JP2004002157A - Quartz glass part and manufacture method of the same - Google Patents

Quartz glass part and manufacture method of the same Download PDF

Info

Publication number
JP2004002157A
JP2004002157A JP2003078344A JP2003078344A JP2004002157A JP 2004002157 A JP2004002157 A JP 2004002157A JP 2003078344 A JP2003078344 A JP 2003078344A JP 2003078344 A JP2003078344 A JP 2003078344A JP 2004002157 A JP2004002157 A JP 2004002157A
Authority
JP
Japan
Prior art keywords
quartz
quartz glass
film
spraying
glass part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003078344A
Other languages
Japanese (ja)
Inventor
Koyata Takahashi
高橋 小弥太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2003078344A priority Critical patent/JP2004002157A/en
Publication of JP2004002157A publication Critical patent/JP2004002157A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a quartz glass part which is surface-roughened without forming a microcrack or an edgy surface and capable of being used for a film forming apparatus, a heating apparatus, a plasma apparatus or the like at a temperature ranging form a room temperature to a high temperature with the small occurrence of particles for a long period and on which a deposited film after use is easily removed and a manufacturing method of the same. <P>SOLUTION: The quartz glass part is constituted so that a quartz thermally sprayed film having 1-100 μm surface roughness Ra is formed on the surface of a base material of a quartz glass, a ceramic or a metal and the manufacturing method of the quartz glass part is provided. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、半導体の製造における成膜装置、プラズマ処理装置および熱処理装置に係り、石英ガラス部品に付着した膜の剥離による発塵を防止あるいは熱の有効利用を図るものである。
【0002】
【従来の技術】
半導体の製造におけるポリシリコン、酸化珪素、窒化珪素などの成膜には、石英ガラス製の反応管が高純度で耐熱性に優れ、かつ加工し易いところから、用いられている。これらの成膜により反応管には、膜が付着し、成膜を重ねることにより反応管の付着膜が厚くなり、成膜物質と石英ガラスの熱膨張率の差により、反応管にひびがはいったり付着膜が剥離したりすることにより成膜基板を汚染することになっていた。また、反応管に付着した膜が、反応管のフッ酸処理により取れにくく、付着膜が少ない部分で反応管の侵食が著しい場合もあった。また、石英管を炉心管とした熱処理炉では、石英ガラスが透明性に優れているところから電気炉内の熱エネルギーが外部に漏れ熱効率が低下するという問題を有していた。
【0003】
半導体の製造において、処理容器内にプラズマを発生させ、このプラズマを用いて被処理体に所定の処理を施す処理装置がある。このような処理装置の一例として米国特許第5460689号明細書に開示されている装置は、石英ベルジャーの周りにコイルを配設し、ベルジャーにArガスを納入し、コイルに印加した第1の高周波によりプラズマを発生させ、石英ベルジャーの下にある被処理体に印加した第2の高周波により被処理体を負にバイアスし、被処理体表面をエッチングすることにより、電極膜形成前のクリーニングおよびコンタクトホールやビアのオーバーハングを除去する(プレクリーニング)。石英ベルジャーの内面は、被処理体のエッチングにより飛行してきた粒子が付着し膜となり、処理体の処理枚数が増加すると堆積した膜が剥離を起こして、処理体表面を汚染する。
【0004】
【発明が解決しようとする課題】
このような問題を解決するためブラスト処理による粗面化をした石英ガラスが使用されるようになったが、従来のブラスト法で処理された石英ガラスは凹凸の下にマイクロクラックが発生し、かけらが異物となったり、機械的強度が低下して治具の寿命を短くなったり、マイクロクラック内に不純物が浸入し熱処理で石英ガラスが失透する等の問題があった。また、上記プレクリーニング用の石英ベルジャーでは、付着膜がブラストによる破砕面の角部に異常に厚く成長して剥れやすくなる問題があった。このような付着膜剥離の問題は、フッ素系や塩素系のガスのプラズマによるエッチング装置においても、付着膜が堆積する部分で発生していた。
【0005】
本発明の目的は、石英ガラス部品をマイクロクラックや角張った表面を形成すること無く粗面化し、パーティクルの発生が少なく、成膜装置、熱処理装置、プラズマ装置などで室温から高温まで長期間連続使用が可能で、使用後、付着膜の除去が容易な石英ガラス部品及びその製造方法を提供することにある。
【0006】
【課題を解決するための手段】
本発明者は、上述のような現状に鑑み、鋭意検討を行った結果、室温から高温まで使えるように石英ガラス、セラミックス、金属の表面にポーラスな石英の溶射膜を形成することにより、付着膜の応力を分散することを試みた。石英の溶射は従来容易ではなかった。本発明者らは、溶射時の熱プラズマあるいはフレームにより基材表面が溶融する条件で石英粉末を溶射することで、石英の溶射膜が堆積することを見出し、本発明を完成させた。すなわち、本発明は石英ガラス、セラミックス又は金属の基材面上に表面粗さRaが5〜100μmの石英溶射膜が形成されていることを特徴とする石英ガラス部品及びその製造方法である。
【0007】
以下本発明を詳細に説明する。
【0008】
前述のように石英部材の表面を粗面化するために、アルミナなどのグリットによりブラスト処理する手法が用いられてきた。石英ガラスをブラストした表面の凹凸の下にはマイクロクラックが発生するため石英ガラスの表面付近は強度が低下している。そのため石英ガラスをブラストした表面に直接膜を堆積させると、ある程度厚くなったところで応力により、表面の弱い部分から剥がれてくる。
【0009】
これに対して、基材面上に表面粗さRaが5〜100μmの石英溶射膜を形成することで、マイクロクラックなしで基材の表面積が増大するため、付着膜の保持性が向上する。Raが5μm未満では、付着膜の保持性が十分でなく、Raが100μmを越えると、表面が粗くなりすぎて溶射膜の強度が低下する。
【0010】
ここで、付着膜の保持性を確保する為には多孔質であることが好ましく、相対密度として60〜95%であることが好ましい。厚い付着膜を石英溶射膜で保持する為には、ある程度強度が大きい方が好ましく、相対密度は70%以上であることがさらに好ましい。また、相対密度が95%を越えると付着膜の保持性が十分でなくなる。
ここで、石英溶射膜の相対密度ρは、アルキメデス法で以下のように測定する。石英基板の重量Wを測定してから石英溶射膜を形成し、乾燥質量Wを測定し、純水に入れて1時間煮沸することでオープンポアに水を浸入させ、純水から取り出しすぐに飽和質量Wを測定する。続けて、室温の純水中でこの試料の水中質量Wを測定する。純水の密度をρとすると、石英溶射膜のかさ密度ρは、次式(1)により求められる。
ρ=(W×ρ)/(W―W―W)   (1)
溶射膜構成物質の理論密度をρとすれば相対密度ρは、次式(2)により求められる。
ρ=ρ/ρ               (2)
ここで、石英の溶射膜は溶融状態からの急冷により石英ガラスとなっているため、ρは石英ガラスの理論密度2.20とする。
【0011】
本発明で用いる基材としては、石英ガラスだけでなくセラミックス又は金属を用いることが出来る。基材に金属を用いる場合、金属種は特に限定されないが、ステンレス、インコネル、チタン等の耐熱性が高い材料やインバー合金等の熱膨張率が低い材料を用いることが好ましい。アルミニウム等の低融点金属を基材に用いる場合、耐熱性の高い金属やセラミックの溶射膜を介して石英ガラス溶射膜を形成することが好ましい。基材にセラミックスを用いる場合、熱衝撃に強いセラミックスが好ましい。例えば、アルミナ、ジルコニア、コージエライト、炭化珪素、窒化珪素、ムライト等が例示出来る。
【0012】
前述のように、石英の溶射は容易ではないため、従来から報告がない。本発明者らは、溶射法で通常行われているように基材表面が溶融しない条件で石英粉末を石英上に溶射することを検討した。ブラストによりかなり粗れた面であっても、溶融した石英粉末は基板に衝突後、扁平せず球状になり、次の溶射粉末の衝突により吹き飛ばされてしまい膜がほとんど形成されなかった。溶融した石英粉末が扁平せず球状になる理由ははっきりしないが、溶融した石英粉末が軽い為に基材との衝突の衝撃が十分でないため、あるいは基材との濡れ性が悪い状態で石英ガラスが緩やかに固まるためと考えられる。
【0013】
石英溶射膜は、溶射法を用いて基材表面が溶融する条件で石英粉末を溶射することにより形成することができる。溶射法を用いて基材表面が溶融する条件とは、あらかじめ石英粉末を供給しない状態で基材表面が溶融するように、溶射のフレームの条件を調整して、その後、溶射を行うものである。基材表面が溶融する条件では、ブラスト等で荒した基材の表面が溶融して平滑化するため、目視或いは顕微鏡観察によって表面が溶融しているかどうかがわかる。ここで、溶融しながら飛行する溶射粉末は、表面が再溶融した場所に衝突する為、扁平しなくても十分な密着性を得て堆積することが出来る。
【0014】
溶射法としては、プラズマ溶射法やフレーム溶射法を用いることが好ましい。
【0015】
図2に示すようなプラズマ溶射装置を用いるプラズマ溶射法の場合、基材表面が溶融するような条件とは、例えば基材25と溶射ガン先端にある粉末供給口23の溶射距離24を5cm程度に短くし、プラズマガス22を窒素またはアルゴンに対して水素の割合を20%以上、溶射パワーを高めに設定するような条件である。石英は還元雰囲気では高温で部分的に分解する為、収率を高める為には窒素を用いることが好ましい。
【0016】
プラズマ溶射法としては、上記のような通常のプラズマ溶射法の他に、複ト−チ型プラズマ溶射法(特公平6−22719号公報、溶射技術 Vol.11,No.1,1〜8頁(1991年))、水プラズマ溶射法なども用いることができる。複ト−チ型プラズマ溶射法では、ガス流量を絞ることで熱プラズマを層流とすることにより溶射距離を長くすることが可能である。また、複ト−チ型プラズマ溶射法では酸素や空気、水プラズマ溶射法では水蒸気をプラズマガスとして用いることができるため、石英の分解が抑制され、高い収率が得られる。
【0017】
フレーム溶射法の場合、ガスとして酸素にアセチレンやプロパンガスの炭化水素を混合して燃焼させ、温度が2000℃以上となるフレームの先端付近に基材表面を配置することで基材表面を溶かしながら石英の溶射膜を形成することができる。
