JP2004002911A - Surface treatment method for rare earth magnet - Google Patents

Surface treatment method for rare earth magnet Download PDF

Info

Publication number
JP2004002911A
JP2004002911A JP2002158402A JP2002158402A JP2004002911A JP 2004002911 A JP2004002911 A JP 2004002911A JP 2002158402 A JP2002158402 A JP 2002158402A JP 2002158402 A JP2002158402 A JP 2002158402A JP 2004002911 A JP2004002911 A JP 2004002911A
Authority
JP
Japan
Prior art keywords
plating
magnet
rare earth
layer
earth magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002158402A
Other languages
Japanese (ja)
Inventor
Hisayuki Kako
加来 久幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2002158402A priority Critical patent/JP2004002911A/en
Publication of JP2004002911A publication Critical patent/JP2004002911A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To form a plating film which has tight adhesion with a magnet base material. <P>SOLUTION: In the surface treatment method for a rare earth magnet 1, the surface of a rare earth magnet composed of rare earth elements consisting essentially of Nd, transition metals consisting essentially of iron, and B is melted, and is thereafter rapidly cooled, and a protective layer is formed on the rapidly cooled layer by a plating method. Further, as the melting method, a laser beam can be used, and the rapidly cooled layer can be composed of an amorphous layer 2, and the protective layer can be composed of a strike Ni plating layer 3 and an electrical Ni plating layer 4. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ACサーボモータやリニアモータ、データ記録用ハードディスクの磁気ヘッド駆動装置に利用される高エネルギー積希土類磁石の表面処理方法に関するものである。
【0002】
【従来の技術】
Ndを主成分とする希土類元素、鉄を主成分とする遷移元素およびBからなる永久磁石材料は、現在最高のエネルギー積を持つ最強の磁石として、産業用モータなどに多用されているが、成分として鉄や活性な金属である希土類元素を含むため、空気中の水分によって錆を生じて磁気特性が低下しやすい。このため、めっきや塗装などの防錆膜を表面に形成して使用されている。
その中で、めっき法によって保護膜を形成する方法を図4に示す。図4は、従来の希土類磁石を示す断面模式図である。希土類磁石1の表面に電解によるNiストライクめっき層3を形成し、その上に電気Niめっき層4を形成している(例えば特開平05−082322)。この場合、めっきの前処理として、水溶液を使った湿式の表面処理法によって磁石素地の調整が行われ、その後めっき皮膜が形成されている。
【0003】
【発明が解決しようとする課題】
しかしながら、上記従来の方法では、めっき前処理時の希土類磁石表面は、図5に示すように変化する。5は磁石材中の主相であるNdFe14B相、6はNdFe相、7はNdリッチ相である。すなわち、NdFe14B相5の粒子の境界に存在する電気化学的に活性なNdリッチ相7が優先的に処理液中へ溶解する。このため、主相の粒同士の固着力が低下し、その後形成されるめっき皮膜と磁石素地間の密着性が低くなるという問題があった。したがって、めっき後の磁石をモータコアへ接着したモータでは、接着剤の加熱硬化時の膨張収縮や高速回転時の遠心力によって、磁石がめっき皮膜と磁石素地の界面で剥離するといった不具合を生じることがあった。
そこで、本発明の目的は、磁石素地との密着性が良いめっき皮膜を形成するための磁石素材の表面処理方法を提供することである。
【0004】
【課題を解決するための手段】
上記問題を解決するため本発明では、Ndを主成分とする希土類元素、鉄を主成分とする遷移元素およびBからなる永久磁石材料の表面を溶融した後急冷し、この溶融層の上に磁石素地を保護するためのめっき層を形成するものである。希土類磁石の表面のみを溶融急冷すると、磁石表面に耐薬品性の良いアモルファス層が生成し、このアモルファス層で磁石素地が保護されるため、めっき前処理の際に、主相の粒子の固着力が低下することがない。また、めっき皮膜はアモルファス層の上に形成されるため、めっき皮膜の密着力の低下も生じることがない。
磁石の表面を溶融急冷する方法として種々の方法があるが、レーザービームを使用する方法は、大気中で処理が可能であるとともに、エネルギーを微小部分に集中できるので、磁石本体の温度を上げることなく、磁石表面層のみを溶融する方法として最も適している。
【0005】
【発明の実施の形態】
本発明の実施形態を図に基づいて説明する。
図1は本発明の表面処理方法によって作製した希土類磁石の断面模式図、図2は表面処理部の拡大断面模式図を示す。2はアモルファス層であり、他の符号は従来と同じである。
Ndを主成分とする希土類元素、鉄およびBからなる希土類磁石1の表面を溶融するために、図3に示すレーザー加熱装置を使用した。図3のレーザー加熱装置は、レーザー光源9とレーザーを細いビームに収束する光学系10、希土類磁石をXYの2方向に移動させるX−Yステージ12とそのコントローラ13から構成されている。
レーザー光源9に最大出力100WのYAGレーザーを使用し、X―Yステージ12の移動速度とレーザー出力および1秒間当たりのパルス数を変化させることにより、希土類磁石の表面を溶融した後、急冷して厚み約15μmのアモルファス層が形成できるように調整した。
磁石の6面すべての表面を溶融した後、急冷してアモルファス層を形成した。その後、アルカリ脱脂、電解脱脂、酸洗処理を行い、塩化Niと塩酸を含むめっき液中に浸漬して、ストライクNiめっきを行った。水洗後、硫酸Ni、塩化Ni、およびほう酸を含むめっき液中で膜厚20μmまで電気Niめっきを行った。
比較例として、従来のNiめっき希土類磁石と同様に、湿式法による表面エッチングとアルカリ脱脂、活性化処理を行い、実施例と同じ条件でストライクNiめっきと電気Niめっきを行ったサンプルも作製した(図4)。
本実施例および比較例の両Niめっき希土類磁石をそれぞれ鋼製のブロックにエポキシ接着剤を用いて接着した。接着剤を加熱硬化後、せん断剥離強度を調べた。また、φ10mmの形状で、Niめっき膜に磁石素地まで達する傷を入れ、これにφ10mmの炭素鋼製のロッドをエポキシ系接着剤で貼り付けた。接着剤を加熱硬化した後、磁石を引っ張り試験機の片側に固定し、ロッドをもう片方に固定して引き離し、めっき皮膜の密着強度を調べた。
その結果を表1に示す。表1はNiめっき希土類磁石のめっき膜のせん断剥離強度と密着強度を測定した平均値である。
【0006】
【表1】

