JP2003348707A - Detection system for state of charging and automobile provided with the system - Google Patents

Detection system for state of charging and automobile provided with the system

Info

Publication number
JP2003348707A
JP2003348707A JP2002153267A JP2002153267A JP2003348707A JP 2003348707 A JP2003348707 A JP 2003348707A JP 2002153267 A JP2002153267 A JP 2002153267A JP 2002153267 A JP2002153267 A JP 2002153267A JP 2003348707 A JP2003348707 A JP 2003348707A
Authority
JP
Japan
Prior art keywords
state
charge
battery
engine
detection system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002153267A
Other languages
Japanese (ja)
Other versions
JP3687628B2 (en
Inventor
Kenichi Maeda
謙一 前田
Tetsuo Ogoshi
哲郎 大越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2002153267A priority Critical patent/JP3687628B2/en
Publication of JP2003348707A publication Critical patent/JP2003348707A/en
Application granted granted Critical
Publication of JP3687628B2 publication Critical patent/JP3687628B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Hybrid Electric Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a detection system for state of charging, capable of accurately detecting the state of charge of a battery. <P>SOLUTION: In this detection system for state of charging provided on an electric vehicle, it is determined whether a current value I flowing in a cell motor is equal to or larger than a prescribed current value (S310). If it is negative determination, the station of charge of the battery is calculated not from an internal resistance value r, because large the slope of a current characteristics curve deteriorates accuracy, but rather by utilizing the relation between the accurate internal resistance value r and the state of charge (S312), the state of charge of a lead battery is detected with high accuracy. In the electric vehicle of this embodiment, the engine is prevented from falling into start disabled state at the idling stop and start. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、充電状態検知シス
テム及び電気自動車に係り、特に、内部抵抗値に応じて
バッテリの充電状態を演算する充電状態検知システム及
び該充電状態検知システムを備えた電気自動車に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a state-of-charge detection system and an electric vehicle, and more particularly to a state-of-charge detection system for calculating a state of charge of a battery according to an internal resistance value and an electric vehicle equipped with the state-of-charge detection system. Car related.

【0002】[0002]

【従来の技術】近年、エンジン自動車による排気ガスの
削減に対応するために、アイドルストップ・スタート
(ISS)が行われており、エンジン自動車をアイドル
ストップ可能な状態に保つ技術が望まれている。エンジ
ン自動車は、ISS時にエンジン始動用のセルモータに
イグニッションスイッチを介して電力を供給するバッテ
リ(蓄電池)を備えている。鉛電池は、この種の用途に
対応できる代表的な電池である。アイドルストップ時、
電気負荷は、バッテリによってまかなわれる。バッテリ
は、ISS可能な状態を保つために、常に充電状態(S
OC)が推定(検知)されている。バッテリの充電状態
の推定方法には、エンジン始動時の大電流での内部抵抗
値や微分内部抵抗値(電圧電流直線の傾き)から求める
方法、特開平第6−150981号公報に開示されいる
ように電圧電流直線から求める方法等がある。これらの
方法によって推定されたバッテリの充電状態が一定値以
下になると、バッテリはエンジンの始動により充電され
る。
2. Description of the Related Art In recent years, idle stop / start (ISS) has been performed in order to cope with the reduction of exhaust gas from an engine vehicle, and a technique for keeping the engine vehicle in a state capable of idling stop is desired. The engine vehicle includes a battery (rechargeable battery) that supplies electric power to an engine start cell motor via an ignition switch at the time of ISS. A lead battery is a typical battery that can support this type of application. At idle stop,
The electrical load is provided by a battery. The battery is always charged (S
OC) is estimated (detected). As a method of estimating the state of charge of the battery, a method of obtaining from the internal resistance at a large current at the time of starting the engine or the differential internal resistance (the slope of the voltage-current straight line) is disclosed in Japanese Patent Application Laid-Open No. H6-150981. There is a method of obtaining from a voltage-current straight line. When the state of charge of the battery estimated by these methods falls below a certain value, the battery is charged by starting the engine.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来技術では、エンジンの動作状態を考慮して充電状態を
推定していないので、エンジンが回転状態にあるにもか
かわらず、バッテリの充電状態が一定値以下になるとバ
ッテリを充電するためにエンジンを再始動する(セルモ
ータに電流を流す)エンジンの2度がけが発生する。2
度がけの場合にセルモータに流れる電流は、既にエンジ
ンが始動しているので、エンジン始動時に流れる電流よ
り小さくなる。セルモータには、例えば、エンジン始動
時にバッテリから300A程度の電流が流れ、2度がけ
のときに30A程度の電流が流れる。
However, in the above prior art, since the state of charge is not estimated in consideration of the operating state of the engine, the state of charge of the battery is constant even though the engine is rotating. If the value is less than the value, the engine is restarted to charge the battery (current is supplied to the starter motor), and the engine is injured twice. 2
Since the engine has already been started, the current flowing to the starter in the case of premature start is smaller than the current flowing when the engine is started. In the starter motor, for example, a current of about 300 A flows from the battery when the engine is started, and a current of about 30 A flows when the engine is turned off twice.

