, and caused vibration corresponding to the initial peak.
[0012]
FIG. 7 is a contour diagram on an FEM analysis of an elastic stress wave generated by this vibration. It can be seen that the peak due to the vibration generated at the rod end overlaps the load waveform at the time of tension as it is and is transmitted as a plane wave. FIG. 8 shows the waveform of the stress wave at this time, and it can be seen that the same peak as that observed in the experiment is reproduced.
Therefore, in order to eliminate the peak due to this vibration, it is important to suppress the vibration at the rod end, but in order to suppress the occurrence of vibration, it is necessary to control the impact input of the block and the hammer, and it becomes stable. Peak removal becomes difficult.
Therefore, the fixing jig 10 is installed in the vicinity of the rod end so as to suppress the generation of the vibration even if the shock is input such that the vibration is generated. As shown in FIG. 9, a gap is provided in a part of the hammer 3 so that the fixing jig 10 does not interfere with the hammer 3 when the hammer 3 collides with the impact block 4. What is necessary is just to install as.
[0013]
In the invention according to the above (1), 102When measuring the high-speed tensile or compressive deformation stress at a strain rate of / s or more using an output rod, by restraining within 200 mm from the end of the output rod, vibration due to the impact of the metal rod is removed, In particular, it is possible to measure the deformation stress of the material with high accuracy by removing the initial stress appearing in the measurement stress peculiar to the impact test. Originally, it is necessary to precisely control the mounting position of the test equipment and test piece for the measurement accuracy control, but the present invention easily secures the measurement accuracy and reproducibility instead of the precise accuracy control. be able to.
If the position away from the end of the output rod by more than 200 mm is constrained, the effect of removing the vibration due to the impact will be weakened.
[0014]
In the invention according to (2), the test is performed while restricting a position L [mm] where L ≦ 15 D [mm] from an end of the output rod as a diameter D [mm] of the output rod.
When L> 15D [mm], the effect of removing vibration due to impact becomes weak as in the above (1), so L ≦ 15D [mm]. When L ≦ 15D [mm] and 200 mm or more, it is defined in the above (1).
[0015]
In the invention according to the above (3), the upper and lower surfaces of the output rod are restrained so as to be in contact with the fixing jig. As a result, the unsteady vertical vibration of the rod end generated at the time of impact input to the impact block can be suppressed, so that the tensile stress of the test piece having no initial stress peak due to the vibration can be measured.
[0016]
In the invention according to the above (4), the output rod is restrained by a restraining force F [N] satisfying the expression (1). Equation (1) is an equation obtained as an optimum range by FEM analysis and actual measurement. When equation (1) is satisfied, a sufficient restraining force for suppressing vibration can be applied, and therefore a high level without an initial stress peak can be obtained. Accurate tensile test stress can be measured. If the value is outside the range of the expression (1), the initial stress peak cannot be removed due to insufficient restraining force, or the restraining force becomes too large, which impedes the transmission of stress in the tensile test. If the restraining force satisfies the above equation (1), the effect is the same and the reproducibility can be measured with the same effect as long as the restraining force does not always have the same magnitude as long as the restraining force satisfies the equation.
[0017]
In the invention according to the above (5), only the lower surface of the output rod is constrained by the fixing jig, and the upper surface of the output rod is constrained using a tape with a suppressing force F [N] satisfying the expression (1). With this constraint, it is only necessary to determine the tension of the tape from the application position for the restraining force F [N] that satisfies the expression (1) only once at first, so that a stable stress measurement without an initial stress peak can be easily reproduced. it can.
[0018]
The apparatus according to the above (6), comprising: a metal output rod having a plate or round bar test piece mounting means at its tip; an impact block for impacting the test piece; a hammer for impacting the impact block; It has a rail that guides the hammer to collide with the impact block and a fixing jig that restrains the vicinity of the tip of the output rod. With a fixing jig that restrains the vicinity of the tip of the output rod, a test is performed to suppress the deflection of the output rod due to its own weight and the vibration of the output rod caused by the impact block's projecting direction at the time of impact deviating from the axis of the output rod. High-precision stress measurement that does not generate a stable initial stress peak can be performed without performing precise positioning and precision control of the device. The installation position of the fixing jig must be within 200 mm from the end of the output rod in order for the effect of suppressing the unsteady vibration of the end of the output rod to work, and the effect of suppressing the vibration of the output rod when the output rod diameter is different Is preferably set at a position L [mm] where L ≦ 15 D [mm] from the end of the output rod.
[0019]
In the invention according to the above (7), for the same reason as the invention according to the above (3), the fixing jig is installed so as to contact the upper and lower surfaces of the output rod.
[0020]
In the invention according to (8), the Young's modulus of the surface of the fixing jig in contact with the output rod is equal to or greater than that of the output rod. Thereby, the vibration outside the axial direction is suppressed without obstructing the transmission of the stress wave in the axial direction of the output rod, so that the generation of the initial stress peak due to the vibration can be suppressed. If the Young's modulus of the surface of the fixing jig is smaller than the output rod, transmission of the stress wave in the axial direction of the output rod is impeded, so that the measured stress becomes smaller than the original deformation stress of the test piece, which is not preferable.