【0018】
図1に石英溶射膜の表面SEM像の一例を示す。これは平均粒径が30ミクロンの石英粉末を用いてプラズマ溶射法で形成した石英溶射膜で、相対密度は70%である。基材衝突前の溶融した溶射粉末はほぼ球形であり、上記理由から石英溶射膜は、繋がった球状粒子により構成されている。
【0019】
このような石英溶射膜を形成した石英ガラス部品は、成膜装置で膜が堆積する部分に用いる事ができる。成膜装置としてはいかなるものでも適用可能であるが、ポリシリコン、酸化珪素、窒化珪素などを600〜1000℃の高温プロセスの装置に対しては、溶射膜と基材の熱膨張率差による割れや剥がれがないこと、高純度であることが必須であるため、特に適している。
【0020】
さらに、このような石英溶射膜を形成した石英ガラス部品は、溶射膜を構成する粒子が球状であるため、空隙を大きくすることが可能で、熱拡散(散乱)性、断熱性に優れ、熱処理装置において炉芯管等の熱拡散や断熱の目的に用いることができる。
【0021】
また、このような石英溶射膜を形成した石英ガラス部品は表面積が大きく、プラズマ処理装置の真空容器あるいは真空容器の内部に用いてプラズマ処理により生じた付着膜の保持性を高め、パーティクルを減らし、装置の連続試用期間を長くする事ができる。プラズマにフッ素等が含まれている場合、石英溶射膜は腐食されるが、石英はガス化して排気されるためパーティクルとはならない。また、石英溶射膜をプラズマ処理により付着膜が堆積する部分にのみ形成することでより長く利用することができる。
【0022】
上記石英粉末の溶射の際に石英部品が加熱されすぎて破損することを防ぐ為、熱プラズマあるいは燃焼のフレーム軌跡の前およびまたは後でガス、液化ガスにより冷却することが好ましい。ここで冷却用のガスまたは液化ガスは、空気、窒素、炭酸ガスなど入手が容易で危険がないものが好ましい。また、液化炭酸ガスは、冷却用のノズルからの噴出による膨張で固体となり石英部品表面をクリーニングしながら石英溶射をすることができるため、高純度の溶射膜を形成することに向いている。
【0023】
また、石英粉末の溶射後に、酸洗浄を施すことにより溶射中に混入した異物を除去して清浄な溶射膜を得る事ができる。ここで酸洗浄は、硝酸あるいは少し(5wt%未満)フッ酸が入った硝酸で行うことが好ましい。
【0024】
【実施例】
本発明を実施例に基づき更に詳細に説明するが本発明はこれらの実施例のみに限定されるものではない。
【0025】
実施例1
図2に示すようなプラズマ溶射装置を用いて、プラズマガス22として窒素を40SLM(Standard Litter per Minite)、水素を15SLM流し、粉末23を供給する事無く、溶射距離24が50mmで、ロボットにより溶射ガンを30mm/秒の速度で移動させながら、40kWのパワーで熱プラズマを生成し、テスト用の石英ガラス基板25を加熱した。テスト用の石英ガラス基板はあらかじめブラストで表面を曇らせておいたため、熱プラズマにより基板表面が溶融して透明になることが確認された。次に、成膜用の研磨石英ガラス基板25をプラズマ溶射装置にセットして、石英粉末の粉末供給量を15g/分とした他は上記と同じ条件で、1回の溶射ガンの移動で溶射し、膜厚約0.2mmの溶射膜を形成した。ここで、石英粉末として平均粒径が15、30、50、80ミクロンの4種類を用いて4個の試料を作製した。この試料を、硝酸20%、フッ酸0.5%の水溶液に1時間浸漬し、その後超純水でリンスし、クリーンオーブンで乾燥した。
【0026】
表面粗さRaは、12、23、35、46ミクロンであった。また、得られた石英溶射膜の相対密度をアルキメデス法で測定したところ、石英粉末の平均粒径15、30、50、80ミクロンに対して、各々、88、78、70、65%であった。
【0027】
実施例2
厚み2mm100mm角のステンレス板を基材に用い、図2に示すようなプラズマ溶射装置を用いて石英溶射膜を形成した。プラズマガス22として窒素を35SLM、水素を15SLM流し、粉末23を供給する事無く、溶射距離24が40mmで、ロボットにより溶射ガンを200mm/秒の速度で移動させながら、35kWのパワーで熱プラズマを生成し、基材の全面を加熱することで基材温度を700℃まで予熱した。次に、溶射ガンの移動速度を100mm/秒とし、石英粉末の粉末供給量を15g/分とした他は上記と同じ条件で、3回の溶射ガンの移動で溶射し、膜厚約0.5mmの溶射膜を形成した。ここで、石英粉末として平均粒径が30ミクロンのものを使用した。
【0028】
得られた石英ガラス溶射膜は相対密度が80%、表面粗さRaは35μmであった。また出来上がった部品には歪み(そり、ひわり)は観察されなかった。
【0029】
実施例3
厚み5mm100mm角のムライト板を基材に用い、図2に示すようなプラズマ溶射装置を用いて石英溶射膜を形成した。プラズマガス22として窒素を35SLM、水素を15SLM流し、粉末23を供給する事無く、溶射距離24が50mmで、ロボットにより溶射ガンを200mm/秒の速度で移動させながら、35kWのパワーで熱プラズマを生成し、基材の全面を加熱することで基材温度を750℃まで予熱した。次に、溶射距離24が40mmで、溶射ガンの移動速度を100mm/秒とし、石英粉末の粉末供給量を15g/分とした他は上記と同じ条件で、3回の溶射ガンの移動で溶射し、膜厚約0.4mmの溶射膜を形成した。ここで、石英粉末として平均粒径が30ミクロンのものを使用した。
【0030】
得られた石英ガラス溶射膜は相対密度が88%、表面粗さRaは30μmであった。出来上がった部品は、応力による割れ、欠けは観察されなかった。
【0031】
比較例1
図2に示すようなプラズマ溶射装置を用いて、プラズマガス22として窒素を40SLM、水素を15SLM流し、粉末23を供給する事無く、溶射距離24が120mmで、ロボットにより溶射ガンを30mm/秒の速度で移動させながら、40kWのパワーで熱プラズマを生成し、テスト用の石英ガラス基板25を加熱した。テスト用の石英ガラス基板はあらかじめブラストで表面を曇らせておいたが、この条件では熱プラズマが基板表面に十分届かず、基板表面は溶融しなかった。
【0032】
次に、成膜用の研磨石英ガラス基板25をプラズマ溶射装置にセットして、平均粒径が40ミクロンの石英粉末を用いて粉末供給量を15g/分とした他は上記と同じ条件で、1回の溶射ガンの移動で溶射した。比較例1では、ほとんど膜が形成されなかった。
【0033】
比較例2
研磨石英ガラス基板をホワイトアルミナ#60のグリットを用いて0.5MPaの圧力でブラストし、その後、硝酸20%、フッ酸0.5%の水溶液に1時間浸漬し、超純水でリンスし、クリーンオーブンで乾燥した。ブラストした石英ガラス基板の表面粗さRaは6ミクロンであった。
【0034】
高温での温度変化による付着膜の剥がれを評価する為に、スパッタ法による窒化シリコン膜の成膜と熱処理の試験を行った。実施例1から3および比較例2、3の試料をスパッタ装置に仕込み、到達真空5×10−5Paまで真空に引いた後、Siターゲットを用いてアルゴン、窒素の混合ガスを0.2Paの圧力まで導入し、室温で窒化シリコン膜を50ミクロン形成した。成膜後に各試料を顕微鏡で検査したところ、比較例2ではわずかな剥がれが認められ、実施例1から3では全くはがれが見られなかった。これらの試料を窒素中で700℃に加熱したところ実施例1から3では全くはがれが見られず、比較例2では加熱によりほとんどの窒化シリコン膜が剥がれてしまった。実施例1から3では700℃の温度変化に50ミクロンの窒化シリコン膜が耐える事ができた。
【0035】
次に、逆スパッタによるクリーニング工程での付着膜の剥がれを評価する為に、逆スパッタにより生成される付着膜の特性に近い、スパッタ法による二酸化珪素と珪素のコスパッタ混合膜を成膜して試験を行った。実施例1から3および比較例2の試料をスパッタ装置に仕込み、到達真空5×10−5Paまで真空に引いた後、二酸化珪素と珪素の2個のターゲットを用いてアルゴンガスを0.3Paの圧力まで導入し、室温で二酸化珪素(膜厚比80%)と珪素(膜厚比20%)の混合膜を30ミクロン形成した。成膜後、大気に戻して1日放置後に各試料を顕微鏡で検査したところ、比較例2では半分以上の部分が剥がれ、実施例1から3では全くはがれが見られなかった。実施例1から3の石英溶射膜は逆スパッタによるクリーニング工程工程において顕著に付着膜の保持性が向上した。
【0036】
【発明の効果】
本発明では、石英ガラス、セラミックス、金属の基材面上に表面粗さRaが5〜100μmの石英溶射膜を形成することにより、マイクロクラックや角張った表面を形成すること無く粗面化し、パーティクルの発生が少なく、成膜装置、熱処理装置、プラズマ装置などで室温から高温まで長期間連続使用が可能で、使用後、付着膜の除去が容易な石英ガラス部品を提供することができる。
【図面の簡単な説明】
【図1】本発明における石英溶射膜の表面SEM像の一例である。
【図2】本発明の石英部品において溶射膜を形成する為に用いるプラズマ溶射装置の一例を示す図である。
【符号の説明】
20:カソード
21:アノード
22:プラズマガス
23:溶射粉末(供給口)
24:溶射距離
25:基材(基板)
26:石英溶射膜
27:電源
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a film forming apparatus, a plasma processing apparatus, and a heat treatment apparatus in the manufacture of semiconductors, and aims at preventing dust generation due to peeling of a film attached to a quartz glass component or effectively using heat.
[0002]
[Prior art]
For film formation of polysilicon, silicon oxide, silicon nitride, and the like in the manufacture of semiconductors, a quartz glass reaction tube is used because of its high purity, excellent heat resistance, and easy processing. The film adheres to the reaction tube due to these film formations, and the deposited film of the reaction tube becomes thicker by repeating the film formation, and the reaction tube is cracked due to a difference in thermal expansion coefficient between the film forming material and the quartz glass. In this case, the deposition substrate is contaminated due to the adhesion or peeling of the adhered film. Further, the film adhered to the reaction tube was difficult to remove by the hydrofluoric acid treatment of the reaction tube, and the erosion of the reaction tube was remarkable in a portion having a small amount of the adhered film. Further, in a heat treatment furnace using a quartz tube as a furnace core tube, there is a problem that heat energy in an electric furnace leaks to the outside and thermal efficiency is reduced because quartz glass is excellent in transparency.