Figure 2004002911
【0007】
本実施例の希土類磁石の剥離は、すべて接着剤とNiめっき皮膜の界面および接着剤層の内部で生じ、比較例については、剥離はすべて磁石の表面とストライクNiめっき皮膜の界面で生じた。
表1より、本発明の実施例は磁石素地とNiめっき間の密着性が良好であり、接着剤自体の機械強度よりも強くすることができた。このため、モータのロータに接着剤を用いて取り付け、高速度で回転しても磁石とめっき皮膜の界面から剥離することがなかった。
なお、本実施例では、磁石表面を溶融急冷してアモルファス層を形成する方法として、レーザーを使用したが、真空中にワークを入れ、電子ビームを当てて表面を溶融しても同じ効果が得られる。この他、放電によるスパークを用いて表面を溶融する方法など、希土類磁石の表面のみを溶融するエネルギーを与えることが可能な方法であれば、本発明の実施例と同様、磁石表面とめっき膜の密着性を向上させる効果が得られる。
また、本実施例では磁石表面に電気Niめっき皮膜を形成したが、めっき皮膜はNiの電解めっきに限定されるものではなく、CuやAg,Au,Crなど水溶液から電解めっきあるいは無電解めっきで金属皮膜を形成できる金属であって、耐環境性の良いものであれば、Niめっきと同様な密着性と磁石素地の保護効果が得られる。
【0008】
【発明の効果】
以上述べたように、請求項1記載の希土類磁石の表面処理方法によれば、磁石素地と密着性の良いめっき保護膜を形成できるので、モータコアへの接着後の加熱硬化時の膨張収縮やモータの高速回転時の遠心力によって、磁石の素地とめっきの界面で剥離するといった不具合を生じない。このため、信頼性の高いACサーボモータやリニアモータを製造することができる。また、請求項2記載の希土類磁石の表面処理方法によれば、密着性の良いめっき膜を形成するための磁石表面の溶融急冷処理を大気中で行うことができるので、めっき皮膜付き希土類磁石の製造を安価に行うことができる。
【図面の簡単な説明】
【図1】本発明の表面処理方法によって作製した希土類磁石断面の模式図。
【図2】図1における表面処理部の拡大断面模式図。
【図3】本発明の表面処理に用いたレーザー加熱装置の構成図。
【図4】従来の表面処理方法によって作製した希土類磁石断面の模式図。
【図5】従来の希土類磁石の密着不良のメカニズムを説明する説明図。
【符号の説明】
1 希土類磁石
2 アモルファス層
3 ストライクNiめっき層
4 電気Niめっき層
5 NdFe14B相
6 NdFe
7 Ndリッチ相
8 レーザー用電源
9 レーザー光源
10 光学系
11 レーザービーム
12 X−Yステージ
13 X−Yステージコントローラ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a surface treatment method for a high-energy product rare earth magnet used in an AC servomotor, a linear motor, and a magnetic head driving device for a data recording hard disk.
[0002]
[Prior art]
Permanent magnet materials composed of rare earth elements containing Nd as a main component, transition elements containing iron as a main component, and B are now widely used as the strongest magnets having the highest energy products in industrial motors and the like. As a result, iron or a rare earth element which is an active metal is included, and therefore, moisture in the air tends to cause rust and magnetic properties are likely to deteriorate. For this reason, a rust prevention film such as plating or painting is formed on the surface before use.
FIG. 4 shows a method of forming a protective film by a plating method. FIG. 4 is a schematic sectional view showing a conventional rare earth magnet. An Ni strike plating layer 3 is formed on the surface of the rare earth magnet 1 by electrolysis, and an electric Ni plating layer 4 is formed thereon (for example, Japanese Patent Application Laid-Open No. 05-082222). In this case, as a pretreatment for plating, adjustment of the magnet substrate is performed by a wet surface treatment method using an aqueous solution, and thereafter, a plating film is formed.
[0003]
[Problems to be solved by the invention]
However, in the above-mentioned conventional method, the surface of the rare-earth magnet during the plating pretreatment changes as shown in FIG. Reference numeral 5 denotes a Nd 2 Fe 14 B phase as a main phase in the magnet material, 6 denotes an Nd 1 Fe 4 B 4 phase, and 7 denotes an Nd-rich phase. That is, the electrochemically active Nd-rich phase 7 present at the boundaries of the particles of the Nd 2 Fe 14 B phase 5 is preferentially dissolved in the treatment liquid. For this reason, there has been a problem that the fixing force between the grains of the main phase is reduced, and the adhesion between the subsequently formed plating film and the magnet substrate is reduced. Therefore, in the motor in which the magnet after plating is bonded to the motor core, there is a possibility that the magnet may peel off at the interface between the plating film and the magnet substrate due to expansion and contraction during heating and curing of the adhesive and centrifugal force during high-speed rotation. there were.
Therefore, an object of the present invention is to provide a surface treatment method for a magnet material for forming a plating film having good adhesion to a magnet substrate.
[0004]
[Means for Solving the Problems]
In order to solve the above problem, in the present invention, the surface of a permanent magnet material comprising a rare earth element containing Nd as a main component, a transition element containing iron as a main component, and B is melted, and then quenched. A plating layer for protecting the substrate is formed. When only the surface of a rare earth magnet is melted and quenched, an amorphous layer with good chemical resistance is formed on the magnet surface, and the amorphous layer protects the magnet base material. Does not decrease. Further, since the plating film is formed on the amorphous layer, the adhesion of the plating film does not decrease.
There are various methods for melting and quenching the surface of the magnet.However, the method using a laser beam can be processed in the air and can concentrate energy on a very small part. And is most suitable as a method for melting only the magnet surface layer.
[0005]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic cross-sectional view of a rare earth magnet produced by the surface treatment method of the present invention, and FIG. 2 is an enlarged schematic cross-sectional view of a surface treatment part. Reference numeral 2 denotes an amorphous layer, and the other symbols are the same as those in the related art.
The laser heating device shown in FIG. 3 was used to melt the surface of the rare earth magnet 1 composed of iron and B, a rare earth element containing Nd as a main component. The laser heating apparatus shown in FIG. 3 includes a laser light source 9, an optical system 10 for converging a laser beam into a narrow beam, an XY stage 12 for moving a rare-earth magnet in two directions XY, and a controller 13 thereof.