[0021]
In the invention according to the above (9), the fixing jig in contact with the output rod is a set of cylinders having a radius R ≧ 1.0 [mm] with a central axis perpendicular to the rod. Thus, the output rod and the fixing jig are in point contact with each other, so that the influence of the friction between the fixing jig and the output rod is reduced, and the vibration of the output rod can be suppressed without obstructing the transmission of the stress wave in the axial direction.
[0022]
In the invention according to the above (10), for the same reason as the invention according to the above (5), the fixing jig is installed only on the lower surface side of the output rod, and the output rod is restrained from the upper surface so as to press the output rod against the fixing jig. Fixing tapes will be installed.
[0023]
In the invention according to the above (11), the second fixing jig is moved from the end of the output rod by 50D ≦ L.2Position L where ≦ 75D2[Mm]. Thus, the effect of suppressing the deflection of the output rod under its own weight and the effect of suppressing the vibration in conjunction with the first fixing jig can be obtained, so that the occurrence of the initial stress peak can be suppressed by the stable and stable vibration suppression. When the installation position of the second fixing jig is closer to the end than 50D from the end of the output rod, the effect of installing the second fixing jig is weak because it enters the region of the effect of suppressing vibration by the first fixing jig. Is not preferred. On the other hand, if the distance is more than 75D, the effect of suppressing the deflection of its own weight is lost, and at the same time, the interlock with the first fixing jig cannot be obtained, and the effect of suppressing vibration is lost.
[0024]
In the invention according to the above (12), a tension is applied to the output rod in advance along the rod axis direction before the test, and2By applying a strain rate of / s or more, for the same reason as the invention according to the above (1), it is possible to suppress unsteady vertical vibration of the rod end generated at the time of impact input of the impact block, The tensile stress of a test piece without an initial stress peak due to vibration can be measured.
[0025]
In the invention according to the above (13), before the test, the output rod is set in advance to a tension F satisfying the expression (2).2While applying tension at [N], 102/ S or more. Equation (2) is an equation obtained as an optimum range by FEM analysis and actual measurement. When equation (2) is satisfied, a tension sufficient to suppress vibration can be applied, so that high accuracy without an initial stress peak is obtained. It can measure the stress of a simple tensile test. If the value is out of the range of the expression (2), the initial stress peak cannot be removed because the tension is insufficient, or the tension becomes too large, so that the accuracy of the stress measurement of the test piece decreases. Further, as long as the restraining force satisfies the above equation (2), even if the holding force is not always the same, the effect is the same and good reproducibility can be measured as long as the restraining force is within the range satisfying the calculation equation.
[0026]
In the invention according to the above (14), using the device having the fixing jig for the end of the output rod defined in any one of the above (6) to (11), By combining a method of applying a tension to the specified output rod in advance, both vibration suppression effects can be obtained, so that an initial stress peak due to vibration can be reliably removed.
[0027]
In the invention according to the above (15), the center of the cross section of the output rod at the time of the test satisfies the range A [mm] that satisfies A ≦ 0.5 with respect to the axis of tension or compression at the time of the test. And a test piece and an impact block are set, and the tensile or compressive load input direction is set so as to fall within the range A.2/ S or more. Thus, as described in the invention according to the above (1), the condition of strict accuracy control for excluding the cause of vibration occurrence is satisfied, and the tensile stress of the test piece having no initial stress peak due to vibration can be measured.
In the present invention, in order to measure the compressive stress at the time of high-speed deformation, as shown in FIG. 10, a hammer may be caused to collide with the impact block from a direction opposite to the test piece. Subsequent analysis may be performed in the same manner as for the tensile stress.
[0028]
【Example】
FIG. 9 is a schematic view of the fixing jig 10. The fixing jig 10 is attached to the output rod 2 near the rod end so as to make point contact with the output rod 2. The material of the test material is a 440 MPa class steel material.
Specifically, the position L of the fixing jig 10 is determined to be 100 mm from the end of the rod with respect to the diameter of the output rod 2 of 12 mm, the material of the fixing jig is S45C having the same Young's modulus as the rod, and the fixing jig 10 Was measured with a radius of 5 mm, and the holding force of the output rod 2 by the fixing jig 10 was determined to be 300 N. As a result, the stress waveform when the fixing jig 10 was attached was as shown in FIG. 11, indicating that the peak could be removed. FIG. 12 shows a comparison with the waveform of FIG. 3 of the comparative example, and it can be seen that the stress waveform was greatly improved. The remaining peaks are yield stress peaks as material properties. In the test piece that was actually prestrained, a relatively large peak was observed even with this improvement, and it was also found that the initial stress peaks were not all due to the rod vibration, and that the influence of the upper yield stress was large.
[0029]
In addition, the fixing jig 10 shown in FIG. 9 was also attached to the duralumin A7075T6 material having a significantly different material, and the stress was measured.