[0003]
2. Description of the Related Art In the manufacture of semiconductors, there is a processing apparatus that generates plasma in a processing chamber and performs a predetermined process on an object using the plasma. As an example of such a processing apparatus, an apparatus disclosed in U.S. Pat. No. 5,460,689 includes a coil disposed around a quartz bell jar, an Ar gas delivered to the bell jar, and a first high-frequency wave applied to the coil. A plasma is generated, and the object to be processed is negatively biased by the second high frequency applied to the object under the quartz bell jar, and the surface of the object is etched, so that cleaning and contact before forming the electrode film are performed. Eliminate overhang of holes and vias (pre-cleaning). Particles flying by the etching of the object to be processed adhere to the inner surface of the quartz bell jar to form a film, and when the number of processed objects increases, the deposited film peels off and contaminates the surface of the processed object.
[0004]
[Problems to be solved by the invention]
In order to solve this problem, quartz glass that has been roughened by blasting has come to be used.However, in the case of quartz glass that has been treated by the conventional blasting method, microcracks occur under irregularities, and fragmentation occurs. However, there are problems such as the formation of foreign matter, a decrease in mechanical strength, shortening the life of the jig, and the infiltration of impurities into the microcracks to devitrify the quartz glass by heat treatment. Further, in the quartz bell jar for pre-cleaning, there is a problem that the adhered film grows abnormally thick at the corner of the crushed surface by the blast and is easily peeled off. Such a problem of adhesion film peeling has occurred in a portion where an adhesion film is deposited even in an etching apparatus using plasma of fluorine-based or chlorine-based gas.
[0005]
An object of the present invention is to roughen a quartz glass component without forming microcracks or angular surfaces, to reduce the generation of particles, and to continuously use the film from a room temperature to a high temperature for a long time in a film forming apparatus, a heat treatment apparatus, a plasma apparatus, and the like. It is an object of the present invention to provide a quartz glass component and a method for manufacturing the same, which can easily remove an adhered film after use.
[0006]
[Means for Solving the Problems]
In view of the above situation, the present inventor has conducted intensive studies, and as a result, formed a sprayed film of porous quartz on the surface of quartz glass, ceramics and metal so that it can be used from room temperature to a high temperature, thereby forming an adhesion film. Tried to disperse the stress of Conventionally, spraying quartz has not been easy. The present inventors have found that a sprayed quartz film is deposited by spraying quartz powder under the condition that the base material surface is melted by thermal plasma or a flame during spraying, and completed the present invention. That is, the present invention relates to a quartz glass component characterized in that a quartz sprayed film having a surface roughness Ra of 5 to 100 μm is formed on a quartz glass, ceramics or metal base material surface, and a method of manufacturing the same.
[0007]
Hereinafter, the present invention will be described in detail.
[0008]
As described above, in order to roughen the surface of the quartz member, a method of blasting with grit such as alumina has been used. Microcracks occur under the irregularities on the surface of the quartz glass blast, so that the strength near the surface of the quartz glass decreases. Therefore, when a film is directly deposited on the surface blasted with quartz glass, the film is peeled from a weak portion of the surface due to stress when the film becomes thick to some extent.
[0009]
On the other hand, by forming a sprayed quartz film having a surface roughness Ra of 5 to 100 μm on the base material surface, the surface area of the base material is increased without microcracks, and the retention of the adhered film is improved. When Ra is less than 5 μm, the retention of the adhered film is not sufficient, and when Ra exceeds 100 μm, the surface becomes too rough and the strength of the sprayed film is reduced.
[0010]
Here, in order to secure the retention of the adhered film, it is preferably porous, and the relative density is preferably 60 to 95%. In order to hold the thick adhered film with the sprayed quartz film, it is preferable that the strength is somewhat high, and the relative density is more preferably 70% or more. On the other hand, if the relative density exceeds 95%, the retention of the adhered film becomes insufficient.
Here, the relative density ρ R of the sprayed quartz film is measured by the Archimedes method as follows. After measuring the weight W 0 of the quartz substrate, a quartz sprayed film is formed, the dry mass W 1 is measured, the water is introduced into the open pores by boiling in pure water for 1 hour, and immediately taken out of the pure water. measuring the saturation mass W 3 in. Subsequently, measuring the water mass W 2 of the sample in pure water at room temperature. When the density of pure water and [rho W, bulk density [rho V quartz sprayed film is obtained by the following equation (1).