Using a YAG laser with a maximum output of 100 W as the laser light source 9 and changing the moving speed and laser output of the XY stage 12 and the number of pulses per second, the surface of the rare earth magnet is melted and then rapidly cooled. It was adjusted so that an amorphous layer having a thickness of about 15 μm could be formed.
After melting all six surfaces of the magnet, it was rapidly cooled to form an amorphous layer. Thereafter, alkali degreasing, electrolytic degreasing, and pickling treatments were performed, and the resultant was immersed in a plating solution containing Ni chloride and hydrochloric acid to perform strike Ni plating. After washing with water, electric Ni plating was performed to a film thickness of 20 μm in a plating solution containing Ni sulfate, Ni chloride and boric acid.
As a comparative example, similarly to the conventional Ni-plated rare-earth magnet, a sample in which strike Ni plating and electric Ni plating were performed under the same conditions as in the example by performing surface etching by a wet method, alkali degreasing, and activation treatment was also prepared ( (Fig. 4).
Both Ni-plated rare earth magnets of this example and the comparative example were bonded to a steel block using an epoxy adhesive. After the adhesive was cured by heating, the shear peel strength was examined. Further, the Ni plating film having a shape of φ10 mm was scratched to reach the magnet base, and a rod made of carbon steel having a diameter of 10 mm was adhered to this with an epoxy-based adhesive. After the adhesive was cured by heating, the magnet was fixed to one side of a tensile tester, the rod was fixed to the other side and separated, and the adhesion strength of the plating film was examined.
Table 1 shows the results. Table 1 shows the average values of the shear peel strength and the adhesion strength of the plating film of the Ni-plated rare earth magnet.
[0006]
[Table 1]
Figure 2004002911
[0007]
The peeling of the rare-earth magnet of this example all occurred at the interface between the adhesive and the Ni plating film and inside the adhesive layer, and in the comparative example, the peeling all occurred at the interface between the surface of the magnet and the strike Ni plating film.
Table 1 shows that the example of the present invention had good adhesion between the magnet substrate and the Ni plating, and could be stronger than the mechanical strength of the adhesive itself. For this reason, even if it is attached to the rotor of the motor using an adhesive and rotated at a high speed, it does not peel off from the interface between the magnet and the plating film.
In the present embodiment, a laser was used as a method for melting and quenching the magnet surface to form an amorphous layer. However, the same effect can be obtained by putting a work in a vacuum and applying an electron beam to melt the surface. Can be In addition, any method that can provide energy for melting only the surface of the rare-earth magnet, such as a method of melting the surface using sparks caused by electric discharge, as in the example of the present invention, can be used for the magnet surface and the plating film. The effect of improving the adhesion is obtained.
Further, in this embodiment, the electric Ni plating film is formed on the magnet surface, but the plating film is not limited to the electrolytic plating of Ni, but may be formed by electrolytic plating or electroless plating from an aqueous solution such as Cu, Ag, Au, or Cr. If the metal is capable of forming a metal film and has good environmental resistance, the same adhesiveness as Ni plating and the effect of protecting the magnet substrate can be obtained.
[0008]
【The invention's effect】
As described above, according to the surface treatment method for a rare earth magnet according to the first aspect, a plating protective film having good adhesion to a magnet substrate can be formed. Due to the centrifugal force at the time of high-speed rotation, there is no problem such as peeling off at the interface between the base material of the magnet and the plating. For this reason, a highly reliable AC servomotor or linear motor can be manufactured. According to the surface treatment method for a rare earth magnet according to the second aspect, the magnet surface can be melted and quenched to form a plating film having good adhesion in the atmosphere. Manufacturing can be performed at low cost.
[Brief description of the drawings]
FIG. 1 is a schematic view of a cross section of a rare earth magnet produced by a surface treatment method of the present invention.
FIG. 2 is an enlarged schematic cross-sectional view of a surface treatment unit in FIG.
FIG. 3 is a configuration diagram of a laser heating device used for the surface treatment of the present invention.
FIG. 4 is a schematic view of a cross section of a rare earth magnet manufactured by a conventional surface treatment method.
FIG. 5 is an explanatory view for explaining a mechanism of a conventional poor adhesion of a rare earth magnet.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 rare earth magnet 2 amorphous layer 3 strike Ni plating layer 4 electric Ni plating layer 5 Nd 2 Fe 14 B phase 6 Nd 1 Fe 4 B 4 phase 7 Nd rich phase 8 laser power supply 9 laser light source 10 optical system 11 laser beam 12 X -Y stage 13 XY stage controller