Specifically, the position L of the fixing jig 10 is determined to be 100 mm from the rod end with respect to the diameter of the output rod 2 of 12 mm, and the material of the fixing jig 10 is S45C material having a Young's modulus equivalent to that of the rod. The shape of No. 10 was set to a radius of 5 mm, and the holding force of the output rod 2 by the fixing jig 10 was determined to be 300 N, and the measurement was performed. As a result, the effect of removing the initial stress peak by the fixing jig with duralumin A7075T6 material was as shown in FIG. 13, and the same effect could be obtained even when the material was changed.
[0030]
FIG. 14 is a drawing of an apparatus for implementing the method for applying tension according to the inventions according to the above (12) and (13). The jig 11 is fixed separately from the apparatus main body. The impact block 4 is fixed, and the output rod 2 is tensioned in advance in the opposite direction from the end face opposite to the impact block 4 before the test.2Is given. As a result, the effect of removing the initial stress peak was as shown in FIG. 15, and the same effect could be obtained even when the material was changed.
Further, with respect to the invention according to the above (14), the method according to the above (6) is used to carry out the method of the above (13).2FIG. 16 shows the effect of removing the initial stress peak when the holding force F of the fixing jig was applied, and the same effect was obtained even when the material was changed.
Further, in the invention according to (15), as shown in FIG. 17, the center of the cross section of the output rod at the time of the test is in a range A where A ≦ 0.5 with respect to the axis of tension or compression at the time of the test. The test was performed while adjusting the deflection of the output rod under its own weight and the firing direction of the impact block so as to obtain [mm]. When adjusted precisely in this manner, the effect of removing the initial stress peak was as shown in FIG. 18, and the same effect could be obtained even when the material was changed.
[0031]
The effect of suppressing the unsteady dynamic vibration by the fixing jig is effective not only for the one-bar type high-speed tensile tester shown in the embodiment but also for the Kolsky method using two metal rods. It is also effective for a hydraulic servo type or a test table method that does not use a metal rod by applying it to a test piece or a test piece connection jig. The fixing jig specifies the vertical direction in which the effect is greatest, but depending on the direction of the impact input, the fixing jig can obtain the effect of suppressing the unsteady vibration in all directions. Further, it goes without saying that this method can be applied not only to measurement of tensile or compression stress but also to measurement of weld strength or structural deformation strength.
[0032]
【The invention's effect】
Based on the present invention, high-precision high-speed deformation characteristics of a material are measured, and a high-precision collision simulation is performed by introducing the characteristics. It is possible to omit trial and error using a prototype member for ensuring the performance, and not only to significantly reduce the cost for trial production, but also to shorten the time required for design. In addition, it is possible to accurately predict the minimum amount of material used to meet the collision safety standards from the precise high-speed deformation characteristics of the material, and to reduce the use of extra materials to ensure safety, Not only the material cost can be reduced, but also the fuel efficiency can be improved by reducing the weight of the vehicle.
[Brief description of the drawings]
FIG. 1 is a diagram showing a stress-strain curve according to a conventional test method.
FIG. 2 is a diagram showing a measuring method of a conventional one bar type high-speed tensile test.
FIG. 3 is a diagram showing a strain gauge for measuring transmission of a stress wave in an output rod.
FIG. 4 is a diagram showing a finite element model for analyzing the occurrence of an initial stress peak.
FIG. 5 is a diagram showing transmission of a stress wave by a conventional test method.
FIG. 6 is a diagram showing local unsteady vibration of a rod end by finite element analysis.
FIG. 7 is a diagram showing a stress wave due to unsteady vibration preceding a stress wave in a tensile test.
FIG. 8 is a diagram showing initial peaks and experimental values reproduced by finite element method analysis.
FIG. 9 is a view showing a fixing jig for removing an initial stress peak.
FIG. 10 is a diagram showing a compression test method in the one @ bar system.
FIG. 11 is a diagram showing transmission of a stress wave from which an initial stress peak has been removed by a fixing jig.
FIG. 12 is a diagram showing a comparison between the stress of a 440 MPa class steel sheet measured with high accuracy by a fixing jig and that before improvement.
FIG. 13 is a diagram showing a comparison between the stress of the A7075T6 material measured with a fixing jig with high accuracy and that before improvement.
FIG. 14 is a diagram showing a method of applying tension to an output rod before a test.
FIG. 15 is a diagram showing a comparison between the stress of a 590 MPa class steel sheet measured with high accuracy by applying tension to the output rod in advance and the stress before improvement.
FIG. 16 is a diagram showing a comparison between the stress of a 780 MPa class steel sheet measured with high precision by applying tension to an output rod in advance and using a fixing jig, and before improvement.
FIG. 17 is a diagram showing conditions for flexure of the output rod under its own weight and precise setting in the firing direction of the impact block.
FIG. 18 is a diagram showing a comparison between the stress of a 270 MPa class steel sheet measured with high accuracy when the output rod and the test conditions are precisely installed and controlled, and those before improvement.
[Explanation of symbols]
1 Test piece
2 Output rod
3 hammer
4 Impact Block
5 attachment
6 pin
7 tab
8 strain gauge
9 rail
10 Fixing jig
11 Fixing jig for applying tension