ρ V = (W 1 × ρ W ) / (W 3 -W 2 -W 0 ) (1)
The theoretical density of the sprayed coating constituents [rho T Tosureba relative density [rho R is obtained by the following equation (2).
ρ R = ρ V / ρ T (2)
Here, since the sprayed film of quartz becomes quartz glass due to rapid cooling from the molten state, ρ T is set to the theoretical density of quartz glass of 2.20.
[0011]
As the substrate used in the present invention, not only quartz glass but also ceramics or metal can be used. When a metal is used for the base material, the metal species is not particularly limited, but it is preferable to use a material having a high heat resistance such as stainless steel, inconel, or titanium, or a material having a low coefficient of thermal expansion such as an invar alloy. When a low-melting-point metal such as aluminum is used as the base material, it is preferable to form a sprayed quartz glass film through a sprayed metal or ceramic film having high heat resistance. When ceramics are used for the substrate, ceramics that are resistant to thermal shock are preferred. For example, alumina, zirconia, cordierite, silicon carbide, silicon nitride, mullite and the like can be exemplified.
[0012]
As mentioned above, there has been no report on quartz spraying because it is not easy. The present inventors have studied the spraying of quartz powder on quartz under the condition that the surface of the base material does not melt, as is usually performed by the thermal spraying method. Even if the surface was considerably roughened by blasting, the fused quartz powder did not flatten and became spherical after colliding with the substrate, and was blown off by the next collision of the thermal spraying powder, and almost no film was formed. The reason why the fused quartz powder does not flatten and becomes spherical is not clear, but the fused silica powder is so light that the impact of collision with the base material is not enough, or the quartz glass is poorly wettable with the base material. Is thought to be due to loose solidification.
[0013]
The quartz sprayed film can be formed by spraying quartz powder under a condition that the surface of the base material is melted by using a spraying method. The condition that the surface of the base material is melted by using the thermal spraying method is to adjust the condition of the flame for spraying so that the surface of the base material is melted without supplying the quartz powder in advance, and then performing the spraying. . Under the conditions in which the surface of the base material is melted, the surface of the base material that has been roughened by blasting or the like is melted and smoothed. Therefore, whether the surface is melted can be visually or microscopically observed. Here, since the sprayed powder that flies while melting collides with a place where the surface is re-melted, it can be deposited with sufficient adhesion without being flat.
[0014]
It is preferable to use a plasma spraying method or a flame spraying method as the spraying method.
[0015]
In the case of the plasma spraying method using a plasma spraying apparatus as shown in FIG. 2, the conditions under which the surface of the base material is melted include, for example, a base material 25 and a spray distance 24 between the powder supply port 23 at the tip of the spray gun of about 5 cm. The conditions are such that the plasma gas 22 is set to have a ratio of hydrogen to nitrogen or argon of 20% or more and a high spraying power. Since quartz is partially decomposed at a high temperature in a reducing atmosphere, it is preferable to use nitrogen to increase the yield.
[0016]
As the plasma spraying method, in addition to the ordinary plasma spraying method as described above, a double-torch type plasma spraying method (Japanese Patent Publication No. Hei 6-22719, spraying technology Vol. 11, No. 1, pages 1 to 8). (1991)), a water plasma spraying method and the like can also be used. In the double torch type plasma spraying method, it is possible to lengthen the spraying distance by reducing the gas flow rate to make the thermal plasma a laminar flow. Further, since oxygen and air can be used as the plasma gas in the double torch type plasma spraying method and water vapor can be used as the plasma gas in the water plasma spraying method, the decomposition of quartz is suppressed and a high yield can be obtained.
[0017]
In the case of the flame spraying method, a mixture of acetylene and propane gas hydrocarbons is mixed with oxygen as a gas and burned, and the base material surface is melted by disposing the base material surface near the end of the frame where the temperature becomes 2000 ° C or more. A sprayed film of quartz can be formed.
[0018]
FIG. 1 shows an example of the surface SEM image of the sprayed quartz film. This is a quartz sprayed film formed by a plasma spraying method using a quartz powder having an average particle diameter of 30 microns, and has a relative density of 70%. The molten sprayed powder before the collision with the base material has a substantially spherical shape, and the quartz sprayed film is composed of connected spherical particles for the above-mentioned reason.
[0019]
