JP2004000959A - Microcapsule of uniform particle size - Google Patents

Microcapsule of uniform particle size Download PDF

Info

Publication number
JP2004000959A
JP2004000959A JP2003121941A JP2003121941A JP2004000959A JP 2004000959 A JP2004000959 A JP 2004000959A JP 2003121941 A JP2003121941 A JP 2003121941A JP 2003121941 A JP2003121941 A JP 2003121941A JP 2004000959 A JP2004000959 A JP 2004000959A
Authority
JP
Japan
Prior art keywords
particle size
rotor
screen
microcapsules
microcapsule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003121941A
Other languages
Japanese (ja)
Other versions
JP4077359B2 (en
Inventor
Toshiaki Masuda
増田 俊明
Yoshiaki Iwashita
岩下 良明
Koji Fujie
藤江 孝司
Keisuke Takeuchi
竹内 圭祐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matsumoto Yushi Seiyaku Co Ltd
Original Assignee
Matsumoto Yushi Seiyaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsumoto Yushi Seiyaku Co Ltd filed Critical Matsumoto Yushi Seiyaku Co Ltd
Priority to JP2003121941A priority Critical patent/JP4077359B2/en
Publication of JP2004000959A publication Critical patent/JP2004000959A/en
Application granted granted Critical
Publication of JP4077359B2 publication Critical patent/JP4077359B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Of Micro-Capsules (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)
  • Fats And Perfumes (AREA)
  • Heat Sensitive Colour Forming Recording (AREA)
  • Medicinal Preparation (AREA)
  • Cosmetics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain microcapsules having uniform particle size distribution. <P>SOLUTION: A homogenizer is provided with a screen (1) having liquid passing holes (4) and with a rotor (2) which is arranged inside the screen with clearance (3), which has blade cutters (5) and which can rotate at high speed. The rotor (2) is rotated at high speed while feeding hydrophobic matter and an aqueous medium from a rotor side of the homogenizer, and the matter and the medium is made to pass through the clearance (3) between the rotor and the screen and through the liquid passing holes (4) in the screen, thus, the hydrophobic matter is emulsified and dispersed in the aqueous medium and then the emulsified and dispersed hydrophobic matter is subjected to microencapsulation to obtain microcapsules of uniform particle size. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は疎水性物質を含むマイクロカプセルの製造方法に関するもので、特に求める平均粒径でかつ粒径分布のシャープなマイクロカプセルを製造する方法に関する。
【0002】
【従来の技術】
マイクロカプセルは感圧記録紙や感熱記録紙などの記録材料、農薬、医薬、香料、液晶、接着剤等数多くの分野で用いられており、その製法についても多くの方法が提案されている。代表的なマイクロカプセル化法としては、コアセルベーション法、界面重合法、イン・サイチュ法等が知られている。マイクロカプセルの作成に当たっては、特に平均粒径および粒径分布が重要である。平均粒径は用途により異なるが1〜100μm程度が求められる。また、粒径分布はできる限り均一であることが望まれる。例えば、感圧複写紙用のマイクロカプセルでは平均粒径4〜8μmで粒径分布のシャープな、変動係数CV(JISハンドブック化学分析1837号参照)で言えば約35%以下のカプセルが求められる。なぜなら、2μm以下のカプセルは破壊が容易でなく機能を発現せず発色性の低下を招き、また、10μm以上のカプセルは耐圧性が悪く擦れ汚れの原因となるからである。これらの要求を解決するために、主に乳化分散剤および乳化分散装置を中心に、例えば、特許文献1〜5など種々の提案がなされているが、性能および生産性の面から必ずしも満足なものとは言えない。
【0003】
【特許文献1】
特開昭56−147627号公報
【特許文献2】
特開昭58−40142号公報
【特許文献3】
特開昭59−87036号公報
【特許文献4】
特開平2−160579号公報
【特許文献5】
特開平5−49912号公報
【0004】
【発明が解決しようとする課題】
本発明は、求められる平均粒径でかつ粒径分布のシャープなマイクロカプセルを製造する方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明は縦型のスリットを有する通液孔(4)を有する円錐状または円錐台状のスクリーン(1)と、その内側にクリアランス(3)を設けて設置した、羽根刃(5)を有する円錐状または円錐台状のローター(2)とを備えたホモジナイザーのローター側より疎水性物質と水性媒体とを供給しつつローター(2)を高速で回転させて、ローターとスクリーンとのクリアランス(3)およびスクリーンの通液孔(4)を通過させることにより、疎水性物質を水性媒体中に乳化分散させ、その乳化分散された疎水性物質をカプセル化することを特徴とするマイクロカプセルの製造方法、および該製造方法により得られ、平均粒径が1〜100μm程度でありかつ変動係数が約35%以下の均一な粒径分布を有するマイクロカプセルに関する。
【0006】
本発明に使用する代表的な装置の概要を図1に示す。図1はハウジング(7)の一部を開放し、スクリーンはその断面のみを示している。図1中、(1)はスクリーンであり(2)はローターである。スクリーン(1)とローター(2)の間には所望の幅のクリアランス(3)が設けられており、この幅は適当に調節可能であってもよい。疎水性物質と水性媒体はハウジング(7)に設けられた窓(6)からハウジング内に吸い込まれ(液の流れ方向を(8)で示す)、ローター(2)で激しく撹拌された後クリアランス(3)により、剪断力を与え、更にスクリーンの通液孔(4)を通過させて、疎水性物質を乳化させる。
【0007】
本発明に用いられるスクリーン(1)は例えば図2に示すごとく縦型のスリット状通液孔(4)を有するのが好ましいが、通液孔はこれに限定されるものではなく、パンチング・ホール、メッシュなど様々な形状のものが用いられる。しかしながら、縦型のスリット状通液孔はスクリーンとローター間のクリアランスに吐き出された液に効率的に剪断力を付与し、通液孔で通過液に適切な衝突エネルギーを容易に付与できるので特に好ましいものである。縦型スリット状通液孔の長さ、太さ、形、数、深さなどを適当に変えることによって、マイクロカプセル化すべき系の粘度などに応じてマイクロカプセルの粒径を所望の大きさに調節することができる。
【0008】
スクリーン自体の形状はローターの形状によるが、図2に示すごとく円錘形または円錘台状であるのが好ましい。それによって吸液側からの液の供給を効率よくすることができ、またスリット部に均一に圧をかけることができる。
【0009】
スクリーンのスリットの本数は好ましくは2〜100本、より好ましくは3〜50本である。スクリーンのスリット幅は好ましくは0.1〜50mm、より好ましくは1〜10mmである。スクリーンの開口面積比は好ましくは0.1〜5.0、より好ましくは0.5〜2.0である。
【0010】
一般的傾向としては、スクリーンの開口面積比が大きくなるほど、得られるマイクロカプセルの粒径は大きくなる。
【0011】
本発明に用いられるローターは、例えば図3および図4に示すごとく、羽根刃(5)を有する。羽根刃の枚数は限定的ではないが2〜8枚が好ましい。ローターのリード角は0〜0.4πラジアンが好ましい。リード角が0.4πより大きいと吸液が困難になる。またローターの形状は円錘形または円錘台状であるのが好ましい。ローターの外周の最大径部の回転速度が好ましくは1〜50m/sec、より好ましくは5〜40m/secである。