Claims (15)

板材または丸棒の試験片を取付けた金属製出力棒の弾性変形に基づいて試験片の応力を計測する試験方法において、前記出力棒の端部から200mm以内を拘束しながら、10/s以上のひずみ速度を付与することを特徴とする高速変形時の引張又は圧縮応力の精密計測方法。In a test method for measuring stress of a test piece based on elastic deformation of a metal output rod to which a test piece of a plate material or a round bar is attached, at least 10 2 / s while restraining within 200 mm from an end of the output rod. A precise measurement method for tensile or compressive stress during high-speed deformation, characterized by imparting a strain rate of? 板材または丸棒の試験片を取付けた金属製出力棒の弾性変形に基づいて試験片の応力を計測する試験方法において、前記出力棒の直径D[mm]として前記出力棒の端部からL≦15D[mm]となる位置Lを拘束しながら、10/s以上のひずみ速度を付与することを特徴とする高速変形時の引張又は圧縮応力の精密計測方法。In a test method for measuring the stress of a test piece based on the elastic deformation of a metal output rod to which a test piece of a plate material or a round bar is attached, a diameter D [mm] of the output rod is L ≦ from the end of the output rod. A precise measurement method for tensile or compressive stress during high-speed deformation, wherein a strain rate of 10 2 / s or more is applied while restraining a position L at which 15 D [mm] is obtained. 出力棒の上下両面を固定冶具で接するように拘束することを特徴とする請求項1又は2記載の高速変形時の引張又は圧縮応力の精密計測方法。3. The method for accurately measuring tensile or compressive stress during high-speed deformation according to claim 1, wherein the upper and lower surfaces of the output rod are constrained to be in contact with a fixing jig. 下記(1)式を満足する抑え力F[N]で出力棒を拘束することを特徴とする請求項1〜3の何れか1項に記載の高速変形時の引張又は圧縮応力の精密計測方法。
1.0×10 ×E ≦ F ≦ 1.5×10 ×E   (1)
ここで、D:出力棒の直径[mm]、r:出力棒の半径[mm]=D/2
:出力棒のヤング率[N/mm
The method for accurately measuring tensile or compressive stress during high-speed deformation according to any one of claims 1 to 3, wherein the output rod is restrained by a restraining force F [N] satisfying the following expression (1). .
1.0 × 10 - 5 × E b r 2 ≦ F ≦ 1.5 × 10 - 3 × E b r 2 (1)
Here, D: diameter [mm] of the output rod, r: radius [mm] of the output rod = D / 2
E b : Young's modulus of output rod [N / mm 2 ]
出力棒の下面のみ固定冶具で拘束し、出力棒の上面から(1)式を満足する抑え力F[N]でテープを用いて拘束することを特徴とする請求項1又は2記載の高速変形時の引張又は圧縮応力の精密計測方法。3. The high-speed deformation according to claim 1, wherein the lower surface of the output rod is restrained by a fixing jig, and the upper surface of the output rod is restrained by using a tape with a restraining force F [N] satisfying the expression (1). Precise measurement method of tensile or compressive stress at the time. 先端に板材または丸棒の試験片の取付手段を有する金属製出力棒と、前記試験片に衝撃を与えるインパクト・ブロックと、前記インパクト・ブロックに衝撃を付与するハンマーと、前記ハンマーが前記インパクト・ブロックに衝突するようガイドするレールと、前記出力棒の先端近傍を拘束する固定冶具を有することを特徴とする高速変形時の引張又は圧縮応力の精密計測装置。A metal output rod having a plate or round bar test piece mounting means at its tip; an impact block for applying an impact to the test piece; a hammer for applying an impact to the impact block; and A precision measuring device for tensile or compressive stress during high-speed deformation, comprising: a rail for guiding the block so as to collide with the block; 固定冶具が出力棒の上下両面に接するように設置されていることを特徴とする請求項6記載の高速変形時の引張又は圧縮応力の精密計測装置。7. The precision measuring device for tensile or compressive stress during high-speed deformation according to claim 6, wherein the fixing jig is installed so as to be in contact with both upper and lower surfaces of the output rod. 出力棒と接する固定冶具の面のヤング率が出力棒と同等以上であることを特徴とする請求項6又は7記載の高速変形時の引張又は圧縮応力の精密計測方法。8. The method for accurately measuring tensile or compressive stress during high-speed deformation according to claim 6, wherein the Young's modulus of the surface of the fixing jig in contact with the output rod is equal to or greater than that of the output rod. 出力棒と接する固定冶具が、半径R≧1.0[mm]の円柱状であり、出力棒と直交し点接触することを特徴とする請求項7又は8記載の高速変形時の引張又は圧縮応力の精密計測装置。