A quartz glass component having such a quartz sprayed film formed thereon can be used in a portion where a film is deposited by a film forming apparatus. Any apparatus can be applied as a film forming apparatus. However, for an apparatus of a high-temperature process of 600 to 1000 ° C. for polysilicon, silicon oxide, silicon nitride, etc., cracks due to a difference in thermal expansion coefficient between a sprayed film and a base material. It is particularly suitable because it is essential that there be no delamination or high purity.
[0020]
Further, the quartz glass component having such a sprayed quartz film formed thereon has a spherical particle, so that the voids can be enlarged, and has excellent heat diffusing (scattering) properties and heat insulating properties. In the apparatus, it can be used for the purpose of heat diffusion or heat insulation of a furnace core tube or the like.
[0021]
In addition, the quartz glass component formed with such a quartz sprayed film has a large surface area, and is used inside a vacuum vessel or a vacuum vessel of a plasma processing apparatus to enhance the retention of an adhered film generated by plasma processing, reduce particles, The continuous trial period of the device can be extended. If the plasma contains fluorine or the like, the sprayed quartz film is corroded, but the quartz is gasified and exhausted, so that it does not become particles. Further, by forming the sprayed quartz film only on the portion where the adhered film is deposited by the plasma processing, it can be used for a longer time.
[0022]
In order to prevent the quartz part from being overheated and damaged during the thermal spraying of the quartz powder, it is preferable to cool with a gas or a liquefied gas before and / or after the thermal plasma or the flame trajectory of combustion. Here, the gas for cooling or the liquefied gas is preferably one which is easily available and has no danger, such as air, nitrogen and carbon dioxide. In addition, the liquefied carbon dioxide gas becomes solid by expansion due to ejection from a cooling nozzle, and can be sprayed with quartz while cleaning the surface of the quartz component. Therefore, the liquefied carbon dioxide gas is suitable for forming a sprayed film of high purity.
[0023]
Further, by performing acid cleaning after spraying the quartz powder, foreign substances mixed during the spraying can be removed, and a clean sprayed film can be obtained. Here, the acid cleaning is preferably performed with nitric acid or nitric acid containing a small amount (less than 5 wt%) of hydrofluoric acid.
[0024]
【Example】
The present invention will be described in more detail based on examples, but the present invention is not limited to only these examples.
[0025]
Example 1
Using a plasma spraying apparatus as shown in FIG. 2, 40 SLM (Standard Litter per Minite) of nitrogen and 15 SLM of hydrogen are flown as plasma gas 22, spraying is performed by a robot at a spraying distance 24 of 50 mm without supplying powder 23, and a robot is used. While moving the gun at a speed of 30 mm / sec, thermal plasma was generated at a power of 40 kW to heat the quartz glass substrate 25 for testing. Since the surface of the quartz glass substrate for the test was previously clouded by blasting, it was confirmed that the substrate surface was melted and became transparent by the thermal plasma. Next, the polished quartz glass substrate 25 for film formation was set in a plasma spraying apparatus, and spraying was performed by one movement of the spray gun under the same conditions as above except that the supply amount of the quartz powder was 15 g / min. Thus, a sprayed film having a thickness of about 0.2 mm was formed. Here, four samples were prepared using four types of quartz powder having an average particle size of 15, 30, 50, and 80 microns. This sample was immersed in an aqueous solution of 20% nitric acid and 0.5% hydrofluoric acid for 1 hour, then rinsed with ultrapure water, and dried in a clean oven.
[0026]
The surface roughness Ra was 12, 23, 35, 46 microns. The relative density of the obtained sprayed quartz film was measured by the Archimedes method. As a result, the relative density was 88, 78, 70, and 65% with respect to the average particle size of the quartz powder of 15, 30, 50, and 80 microns. .
[0027]
Example 2
Using a stainless steel plate having a thickness of 2 mm and 100 mm square as a base material, a quartz sprayed film was formed using a plasma spraying apparatus as shown in FIG. 35 SLM of nitrogen and 15 SLM of hydrogen are flowed as the plasma gas 22, the thermal plasma is supplied at a power of 35 kW while the spraying gun is moved at a speed of 200 mm / sec by a robot at a spraying distance of 24 mm without supplying the powder 23. The substrate was generated and heated to 700 ° C. by heating the entire surface of the substrate. Next, spraying was performed by moving the spray gun three times under the same conditions as described above except that the moving speed of the spray gun was 100 mm / sec and the supply amount of the quartz powder was 15 g / min. A sprayed film of 5 mm was formed. Here, quartz powder having an average particle size of 30 microns was used.
[0028]
The resulting sprayed quartz glass film had a relative density of 80% and a surface roughness Ra of 35 μm. No distortion (warp, tendon) was observed in the finished part.
[0029]
Example 3