Claims (3)

Ndを主成分とする希土類元素、鉄を主成分とする遷移元素およびBからなる永久磁石の表面処理方法において、前記永久磁石の表面を溶融した後急冷し、急冷層の表面にめっき法によって保護層を形成することを特徴とする希土類磁石の表面処理方法。In a surface treatment method for a permanent magnet comprising a rare earth element containing Nd as a main component, a transition element containing iron as a main component, and B, the surface of the permanent magnet is melted, quenched, and the surface of the quenched layer is protected by plating. A surface treatment method for a rare earth magnet, comprising forming a layer. 前記溶融方法をレーザービームを用いて行うことを特徴とする請求項1記載の希土類磁石の表面処理方法。2. The method according to claim 1, wherein the melting is performed using a laser beam. 前記急冷層がアモルファス層であり、前記保護層がストライクNiめっき層と電気Niめっき層であることを特徴とする請求項1または2記載の希土類磁石の表面処理方法。3. The method according to claim 1, wherein the quenched layer is an amorphous layer, and the protective layer is a strike Ni plating layer and an electric Ni plating layer.
JP2002158402A 2002-05-31 2002-05-31 Surface treatment method for rare earth magnet Pending JP2004002911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002158402A JP2004002911A (en) 2002-05-31 2002-05-31 Surface treatment method for rare earth magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002158402A JP2004002911A (en) 2002-05-31 2002-05-31 Surface treatment method for rare earth magnet