9. The tension or compression during high-speed deformation according to claim 7, wherein the fixing jig in contact with the output rod has a cylindrical shape with a radius R ≧ 1.0 [mm] and is orthogonal to the output rod and in point contact. Precision measuring device for stress. 出力棒の下面側にのみ固定冶具が設置され、出力棒を固定冶具に押し付けるように、出力棒を上面から拘束する固定テープを有すること特徴とする請求項6記載の高速変形時の引張又は圧縮応力の精密計測装置。7. The tension or compression during high-speed deformation according to claim 6, wherein a fixing jig is provided only on the lower surface side of the output rod, and a fixing tape for restraining the output rod from the upper surface is provided so as to press the output rod against the fixing jig. Precision measuring device for stress. 第2の固定冶具を出力棒の端部から50D≦L≦75Dとなる位置L[mm]に設置することを特徴とする請求項6〜10の何れか1項に記載の高速変形時の引張又は圧縮応力の精密計測装置。During high-speed deformation according to any one of claims 6-10, characterized in that installed in the position L 2 [mm] to be 50D ≦ L 2 ≦ 75D the second fixing jig from the end portion of the output rod Precision measuring device for tensile or compressive stress. 板材または丸棒の試験片を取付けた金属製出力棒の弾性変形に基づいて試験片の応力を計測する試験方法において、前記出力棒に棒軸方向に沿って試験前に予め張力を付与しながら、10 /s以上のひずみ速度を付与することを特徴とする高速変形時の引張又は圧縮応力の精密計測方法。In a test method for measuring stress of a test piece based on elastic deformation of a metal output rod to which a test piece of a plate material or a round bar is attached, a tension is applied to the output rod in advance along a rod axis direction before the test. A precise method for measuring tensile or compressive stress during high-speed deformation, wherein a strain rate of 10 2 / s or more is applied. 下記(2)式を満足する張力F[N]を付与することを特徴とする請求項12記載の高速変形時の引張又は圧縮応力の精密計測方法。
9.5×(D/2) ≦ F ≦ YP/2   (2)
ここで、D:出力棒の直径[mm]、YP:試験片の降伏荷重[N]
13. The method for accurately measuring tensile or compressive stress during high-speed deformation according to claim 12, wherein a tension F 2 [N] satisfying the following expression (2) is applied.
9.5 × (D / 2) 2 ≦ F 2 ≦ YP / 2 (2)
Here, D: diameter of output rod [mm], YP: yield load of test piece [N]
請求項6〜11記載の何れか1項に記載の装置を用いて請求項12または13記載の方法を実施することを特徴とする高速変形時の引張又は圧縮応力の精密計測装置。A precision measuring device for tensile or compressive stress during high-speed deformation, wherein the method according to claim 12 or 13 is implemented using the device according to any one of claims 6 to 11. 先端に板材または丸棒の試験片の取付手段を有する金属製出力棒と、前記試験片に衝撃を与えるインパクト・ブロックと、前記インパクト・ブロックに衝撃を付与するハンマーと、前記ハンマーが前記インパクト・ブロックに衝突するようガイドするレールを有する装置を用いて、試験時の前記出力棒の断面の中心が、試験時の引張または圧縮の軸線に対して、A ≦ 0.5mmとなる範囲A[mm]を満たしながら、10 /s以上のひずみ速度を付与することを特徴とする高速変形時の引張又は圧縮応力の精密計測方法。A metal output rod having a plate or round bar test piece mounting means at its tip, an impact block for applying an impact to the test piece, a hammer for applying an impact to the impact block, and the hammer for applying the impact to the impact block. Using a device having a rail that guides the block so as to collide with the block, the center A of the cross section of the output rod at the time of a test is A ≦ mm with respect to the axis of tension or compression at the time of the test. ], While applying a strain rate of 10 2 / s or more, a precise measurement method of tensile or compressive stress during high-speed deformation.
JP2003102936A 2002-04-08 2003-04-07 Method and apparatus for precise measurement of tensile or compressive stress during high-speed deformation Expired - Fee Related JP3938757B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003102936A JP3938757B2 (en) 2002-04-08 2003-04-07 Method and apparatus for precise measurement of tensile or compressive stress during high-speed deformation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002105075 2002-04-08
JP2003102936A JP3938757B2 (en) 2002-04-08 2003-04-07 Method and apparatus for precise measurement of tensile or compressive stress during high-speed deformation