Using a mullite plate having a thickness of 5 mm and 100 mm square as a base material, a quartz sprayed film was formed using a plasma spraying apparatus as shown in FIG. 35 SLM of nitrogen and 15 SLM of hydrogen are flowed as the plasma gas 22, the thermal plasma is supplied at a power of 35 kW while the spray gun is moved at a speed of 200 mm / sec by a robot at a spray distance of 50 mm without supplying the powder 23. The substrate was generated and heated to 750 ° C. by heating the entire surface of the substrate. Next, spraying was performed by moving the spray gun three times under the same conditions as above except that the spraying distance 24 was 40 mm, the moving speed of the spraying gun was 100 mm / sec, and the powder supply amount of quartz powder was 15 g / min. Thus, a sprayed film having a thickness of about 0.4 mm was formed. Here, quartz powder having an average particle size of 30 microns was used.
[0030]
The resulting sprayed quartz glass film had a relative density of 88% and a surface roughness Ra of 30 μm. No cracking or chipping due to stress was observed in the finished part.
[0031]
Comparative Example 1
Using a plasma spraying apparatus as shown in FIG. 2, 40 SLM of nitrogen and 15 SLM of hydrogen are flown as the plasma gas 22, without supplying the powder 23, the spraying distance 24 is 120 mm, and the spray gun is 30 mm / sec by a robot. While moving at a speed, thermal plasma was generated at a power of 40 kW to heat the quartz glass substrate 25 for testing. Although the surface of the quartz glass substrate for the test was previously mist-blown by blasting, under this condition, the thermal plasma did not sufficiently reach the substrate surface and the substrate surface did not melt.
[0032]
Next, the polished quartz glass substrate 25 for film formation was set in a plasma spraying apparatus, and the same conditions as above were used except that the powder supply amount was 15 g / min using quartz powder having an average particle size of 40 microns. Thermal spraying was performed by moving the spray gun once. In Comparative Example 1, almost no film was formed.
[0033]
Comparative Example 2
The polished quartz glass substrate was blasted using a grit of white alumina # 60 at a pressure of 0.5 MPa, then immersed in an aqueous solution of 20% nitric acid and 0.5% hydrofluoric acid for 1 hour, and rinsed with ultrapure water. Dried in a clean oven. The surface roughness Ra of the blasted quartz glass substrate was 6 microns.
[0034]
In order to evaluate the peeling of the deposited film due to a temperature change at a high temperature, a test of a silicon nitride film formed by a sputtering method and a heat treatment were performed. The samples of Examples 1 to 3 and Comparative Examples 2 and 3 were charged into a sputtering apparatus, evacuated to an ultimate vacuum of 5 × 10 −5 Pa, and then mixed with argon and nitrogen at a pressure of 0.2 Pa using a Si target. Pressure was applied to form a silicon nitride film of 50 μm at room temperature. When each sample was examined with a microscope after the film formation, slight peeling was observed in Comparative Example 2, and no peeling was observed in Examples 1 to 3. When these samples were heated to 700 ° C. in nitrogen, no peeling was observed in Examples 1 to 3, and in Comparative Example 2, most of the silicon nitride film was peeled off by heating. In Examples 1 to 3, the silicon nitride film of 50 microns was able to withstand a temperature change of 700 ° C.
[0035]
Next, in order to evaluate the peeling of the adhered film in the cleaning process by reverse sputtering, a co-sputter mixed film of silicon dioxide and silicon was formed by a sputtering method, which is close to the characteristics of the adhered film generated by reverse sputtering, and tested. Was done. The samples of Examples 1 to 3 and Comparative Example 2 were charged into a sputtering apparatus, evacuated to an ultimate vacuum of 5 × 10 −5 Pa, and then subjected to 0.3 Pa of argon gas using two targets of silicon dioxide and silicon. , And a mixed film of silicon dioxide (thickness ratio: 80%) and silicon (thickness ratio: 20%) was formed at room temperature to 30 μm. After the film was formed, the sample was returned to the atmosphere and left for one day, and each sample was inspected with a microscope. As a result, in Comparative Example 2, more than half of the sample was peeled off, and in Examples 1 to 3, no peeling was observed. In the quartz sprayed films of Examples 1 to 3, the retentivity of the adhered film was significantly improved in the cleaning step by reverse sputtering.
[0036]
【The invention's effect】
In the present invention, by forming a quartz sprayed film having a surface roughness Ra of 5 to 100 μm on a substrate surface of quartz glass, ceramics, or metal, the surface is roughened without forming microcracks or an angular surface, and particles are formed. It is possible to provide a quartz glass part which can be used continuously for a long time from room temperature to a high temperature in a film forming apparatus, a heat treatment apparatus, a plasma apparatus, or the like, and can easily remove an adhered film after use.
[Brief description of the drawings]
FIG. 1 is an example of a surface SEM image of a sprayed quartz film according to the present invention.
FIG. 2 is a view showing an example of a plasma spraying apparatus used for forming a sprayed film in the quartz component of the present invention.
[Explanation of symbols]
20: cathode 21: anode 22: plasma gas 23: sprayed powder (supply port)
24: Spray distance 25: Substrate (substrate)
26: Sprayed quartz film 27: Power supply