【0012】
ローターとスクリーンのクリアランスは好ましくは0.05〜5.0mm、より好ましくは0.1〜2.0mmである。クリアランスが5.0mm以上ではローターとスクリーン間の剪断力が著しく低下し、粒径分布が広くなり、また粒径が小さくならない。また0.05mm以下のものは製作上の問題がある。
【0013】
本発明におけるローターおよびスクリーンは同軸上に位置し、より好ましくは垂直状に位置し、ローターの上部より、疎水性液体と親水性液体の混合物を送液し、この混合物がローター、ローターとスクリーンとのクリアランスおよびスクリーンを下部方向に通過することにより乳化分散される。
【0014】
本発明では、ローターとスクリーンが同一タンク内にセットされ、タンク内の混合液を一定時間乳化分散させることにより、乳化分散粒子を得るバッチ式でも、同タンク内に連続的に混合液を供給するバッチ連続式でも、ローターとスクリーンを円筒中に入れた分散機を用い、配管にて混合液を分散機中に導入する連続式のいずれを用いてもよい。
【0015】
また、本発明においては、ローターとスクリーンの組み合わせを同種または異種のものをいくつか同時に用いてもよい。
【0016】
本発明に用いられるマイクロカプセル化法は、特に限定的なものではない。例えば、界面重合法、コアセルベーション法、イン・サイチュ法などが例示される。
【0017】
本発明において、疎水性物質は、マイクロカプセル化しようとする油性成分、例えば溶剤、ワックス、染料、農薬、医薬、殺虫剤、香料、接着剤、油溶性ビタミン、魚油、植物油、鉱物油、触媒、化粧料など、あるいはマイクロカプセルの壁材となる疎水性のポリマー類、例えば(メタ)アクリル系ポリマー、スチレン系ポリマー、アクリロニトリル/塩化ビニリデン共重合物、シリコーン樹脂、ウレタン樹脂、アミド樹脂など、壁材形成用のモノマー類、あるいはこれらを溶解または分散する疎水性の溶剤類などである。
【0018】
本発明において水性媒体としては水およびこれに親水性の溶剤、例えばメタノール、エタノール、イソプロパノール、テトラヒドロフラン、ジメチルスルホキシド、エチレングリコール、プロピレングリコール、ジオキサン、ブチルセロソルブなど、水溶性塩類、例えば塩化ナトリウム、
など、マイクロカプセルの壁材形成用水溶性樹脂、例えばゼラチン、セルロース誘導体、尿素、ホルムアルデヒド、尿素またはメラミンノホルムアルデヒド初期重合物、でん粉、分散剤、乳化剤、
などを溶解または分散させたものが例示される。
【0019】
分散剤としてはアラビアガム、ポリビニルアルコール、セルロース誘導体、アクリル酸重合物あるいはその共重合物、無水マレイン酸共重合物、ビニルベンゼンスルホン酸重合物あるいはその共重合物、2−アクリルアミド−2−メチル−プロパンスルホン酸重合物あるいはその共重合物、水溶性ナイロンなどの水溶性高分子、カオリンクレー、焼成クレー、セリサイト、タルク、ベントナイト、シリカ微粒子、アルミナ微粒子、酸化チタン微粒子などのコロイド状無機微粒子などが例示される。また、界面活性剤としてはアルキルカルボン酸塩、アルキルスルホン酸塩、アルキルベンゼンスルホン酸塩などのアニオン界面活性剤、高級アルコールエチレンオキシド付加物、アルキルフェノールのエチレンオキシド付加物などの非イオン界面活性剤などが例示される。
【0020】
本発明方法により熱膨張性マイクロカプセル、感圧複写紙用マイクロカプセル、感熱シート用マイクロカプセル、香料、化粧料用マイクロカプセル、忌避剤、農薬等の徐放性マイクロカプセル、難燃剤用マイクロカプセル等、種々の用途のマイクロカプセルを製造することができる。
【0021】
本発明製造方法を採用することにより粒径のそろったマイクロカプセルを得ることができる。従って本発明方法で熱膨張性マイクロカプセルを製造すると、従来困難であった粒径が小さくて、しかも熱膨張性が均一なマイクロカプセルが得られる。更に粒径の調整も簡単にできるため、感圧複写紙用に適した4〜6μmの範囲で粒径の整ったマイクロカプセルが得られる。
【0022】
【実施例】
以下、実施例を挙げて本発明を更に詳細に説明する。
実施例1
アクリロニトリル110部、塩化ビニリデン200部、メタクリル酸メチル10部、イソブタン40部及びジイソプロピルオキシジカーボネート3部から成る疎水性物質をイオン交換水600部、コロイダルシリカ分散液(30%固形分)130部とジエタノールアミンとアジピン酸の縮合物の50%水溶液3部から成る水系のpH3に調整した媒体に加える。次にこの混合液を加圧容器付きの図1の構造を有する分散機(商品名:クレアミックスCLM−2.5S、エム・テクニック社製)でローターとスクリーンの間隔0.3mm、ローターの羽根数4枚、リード角0πラジアン、スクリーンのスリット数24本、スリット幅2mm、ローター回転数1800RPM30秒間分散した。この分散液をオートクレープ中で窒素雰囲気下、3−5kg/cm、60℃で20時間反応した。平均粒径(ヘロス&ロードス:レーザー回析法)2.1μm、変動係数35.3%;130℃オーブン中で1分間加熱したときの体積膨張倍率約50倍の熱膨張性マイクロカプセルを得た。
【0023】
実施例2
パラフィン(mp36℃)250部をスクリプセット#520
(スチレン/無水マレイン酸共重合物;モンサント社製)の部分ナトリウム塩の5%水溶液150部及びイオン交換水600部から成る水系に加えた。
【0024】
次に、この混合液を60℃に加温した後、実施例1の分散機を用いてローター回転数1800RPMで30秒間分散し分散液を得た。別に37%ホルマリン65部メラミン25部及びイオン交換水165部から成る混合液を、撹拌下pH9.0に調整し、60℃で約20分間反応し透明なメラミン/ホルムアルデヒド初期重合物を得た。この液を先の分散液に加え、250RPMで撹拌しながら60℃で3時間反応した。続いて残ホルマリン除去のため、系のpHを4.0に調整し、80℃で2時間反応を継続した。平均粒径(ヘロス&ロードス:レーザー回析法)3.8μm、変動係数36.1%のマイクロカプセルか得られた。
【0025】
実施例3
ハイゾールSAS−296(アルキル化ジフェニルメタン;日石化学社製)276部にクリスタルバイオレットラクトン(CVL)15部及び
ベンゾイルロイコメチレンブルー(BLMB)9部を加えた後、加熱溶解させた溶液にアクリロニトリル90部、アクリルアミド10部、メチレンビスアクリルアミド0.5部及びアゾビスイソブチロニトリル(AIBN)1部を加えた溶液をイオン交換水450部、食塩45部、スノーテックス20(コロイダルシリカ;日産化学(株)製)100部、ジエタノールアミンとアジピン酸の縮合物の50%水溶液2部から成る水系に加える。
【0026】
次に、この混合液を実施例1の分散機を用いてローター回転数1800RPMで30秒間分散し分散液を得た。この分散液をオートクレーブ中で窒素雰囲気下、3−5kg/cm、60℃で20時間反応した。平均粒径(ヘロス&ロードス:レーザー回析法)6.0μm、変動係数28.2%で10μm以上の粒子が1%(体積%)以下のマイクロカプセルを得た。
【0027】
実施例4
レモン香料250部をスクリプセット#550(スチレン/無水マレイン酸共重合物;モンサント社製)の部分ナトリウム塩の5%水溶液150部およびイオン交換水600部から成る水系に加えた。次に、この混合液を実施例1の分散機を用いてローター回転数1800RPM30秒間分散し分散液を得た。別に37%ホルマリン65部、メラミン25部およびイオン交換水165部から成る混合液を、撹拌下pH9.0に調整し、60℃で約20分間反応し透明なメラミン/ホルムアルデヒド初期重合物を得た。この液を先の分散液に加え、250RPMで撹拌しながら60℃で3時間反応した。続いて残ホルマリン除去のため、系のpHを4.0に調整し、80℃で2時間反応を継続した。平均粒径(ヘロス&ロードス/レーザー回析法)1.5μm、変動係数31.2%のマイクロカプセルが得られた。
【0028】
実施例5
実施例4のレモン香料に加えてシリコーン・オイル(1000cps)を用い同様にカプセル化したところ、3.2μm、変動係数31.2%のマイクロカプセルが得られた。
【0029】
実施例6
実施例1において、リード角0.4πラジアンのローターを用い、ローター回転数1000RPM30秒間分散した以外、実施例1と同様にして、平均粒径6.5μm、変動係数31.0%、10μm以上の粒子が1%であり、また130度オーブン中で1分間加熱したときの体積膨張倍率約60倍の熱膨張性マイクロカプセルを得た。
【0030】
比較例1
実施例1に分散機に変えてT.K.オートホモミキサーM型(特殊機化工業社製)で回転数10000RPM1分間分散して、カプセル化を行ったところ、実施例1と異なり平均粒径9.5μMと粒径の大きなカプセルが得られた。変動係数は49.8%であった。このカプセルを130℃オーブン中で1分加熱したときの体積膨張倍率は約50倍であった。
【0031】
比較例2
実施例2の分散機に変えてT.K.オートホモミキサーM型(特殊機化工業社製)で回転数10000RPM1分間分散して、カプセル化を行ったところ、実施例1と異なり平均粒径10.1μmと粒径の大きなカプセルが得られた。変動係数は50.9%であった。
【0032】
比較例3
実施例3の分散機に変えてT.K.オートホモミキサーM型(特殊機化工業社製)で回転数10000RPM1分間分散して、カプセル化を行ったところ、平均粒径は6.2μmだが、変動係数は40.3%であり、10μm以上が3.2%と粒径分布が広いものとなった。
【0033】
比較例4
実施例6の分散機に代えて、T.K.オートホモミクサーM型で6000RPM2分間分散してカプセル化を行ったところ、平均粒径12.4μmの大きなカプセルが得られた。また変動係数が49.8%、10μm以上の粒子が70%、20μm以上の粒子が15%以上ある粒径分布が広いものであった。
【0034】
【発明の効果】
本発明方法を用いると粒径の調節が容易であり、かつ粒径分布を均一(変動係数で言えば約35%以下)にすることができるので、熱膨張性マイクロカプセルや感圧複写紙用マイクロカプセルを製造する上で特に有用である。
【図面の簡単な説明】
【図1】本発明製造方法を実施するに適したホモジナイザーの部分断面図。
【図2】本発明に用いるホモジナイザー用スクリーンの一態様図。