Publications (2)

Publication Number Publication Date
JP2004004032A true JP2004004032A (en) 2004-01-08
JP3938757B2 JP3938757B2 (en) 2007-06-27

Family

ID=30446738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003102936A Expired - Fee Related JP3938757B2 (en) 2002-04-08 2003-04-07 Method and apparatus for precise measurement of tensile or compressive stress during high-speed deformation

Country Status (1)

Country Link
JP (1) JP3938757B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006284517A (en) * 2005-04-05 2006-10-19 Nippon Steel Corp Highly precise tension or compression tester in strain rate in wide range including high-speed deformation
JP2007212416A (en) * 2006-02-13 2007-08-23 Kobe Steel Ltd Impact testing apparatus
JP2011053014A (en) * 2009-08-31 2011-03-17 Kobe Steel Ltd Impact testing machine
JP2015511709A (en) * 2012-03-31 2015-04-20 中国▲鉱▼▲業▼大学(北京) Dynamic performance test system
JP2018048998A (en) * 2016-07-15 2018-03-29 ザ・ボーイング・カンパニーThe Boeing Company Device for measuring dynamic stress/strain response of ductile materials
CN108133645A (en) * 2017-12-18 2018-06-08 安徽工程大学 A kind of impact experiment apparatus and experimental method
CN112557194A (en) * 2020-12-09 2021-03-26 一汽奔腾轿车有限公司 Development method of high-precision simulation model of metal material