Claims (11)

基材面上に表面粗さRaが5〜100μmの石英溶射膜が形成されていることを特徴とする石英ガラス部品。A quartz glass part having a quartz sprayed film having a surface roughness Ra of 5 to 100 μm formed on a substrate surface. 石英ガラス面上に表面粗さRaが5〜100μmの石英溶射膜が形成されていることを特徴とする石英ガラス部品。A quartz glass component having a quartz sprayed film having a surface roughness Ra of 5 to 100 μm formed on a quartz glass surface. 前記石英溶射膜の相対密度が60〜95%であることを特徴とする請求項1〜2に記載の石英ガラス部品。The quartz glass part according to claim 1, wherein a relative density of the quartz sprayed film is 60 to 95%. 前記石英溶射膜が繋がった球状粒子により構成されることを特徴とする請求項1〜3のいずれかに記載の記石英ガラス部品。The quartz glass part according to any one of claims 1 to 3, wherein the quartz sprayed film is constituted by connected spherical particles. 基材がセラミックス又は金属である請求項1の石英ガラス部品。The quartz glass part according to claim 1, wherein the base material is a ceramic or a metal. 石英ガラス部品が成膜装置に用いられることを特徴とする請求項1〜5のいずれかに記載の石英ガラス部品。The quartz glass component according to any one of claims 1 to 5, wherein the quartz glass component is used in a film forming apparatus. 石英ガラス部品が熱処理装置に用いられることを特徴とする請求項1〜5のいずれかに記載の石英ガラス部品。The quartz glass part according to any one of claims 1 to 5, wherein the quartz glass part is used for a heat treatment apparatus. 石英ガラス部品がプラズマ処理装置の真空容器あるいは真空容器の内部に用いられることを特徴とする請求項1〜5のいずれかに記載の石英ガラス部品。The quartz glass component according to any one of claims 1 to 5, wherein the quartz glass component is used in a vacuum vessel or a vacuum vessel of a plasma processing apparatus. 溶射法を用いて基材表面が溶融する条件で石英粉末を溶射して前記石英溶射膜を形成すること特徴とする請求項1〜8のいずれかに記載の石英ガラス部品の製造方法。The method for manufacturing a quartz glass part according to any one of claims 1 to 8, wherein the quartz sprayed film is formed by spraying quartz powder under a condition that the surface of the base material is melted by using a spraying method. 溶射法を用いて石英基材表面が溶融する条件で石英粉末を溶射して前記石英溶射膜を形成すること特徴とする請求項1〜8のいずれかに記載の石英ガラス部品の製造方法。The method for manufacturing a quartz glass part according to any one of claims 1 to 8, wherein the quartz sprayed film is formed by spraying quartz powder under a condition in which a quartz substrate surface is melted by a spraying method. 前記石英粉末の溶射後に、酸洗浄を施すことを特徴とする請求項1〜8に記載の石英ガラス部品の製造方法。The method for manufacturing a quartz glass part according to claim 1, wherein acid cleaning is performed after the spraying of the quartz powder.
JP2003078344A 2002-04-04 2003-03-20 Quartz glass part and manufacture method of the same Pending JP2004002157A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003078344A JP2004002157A (en) 2002-04-04 2003-03-20 Quartz glass part and manufacture method of the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002102656 2002-04-04
JP2003078344A JP2004002157A (en) 2002-04-04 2003-03-20 Quartz glass part and manufacture method of the same

Publications (1)

Publication Number Publication Date
JP2004002157A true JP2004002157A (en) 2004-01-08

Family

ID=30446647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003078344A Pending JP2004002157A (en) 2002-04-04 2003-03-20 Quartz glass part and manufacture method of the same

Country Status (1)

Country Link
JP (1) JP2004002157A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011168454A (en) * 2010-02-19 2011-09-01 Asahi Glass Co Ltd Method of producing porous quartz glass preform
CN113651542A (en) * 2021-09-16 2021-11-16 安徽光智科技有限公司 Method for coating film on surface of quartz boat or quartz tube

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011168454A (en) * 2010-02-19 2011-09-01 Asahi Glass Co Ltd Method of producing porous quartz glass preform
CN113651542A (en) * 2021-09-16 2021-11-16 安徽光智科技有限公司 Method for coating film on surface of quartz boat or quartz tube

Similar Documents

Publication Publication Date Title
KR100913116B1 (en) Quartz glass spray parts and the manufaturing method thereof
JP4606121B2 (en) Corrosion-resistant film laminated corrosion-resistant member and manufacturing method thereof
JP2004010981A (en) Corrosion resistant member and its production method
JP5545792B2 (en) Corrosion resistant material
KR100677956B1 (en) Thermal spray coating with amorphous metal layer therein and fabrication method thereof
CN114045455B (en) Yttrium thermal spray coating film using yttrium particle powder and method for producing same
JP5566891B2 (en) Semiconductor manufacturing equipment parts and semiconductor manufacturing equipment
TW201442991A (en) Surface treatment method and ceramic structure formed by the same
KR20050095846A (en) Corrosion-resistant member and method for producing same
JP2004002157A (en) Quartz glass part and manufacture method of the same
JP4680681B2 (en) Corrosion resistant member and manufacturing method thereof
JP2004002101A (en) Plasma resistant member and its manufacturing process
JPWO2009069650A1 (en) Corrosion resistant material
JP4407143B2 (en) Quartz glass component, manufacturing method thereof, and apparatus using the same
JP4380211B2 (en) Quartz glass parts, manufacturing method thereof, and apparatus using the same
US7504164B2 (en) Corrosion-resistant member and process of producing the same
JP4604640B2 (en) Vacuum device parts, manufacturing method thereof, and apparatus using the same
JP2007081218A (en) Member for vacuum device
JP2022553646A (en) Inorganic coating of plasma chamber components
JP4851700B2 (en) Components for vacuum film forming apparatus and vacuum film forming apparatus
JP2005097722A (en) Corrosion resistant member, and method for manufacturing the same
JP4407111B2 (en) Quartz glass sprayed parts and manufacturing method thereof
JP2000247726A (en) Member for semiconductor producing apparatus
TW201927724A (en) Material for thermal spray, thermal spray coating using the same and manufacture methods thereof
JPH05235149A (en) Adhesion-preventive plate and inner jig

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100209