【図3】本発明に用いるホモジナイザー用ローターの一態様図。
【図4】本発明に用いるホモジナイザー用ローターの一態様図。
【符号の説明】
(1)スクリーン、 (2)ローター、 (3)クリアランス
(4)スリット、 (5)羽根刃、 (6)窓 (7)ハウジング
(8)液の流れ方向
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing microcapsules containing a hydrophobic substance, and more particularly to a method for producing microcapsules having a desired average particle size and a sharp particle size distribution.
[0002]
[Prior art]
Microcapsules are used in many fields such as recording materials such as pressure-sensitive recording paper and heat-sensitive recording paper, agricultural chemicals, medicines, fragrances, liquid crystals, adhesives, and many other methods have been proposed for their production. As typical microencapsulation methods, a coacervation method, an interfacial polymerization method, an in-situ method and the like are known. In preparing microcapsules, the average particle size and the particle size distribution are particularly important. The average particle size varies depending on the application but is required to be about 1 to 100 μm. It is also desirable that the particle size distribution be as uniform as possible. For example, in the case of microcapsules for pressure-sensitive copying paper, capsules having an average particle size of 4 to 8 μm and a sharp particle size distribution and having a coefficient of variation CV (see JIS Handbook Chemical Analysis 1837) of about 35% or less are required. This is because capsules having a size of 2 μm or less are not easily broken and do not exhibit a function, resulting in a decrease in color development, and capsules having a size of 10 μm or more have poor pressure resistance and cause rubbing and staining. In order to solve these demands, various proposals have been made mainly on emulsifying dispersants and emulsifying and dispersing apparatuses, for example, Patent Documents 1 to 5, but they are not always satisfactory in terms of performance and productivity. It can not be said.
[0003]
[Patent Document 1]
JP-A-56-147627 [Patent Document 2]
JP-A-58-40142 [Patent Document 3]
JP-A-59-87036 [Patent Document 4]
JP-A-2-160579 [Patent Document 5]
JP-A-5-49912
[Problems to be solved by the invention]
An object of the present invention is to provide a method for producing microcapsules having a required average particle size and a sharp particle size distribution.
[0005]
[Means for Solving the Problems]
The present invention has a conical or frustoconical screen (1) having a liquid passage hole (4) having a vertical slit, and a blade blade (5) provided with a clearance (3) provided inside thereof. The rotor (2) is rotated at a high speed while supplying the hydrophobic substance and the aqueous medium from the rotor side of the homogenizer having the conical or frustoconical rotor (2), and the clearance between the rotor and the screen (3) is increased. ) And a liquid passing hole (4) of a screen to emulsify and disperse a hydrophobic substance in an aqueous medium, and encapsulate the emulsified hydrophobic substance. And a microcapsule having an average particle size of about 1 to 100 μm and a uniform particle size distribution having a coefficient of variation of about 35% or less.
[0006]
FIG. 1 shows an outline of a typical apparatus used in the present invention. FIG. 1 shows a part of the housing (7) open and the screen shows only its cross section. In FIG. 1, (1) is a screen and (2) is a rotor. A clearance (3) of a desired width is provided between the screen (1) and the rotor (2), and this width may be appropriately adjustable. The hydrophobic substance and the aqueous medium are sucked into the housing from the window (6) provided in the housing (7) (the flow direction of the liquid is indicated by (8)), and after being vigorously stirred by the rotor (2), the clearance ( According to 3), a shearing force is applied, and the liquid is passed through the liquid passage hole (4) of the screen to emulsify the hydrophobic substance.
[0007]
The screen (1) used in the present invention preferably has, for example, a vertical slit-shaped liquid passage hole (4) as shown in FIG. 2, but the liquid passage hole is not limited to this, and a punching hole is provided. And various shapes such as a mesh. However, since the vertical slit-shaped liquid passage hole efficiently applies a shearing force to the liquid discharged to the clearance between the screen and the rotor, and the liquid passage hole can easily apply an appropriate collision energy to the liquid passing therethrough. It is preferred. By appropriately changing the length, thickness, shape, number, depth, etc. of the vertical slit-shaped liquid passage holes, the particle size of the microcapsules can be adjusted to a desired size according to the viscosity of the system to be microencapsulated. Can be adjusted.
[0008]
Although the shape of the screen itself depends on the shape of the rotor, it is preferably a cone or a truncated cone as shown in FIG. Thereby, the supply of the liquid from the liquid suction side can be efficiently performed, and the pressure can be uniformly applied to the slit portion.
[0009]
The number of slits of the screen is preferably 2 to 100, more preferably 3 to 50. The slit width of the screen is preferably 0.1 to 50 mm, more preferably 1 to 10 mm. The opening area ratio of the screen is preferably 0.1 to 5.0, more preferably 0.5 to 2.0.
[0010]
As a general tendency, the larger the opening area ratio of the screen, the larger the particle size of the obtained microcapsules.
[0011]
The rotor used in the present invention has a blade blade (5) as shown in FIGS. 3 and 4, for example. Although the number of blade blades is not limited, 2 to 8 blades are preferable. The lead angle of the rotor is preferably from 0 to 0.4π radian. When the lead angle is larger than 0.4π, liquid absorption becomes difficult. The shape of the rotor is preferably a cone or a truncated cone. The rotation speed of the maximum diameter portion on the outer periphery of the rotor is preferably 1 to 50 m / sec, more preferably 5 to 40 m / sec.
[0012]
The clearance between the rotor and the screen is preferably 0.05 to 5.0 mm, more preferably 0.1 to 2.0 mm. When the clearance is 5.0 mm or more, the shearing force between the rotor and the screen is remarkably reduced, the particle size distribution is widened, and the particle size is not reduced. Those having a thickness of 0.05 mm or less have a problem in production.
[0013]
The rotor and the screen in the present invention are located on the same axis, more preferably in a vertical position, and send a mixture of a hydrophobic liquid and a hydrophilic liquid from the upper part of the rotor, and the mixture is fed to the rotor, the rotor and the screen. Is emulsified and dispersed by passing through the clearance and the screen in the lower direction.
[0014]
In the present invention, the rotor and the screen are set in the same tank, and the mixed liquid in the tank is emulsified and dispersed for a certain period of time, so that the mixed liquid is continuously supplied into the same tank even in a batch type in which emulsified and dispersed particles are obtained. Either a batch continuous type or a continuous type in which a mixed solution is introduced into a disperser by piping using a disperser in which a rotor and a screen are placed in a cylinder may be used.
[0015]
In the present invention, a combination of rotors and screens of the same type or different types may be used simultaneously.
[0016]
The microencapsulation method used in the present invention is not particularly limited. For example, an interfacial polymerization method, a coacervation method, an in-situ method and the like are exemplified.
[0017]
In the present invention, the hydrophobic substance is an oily component to be microencapsulated, such as a solvent, wax, dye, pesticide, medicine, insecticide, fragrance, adhesive, oil-soluble vitamin, fish oil, vegetable oil, mineral oil, catalyst, Wall materials such as cosmetics or hydrophobic polymers used as wall materials for microcapsules, such as (meth) acrylic polymers, styrene polymers, acrylonitrile / vinylidene chloride copolymers, silicone resins, urethane resins, and amide resins Monomers for formation or hydrophobic solvents that dissolve or disperse them.
[0018]
As the aqueous medium in the present invention, water and hydrophilic solvents such as methanol, ethanol, isopropanol, tetrahydrofuran, dimethyl sulfoxide, ethylene glycol, propylene glycol, dioxane, butyl cellosolve and the like, water-soluble salts such as sodium chloride,
Such as a water-soluble resin for forming the wall material of the microcapsules, for example, gelatin, cellulose derivatives, urea, formaldehyde, urea or melamine noformaldehyde prepolymer, starch, dispersant, emulsifier,
And the like are dissolved or dispersed.
[0019]
As dispersants, gum arabic, polyvinyl alcohol, cellulose derivatives, acrylic acid polymers or copolymers thereof, maleic anhydride copolymers, vinylbenzenesulfonic acid polymers or copolymers thereof, 2-acrylamido-2-methyl- Propanesulfonic acid polymer or its copolymer, water-soluble polymer such as water-soluble nylon, kaolin clay, calcined clay, sericite, talc, bentonite, silica fine particles, alumina fine particles, colloidal inorganic fine particles such as titanium oxide fine particles, etc. Is exemplified. Examples of the surfactant include anionic surfactants such as alkyl carboxylate, alkyl sulfonate and alkyl benzene sulfonate, and nonionic surfactants such as higher alcohol ethylene oxide adduct and alkyl phenol ethylene oxide adduct. You.
[0020]
According to the method of the present invention, heat-expandable microcapsules, microcapsules for pressure-sensitive copying paper, microcapsules for heat-sensitive sheets, microcapsules for fragrances, cosmetics, repellents, sustained-release microcapsules for pesticides, microcapsules for flame retardants, etc. Microcapsules for various uses can be manufactured.
[0021]
By adopting the production method of the present invention, microcapsules having a uniform particle size can be obtained. Therefore, when heat-expandable microcapsules are produced by the method of the present invention, microcapsules having a small particle size and uniform heat expansion properties, which have been difficult in the past, can be obtained. Further, since the particle size can be easily adjusted, microcapsules having a uniform particle size in the range of 4 to 6 μm suitable for pressure-sensitive copying paper can be obtained.
[0022]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples.
Example 1
A hydrophobic substance comprising 110 parts of acrylonitrile, 200 parts of vinylidene chloride, 10 parts of methyl methacrylate, 40 parts of isobutane and 3 parts of diisopropyloxydicarbonate was mixed with 600 parts of ion-exchanged water and 130 parts of a colloidal silica dispersion (30% solid content). It is added to an aqueous medium adjusted to pH 3 consisting of 3 parts of a 50% aqueous solution of a condensate of diethanolamine and adipic acid. Next, this mixed solution was dispersed in a dispersing machine (trade name: CLEARMIX CLM-2.5S, manufactured by M Technique Co., Ltd.) having a structure of FIG. Several sheets, a lead angle of 0π radian, 24 slits on the screen, a slit width of 2 mm, and a rotor rotation speed of 1800 RPM were dispersed for 30 seconds. This dispersion was reacted in an autoclave under a nitrogen atmosphere at 3 to 5 kg / cm 2 at 60 ° C. for 20 hours. Average particle size (Heros & Rhodes: laser diffraction method) 2.1 μm, coefficient of variation 35.3%; heat-expandable microcapsules having a volume expansion ratio of about 50 when heated in a 130 ° C. oven for 1 minute were obtained. .
[0023]
Example 2
250 parts of paraffin (mp 36 ° C) with script set # 520
(Styrene / maleic anhydride copolymer; manufactured by Monsanto Co.) was added to an aqueous system consisting of 150 parts of a 5% aqueous solution of a partial sodium salt and 600 parts of ion-exchanged water.
[0024]
Next, the mixture was heated to 60 ° C., and then dispersed using the disperser of Example 1 at a rotor rotation speed of 1800 RPM for 30 seconds to obtain a dispersion. Separately, a mixture of 65 parts of 37% formalin and 25 parts of melamine and 165 parts of ion-exchanged water was adjusted to pH 9.0 with stirring, and reacted at 60 ° C. for about 20 minutes to obtain a transparent melamine / formaldehyde prepolymer. This liquid was added to the above dispersion, and reacted at 60 ° C. for 3 hours while stirring at 250 RPM. Subsequently, in order to remove residual formalin, the pH of the system was adjusted to 4.0, and the reaction was continued at 80 ° C. for 2 hours. Microcapsules having an average particle size (Heros & Rhodes: laser diffraction method) of 3.8 μm and a coefficient of variation of 36.1% were obtained.
[0025]
Example 3
After adding 15 parts of crystal violet lactone (CVL) and 9 parts of benzoylleucomethylene blue (BLMB) to 276 parts of Hisol SAS-296 (alkylated diphenylmethane; manufactured by Nisseki Chemical Co., Ltd.), 90 parts of acrylonitrile was added to the solution by heating and dissolving. A solution containing 10 parts of acrylamide, 0.5 part of methylenebisacrylamide and 1 part of azobisisobutyronitrile (AIBN) was added to 450 parts of ion-exchanged water, 45 parts of salt, and Snowtex 20 (colloidal silica; Nissan Chemical Co., Ltd.) 100 parts) and 2 parts of a 50% aqueous solution of a condensate of diethanolamine and adipic acid.
[0026]
Next, the mixed liquid was dispersed using the disperser of Example 1 at a rotor rotation speed of 1800 RPM for 30 seconds to obtain a dispersion liquid. This dispersion was reacted in an autoclave under a nitrogen atmosphere at 3-5 kg / cm 2 at 60 ° C. for 20 hours. Microcapsules having an average particle diameter (Heros & Rhodes: laser diffraction method) of 6.0 μm, a coefficient of variation of 28.2% and particles of 10 μm or more and 1% (vol%) were obtained.
[0027]
Example 4
250 parts of lemon flavor was added to an aqueous system consisting of 150 parts of a 5% aqueous solution of a partial sodium salt of Script Set # 550 (styrene / maleic anhydride copolymer; manufactured by Monsanto) and 600 parts of ion-exchanged water. Next, the mixed liquid was dispersed using the disperser of Example 1 at a rotor rotation speed of 1800 RPM for 30 seconds to obtain a dispersion liquid. Separately, a mixed solution consisting of 65 parts of 37% formalin, 25 parts of melamine and 165 parts of ion-exchanged water was adjusted to pH 9.0 with stirring and reacted at 60 ° C. for about 20 minutes to obtain a transparent melamine / formaldehyde prepolymer. . This liquid was added to the above dispersion, and reacted at 60 ° C. for 3 hours while stirring at 250 RPM. Subsequently, in order to remove residual formalin, the pH of the system was adjusted to 4.0, and the reaction was continued at 80 ° C. for 2 hours. Microcapsules having an average particle size (heros & rhodes / laser diffraction method) of 1.5 μm and a variation coefficient of 31.2% were obtained.
[0028]
Example 5
The same encapsulation was performed using silicone oil (1000 cps) in addition to the lemon flavor of Example 4, to obtain microcapsules having a size of 3.2 μm and a coefficient of variation of 31.2%.
[0029]
Example 6
In Example 1, the average particle diameter was 6.5 μm, the variation coefficient was 31.0%, and the variation coefficient was 10 μm or more, in the same manner as in Example 1 except that the rotor having a lead angle of 0.4π radian was used and the rotor rotation speed was dispersed at 1000 RPM for 30 seconds. Heat-expandable microcapsules containing 1% of particles and having a volume expansion ratio of about 60 when heated in a 130 ° C. oven for 1 minute were obtained.
[0030]
Comparative Example 1
Example 1 was changed to T. K. When dispersing with an auto homomixer M type (manufactured by Tokushu Kika Kogyo Co., Ltd.) at 10000 RPM for 1 minute and performing encapsulation, capsules having a large average particle size of 9.5 μM were obtained unlike Example 1. . The coefficient of variation was 49.8%. The volume expansion ratio when this capsule was heated in a 130 ° C. oven for 1 minute was about 50 times.
[0031]
Comparative Example 2
T. Instead of the dispersing machine of Example 2, K. When dispersing at 10000 RPM for 1 minute using an auto homomixer M type (manufactured by Tokushu Kika Kogyo Co., Ltd.) for 1 minute, capsules having a large average particle diameter of 10.1 μm were obtained unlike Example 1. . The coefficient of variation was 50.9%.
[0032]
Comparative Example 3
Instead of the disperser of Example 3, T. K. When dispersed at 10000 RPM for 1 minute using an auto homomixer M type (manufactured by Tokushu Kika Kogyo Co., Ltd.) for 1 minute, the particles were encapsulated. Was 3.2% and the particle size distribution was wide.
[0033]
Comparative Example 4
Instead of the disperser of Example 6, T.I. K. When encapsulation was performed by dispersing at 6000 RPM for 2 minutes using an auto homomixer M type, large capsules having an average particle diameter of 12.4 μm were obtained. In addition, the coefficient of variation was 49.8%, particles having a size of 10 μm or more were 70%, and particles having a size of 20 μm or more were 15% or more, and the particle size distribution was wide.
[0034]
【The invention's effect】
According to the method of the present invention, the particle size can be easily adjusted and the particle size distribution can be made uniform (about 35% or less in terms of variation coefficient). It is particularly useful for producing microcapsules.
[Brief description of the drawings]
FIG. 1 is a partial cross-sectional view of a homogenizer suitable for carrying out the production method of the present invention.
FIG. 2 is an embodiment of a screen for a homogenizer used in the present invention.
FIG. 3 is a view of one embodiment of a rotor for a homogenizer used in the present invention.
FIG. 4 is an embodiment of a rotor for a homogenizer used in the present invention.
[Explanation of symbols]
(1) screen, (2) rotor, (3) clearance (4) slit, (5) blade blade, (6) window (7) housing (8) liquid flow direction

Claims (4)

平均粒径が1〜100μm程度でありかつ変動係数が約35%以下の均一な粒径分布を有することを特徴とするマイクロカプセル。A microcapsule having a uniform particle size distribution having an average particle size of about 1 to 100 μm and a coefficient of variation of about 35% or less. 平均粒径の2倍以上の粒径を持つものが10%以下の均一な粒径分布を有することを特徴とするマイクロカプセル。Microcapsules characterized by having a uniform particle size distribution of 10% or less, having a particle size more than twice the average particle size. 縦型スリット状通液孔(4)を有する円錐状または円錐台状のスクリーン(1)と、その内側にクリアランス(3)を設けて設置した、羽根刃(5)を有する円錐状または円錐台状のローター(2)とを備えたホモジナイザーのローター側より疎水性物質と水性媒体とを供給しつつローター(2)を高速で回転させて、ローターとスクリーンとのクリアランス(3)およびスクリーンの通液孔(4)を通過させることにより、疎水性物質を水性媒体中に乳化分散させ、その乳化分散された疎水性物質をカプセル化して得られる、請求項1または請求項2記載のマイクロカプセル。A conical or frusto-conical shape having a conical or frusto-conical shape having a vertical slit-shaped liquid passage hole (4) and a blade (5) provided with a clearance (3) provided inside thereof. The rotor (2) is rotated at a high speed while supplying the hydrophobic substance and the aqueous medium from the rotor side of the homogenizer having the rotor (2) in the form of a circle, so that the clearance (3) between the rotor and the screen and the passage of the screen. The microcapsule according to claim 1 or 2, wherein the microcapsules are obtained by emulsifying and dispersing a hydrophobic substance in an aqueous medium by passing through a liquid hole (4), and encapsulating the emulsified and dispersed hydrophobic substance. マイクロカプセルが熱膨張性マイクロカプセルであることを特徴とする、請求項1、請求項2または請求項3記載のマイクロカプセル。The microcapsule according to claim 1, 2 or 3, wherein the microcapsule is a heat-expandable microcapsule.
JP2003121941A 2003-04-25 2003-04-25 Micro capsule Expired - Lifetime JP4077359B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003121941A JP4077359B2 (en) 2003-04-25 2003-04-25 Micro capsule

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003121941A JP4077359B2 (en) 2003-04-25 2003-04-25 Micro capsule

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP23957093A Division JP3476223B2 (en) 1993-09-27 1993-09-27 Manufacturing method of microcapsules

Publications (2)

Publication Number Publication Date
JP2004000959A true JP2004000959A (en) 2004-01-08
JP4077359B2 JP4077359B2 (en) 2008-04-16

Family

ID=30438010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003121941A Expired - Lifetime JP4077359B2 (en) 2003-04-25 2003-04-25 Micro capsule

Country Status (1)

Country Link
JP (1) JP4077359B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007046273A1 (en) 2005-10-20 2007-04-26 Matsumoto Yushi-Seiyaku Co., Ltd. Heat-expansible microsphere and process for producing the same
WO2007058379A1 (en) 2005-11-21 2007-05-24 Matsumoto Yushi-Seiyaku Co., Ltd. Heat-expandable microsphere, process for producing the same, and use
WO2016088802A1 (en) * 2014-12-02 2016-06-09 株式会社クレハ Large-diameter heat-expanding micro-spheres, and method for producing same
JP2016534159A (en) * 2013-07-29 2016-11-04 高砂香料工業株式会社 Micro capsule
JP2016540061A (en) * 2013-10-04 2016-12-22 ザ プロクター アンド ギャンブル カンパニー Benefit agent-containing delivery particles based on styrene maleic anhydride copolymers
WO2019181682A1 (en) * 2018-03-23 2019-09-26 富士フイルム株式会社 Microcapsule-containing composition, laundering composition, day-care composition, and hair-care composition
US11230130B2 (en) * 2017-06-02 2022-01-25 Fujifilm Corporation Material composition for pressure measurement, material for pressure measurement, and material set for pressure measurement
US11958307B2 (en) 2016-09-29 2024-04-16 Fujifilm Corporation Material composition for pressure measurement, material for pressure measurement, and material set for pressure measurement

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007046273A1 (en) 2005-10-20 2007-04-26 Matsumoto Yushi-Seiyaku Co., Ltd. Heat-expansible microsphere and process for producing the same
WO2007058379A1 (en) 2005-11-21 2007-05-24 Matsumoto Yushi-Seiyaku Co., Ltd. Heat-expandable microsphere, process for producing the same, and use
JP2016534159A (en) * 2013-07-29 2016-11-04 高砂香料工業株式会社 Micro capsule
JP2016540061A (en) * 2013-10-04 2016-12-22 ザ プロクター アンド ギャンブル カンパニー Benefit agent-containing delivery particles based on styrene maleic anhydride copolymers
WO2016088802A1 (en) * 2014-12-02 2016-06-09 株式会社クレハ Large-diameter heat-expanding micro-spheres, and method for producing same
JPWO2016088802A1 (en) * 2014-12-02 2017-10-19 株式会社クレハ Large-diameter thermally foamable microsphere and method for producing the same
US11958307B2 (en) 2016-09-29 2024-04-16 Fujifilm Corporation Material composition for pressure measurement, material for pressure measurement, and material set for pressure measurement
US11230130B2 (en) * 2017-06-02 2022-01-25 Fujifilm Corporation Material composition for pressure measurement, material for pressure measurement, and material set for pressure measurement
WO2019181682A1 (en) * 2018-03-23 2019-09-26 富士フイルム株式会社 Microcapsule-containing composition, laundering composition, day-care composition, and hair-care composition

Also Published As

Publication number Publication date
JP4077359B2 (en) 2008-04-16

Similar Documents

Publication Publication Date Title
JP3476223B2 (en) Manufacturing method of microcapsules
JP3399990B2 (en) Microcapsule containing inorganic colloid and method for producing the same
US20020043731A1 (en) Method and apparatus for manufacturing microspheres
GB2280164A (en) Microcapsules formed from unsaturated acid anhydrides
JP4077359B2 (en) Micro capsule
AU665136B2 (en) Packing list manifest
JP2729538B2 (en) Manufacturing method of microcapsules
EP1387867A1 (en) Colourants encapsulated in a polymer matrix
FI71076C (en) FOERFARANDE FOER FRAMSTAELLNING AV ISODIAMETRISKA MIKROKAPSLARMED DIAMETER AV BESTAEMD STORLEK
US3816169A (en) Fibrous and non-fibrous substrates coated with microcapsular pacifier system and the production of such coated substrates
FI93083C (en) Method for microencapsulation, use of polymers prepared by said method and compositions containing polymers prepared by said process
JP3202266B2 (en) Manufacturing method of microcapsules
US4965025A (en) Process for microencapsulating hydrophobic oils, the microcapsules obtained and the use thereof
US5089339A (en) Aminoplast microencapsulation system
JPS6186941A (en) Preparation of oil-containing microcapsule
JP3634110B2 (en)   Method for producing sustained release particles
DE3918141C2 (en) Microcapsules with a polymeric capsule wall
US5196149A (en) Preparation of high solids, low viscosity carbonless paper gelatin base microcapsules
US4333849A (en) Encapsulation process
US5064470A (en) High solids, low viscosity carbonless paper gelatin base microcapsule system
JPH05212273A (en) Production of microcapsule
JPH0372943A (en) Microcapsule, mixture containing microcapsule, and method for encapsulating and dischar- ging encapsulated matter in microcapsule
JP2824309B2 (en) Manufacturing method of microcapsules
Paik Environmentally Friendly Polyurea Microcapsules of pesticides by PVA mediated interfacial polymerization
JPH02145383A (en) Temperature sensitive microcapsule containing volatile substance

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060718

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080131

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

EXPY Cancellation because of completion of term