Publications (1)

Publication Number Publication Date
JP2004002911A true JP2004002911A (en) 2004-01-08

Family

ID=30428682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002158402A Pending JP2004002911A (en) 2002-05-31 2002-05-31 Surface treatment method for rare earth magnet

Country Status (1)

Country Link
JP (1) JP2004002911A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005093766A1 (en) * 2004-03-26 2005-10-06 Tdk Corporation Rare earth magnet, method for producing same and method for producing multilayer body
JP2006049801A (en) * 2004-06-28 2006-02-16 Aisin Seiki Co Ltd Corrosion-resistant magnet and its manufacturing method
JP2007103523A (en) * 2005-09-30 2007-04-19 Tdk Corp Rare earth magnet
JP2008081783A (en) * 2006-09-27 2008-04-10 Fukui Prefecture Plating method accompanied by pretreatment in atmosphere and pretreatment apparatus for plating
JP2013219911A (en) * 2012-04-09 2013-10-24 Mitsubishi Electric Corp Rare earth permanent magnet, manufacturing method for rare earth permanent magnet, and motor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005093766A1 (en) * 2004-03-26 2005-10-06 Tdk Corporation Rare earth magnet, method for producing same and method for producing multilayer body
US20080202642A1 (en) * 2004-03-26 2008-08-28 Tdk Corporation Rare Earth Magnet, Method for Producing Same and Method for Producing Multilayer Body
US9005780B2 (en) 2004-03-26 2015-04-14 Tdk Corporation Rare earth magnet, method for producing same and method for producing multilayer body
JP2006049801A (en) * 2004-06-28 2006-02-16 Aisin Seiki Co Ltd Corrosion-resistant magnet and its manufacturing method
JP2007103523A (en) * 2005-09-30 2007-04-19 Tdk Corp Rare earth magnet
JP4508065B2 (en) * 2005-09-30 2010-07-21 Tdk株式会社 Rare earth magnets
JP2008081783A (en) * 2006-09-27 2008-04-10 Fukui Prefecture Plating method accompanied by pretreatment in atmosphere and pretreatment apparatus for plating
JP2013219911A (en) * 2012-04-09 2013-10-24 Mitsubishi Electric Corp Rare earth permanent magnet, manufacturing method for rare earth permanent magnet, and motor

Similar Documents

Publication Publication Date Title
JP6207099B2 (en) Insulating adhesion method for neodymium magnet and pressing device for laminated neodymium magnet
JP4965649B2 (en) Copper alloy composite and manufacturing method thereof
JP5406112B2 (en) Coating device for grain boundary diffusion treatment
JP4978665B2 (en) Metal magnet and motor using the same
CN110666329B (en) Method for improving corrosion resistance of welded joint of aluminum plate and steel plate
WO2016121149A1 (en) Magnet adhesive member
US8974656B2 (en) Method for roughening metal surfaces and article manufactured thereby
JP2004002911A (en) Surface treatment method for rare earth magnet
CN110942908A (en) Manufacturing method of low-eddy-current-heating combined magnet and clamping tool
JP4363480B2 (en) Rare earth permanent magnet
JP3698308B2 (en) Magnet and manufacturing method thereof
CN105772883A (en) Tin soldering bonding method for gyro motor rotor magnetic steel pieces
EP2874475A1 (en) Surface preparation using optical energy
JPH1096084A (en) Treatment of surface of sliding member
JP2004304968A (en) Permanent magnet member for voice coil motor, and voice coil motor
JP5573663B2 (en) Method for producing corrosion-resistant magnet
JP2004039917A (en) Permanent magnet and manufacturing method therefor
JP2002212602A (en) Magnet material and production method therefor
JP2010267790A (en) Method of manufacturing permanent magnet
JPH09270310A (en) Rare earth permanent magnet
JP2011108776A (en) Method for manufacturing permanent magnet
JP3126215B2 (en) Manufacturing method of corrosion resistant rare earth permanent magnet
JP2001230106A (en) Permanent magnet material
JPH059743A (en) Method of electroless ni plating on al and al alloy
JP2005210135A (en) Bonded structure and method of manufacturing the same