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006284517A (en) * 2005-04-05 2006-10-19 Nippon Steel Corp Highly precise tension or compression tester in strain rate in wide range including high-speed deformation
JP4621060B2 (en) * 2005-04-05 2011-01-26 新日本製鐵株式会社 High-precision tensile or compression testing equipment over a wide range of strain rates including high-speed deformation
JP2007212416A (en) * 2006-02-13 2007-08-23 Kobe Steel Ltd Impact testing apparatus
JP4620602B2 (en) * 2006-02-13 2011-01-26 株式会社神戸製鋼所 Impact test equipment
JP2011053014A (en) * 2009-08-31 2011-03-17 Kobe Steel Ltd Impact testing machine
JP2015511709A (en) * 2012-03-31 2015-04-20 中国▲鉱▼▲業▼大学(北京) Dynamic performance test system
US9588029B2 (en) 2012-03-31 2017-03-07 China University Of Mining & Technology (Beijing) Dynamics performance testing system
JP2018048998A (en) * 2016-07-15 2018-03-29 ザ・ボーイング・カンパニーThe Boeing Company Device for measuring dynamic stress/strain response of ductile materials
JP7002867B2 (en) 2016-07-15 2022-01-20 ザ・ボーイング・カンパニー A device for measuring the dynamic stress / strain response of ductile materials
CN108133645A (en) * 2017-12-18 2018-06-08 安徽工程大学 A kind of impact experiment apparatus and experimental method
CN112557194A (en) * 2020-12-09 2021-03-26 一汽奔腾轿车有限公司 Development method of high-precision simulation model of metal material

Also Published As

Publication number Publication date
JP3938757B2 (en) 2007-06-27

Similar Documents

Publication Publication Date Title
JP4820786B2 (en) Impact tensile stress measurement method
JP4621060B2 (en) High-precision tensile or compression testing equipment over a wide range of strain rates including high-speed deformation
CN102879259A (en) Tensile test device and method for testing deposits on electronic substrates
JP4741272B2 (en) Dynamic load measuring device
JP2013250120A (en) Damage detection method for structure
JP2004004032A (en) Precision measurement method and apparatus for tension at high-speed deformation or compressive stress
Iranpour et al. Structural life assessment of oil and gas risers under vortex-induced vibration
JP3874490B2 (en) Measurement method in high-speed tensile test
JP4869618B2 (en) High-precision tensile or compressive load measuring device with a wide range of strain rates including high-speed deformation
KR102209605B1 (en) System and method for measuring elastic modulus of steel material
Weerasooriya et al. Fracture toughness for PMMA as a function of loading rate
Kiyokawa et al. Slip coefficient and ultimate strength of high-strength bolted friction joints with compact bolt spacing and edge distance
CN109716100B (en) Material sample and method for determining the geometry of a sample
Hou et al. Failure Mechanism of Brass with Three V‐Notches Characterized by Acoustic Emission in In Situ Three‐Point Bending Tests
KR102487305B1 (en) Reverse deformation measuring device for welding steel plates
JPH1030980A (en) Shock tester
JP2001281121A (en) Fretting fatigue test device and fretting fatigue estimation method
JP4741273B2 (en) Dynamic load measuring device
Su et al. A Fatigue Method in the Tension-Compression Axial Stress Control Test of Automotive Sheet Steel
CN117828939A (en) Strain gauge arrangement method
US20210396155A1 (en) Jig for vibration test of stator vane
Gao et al. Investigation of accumulated collision damages on ship plates
Umeda et al. Numerical evaluation of measurement accuracy of non-coaxial Hopkinson bar method
Urriolagoitia-Calderón et al. Experimental analysis of crack propagation stability in single edge notch specimens
JP5218447B2 (en) High-precision tensile load or compression load measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070323

R151 Written notification of patent or utility model registration

Ref document number: 3938757

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140406

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees