JP2003506955A - ハイブリッド帯域およびベースバンドデルタ−シグマ変調器 - Google Patents

ハイブリッド帯域およびベースバンドデルタ−シグマ変調器

Info

Publication number
JP2003506955A
JP2003506955A JP2001515543A JP2001515543A JP2003506955A JP 2003506955 A JP2003506955 A JP 2003506955A JP 2001515543 A JP2001515543 A JP 2001515543A JP 2001515543 A JP2001515543 A JP 2001515543A JP 2003506955 A JP2003506955 A JP 2003506955A
Authority
JP
Japan
Prior art keywords
delta
phase
feedforward
quadrature
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001515543A
Other languages
English (en)
Inventor
モリン,マーク・エイ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atmel Corp
Original Assignee
Atmel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atmel Corp filed Critical Atmel Corp
Publication of JP2003506955A publication Critical patent/JP2003506955A/ja
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/02Delta modulation, i.e. one-bit differential modulation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D3/00Demodulation of angle-, frequency- or phase- modulated oscillations
    • H03D3/006Demodulation of angle-, frequency- or phase- modulated oscillations by sampling the oscillations and further processing the samples, e.g. by computing techniques
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D3/00Demodulation of angle-, frequency- or phase- modulated oscillations
    • H03D3/007Demodulation of angle-, frequency- or phase- modulated oscillations by converting the oscillations into two quadrature related signals
    • H03D3/008Compensating DC offsets
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/39Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators
    • H03M3/402Arrangements specific to bandpass modulators
    • H03M3/41Arrangements specific to bandpass modulators combined with modulation to or demodulation from the carrier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/39Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators
    • H03M3/40Arrangements for handling quadrature signals, e.g. complex modulators

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Power Engineering (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

(57)【要約】 変調回路の順方向経路にダウン変換ミクサ回路(30)を有し、変調器のフィードバック経路にアップ変換ミクサ(38)を有するデルタ−シグマ変調器(325)である。変調器(325)は、2つのコンポーネント、つまりダウン変換器(30)の前の帯域フィルタ(28)とダウン変換器の後の低域フィルタ(32、33)とを有するループフィルタからなる。ミクサ回路は、同相経路と直角位相経路とを備える単側波帯阻止ミクサとして実現され得る。このような変調器では、直角位相ミクサの後のループフィルタコンポーネントは、2つの低域フィルタ(32、33)を含み、1つは同相順方向経路のためであり、もう1つは直角位相順方向経路のためである。フィードバックもまた2つの経路を有し、それらはDAC(50)の前にある直角位相アップ変換器(38)内で再び組合せられ、DAC(50)が実アナログ信号(23)を生成し、それは入力にフィードバックされる。ベースバンド低域フィルタセクションと帯域ループフィルタセクションとの両者へとつながる多数の中間フィードバック経路を有する構成を含めて、この種類の変調器の多数の構成が実現され得る。

Description

【発明の詳細な説明】
【0001】
【技術分野】
この発明は一般に、電気信号のデジタル符号化に関し、より具体的にはデルタ
−シグマ変調器に関する。
【0002】
【背景技術】
アンテナまたはトランスデューサ等のソースにできる限り近いところで、帯域
信号、つまり無線周波数(RF)信号または音響信号を高い正確さでデジタル化
し、CMOSデジタル信号処理技術の利点を利用するために集積回路上でアナロ
グ−デジタル(A/D)変換を実現することが望まれる。デルタ−シグマ変調器
は、アナログ−デジタル変換を実現するための一般的なアーキテクチャとなって
いるが、これは高い許容限界のコンポーネントを必要とすることなしに、たとえ
ば10ビットよりも大きい高いレベルの正確性を達成できるからである。
【0003】 デルタ−シグマ変調器はしばしば離散時間システムとして実現されるが、この
発明がそこに含まれる、連続時間システムとして動作する別の種類のデルタ−シ
グマ変調器が存在する。図6を参照すると、連続時間変調器内では、時間サンプ
リング動作が変調ループ401内のアナログ−デジタル変換要素406内で行な
われる。したがって、変調ループ401のループフィルタ404を含む部分は、
離散時間回路317というよりはむしろ連続時間回路316として動作する。こ
れは、時間サンプリング動作が変調器401の前のサンプルホールド回路318
内で行なわれる図7に示される離散時間変調器とは対照的である。したがって、
離散時間システムでは、変調ループ全体が離散時間回路317として動作する。
しかし、図6のように時間サンプリング動作を雑音整形ループへ入れることによ
って、結果として変調器の動作速度がより速くなり、その結果、より広い帯域幅
をデジタル変換することができる。したがって、より低い周波数応用のための離
散時間システムとして動作するようにこの発明を実現することもできるが、連続
時間システムとしてこの発明を実現することがより好ましい。
【0004】 連続時間デルタ−シグマA/D変換器15の一般的なアーキテクチャが図8で
示される。デルタ−シグマA/D変換器15は、入力でアナログ信号400を受
取り、アナログ信号はデルタ−シグマ変調回路401に送られる。信号400は
、入力デルタ接合402でフィードバック信号411との差分がとられ、エラー
信号403が形成される。結果として生じるエラー信号403は次に、典型的に
は積分器または一連の積分器として実現されしたがってシグマ機能を実現するル
ープフィルタ404によって処理される。ループフィルタ404は、A/D変換
器406によってループ内に導入される量子化雑音の雑音整形を提供し、したが
って結果として非常に高精度の信号変換が得られる。ループフィルタ404は、
デジタル−アナログ変換器410からの多数のフィードバック経路を含み得る点
において、また、ことによるとフィードフォワード経路も含み得る点において、
かなり複雑であり得る。ループフィルタ404は、低域機能または帯域機能のい
ずれかを実現する。低域機能の場合には、結果として生じる変調器はベースバン
ドデルタ−シグマ変調器と呼ばれる。帯域機能の場合には、その変調器は帯域デ
ルタ−シグマ変調器と呼ばれ、この種類のフィルタはしばしば共振器を備えて実
現される。ループフィルタ404の出力は、低ビット、典型的には1−4ビット
のA/D変換器406でサンプリングされる。A/D変換器406の出力407
は、デジタル−アナログ(D/A)変換器410を通って入力デルタ接合402
へとフィードバックされ、それはまたデルタ信号処理(DSP)回路408に送
られ、出力416で高精度のデジタル信号を回復する。サンプリングクロック4
14は、A/D変換器406とD/A変換器410とにタイミング信号を提供し
、増幅器412は、D/A変換器410に供給されるクロック信号をバッファリ
ングまたは遅延する。
【0005】 かつては、デルタ−シグマアーキテクチャはオーディオ信号に適用されてきた
。しかし、半導体技術の速度が増したため、デルタ−シグマアーキテクチャは現
在、無線周波数(RF)信号に適用されており、標準アナログRF信号処理チェ
ーンがデジタル回路に代わりつつある。A/D変換器は、この進展において限界
のある技術となっており、この技術を改善する努力が近年なされてきた。1GH
zより上でサンプリングするいくつかのデルタ−シグマ変調器が発表されてきた
が、これらの精度は未だに大部分のRFシステムで適切とされるものよりも低い
【0006】 図9を参照すると、典型的なベースバンドデルタ−シグマ変調器401が示さ
れ、ここではデルタ−シグマ変調器が、低中間周波数(IF)変換方式を用いる
RFダウン変換チェーン16に適用される。図9では、図8で示されるそれと同
一の回路部分は共通の参照番号で示され、それについての説明は省略されている
。変調器401内のループフィルタは、低域フィルタ462として示される。単
一ベースバンドデルタ−シグマ変調器を用いると、高価なイメージ阻止フィルタ
リング452と456とがミクシングの前に必要となる。さらなるフィルタリン
グが必要とされる理由は、典型的なベースバンド変調器では反対側の側波帯を抑
圧しなければ、それが所望の側波帯へと漏れて信号を崩すためである。反対側の
側波帯を抑圧するのに必要とされるフィルタは通例かなり高価であり、フィルタ
をチップ上に集積することは通例不可能である。図9では、このさらなるフィル
タリングはデルタ−シグマ変調器401の前に示される。というのも、信号が入
力アンテナ450で受取られ、それは第1の帯域フィルタ452と増幅器454
と第2の帯域フィルタ456とを通って進み、第2の帯域フィルタ456の出力
信号は、ダウン変換ミクサ458を用いて、局部発振器470からの信号で周波
数変換されるからである。
【0007】 2つのベースバンドデルタ−シグマ変調器を用いる代替のRFダウン変換方式
は、図10で示されるイメージ阻止アーキテクチャ17である。RF入力信号が
入力アンテナ500から前置フィルタリング502と増幅504とを通って進ん
だ後、直角位相の単側波帯イメージ阻止ミクサ519が用いられ、複合ベースバ
ンドまたは低IF信号の同相(I)チャネルおよび直角位相(Q)チャネルが作
られる。これらのチャネルは、2つの同期ベースバンドデルタ−シグマ変調器5
10および520によってサンプリングされ、出力Q信号514と出力I信号5
32とが生成され、それらは信号回復のためにデジタル信号プロセッサ(図示せ
ず)へと送られる。一方の側波帯の他方の側波帯への漏れは、−90度オフセッ
ト回路516の位相誤差によって、および、2つのチャネルQとIとの間のアナ
ログ回路内の大きさまたは位相のずれのいずれかによって、定まる。半導体処理
の現在の状態では、約−30dBの側波帯漏れを得ることが可能である。これに
より、前置フィルタイメージ阻止要件が30dBだけ減じられる。(直接変換ア
ーキテクチャを実現することもまた可能であるが、そこでは局部発振器が帯域の
中心に置かれ、信号変換精度が約30dBに制限される。) 第3の共通アーキテクチャは、図11で示されるように、RFダウン変換チェ
ーン18内で帯域デルタ−シグマ変調器560を利用する。ループフィルタ55
8内で低域フィルタが帯域フィルタに代えられたことを除き、このアーキテクチ
ャは図9で示されるベースバンドアーキテクチャと同様である。このことにより
、アナログダウン変換ミクシングなしで、RF信号の直接的なサンプリングが容
易になる。デルタ−シグマ変調器560の出力556は、デジタルダウン変換ミ
クサ580に送られ、ベースバンド信号のQチャネル564とIチャネル566
とが作られる。機能ブロック585によって示される局部発振器は典型的には、
サンプルクロック592の周波数の1/4で動作する。出力Qチャネル564と
出力Iチャネル566とは次にデジタル信号プロセッサへと送られ、デジタル信
号を回復する。このアーキテクチャには、データ変換器およびある増幅504の
前で必要とされるのが低い品質の帯域フィルタ552のみであるという利点があ
る。
【0008】 デジタルダウン変換ミクサ回路580では、局部発振器が、ブロック585に
よって示される機能(cos 2πft)を達成し、ここでfは局部発振器の周
波数であり、tは時間である。サンプリングされる時間領域では、値tは値n/
fsに置き換え可能であり、nはサンプル数であり、fsはサンプルクロックレ
ートである。通例、局部発振器レートをサンプルクロック周波数の1/4に維持
することが望まれる。この理由は、ミクサをより簡単に実現するためであり、こ
のことは以下で明らかになるであろう。局部発振器レートがサンプルレートの1
/4で維持されると、値fは値fs/4に置き換え可能であり、ここではfsは
サンプルレートである。これによって、関数(cos 2π・fs/4・n/f
s)が求められ、これは約分されて(cos πn/2)になり得る。サンプル
数nに値0を代入することによって、(cos 0)が求められ、これは1に等
しい。n=1の場合、関数は(cos π/2)であり、これは0に等しい。n
=2の場合、関数は(cos π)であり、これは−1に等しく、n=3の場合
、関数は(cos 3π/2)であり、これは0に等しい。1、0、−1、0の
このパターンは、後に続く値nに関しても繰返され、値0、1および−1は、2
ビットで完全に表わされるため、結果として簡単にミクサが実現される。大多数
の帯域デルタ−シグマ変調器は、デジタル局部発振器がサンプルレートの1/4
で動作するように設計される。
【0009】 広帯域バンドパスデルタ−シグマ変調器は、1GHz付近またはそれより上の
サンプルレートで作られてきたが、その性能は、約25MHzの帯域幅で、60
dB付近のダイナミックレンジに制限されてきた。しかし、いくつかの応用は1
00dBを超える、ダイナミックレンジを必要とし、生産環境においてこのよう
な構造を実現することにはいくつかの物理的な問題がある。第1に、ループフィ
ルタは、かなり複雑であり、共振器の必要とされる中心周波数と尖鋭度とを達成
するためにはいくつかの同調回路を必要とする。第2に、許容範囲内のループ遅
延は、ベースバンド変調器のそれよりもずっと低い。ループ遅延とは、ループ回
路内のA/D変換器がクロックされ、データが安定し、データがD/A変換器に
よって入力にラッチバックされるまでにかかる時間である。ループ回路内の位相
余裕は、積分器の単一利得周波数を調節することによって達成される。単一利得
周波数を下げることによって、さらなる位相余裕を達成することができる。さら
なる位相余裕があれば、さらなるループ遅延を許容できる。ベースバンド変調器
では、1/(2Fs)までのループ遅延が可能であり、Fsはサンプルクロック
の周波数である。しかし、帯域変調器では、たとえ1/(10Fs)のループ遅
延でも変調器を安定させることは非常に困難である。なぜならこれらの装置は安
定度を制御するために用いられる積分器を欠くからである。たとえば、帯域フィ
ルタがサンプルレートの1/4で動作していると仮定すると、1GHzでRF信
号を直接サンプリングためには、4GHzのクロックレートと1GHzでの帯域
ループフィルタとを必要とするであろう。1/(10Fs)ループ遅延要件を用
いると、4GHzサンプルクロックは25psecより低いループ遅延を必要と
し、これは今日の技術ではほぼ不可能である。より高い周波数では、問題はより
大きくなる。
【0010】 デルタ−シグマ変調器を用いてIF帯域信号およびRF帯域信号の回復を向上
させるための種々の試みが当該技術において報告されている。ゲイラス他(Gail
us et al.)への米国特許第4,857,928号はたとえば、帯域信号をデル
タ−シグマA/D変換器に与える前に帯域信号をベースバンド範囲にまで動かす
ためにミクサが用いられる場合、信号の所望の0Hzコンポーネントと、信号に
付随して得られる不所望のDCオフセットとを区別することは非常に困難になる
と説明している。これに対処するために、ゲイラス他は、そのフィードバック経
路にさらなるDC訂正回路を含む連続時間デルタ−シグマ変調器へとミクサ出力
を送る。このデルタ−シグマ変調器は、ミクサから出力を受取り、信号をフィル
タし、次に、DCコンポーネントを前のサンプルから減じたあと、結果を量子化
器に与える。
【0011】 ピュケットIV他(Puckette, IV et al.)への米国特許第4,888,55
7号は、デルタ−シグマ変調を用いることによる別の制限は、A/D変換器が典
型的にはターゲット信号の周波数の4倍で機能する必要があることだと説明して
いる。ピュケットIV他は、この高いクロックレートは、fがターゲット信号の
周波数でnが整数0、1、2等であり、nはスペクトルエイリアシングを導入し
ないという条件のもとで、4f/2n+1にまで減少可能であると説明している
【0012】 イェンゼン他(Jensen et al.)への米国特許第5,729,230号は、1
GHzまでの信号での動作に好適なデルタ−シグマ変調器を示す。イェンゼン他
は、受取った信号を電圧−電流変換器に与え、電流ベースのデルタ−シグマ変換
器を構成する。受取られた信号はチューナブル共振器に与えられ、共振器の出力
は量子化器に与えられ、量子化器の出力は、D/A変換器に与えられ、その後入
力にフィードバックされる。チューナブル共振器が実現されることにより、この
デルタ−シグマ変調器は、帯域A/D変換器としてもベースバンドA/D変換器
としても機能することができる。
【0013】 フルッコ他(Hulkko et al.)への米国特許第5,734,683号は、ベー
スバンドデルタ−シグマ変換器を中間周波数信号で用いられるように適合させる
構造を示す。フルッコ他は、このことによりそれらが無線電話応用に好適になる
と説明している。フルッコ他は、スイッチドキャパシタスイッチング素子を用い
て、ミクサと自動利得制御回路との両者を実現し、それは、必要とされるコンポ
ーネントの数を減じるとのことである。
【0014】 この発明の目的は、ベースバンドデルタ−シグマ変調器の有利な特徴と帯域デ
ルタ−シグマ変調器の有利な特徴とを組合せるデルタ−シグマ変調器を提供し、
結果として、より許容できるループ遅延を備えたより簡素なループフィルタを含
みさらに高価な前置フィルタリングを必要としない変調器を得ることである。
【0015】 この発明のさらなる目的は、電力消費がより低く、A/D変換クロック速度が
減じられ、さらにクロック10進化方式が簡潔な、デルタ−シグマ変調器を提供
することである。
【0016】
【発明の概要】
上述の目的は、変調器の順方向経路にダウン変換ミクサ回路を有し、変調器の
フィードバック経路にアップ変換ミクサ回路を有するデルタ−シグマ変調器によ
って満たされた。変調器は、2つのコンポーネント、つまりダウン変換ミクサの
前の帯域フィルタとダウン変換ミクサの後の低域フィルタとを有するループフィ
ルタからなる。ミクサ回路は、同相経路と直角位相経路とを備える単側波帯ミク
サとして実現され得る。このような変調器では、直角位相ミクサの後のループフ
ィルタコンポーネントは、2つの低域フィルタ、つまり同相経路のためのものと
、直角位相経路のためのものとを含む。フィードバックもまた2つの経路を有し
、それらはアップ変換ミクサ回路内で再び組合せられ、入力にフィードバックさ
れるべき実アナログ信号が生成される。この種の変調器についての多くの構成が
存在し、そこにはベースバンドループフィルタセクションと帯域ループフィルタ
セクションとの両者への多数の中間フィードバック経路を備える構成も含まれる
。加えて、この変調器は、公知の方法を用いて縦続型構造で実現され得る。変調
器のADCのデジタル出力はベースバンド信号を示し、それは従来のデルタ−シ
グマ変調器構成でのように、デジタル信号処理で10進化される。
【0017】 したがって、結果として生じるこの発明のハイブリッド帯域およびベースバン
ドデルタ−シグマ変調器は、より簡潔な前置フィルタリング等の、帯域デルタ−
シグマ変調器の利点のいくつかと、多大なループ遅延補償等の、ベースバンドデ
ルタ−シグマ変調器の利点のいくつかとを提供する。この発明によって提供され
る他の利点は、低電力消費と改善されたイメージ阻止とを含む。低電力消費は、
帯域デルタ−シグマ変調器と同様に、直線性のために高い電流ステージを1つし
か必要としないことで得られる。対照的に、図10で示される先行技術の直角位
相ベースバンド構成は、2つの高い電流ミクサと2つの高い電流デルタ−シグマ
入力ステージとを必要とする。この発明の構成では、ループ内のミクサの直線性
要件は、ほぼ対象の帯域幅にわたるループフィルタの第1の部分によって提供さ
れる利得のぶんだけ減じられる。ミクシングオペレーションをループへと移動さ
せることによって、この発明の改善されたイメージ阻止が達成される。利得と、
ループの直角位相経路の間の位相不整合誤差とは、信号上ではなく、量子化雑音
上に主に働き、それゆえに不整合誤差効果が減じられる。このことによってさら
に、前置フィルタの要件が減じられる。
【0018】
【発明の実施の最善の態様】
図1を参照すると、この発明の第1の実施例は、両側波帯ハイブリッド帯域お
よびベースバンドデルタ−シグマ変調器25である。両側波帯変調器は、順方向
経路にダウン変換ミクサ回路30を含み、フィードバック経路にアップ変換ミク
サ回路38を含む。入力RF信号はアンテナ20で受取られ、前置フィルタ回路
22と低雑音増幅24とを通って進み、その後変調器に入力される。変調器25
の第1の回路は入力デルタ接合26であり、そこで入力信号21はフィードバッ
ク信号23との差分がとられ、エラー信号29が作られる。エラー信号29は、
帯域雑音整形フィルタ28に、続いてダウン変換ミクサ30に送られ、そこでそ
の信号は局部発振回路からの信号と混合される。局部発振器45は、サンプルク
ロック周波数の1/4で動作する。これは両側波帯ミクサであるため、反対側の
RFの側波帯を除くために、広範な前置フィルタ22で低IFが必要とされる。
次に、ダウン変換ミクサ30からの信号は、低域雑音整形フィルタ32を通して
積分され、高精度の低IF信号が生成される。その信号は次に、デジタル信号6
3を生成するA/D変換器34で量子化され、10進化と信号回復とのために、
デジタル信号プロセッサ60へと供給される。デジタル信号63はまた、フィー
ドバック経路内のアップ変換ミクサ38へとフィードバックされ、そこでその信
号は第2の局部発振器90からの信号と混合され、上述のようなシーケンス[1
、0、−1、0]として実現される。アップ変換ミクサ38は、信号を生成し、
これは次にデジタル−アナログ変換器50に送られる。デジタル−アナログ変換
器50のアナログ出力は、入力デルタ接合26へと戻されるフィードバック信号
23である。
【0019】 サンプリングクロック46は、変調器25のためのタイミング信号を提供し、
クロック信号は、A/D変換器34に送られ、バッファリング48の後D/A変
換器50にも送られる。ミクサ30のためのアナログ局部発振器は、サンプルク
ロック46の1/4回路45から得られる。ミクサ38のためのデジタル局部発
振器は、機能ブロック90(cos n・π/2)で実現され、これもまたサン
プリングクロックの周波数の1/4で動作している。上述のように、ミクサ回路
をより簡潔に実現するためには、局部発振器をサンプルレートの1/4で動作さ
せることが通例望まれる。しかし、特定の応用に依存して、他の周波数もまた局
部発振器の周波数に対して用いられ得る。アナログ−デジタル変換器34とD/
A変換器50とは、クロックのフルレートでクロックする。
【0020】 図2を参照すると、この発明の第2の実施例は、単側波帯ハイブリッド帯域お
よびベースバンドデルタ−シグマ変調器125である。図1の両側波帯実施例で
のように、変調器125の前で、入力RF信号がアンテナ20で受取られ、前置
フィルタ回路22と前置増幅器24とを通って進み、その後変調器125に入力
される。しかし、前置フィルタの要件は、図1の両側波帯実施例で必要とされる
ほど厳しくはない。変調器125の第1の回路は、入力デルタ接合26であり、
そこで入力信号21はフィードバック信号23との差分がとられ、エラー信号2
9が作られる。エラー信号29は帯域フィルタ28に送られる。次に、帯域フィ
ルタ28の出力は、ダウン変換ミクサ30に送られ、それはその信号を低IFに
変換し、直角位相(Q)27チャネルと同相(I)31チャネルとからなる複合
信号を作る。これらのチャネルの各々は、低域フィルタ32および33と、アナ
ログ−デジタル変換器34および35によって処理される。結果として得られる
出力チャネル、Qout36とIout37とは次に、10進化フィルタリング
と信号回復とのために、デジタル信号プロセッサ60に送られる。出力チャネル
Qout36とIout37とはまた、フィードバック経路にある直角位相アッ
プ変換ミクサ38へとフィードバックされ、それは複合デジタル低IFチャネル
をデジタル帯域信号にアップ変換する。直角位相アップ変換ミクサ38の出力4
9から、デジタル帯域信号は次にデジタル−アナログ変換器50に送られ、これ
は、デジタル帯域信号をアナログ帯域フィードバック信号23に変換し、それは
入力デルタ接合26に戻される。
【0021】 図3を参照すると、図2の単側波帯変調器の実施例が、減じられたサンプルレ
ート回路を備えて示される。図3の変調器325では、アナログ−デジタル変換
器34および35は、主クロックの半分のレートでクロックし、一方で、D/A
変換器は、主クロックのフルレートでクロックする。サンプルレートにおけるこ
の減少は、局部発振器がサンプルクロック周波数の1/4で動作する場合に可能
である。上述のように、デジタル局部発振器のシーケンスは、Iチャネルでは[
1、0、−1、0]であり、Qチャネルでは[0、1、0、−1]である。した
がって、図3のアップ変換ミクサの出力は、[Iout(1)、Qout(2)
、−Iout(3)、−Qout(4)、...]である。いずれのチャネルでも
、サンプルが1つおきに破棄されることが注目される。したがって、A/D変換
器34および35のサンプルレートを係数2で減じることができる。所望の出力
[Iout(1)、Iout(3)、...]と[Qout(2)、Qout(4
)、...]とを生成するように、これらのA/D変換器を異なるクロック位相で
サンプリングすることができ、または、これらを同位相でサンプリングすること
ができ、したがって、Iチャネルの適切な遅延が必要とされる。この遅延53は
、事実上アップサンプリング52の後、フィードバック経路内で起こらなければ
ならず、同様に、変調器325の後の出力経路内で、アップサンプリング52の
後、起こらなければならない。アップ変換フィードバック回路67は、簡単な論
理にまで減じられる。出力経路回路68は、さらなる回路の負担なしで、DSP
60に吸収され得る。サンプルレートの減少は、より低い電力動作および/また
はA/D回路の許容できる整定時間がより長いことによる、より速い全体の動作
速度等の、実現における利点を可能にする。
【0022】 図4を参照すると、図3で示される発明の実施例の実現は、3次単側波帯ハイ
ブリッド帯域およびベースバンドデルタ−シグマ変調器725である。この変調
器725は、共振器28と、両方のループに共通の2つのフィードバック経路と
を有する。ループは、イメージ阻止ミクサ30によって2つのチャネル27と3
1とに割けられる。さらなる雑音整形と安定度制御とのために、チャネル27お
よび31のための別個の積分器32および33がイメージ阻止ミクサ30に続く
。上述の実施例でのように、入力信号21が入力デルタ接合26に送られ、フィ
ードバック信号23との差分がとられる。入力デルタ接合26からの出力29は
、共振器28に送られ、次に、第2のデルタ接合96で、第2のフィードバック
ループからの第2のフィードバック信号93との差分がとられる。デルタ接合9
6の出力は直角位相ミクサ30に送られ、これは、その信号と、局部発振器45
からの信号とを、−90度位相オフセット18を用いて混合することによって、
中間周波数IFへのダウン変換を行ない、ベースバンド信号の直角位相チャネル
Q27と同相チャネルI31とが生成される。直角位相ミクサ30は、代替的に
はその入力信号をベースバンドへとダウン変換してもよいが、低IFへのダウン
変換がより好まれる。なぜならば、これが0Hz成分を回避し、イメージ阻止問
題を減少させるためである。Qチャネル27は、第1の積分器32に送られ、こ
れは低域機能を実現し、雑音整形を提供する。積分器32の出力は次にA/D変
換器34に送られ、A/D変換器34はその信号をデジタルベースバンド信号、
Qout36に変換する。Qチャネルから位相が90度ずれた状態で動作するこ
とを除き、IチャネルループはQチャネルループと同様の様態で動作する。Iチ
ャネル31は第2の積分器33に送られ、次にその信号は、A/D変換器35に
送られ、デジタルベースバンド信号、Iout37に変換される。デジタルベー
スバンド出力チャネルQout36およびIout37は、変調器の出力を構成
し、出力経路内の減じられたサンプルレート補償回路68に送られ、それは2の
アップサンプリング51と52とからなり、Iチャネル37内には単位遅延53
がある。次に、チャネルは10進化のためにデジタル信号処理60に送られる。
チャネルはまたフィードバック経路に送られ、上述のアップ変換回路67に送ら
れる。アップ変換回路67の出力49は、2つのフィードバック経路に割けられ
る。一方の経路は、D/A変換器94と利得素子69とを通って設けられ、第2
のデルタ接合96でフィードバック信号93が形成され、他方の経路は、D/A
変換器50を通って設けられ、入力デルタ接合26でフィードバック信号23が
形成される。
【0023】 図4の変調器725は、共振器28がイメージ阻止ミクサ30の前にあること
によって得られる、イメージ阻止ミクサ30での電力節約を利用する。共振器2
8の中心周波数は、対象の帯域幅にわたる十分な利得がある限りは、事実上、帯
域内のどこにあってもよく、その尖鋭度は、比較的低く(10から25)てもよ
い。このため、製造と、温度および他の環境要因によるドリフトとにおいて、共
振器に多くの変形を可能にする。共振器の利得は、およそ共振器での利得の分だ
け、必要とされるミクサの3次インターセプトポイント、IP3を減少させる。
【0024】 この発明の単側波帯実施例の別の実現例が図5で示され、それは4次単側波帯
ハイブリッド帯域およびベースバンドデルタ−シグマ変調器825である。典型
的には、この発明のより高次の実現が量子化雑音をよりよく抑制するため、4次
回路であるこの実現例は、この発明の好ましい実施例であろう。代替的には、よ
り高次の回路を生成するように、この発明の他の実現例を作ることもできるが、
これらを安定化させることはより困難であろう。さらなる積分器とさらなるフィ
ードバック経路とがループの各々に追加されたことを除き、図5の変調器825
は、図4で示される変調器の3次アーキテクチャと同様である。図5を参照する
と、入力信号21は入力デルタ接合26でフィードバック信号23との差分がと
られた後、結果として生じる信号29が共振器28に送られる。共振器28の出
力は、第2のデルタ接合96で第2のフィードバック信号93との差分がとられ
、その出力は、低IFへのダウン変換を行なうミクサ30に送られる。チャネル
Q27とチャネルI31とは、雑音整形のためにそれぞれの積分器32と33と
に送られる。次に、チャネルは別々の同一なローカルフィードバックループに提
供される。各チャネルは、それぞれのローカルデルタ接合70と80とにおいて
、それぞれのローカルフィードバック信号123と133との差分がとられ、そ
れらの出力は、それぞれの第2の積分器72と82とに送られる。低域応答は、
フィードバック経路とともに、1対の積分器32と72、および、33と82の
各々によって提供される。積分器72と82との出力の各々は、それぞれのA/
D変換器34と35とに送られ、デジタルベースバンドチャネルQout36と
Iout37とが生成される。アップサンプリング論理回路68は、Ioutチ
ャネル36とQoutチャネル37とを受取り、51と52とによってそれらを
2でアップサンプリングし、Iチャネル37は単位遅延53を有する。アップサ
ンプリング論理回路68の出力は、10進化のためにデジタル信号プロセッサ6
0に送られる。変調器出力36および37もまたアップ変換回路67にフィード
バックされ、デジタル帯域信号が生成される。デジタル帯域信号は、デジタル−
アナログ変換器50に送られ、それはアナログ帯域フィードバック信号23を提
供する。デジタル帯域信号はまた、利得素子69を備えるD/A変換器94に送
られ、それはアナログ帯域フィードバック信号93を提供する。加えて、出力チ
ャネル36と37とは、各ローカルフィードバックループ内の、利得素子69を
備えるローカルD/A変換器76と86とに送られ、ローカルフィードバックル
ープの各々にローカルフィードバック信号123と133とを提供する。
【0025】 図5の4次単側波帯ハイブリッドアーキテクチャの性能を改善するのは、帯域
幅の増大、および/または、所与のクロックレートに対する信号対雑音および歪
比、SINDの向上のためである。また、アイドルトーンがさらに抑制されるの
で、スプリアスなしのダイナミックレンジ(SFDR)が向上する。
【0026】 この発明のハイブリッド帯域およびベースバンドデルタ−シグマ変換回路をC
MOSまたはBiCMOS技術で実現することができ、シリコンゲルマニウム(
SiGe)BiCMOSは、VHF、LバンドおよびSバンド通信とレーダシス
テムとへの応用に好ましい技術である。代替的には、CMOS技術を、ソナーお
よび超音波等のより低い周波数応用と、他の音響応用とのために用いることがで
きる。
【0027】 図では、ミクサ38は、D/A変換器50の前にあるデジタルミクサとして示
されてきた。ミクサ38は等価的に、D/A変換器50および94に続くアナロ
グミクサにもなり得る。同相および直角位相アップ変換ミクサを有する単側波帯
ハイブリッド帯域およびベースバンドデルタ−シグマ変調器の場合には、D/A
変換器50は、直角位相Qチャネル36と同相Iチャネル37とを多重化し、フ
ィードバックQチャネルとフィードバックIチャネルとの各々をそれぞれのアナ
ログQ信号コンポーネントとアナログI信号コンポーネントとに別々に変換する
。アナログQ信号コンポーネントは、直角位相アップ変換ミクサに結合され、ア
ナログI信号コンポーネントは、同相アップ変換ミクサに結合されるであろう。
直角位相ミクサと同相ミクサとの出力とは合計されて、実アナログフィードバッ
ク信号が生成される。代替的には、D/A変換器50は、第1のD/A変換器ブ
ロックおよび第2のD/A変換器ブロックとして実現され得る。第1のD/A変
換器ブロックは、直角位相Qチャネル36を直角位相アップ変換ミクサに結合し
、第2のD/A変換器は、同相Iチャネル37を同相アップ変換ミクサに結合す
るであろう。再び2つのミクサが合計されて、実アナログフィードバック信号が
生成される。
【図面の簡単な説明】
【図1】 この発明の両側波帯ハイブリッド帯域およびベースバンドデルタ
−シグマ変調器の実施例のブロック図である。
【図2】 この発明の単側波帯ハイブリッド帯域およびベースバンドデルタ
−シグマ変調器の実施例のブロック図である。
【図3】 減じられたサンプルレート回路を有する図2の実施例のブロック
図である。
【図4】 図3の発明の実施例の第1の実現例を示す図である。
【図5】 図3の発明の実施例の第2の実現例を示す図である。
【図6】 先行技術で公知の連続時間デルタ−シグマ変調器のブロック図で
ある。
【図7】 先行技術で公知の離散時間デルタ−シグマ変調器のブロック図で
ある。
【図8】 先行技術で公知の一般的なデルタ−シグマA/D変換アーキテク
チャのブロック図である。
【図9】 先行技術で公知のベースバンドデルタ−シグマ変調器を用いるR
F受信システムのブロック図である。
【図10】 先行技術で公知のイメージ阻止デルタ−シグマ変調器を用いる
RF受信システムのブロック図である。
【図11】 先行技術で公知の帯域デルタ−シグマ変調器を用いるRF受信
システムのブロック図である。
【手続補正書】特許協力条約第19条補正の翻訳文提出書
【提出日】平成12年12月5日(2000.12.5)
【手続補正1】
【補正対象書類名】明細書
【補正対象項目名】特許請求の範囲
【補正方法】変更
【補正の内容】
【特許請求の範囲】
───────────────────────────────────────────────────── 【要約の続き】 変調器の多数の構成が実現され得る。

Claims (64)

    【特許請求の範囲】
  1. 【請求項1】 デルタ−シグマ変調器であって、 入力信号を受取るための入力ノードと、 フィードフォワード入力とフィードフォワード出力とを有するフィードフォワ
    ード経路と、 フィードバック入力とフィードバック出力とを有するフィードバック経路とを
    含み、前記フィードフォワード出力は前記フィードバック入力に結合され、前記
    フィードバック経路に沿って前記フィードバック出力へと伝わるフィードバック
    信号を生成し、 前記デルタ−シグマ変調器はさらに、前記入力ノードの信号内容と前記フィー
    ドバック出力との差分をとり、その結果を前記フィードフォワード出力に結合し
    て前記フィードフォワード経路に沿って前記フィードフォワード出力へと伝わる
    フィードフォワード信号を生成する第1のデルタ接合を含み、 前記フィードフォワード経路は、ダウン変換ミクサとアナログ−デジタル変換
    器(ADC)とを有し、前記ダウン変換ミクサは前記フィードフォワード信号を
    周波数スペクトラムに沿ってより低い搬送周波数へとシフトするのに有効であり
    、前記ADCは前記フィードフォワード信号をデジタル化し、その結果を前記フ
    ィードフォワード出力上に置くのに有効であり、 前記フィードバック経路はアップ変換ミクサとデジタル−アナログ変換器(D
    AC)とを有し、前記アップ変換ミクサは前記フィードバック信号を周波数スペ
    クトラムに沿ってより高い搬送周波数へとシフトするのに有効であり、前記DA
    Cは前記フィードバック信号をアナログ領域に変換するのに有効である、デルタ
    −シグマ変調器。
  2. 【請求項2】 前記アップ変換ミクサは前記フィードバック経路内で前記D
    ACの前に置かれ、デジタルアップ変換ミクサである、請求項1に記載のデルタ
    −シグマ変調器。
  3. 【請求項3】 前記アップ変換ミクサは前記フィードバック経路内で前記D
    ACの後に置かれ、アナログアップ変換ミクサである、請求項1に記載のデルタ
    −シグマ変調器。
  4. 【請求項4】 前記デルタ−シグマ変調器は連続時間システムとして実現さ
    れる、請求項1に記載のデルタ−シグマ変調器。
  5. 【請求項5】 前記デルタ−シグマ変調器は離散時間システムとして実現さ
    れる、請求項1に記載のデルタ−シグマ変調器。
  6. 【請求項6】 前記フィードフォワード経路はさらに、前記フィードフォワ
    ード信号の雑音成分を整形するのに有効な信号整形フィルタを含む、請求項1に
    記載のデルタ−シグマ変調器。
  7. 【請求項7】 前記信号整形フィルタは低域フィルタであり、前記フィード
    フォワード経路内で前記ダウン変換ミクサの後に置かれる、請求項6に記載のデ
    ルタ−シグマ変調器。
  8. 【請求項8】 前記フィードフォワード経路内で前記ダウン変換ミクサの前
    に置かれる帯域フィルタをさらに含む、請求項1に記載のデルタ−シグマ変調器
  9. 【請求項9】 前記フィードフォワード経路内の前記ADCを制御するため
    のサンプリングクロックをさらに有し、また、前記フィードバック経路内の前記
    アップ変換ミクサを制御するための第1のローカルクロックを有し、前記第1の
    ローカルクロックは、前記サンプリングクロックの周波数の1/4に実質的に等
    しい周波数を有する、請求項1に記載のデルタ−シグマ変調器。
  10. 【請求項10】 前記フィードフォワード経路内の前記ダウン変換ミクサを
    制御するための第2のローカルクロックをさらに有し、前記第2のローカルクロ
    ックは、前記サンプリングクロックの周波数の1/4に実質的に等しい周波数を
    有する、請求項8に記載のデルタ−シグマ変調器。
  11. 【請求項11】 前記フィードバック経路内の前記DACを制御するための
    サンプリングクロックをさらに有し、また、前記フィードフォワード経路内の前
    記ADCを制御するためのローカルクロックを有し、前記ローカルクロックは、
    前記サンプリングクロックの周波数の半分に実質的に等しい周波数を有する、請
    求項1に記載のデルタ−シグマ変調器。
  12. 【請求項12】 前記ダウン変換ミクサは、同相チャネルと直角位相チャネ
    ルとを生成する単側波帯ダウン変換器である、請求項1に記載のデルタ−シグマ
    変調器。
  13. 【請求項13】 前記フィードフォワード経路内の前記ADCは、同相AD
    Cと直角位相ADCとを含み、前記同相ADCは、前記同相チャネルに結合され
    、前記直角位相ADCは、前記直角位相チャネルに結合される、請求項12に記
    載のデルタ−シグマ変調器。
  14. 【請求項14】 前記フィードバック経路内の前記アップ変換ミクサは、同
    相アップ変換ミクサコンポーネントと、直角位相アップ変換ミクサコンポーネン
    トと、前記同相アップ変換ミクサコンポーネントおよび前記直角位相アップ変換
    ミクサコンポーネントの出力を合計するための加算ノードとを有する単側波帯ア
    ップ変換器であり、前記同相ADCの出力は前記同相アップ変換ミクサコンポー
    ネントの入力に結合され、前記直角位相ADCの出力は前記直角位相アップ変換
    ミクサコンポーネントの入力に結合される、請求項13に記載のデルタ−シグマ
    変調器。
  15. 【請求項15】 第2のデルタ接合と第2のDACと共振器とをさらに有し
    、前記第2のDACは前記フィードバック経路から前記フィードバック信号を受
    取るように結合され、前記第2のデルタ接合は、域入力信号を受取ってそれと前
    記第2のDACの出力との差分をとるのに有効であり、前記第2のデルタ接合の
    出力は前記共振器に結合され、前記共振器は前記入力ノードで前記入力信号を生
    成する、請求項1に記載のデルタ−シグマ変調器。
  16. 【請求項16】 前記信号整形フィルタは複数の積分器を含み、その各々は
    、前記ADCの出力からのそれぞれのローカルフィードバック経路を有する、請
    求項6に記載のデルタ−シグマ変調器。
  17. 【請求項17】 第2のデルタ接合ノードと、雑音整形フィルタと、ローカ
    ルDACとをさらに含み、前記第2のデルタ接合はフィードフォワード信号と前
    記ローカルDACの出力との差分をとるのに有効であり、前記第2のデルタ接合
    の出力は前記雑音整形フィルタに結合され、前記ADCは前記雑音整形フィルタ
    の出力を量子化してデジタル化するのに有効であり、前記ADCの出力は、前記
    フィードフォワード出力と前記ローカルDACの入力とに結合される、請求項1
    に記載のデルタ−シグマ変調器。
  18. 【請求項18】 デルタ−シグマ変調器であって、 入力信号を受取るための入力ノードと、 フィードフォワード経路に沿って伝わるフィードフォワード信号を受取るため
    のフィードフォワード入力と、同相フィードフォワード出力と、直角位相フィー
    ドフォワード出力とを有するフィードフォワード経路とを含み、前記フィードフ
    ォワード経路はさらに、 a) 同相ダウン変換ミクサコンポーネントと直角位相ダウン変換ミクサコン
    ポーネントとを有する単側波帯ダウン変換ミクサを有し、前記直角位相ダウン変
    換ミクサコンポーネントは前記同相ダウン変換ミクサコンポーネントから位相が
    ずれており、前記単側波帯ダウン変換器は前記フィードフォワード信号を前記同
    相ダウン変換ミクサコンポーネントと直角位相ダウン変換ミクサコンポーネント
    との両者に与えるのに有効であり、前記同相ダウン変換ミクサコンポーネントと
    前記直角位相ダウン変換ミクサコンポーネントとの各々は、前記フィードフォワ
    ード信号を周波数スペクトラムに沿って第1の予め定められた搬送周波数にシフ
    トするのに有効であり、前記同相ミクサコンポーネントの出力は前記同相フィー
    ドフォワード出力に結合され、前記直角位相ミクサコンポーネントの出力は前記
    直角位相フィードフォワード出力に結合され、前記フィードフォワード経路はさ
    らに、 b) 前記フィードフォワード信号の雑音成分を整形するための雑音整形回路
    ブロックと、 c) 前記フィードフォワード信号をデジタル化するためのアナログ−デジタ
    ル変換器(ADC)回路ブロックとを有し、 フィードバック経路は、フィードバック出力と、同相フィードバック入力と、
    直角位相フィードバック入力とを有し、前記同相フィードフォワード出力は前記
    同相フィードバック入力に結合され、前記直角位相フィードフォワード出力は前
    記直角位相フィードバック入力に結合され、前記同相フィードバック入力と前記
    直角位相フィードバック入力とは前記フィードバック経路に沿って前記フィード
    バック出力へと伝わる複合フィードバック信号を受取り、前記フィードバック経
    路はさらに、 i) 前記同相フィードバック入力に結合された同相アップ変換ミクサコンポ
    ーネントと、前記直角位相フィードバック入力に結合される直角位相アップ変換
    ミクサコンポーネントと、前記同相アップ変換ミクサコンポーネントおよび前記
    直角位相アップ変換ミクサコンポーネントの出力に結合される加算接合とを有す
    る単側波帯アップ変換ミクサを有し、前記直角位相アップ変換ミクサコンポーネ
    ントは、前記同相アップ変換ミクサコンポーネントから位相がずれており、前記
    単側波帯アップ変換ミクサは、前記複合フィードバック信号を周波数スペクトラ
    ムに沿って、入力搬送周波数に等しい第2の予め定められた搬送周波数へとシフ
    トするのに有効であり、前記フィードバック経路はさらに、 ii) 前記複合フィードバック信号をアナログ領域に変換するためのデジタル
    −アナログ変換器(DAC)回路ブロックと、 前記入力ノードの信号内容と前記フィードバック出力との差分をとり、その結
    果を前記フィードフォワード入力に結合し、前記フィードフォワード経路に沿っ
    て伝わる前記フィードフォワード信号を生成する第1のデルタ接合とを有する、
    デルタ−シグマ変調器。
  19. 【請求項19】 前記第2の予め定められた搬送周波数は、入力信号の搬送
    周波数に等しい、請求項18に記載のデルタ−シグマ変調器。
  20. 【請求項20】 前記第1の予め定められた搬送周波数は、前記第2の予め
    定められた搬送周波数よりも低い、請求項18に記載のデルタ−シグマ変調器。
  21. 【請求項21】 前記フィードフォワード入力で受取られる前記フィードフ
    ォワード信号は帯域信号であり、前記単側波帯ダウン変換ミクサは、前記フィー
    ドフォワード信号をベースバンド信号に変換する、請求項18に記載のデルタ−
    シグマ変調器。
  22. 【請求項22】 前記フィードフォワード入力で受取られる前記フィードフ
    ォワード信号は帯域信号であり、前記単側波帯ダウン変換ミクサは、前記フィー
    ドフォワード信号をIF信号に変換する、請求項18に記載のデルタ−シグマ変
    調器。
  23. 【請求項23】 前記帯域信号はRF信号であり、前記IF信号は前記RF
    信号よりも低い搬送周波数を有する、請求項22に記載のデルタ−シグマ変調器
  24. 【請求項24】 前記単側波帯アップ変換ミクサは、前記フィードバック経
    路内で前記DAC回路ブロックの前に置かれ、それはデジタル単側波帯アップ変
    換ミクサである、請求項18に記載のデルタ−シグマ変調器。
  25. 【請求項25】 前記単側波帯アップ変換ミクサは、前記フィードバック経
    路内で前記DAC回路ブロックの後に置かれ、それはアナログ単側波帯アップ変
    換ミクサである、請求項18に記載のデルタ−シグマ変調器。
  26. 【請求項26】 前記DAC回路ブロックは入力が前記同相フィードバック
    入力と直角位相フィードバック入力との両者に結合された単一デジタル−アナロ
    グ変換回路であり、前記単一デジタル−アナログ変換回路は前記同相フィードバ
    ック入力と前記直角位相フィードバック入力とを、それぞれの同相アナログ信号
    コンポーネントと直角位相アナログ信号コンポーネントとに多重化するのに有効
    であり、前記同相アナログ信号コンポーネントは前記同相アップ変換ミクサコン
    ポーネントに結合され、前記直角位相アナログ信号コンポーネントは前記直角位
    相アップ変換ミクサコンポーネントに結合される、請求項25に記載のデルタ−
    シグマ変調器。
  27. 【請求項27】 前記DAC回路ブロックは、第1のデジタル−アナログ(
    DAC)サブブロックと、第2のデジタル−アナログ(DAC)サブブロックと
    を含み、前記同相アップ変換ミクサコンポーネントは前記第1のDACサブブロ
    ックを通して前記同相フィードバック入力に結合され、前記直角位相アップ変換
    ミクサコンポーネントは前記DACサブブロックを通して前記直角位相フィード
    バック入力に結合される、請求項25に記載のデルタ−シグマ変調器。
  28. 【請求項28】 前記ADC回路ブロックは、前記フィードフォワード経路
    内の前記単側波帯ダウン変換ミクサの後に置かれ、前記ADC回路ブロックはさ
    らに、第1のアナログ−デジタル変換器(ADC)サブブロックと、第2のアナ
    ログ−デジタル変換器(ADC)サブブロックとを含み、前記第1のADCサブ
    ブロックと前記第2のADCサブブロックとの各々はそれらのそれぞれの入力を
    デジタル化するのに有効であり、前記同相ミクサコンポーネントの出力は前記第
    1のADCサブブロックを通して前記同相フィードフォワード出力に結合され、
    前記直角位相ミクサコンポーネントの出力は前記第2のADCサブブロックを通
    して前記直角位相フィードフォワード出力に結合される、請求項18に記載のデ
    ルタ−シグマ変調器。
  29. 【請求項29】 前記雑音整形回路ブロックは、前記フィードフォワード経
    路内の前記単側波帯ダウン変換ミクサの後に置かれ、前記雑音整形回路はさらに
    、第1のフィルタ回路と第2のフィルタ回路とを含み、前記同相ミクサコンポー
    ネントの出力は前記第1のフィルタ回路を通して前記同相フィードフォワード出
    力に結合され、前記直角位相ミクサコンポーネントの出力は前記第2のフィルタ
    回路を通して前記直角位相フィードフォワード出力に結合される、請求項18に
    記載のデルタ−シグマ変調器。
  30. 【請求項30】 前記第1のフィルタ回路と前記第2のフィルタ回路とは低
    域フィルタである、請求項29に記載のデルタ−シグマ変調器。
  31. 【請求項31】 前記フィードフォワード経路内で前記単側波帯ダウン変換
    ミクサの前に置かれ、前記フィードフォワード入力を前記単側波帯ダウン変換ミ
    クサに結合する帯域フィルタをさらに含む、請求項29に記載のデルタ−シグマ
    変調器。
  32. 【請求項32】 前記雑音整形回路ブロックは、前記フィードフォワード経
    路内の前記単側波帯ダウン変換ミクサと前記ADC回路ブロックとの間に置かれ
    、前記ADC回路ブロックはさらに、第1のアナログ−デジタル変換器(ADC
    )サブブロックと、第2のアナログ−デジタル変換器(ADC)サブブロックと
    を含み、前記第1のADCサブブロックと前記第2のADCサブブロックとの各
    々は、それらのそれぞれの入力をデジタル化するのに有効であり、前記第1のフ
    ィルタ回路の出力は前記第1のADCサブブロックの入力に結合され、前記第2
    のフィルタ回路の出力は前記第2のADCサブブロックの入力に結合され、前記
    同相ミクサコンポーネントの出力は前記第1のフィルタ回路と前記第1のADC
    サブブロックとを通して前記同相フィードフォワード出力に結合され、前記直角
    位相ミクサコンポーネントの出力は前記第2のフィルタ回路と前記第2のADC
    サブブロックとを通して前記直角位相フィードフォワード出力に結合される、請
    求項29に記載のデルタ−シグマ変調器。
  33. 【請求項33】 第2のデルタ接合と、第2のDAC回路ブロックと、共振
    器とをさらに有し、前記第2のDAC回路ブロックは前記フィードバック経路か
    ら前記複合フィードバック信号を受取るように結合され、前記第2のデルタ接合
    は帯域入力信号を受取ってそれと前記第2のDAC出力との差分をとるのに有効
    であり、前記第2のデルタ接合の出力は前記共振器に結合され、前記共振器は前
    記入力ノードにおいて前記入力信号を生成する、請求項18に記載のデルタ−シ
    グマ変調器。
  34. 【請求項34】 前記ADC回路ブロックは、第2のデルタ接合ノードと、
    第2の雑音整形回路ブロックと、量子化器と、ローカルDACとを含み、前記第
    2のデルタ接合は前記フィードフォワード信号と前記ローカルDACの出力との
    差分をとるのに有効であり、前記第2のデルタ接合の出力は前記第2の雑音整形
    回路ブロックに結合され、前記量子化器は前記第2の雑音整形回路ブロックの出
    力を量子化しさらにデジタル化するのに有効であり、前記量子化器の出力は前記
    ローカルDACの入力に結合される、請求項18に記載のデルタ−シグマ変調器
  35. 【請求項35】 前記雑音整形回路ブロックは複数の積分器を含み、その各
    々は前記ADC回路ブロックの出力からのそれぞれのローカルフィードバック経
    路を有する、請求項18に記載のデルタ−シグマ変調器。
  36. 【請求項36】 前記フィードフォワード経路内の前記ADC回路ブロック
    を制御するためのサンプリングクロックをさらに有し、また、前記フィードバッ
    ク経路内の前記単側波帯アップ変換ミクサを制御するための第1のローカルクロ
    ックを有し、前記第1のローカルクロックは前記サンプリングクロックの周波数
    の1/4に実質的に等しい周波数を有する、請求項18に記載のデルタ−シグマ
    変調器。
  37. 【請求項37】 前記フィードフォワード経路内の前記単側波帯ダウン変換
    ミクサを制御するための第2のローカルクロックをさらに有し、前記第2のロー
    カルクロックは、前記サンプリングクロックの周波数の1/4に実質的に等しい
    周波数を有する、請求項36に記載のデルタ−シグマ変調器。
  38. 【請求項38】 前記フィードバック経路内の前記DAC回路ブロックを制
    御するためのサンプリングクロックをさらに有し、また、前記フィードフォワー
    ド経路内の前記ADC回路ブロックを制御するためのローカルクロックをさらに
    有し、前記ローカルクロックは、前記サンプリングクロックの周波数の半分に実
    質的に等しい周波数を有する、請求項18に記載のデルタ−シグマ変調器。
  39. 【請求項39】 前記直角位相ダウン変換ミクサコンポーネントは、前記同
    相ダウン変換ミクサコンポーネントから位相が90°ずれている、請求項18に
    記載のデルタ−シグマ変調器。
  40. 【請求項40】 前記直角位相アップ変換ミクサコンポーネントは、同相ア
    ップ変換ミクサコンポーネントから位相が90°ずれている、請求項18に記載
    のデルタ−シグマ変調器。
  41. 【請求項41】 前記デルタ−シグマ変調器は、連続時間システムとして実
    現される、請求項18に記載のデルタ−シグマ変調器。
  42. 【請求項42】 前記デルタ−シグマ変調器は、離散時間システムとして実
    現される、請求項18に記載のデルタ−シグマ変調器。
  43. 【請求項43】 前記雑音整形回路ブロックは低域フィルタを含み、前記フ
    ィードフォワード経路内で前記単側波帯ダウン変換ミクサの後に置かれる、請求
    項18に記載のデルタ−シグマ変調器。
  44. 【請求項44】 前記フィードフォワード経路内で前記単側波帯ダウン変換
    ミクサの前に置かれる帯域フィルタをさらに含む、請求項18に記載のデルタ−
    シグマ変調器。
  45. 【請求項45】 デルタ−シグマ変調器であって、 帯域入力信号を受取るための入力ノードと、 フィードフォワード入力、同相フィードフォワード出力、および直角位相フィ
    ードフォワード出力を有するフィードフォワード経路とを含み、前記フィードフ
    ォワード入力は前記フィードフォワード経路に沿って伝わるフィードフォワード
    信号を受取るのに有効であり、前記フィードフォワード経路はさらに、 a) 同相ダウン変換ミクサコンポーネントと直角位相ダウン変換ミクサコン
    ポーネントとを有する単側波帯ダウン変換ミクサを有し、前記直角位相ダウン変
    換ミクサコンポーネントは前記同相ダウン変換ミクサコンポーネントから位相が
    ずれており、前記単側波帯ダウン変換器は前記フィードフォワード信号を前記同
    相ダウン変換ミクサコンポーネントと直角位相ダウン変換ミクサコンポーネント
    との両者に与えるのに有効であり、前記同相ダウン変換ミクサコンポーネントと
    前記直角位相ダウン変換ミクサコンポーネントとの各々は前記フィードフォワー
    ド信号を周波数スペクトラムに沿って第1の予め定められた搬送周波数にシフト
    するのに有効であり、前記フィードフォワード経路はさらに、 b) 第1の雑音整形フィルタと第2の雑音整形フィルタとを有し、前記同相
    ミクサコンポーネントの出力は前記第1の雑音整形フィルタの入力に結合され、
    前記直角位相ミクサコンポーネントの出力は前記第2の雑音整形フィルタの入力
    に結合され、前記フィードフォワード経路はさらに、 c) 第1のアナログ−デジタル変換器(ADC)と、第2のアナログ−デジ
    タル変換器(ADC)とを有し、前記第1の雑音整形フィルタの出力は前記第1
    のADCを通して前記同相フィードフォワード出力に結合され、前記第2の雑音
    整形フィルタの出力は前記第2のADCを通して前記直角位相フィードフォワー
    ド出力に結合され、 フィードバック経路は、フィードバック出力と、同相フィードバック入力と、
    直角位相フィードバック入力とを有し、前記同相フィードフォワード出力は前記
    同相フィードバック入力に結合され、前記直角位相フィードフォワード出力は前
    記直角位相フィードバック入力に結合され、前記同相フィードバック入力と前記
    直角位相フィードバック入力とは前記フィードバック経路に沿って前記フィード
    バック出力へと伝わる複合フィードバック信号を受取り、前記フィードバック経
    路はさらに、 i) 前記同相フィードバック入力に結合された同相アップ変換ミクサコンポ
    ーネントと、前記直角位相フィードバック入力に結合される直角位相アップ変換
    ミクサコンポーネントと、前記同相アップ変換ミクサコンポーネントおよび前記
    直角位相アップ変換ミクサコンポーネントの出力に結合される加算接合とを有す
    る単側波帯アップ変換ミクサを有し、前記直角位相アップ変換ミクサコンポーネ
    ントは、前記同相アップ変換ミクサコンポーネントから位相がずれており、前記
    単側波帯アップ変換ミクサは、前記複合フィードバック信号を周波数スペクトラ
    ムに沿って前記第1の予め定められた搬送周波数よりも高い第2の予め定められ
    た搬送周波数へとシフトするのに有効であり、前記フィードバック経路はさらに
    、 ii) 前記複合フィードバック信号をアナログ領域に変換するためのデジタル
    −アナログ変換器(DAC)回路ブロックと、 前記入力ノードの信号内容と前記フィードバック出力との差分をとり、その結
    果を前記フィードフォワード入力に結合し、前記フィードフォワード経路に沿っ
    て伝わる前記フィードフォワード信号を生成する第1のデルタ接合とを有する、
    デルタ−シグマ変調器。
  46. 【請求項46】 前記第2の予め定められた搬送周波数は帯域入力信号の搬
    送周波数に等しい、請求項45に記載のデルタ−シグマ変調器。
  47. 【請求項47】 前記同相ダウン変換ミクサコンポーネントと前記直角位相
    ダウン変換ミクサコンポーネントとは前記フィードフォワード信号をベースバン
    ド信号に変換する、請求項45に記載のデルタ−シグマ変調器。
  48. 【請求項48】 前記同相ダウン変換ミクサコンポーネントと前記直角位相
    ダウン変換ミクサコンポーネントとは、前記フィードフォワード信号をIF信号
    に変換する、請求項45に記載のデルタ−シグマ変調器。
  49. 【請求項49】 前記第1の雑音整形フィルタおよび前記第2の雑音整形フ
    ィルタのうちの少なくとも1つは、複数の積分器を含み、その各々は、前記第1
    のアナログ−デジタル変換器および前記第2のアナログ−デジタル変換器のうち
    のそれぞれ1つの出力からのそれぞれのローカルフィードバック経路を有する、
    請求項45に記載のデルタ−シグマ変調器。
  50. 【請求項50】 前記フィードフォワード経路内の前記単側波帯ダウン変換
    ミクサの前に置かれ、前記フィードフォワード入力を前記単側波帯ダウン変換ミ
    クサに結合する帯域フィルタをさらに含む、請求項45に記載のデルタ−シグマ
    変調器。
  51. 【請求項51】 前記第1の雑音整形フィルタと前記第2の雑音整形フィル
    タとは低域フィルタである、請求項45に記載のデルタ−シグマ変調器。
  52. 【請求項52】 前記単側波帯アップ変換ミクサは、前記フィードバック経
    路内の前記DAC回路ブロックの前に置かれ、それはデジタル単側波帯アップ変
    換ミクサである、請求項45に記載のデルタ−シグマ変調器。
  53. 【請求項53】 前記単側波帯アップ変換ミクサは、前記フィードバック経
    路内の前記DAC回路ブロックの後に置かれ、それはアナログ単側波帯アップ変
    換ミクサである、請求項45に記載のデルタ−シグマ変調器。
  54. 【請求項54】 前記DAC回路ブロックは入力が前記同相フィードバック
    入力と前記直角位相フィードバック入力との両者に結合される単一デジタル−ア
    ナログ変換回路であり、前記単一デジタル−アナログ変換回路は前記同相フィー
    ドバック入力と前記直角位相フィードバック入力とを、それぞれの同相アナログ
    信号コンポーネントと直角位相アナログ信号コンポーネントとに多重化するのに
    有効であり、前記同相アナログ信号コンポーネントは前記同相アップ変換ミクサ
    コンポーネントに結合され、前記直角位相アナログ信号コンポーネントは前記直
    角位相アップ変換ミクサコンポーネントに結合される、請求項53に記載のデル
    タ−シグマ変調器。
  55. 【請求項55】 前記DAC回路ブロックは、第1のデジタル−アナログ(
    DAC)サブブロックと、第2のデジタル−アナログ(DAC)サブブロックと
    を含み、前記同相アップ変換ミクサコンポーネントは前記第1のDACサブブロ
    ックを通して前記同相フィードバック入力に結合され、前記直角位相アップ変換
    ミクサコンポーネントは前記DACサブブロックを通して前記直角位相フィード
    バック入力に結合される、請求項53に記載のデルタ−シグマ変調器。
  56. 【請求項56】 第2のデルタ接合と、第2のDAC回路ブロックと、共振
    器とをさらに有し、前記第2のDAC回路ブロックは前記フィードバック経路か
    ら前記複合フィードバック信号を受取るように結合され、前記第2のデルタ接合
    は帯域入力信号を受取ってそれと前記第2のDACの出力との差分をとるのに有
    効であり、前記第2のデルタ接合の出力は前記共振器に結合され、前記共振器は
    前記入力ノードにおいて前記入力信号を生成する、請求項45に記載のデルタ−
    シグマ変調器。
  57. 【請求項57】 前記第1のADCと前記第2のADCとのうちの少なくと
    も1つは、第2のデルタ接合ノードと、第3の雑音整形フィルタと、量子化器と
    、ローカルDACとを含み、前記第2のデルタ接合は前記フィードフォワード信
    号と前記ローカルDACの出力との差分をとるのに有効であり、前記第2のデル
    タ接合の出力は前記第3の雑音整形フィルタに結合され、前記量子化器は前記第
    3の雑音整形回路ブロックの出力を量子化しさらにデジタル化するのに有効であ
    り、前記量子化器の出力は前記ローカルDACの入力に結合される、請求項45
    に記載のデルタ−シグマ変調器。
  58. 【請求項58】 前記フィードフォワード経路内の前記第1のADCと前記
    第2のADCとを制御するためのサンプリングクロックをさらに有し、また、前
    記フィードバック経路内の前記単側波帯アップ変換ミクサを制御するための第1
    のローカルクロックを有し、前記第1のローカルクロックは前記サンプリングク
    ロックの周波数の1/4に実質的に等しい周波数を有する、請求項45に記載の
    デルタ−シグマ変調器。
  59. 【請求項59】 前記フィードフォワード経路内の前記単側波帯ダウン変換
    ミクサを制御するための第2のローカルクロックをさらに有し、前記第2のロー
    カルクロックは前記サンプリングクロックの周波数の1/4に実質的に等しい周
    波数を有する、請求項58に記載のデルタ−シグマ変調器。
  60. 【請求項60】 前記フィードバック経路内の前記DAC回路ブロックを制
    御するためのサンプリングクロックをさらに有し、また、前記フィードフォワー
    ド経路内の前記第1のADCと前記第2のADCとを制御するためのローカルク
    ロックを有し、前記ローカルクロックは前記サンプリングクロックの周波数の半
    分に実質的に等しい周波数を有する、請求項45に記載のデルタ−シグマ変調器
  61. 【請求項61】 前記直角位相ダウン変換ミクサコンポーネントは前記同相
    ダウン変換ミクサコンポーネントから位相が90°ずれている、請求項45に記
    載のデルタ−シグマ変調器。
  62. 【請求項62】 前記直角位相アップ変換ミクサコンポーネントは同相アッ
    プ変換ミクサコンポーネントから位相が90°ずれている、請求項45に記載の
    デルタ−シグマ変調器。
  63. 【請求項63】 前記デルタ−シグマ変調器は連続時間システムとして実現
    される、請求項45に記載のデルタ−シグマ変調器。
  64. 【請求項64】 前記デルタ−シグマ変調器は離散時間システムとして実現
    される、請求項45に記載のデルタ−シグマ変調器。
JP2001515543A 1999-08-09 2000-06-12 ハイブリッド帯域およびベースバンドデルタ−シグマ変調器 Withdrawn JP2003506955A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US37059799A 1999-08-09 1999-08-09
US09/370,597 1999-08-09
PCT/US2000/016076 WO2001011786A1 (en) 1999-08-09 2000-06-12 Hybrid bandpass and baseband delta-sigma modulator

Publications (1)

Publication Number Publication Date
JP2003506955A true JP2003506955A (ja) 2003-02-18

Family

ID=23460325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001515543A Withdrawn JP2003506955A (ja) 1999-08-09 2000-06-12 ハイブリッド帯域およびベースバンドデルタ−シグマ変調器

Country Status (10)

Country Link
EP (1) EP1212838B1 (ja)
JP (1) JP2003506955A (ja)
KR (1) KR20020027530A (ja)
CN (1) CN1369139A (ja)
CA (1) CA2378981A1 (ja)
DE (1) DE60001332D1 (ja)
HK (1) HK1046788A1 (ja)
NO (1) NO20020636L (ja)
TW (1) TW472463B (ja)
WO (1) WO2001011786A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018123145A1 (ja) * 2016-12-28 2018-07-05 住友電気工業株式会社 Δς変調器、送信機、半導体集積回路、処理方法、システム、及びコンピュータプログラム

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2377837A (en) * 2001-07-20 2003-01-22 Univ Bristol Mixer linearisation using frequency retranslation
GB0303028D0 (en) * 2003-02-11 2003-03-12 Rodborough Radio Technology High frequency bandpass analogue to digital converters
CN101044683B (zh) * 2004-10-18 2011-01-12 Nxp股份有限公司 处理模拟输入信号的设备及包括该设备的移动通信设备
JP4636926B2 (ja) * 2005-04-22 2011-02-23 三洋電機株式会社 マルチビットδς変調型daコンバータ
US7277032B2 (en) 2005-10-21 2007-10-02 Realtek Semiconductor Corp. Low-pass filter based delta-sigma modulator
KR100921498B1 (ko) * 2006-12-05 2009-10-13 한국전자통신연구원 멀티 비트 델타 시그마 변조기
US7545301B2 (en) 2006-12-05 2009-06-09 Electronics And Telecommunications Research Institute Multi-bit delta-sigma modulator
US7489263B1 (en) * 2007-09-28 2009-02-10 Cirrus Logic, Inc. Discrete-time programmable-gain analog-to-digital converter (ADC) input circuit with multi-phase reference application
CN103299549B (zh) * 2010-12-03 2016-11-09 马维尔国际贸易有限公司 具有降噪反馈通路的模数转换器
US9564916B2 (en) * 2015-06-03 2017-02-07 Analog Devices, Inc. Suppressing signal transfer function peaking in a feedforward delta sigma converter
KR101675964B1 (ko) 2016-01-27 2016-11-15 연세대학교 산학협력단 피드포워드 구조를 이용한 높은 리젝션의 n-패스 대역통과 필터
US9871534B2 (en) * 2016-06-03 2018-01-16 Mediatek Inc. Analog-to-digital converter with embedded noise-shaped truncation, embedded noise-shaped segmentation and/or embedded excess loop delay compensation
US10141948B2 (en) * 2016-06-06 2018-11-27 Mediatek Inc. Delta-sigma modulator, analog-to-digital converter and associated signal conversion method based on multi stage noise shaping structure
US10061415B2 (en) * 2016-06-30 2018-08-28 Synaptics Incorporated Input device receiver with delta-sigma modulator
EP3494640B1 (en) * 2016-08-02 2020-09-02 Fundacio Centre Tecnologic de Telecomunicacions de Catalunya Delta-sigma converter with pm/fm non-linear loop
WO2020025070A1 (en) * 2018-08-01 2020-02-06 Argo Semiconductors Fs Ltd (He 359654) Digital power amplifier with filtered output
CN110868227B (zh) * 2018-08-28 2022-02-25 瑞昱半导体股份有限公司 可量测传送端镜像抑制比的传送电路
CN113225285B (zh) * 2021-04-22 2022-03-01 中国电子科技集团公司第五十四研究所 一种gmsk信号相干解调装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2157690A1 (en) * 1995-09-07 1997-03-08 Bosco Leung Lower power passive sigma-delta converter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018123145A1 (ja) * 2016-12-28 2018-07-05 住友電気工業株式会社 Δς変調器、送信機、半導体集積回路、処理方法、システム、及びコンピュータプログラム

Also Published As

Publication number Publication date
CA2378981A1 (en) 2001-02-15
HK1046788A1 (zh) 2003-01-24
TW472463B (en) 2002-01-11
EP1212838A1 (en) 2002-06-12
DE60001332D1 (de) 2003-03-06
CN1369139A (zh) 2002-09-11
KR20020027530A (ko) 2002-04-13
EP1212838B1 (en) 2003-01-29
NO20020636L (no) 2002-04-09
NO20020636D0 (no) 2002-02-08
WO2001011786A1 (en) 2001-02-15

Similar Documents

Publication Publication Date Title
US6748025B1 (en) Direct conversion delta-sigma receiver
US5557642A (en) Direct conversion receiver for multiple protocols
JP2003506955A (ja) ハイブリッド帯域およびベースバンドデルタ−シグマ変調器
JP5602709B2 (ja) デルタ−シグマ・ディジタル/アナログ・コンバータ付きの効率的ハードウェアのトランシーバ
US7173980B2 (en) Complex-IF digital receiver
US8063806B2 (en) Apparatus comprising frequency selective circuit and method
US6121910A (en) Frequency translating sigma-delta modulator
US7528754B1 (en) Finite impulse response digital to analog converter
EP0335037A1 (en) Direct conversion radio
US6535561B2 (en) Dual-mode modulation systems and methods including oversampling of narrow bandwidth signals and DC offset compensation
US5619536A (en) Digital superheterodyne receiver and baseband filter method used therein
US20060164272A1 (en) Analog-to-digital-converter comprising a sigma-delta-modulator and receiver with such analog-to-digital-converter
KR100736057B1 (ko) 듀얼 디지털 저역 if 복합 수신기
KR20020006044A (ko) 프로그래머블 디지털 중간 주파수 송수신기
CA2229737A1 (en) Analog to digital converter for radio applications
JP2003527043A (ja) 直交装置におけるミスマッチの補償
Paulus et al. A CMOS IF transceiver with reduced analog complexity
EP1195019A1 (en) Direct conversion delta-sigma receiver
KR20050116304A (ko) 직접 변환 델타-시그마 수신기

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070904