【0004】図6は、セルモータを流れる電流に対して
バッテリの内部抵抗と充電状態との関係を示したもので
ある。図6に示すように、2度がけのとき(セルモータ
に流れる電流値が30Aのとき)は、エンジン始動時
(セルモータに流れる電流値が300Aのとき)に対し
て、内部抵抗と充電状態との関係を示す電流特性曲線の
傾きが大きくなる。このため、2度がけのときの電流特
性を利用してバッテリの内部抵抗からバッテリの充電状
態を演算すると、傾きの小さいエンジン始動時の電流特
性を利用して内部抵抗から充電状態を演算する場合に比
べバッテリの充電状態を精度良く検知することが難し
く、アイドルストップ・スタート時にバッテリの電力に
よりエンジンの始動ができない、という事態に陥る場合
がある。
FIG. 6 shows the relationship between the internal resistance of the battery and the state of charge with respect to the current flowing through the starter motor. As shown in FIG. 6, when the engine is started twice (when the current value flowing through the starter motor is 30 A), when the engine is started (when the current value flowing through the starter motor is 300 A), the internal resistance and the charging state are different. The slope of the current characteristic curve indicating the relationship increases. Therefore, when the state of charge of the battery is calculated from the internal resistance of the battery using the current characteristic at the time of the second bleaching, the state of charge is calculated from the internal resistance using the current characteristic at the time of starting the engine with a small slope. It is more difficult to accurately detect the state of charge of the battery than in the case of, and the engine may not be started by the electric power of the battery at the time of idle stop / start.

【0005】本発明は上記事案に鑑み、精度良くバッテ
リの充電状態を検知可能な充電状態検知システム及び該
充電状態検知システムを備えた電気自動車を提供するこ
とを課題とする。
The present invention has been made in view of the above circumstances, and has as its object to provide a charge state detection system capable of accurately detecting a charge state of a battery and an electric vehicle including the charge state detection system.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、本発明の第1の態様は、バッテリからイグニッショ
ンスイッチを介してエンジン始動用セルモータに流れる
電流値がエンジン始動を許容する所定電流値以上かを判
定する判定手段と、前記判定手段による判定が肯定のと
きの前記バッテリの内部抵抗値に応じて前記バッテリの
充電状態を演算する演算手段と、を備える。
According to a first aspect of the present invention, a current flowing from a battery to an engine start cell motor via an ignition switch is set to a predetermined current value which permits engine start. Determining means for determining whether the above is the case; and calculating means for calculating the state of charge of the battery according to the internal resistance value of the battery when the determination by the determining means is affirmative.

【0007】第1の態様では、判定手段によりバッテリ
からイグニッションスイッチを介してエンジン始動用セ
ルモータに流れる電流値がエンジン始動を許容する所定
電流値以上かが判定され、演算手段により判定手段で肯
定判定されたときのバッテリの内部抵抗値に応じてバッ
テリの充電状態が演算される。本態様によれば、演算手
段が判定手段で否定判定されたときのバッテリの内部抵
抗値から充電状態を演算するとバッテリの充電状態の演
算精度が低くなるため充電状態を演算せず(演算精度の
低い内部抵抗値と充電状態との関係を利用せず)、判定
手段で肯定判定されたときの演算精度の高い内部抵抗値
と充電状態との関係を利用して演算するので、バッテリ
の充電状態を高精度で検知することができる。
In the first aspect, the determining means determines whether or not the value of the current flowing from the battery through the ignition switch to the engine starting cell motor is equal to or greater than a predetermined current value allowing the engine to start, and the calculating means determines affirmatively by the determining means. The state of charge of the battery is calculated according to the internal resistance value of the battery at the time of the execution. According to this aspect, when the calculating means calculates the state of charge from the internal resistance value of the battery when the determination means makes a negative determination, the calculation accuracy of the state of charge of the battery is reduced. Since the calculation is performed using the relationship between the internal resistance value and the state of charge with high calculation accuracy when the determination unit makes an affirmative determination, the state of charge of the battery is not used without using the relationship between the low internal resistance value and the state of charge. Can be detected with high accuracy.

【0008】また、上記課題を解決するために、本発明
の第2の態様は、エンジンの回転により発電する発電機
の電流値又は電圧値が所定値以下かを判定する判定手段
と、前記判定手段による判定が肯定のときのバッテリの
内部抵抗値に応じて前記バッテリの充電状態を演算する
演算手段と、を備える。
In order to solve the above-mentioned problems, a second aspect of the present invention provides a determining means for determining whether a current value or a voltage value of a generator for generating electric power by rotation of an engine is equal to or less than a predetermined value, Calculating means for calculating the state of charge of the battery according to the internal resistance value of the battery when the determination by the means is affirmative.

【0009】第2の態様では、判定手段によりエンジン
の回転で発電する発電機の電流値又は電圧値が所定値以
下かが判定され、演算手段により判定手段で肯定判定さ
れたときのバッテリの内部抵抗値に応じてバッテリの充
電状態が演算される。本態様によれば、判定手段で肯定
判定されたときはエンジンが停止しているため、演算手
段が演算精度の高い内部抵抗値と充電状態との関係を利
用してバッテリの充電状態を演算し、判定手段で否定判
定されたときはエンジンが始動しているため、演算精度
の低い内部抵抗値と充電状態との関係は利用しないの
で、バッテリの充電状態を高精度で検知することができ
る。
In the second aspect, the determining means determines whether the current value or the voltage value of the generator for generating electric power by rotation of the engine is equal to or less than a predetermined value, and the calculating means makes an affirmative determination by the calculating means to determine the internal state of the battery. The state of charge of the battery is calculated according to the resistance value. According to this aspect, when the determination is affirmatively determined by the determination means, the engine is stopped, so the calculation means calculates the state of charge of the battery using the relationship between the internal resistance value and the state of charge with high calculation accuracy. When the determination unit makes a negative determination, the engine is started, and the relationship between the internal resistance value and the state of charge with low calculation accuracy is not used, so that the state of charge of the battery can be detected with high accuracy.

【0010】本発明の第3の態様は、第1又は第2態様
の充電状態検知システムを備えた電気自動車である。本
態様の電気自動車は、第1又は第2態様の充電状態検知
システムによりバッテリの充電状態を高精度で検知こと
ができる。
A third aspect of the present invention is an electric vehicle provided with the charge state detection system according to the first or second aspect. In the electric vehicle according to the present aspect, the charge state of the battery can be detected with high accuracy by the charge state detection system according to the first or second aspect.

【0011】[0011]

【発明の実施の形態】(第1実施形態)以下、図面を参
照して、本発明を電気自動車に適用した第1の実施の形
態について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First Embodiment A first embodiment in which the present invention is applied to an electric vehicle will be described below with reference to the drawings.

【0012】<構成>図1に示すように、本実施形態の
電気自動車20は、電気自動車20の駆動源となるエン
ジン、エンジンを始動するセルモータ、エンジンの駆動
力で発電し鉛電池を充電する発電機及び鉛電池の内部抵
抗値から充電状態(SOC、State OfCharge)を演算す
る充電状態検知システムを備えている。
<Structure> As shown in FIG. 1, an electric vehicle 20 of this embodiment is an engine serving as a drive source of the electric vehicle 20, a cell motor for starting the engine, and a power generator for generating power to charge a lead battery. A charge state detection system that calculates a state of charge (SOC) from the internal resistance values of the generator and the lead battery is provided.

【0013】鉛電池は、鉛電池の容器となる角形の電槽
を有している。電槽の材質には、成形性、電気的絶縁
性、耐腐食性及び耐久性等の点で優れる、例えば、アク
リルブタジエンスチレン(ABS)、ポリプロピレン
(PP)、ポリエチレン(PE)等の高分子樹脂を選択
することができる。また、電槽は、例えば、外周壁の内
部を縦横に仕切る隔壁によって2行9列の合計18個の
セル室が画定され一体成形されたモノブロック電槽とし
て構成することができる。電槽内に画定された各セル室
には極板群(セル)がそれぞれ1組ずつ収容されてお
り、電槽には合計18組の極板群が収容されている。各
極板群は、未化成負極板6枚及び未化成正極板5枚がガ
ラス繊維からなるリテーナ(セパレータ)を介して積層
されており、化成(初充電)後の公称電圧(セル電圧)
は2.0Vとされている。従って、鉛電池の群電圧は3
6Vである。電槽の上部は、電槽の上部開口部を密閉す
るABS、PP、PE等の高分子樹脂製の上蓋に接着
(又は溶着)されている。上蓋には、鉛電池を電源とし
て外部へ電力を供給するためのロッド状正極外部出力端
子及び負極外部出力端子が対角隅部に立設されている。
A lead battery has a rectangular battery case that serves as a container for the lead battery. Examples of the material of the battery case include high polymer resins such as acrylic butadiene styrene (ABS), polypropylene (PP), and polyethylene (PE), which are excellent in moldability, electrical insulation, corrosion resistance, durability, and the like. Can be selected. In addition, the battery case can be configured as a monoblock battery case, for example, in which a total of 18 cell chambers in 2 rows and 9 columns are defined by partition walls which partition the inside of the outer peripheral wall vertically and horizontally and are integrally formed. Each of the cell chambers defined in the battery case contains one set of electrode plates (cells), and the battery case contains a total of 18 sets of electrode plates. In each electrode group, six unformed negative electrode plates and five unformed positive electrode plates are laminated via a retainer (separator) made of glass fiber, and a nominal voltage (cell voltage) after formation (first charge) is formed.
Is set to 2.0V. Therefore, the group voltage of the lead battery is 3
6V. The upper part of the battery case is adhered (or welded) to an upper lid made of a polymer resin such as ABS, PP, or PE which seals the upper opening of the battery case. A rod-shaped positive external output terminal and a negative external output terminal for supplying electric power to the outside using a lead battery as a power supply are provided upright on the upper lid at diagonal corners.

【0014】図2に示すように、充電状態検知システム
11は、イグニッションスイッチ(以下、IGNスイッ
チという。)9を有している。上述した鉛電池1の正極
外部出力端子は、IGNスイッチ9の中央端子に接続さ
れている。IGNスイッチ9は中央端子とは別にOFF
端子、ON/ACC端子及びSTART端子を有してお
り、中央端子とこれらOFF、ON/ACC及びSTA
RT端子のいずれかとは、ロータリー式に切り替え接続
が可能である。
As shown in FIG. 2, the charging state detection system 11 has an ignition switch (hereinafter, referred to as an IGN switch) 9. The positive electrode external output terminal of the lead battery 1 described above is connected to the center terminal of the IGN switch 9. IGN switch 9 is off separately from the center terminal
It has a terminal, an ON / ACC terminal and a START terminal, and a center terminal and these OFF, ON / ACC and STA terminals.
Any of the RT terminals can be switched and connected in a rotary manner.

【0015】START端子は、ホール素子等の電流セ
ンサ7を介してセルモータ3の一端に接続されている。
ホール素子型電流センサは、リング・コアにギャップが
形成されており、このギャップ内にホール素子が挿入さ
れている。リング・コアに貫通電流が流れると、貫通電
流はギャップに発生する磁束密度に比例し、ホール素子
の電圧を計測することで、貫通電流の電流値の検出が可
能である。セルモータ3は、図示しないクラッチ機構を
介してエンジン4の回転軸に回転駆動力の伝達が可能で
ある。
The START terminal is connected to one end of the starter motor 3 via a current sensor 7 such as a Hall element.
In the Hall element type current sensor, a gap is formed in a ring core, and a Hall element is inserted in the gap. When a through current flows through the ring core, the through current is proportional to the magnetic flux density generated in the gap, and the current value of the through current can be detected by measuring the voltage of the Hall element. The starter motor 3 can transmit a rotational driving force to the rotation shaft of the engine 4 via a clutch mechanism (not shown).

【0016】また、ON/ACC端子は、ランプやワイ
パー等の補機5及び一方向への電流の流れを許容するダ
イオードを介してエンジン4の回転により発電する発電
機2の一端に接続されている。すなわち、ダイオードの
アノードは発電機2の一端に、カソードはON/ACC
端子に接続されている。エンジン4の回転軸は、不図示
のクラッチ機構を介して発電機2に動力の伝達が可能で
ある。このため、エンジン4が回転状態にあるときは、
不図示のクラッチ機構を介して発電機2が作動し発電機
2からの電力が補機5又は鉛電池1に供給(充電)され
る。なお、OFF端子はいずれにも接続されていない。
The ON / ACC terminal is connected to one end of a generator 2 that generates electric power by rotation of the engine 4 via an auxiliary device 5 such as a lamp or a wiper and a diode that allows a current to flow in one direction. I have. That is, the anode of the diode is at one end of the generator 2 and the cathode is ON / ACC.
Connected to terminal. The rotating shaft of the engine 4 can transmit power to the generator 2 via a clutch mechanism (not shown). Therefore, when the engine 4 is rotating,
The generator 2 operates via a clutch mechanism (not shown), and electric power from the generator 2 is supplied (charged) to the auxiliary device 5 or the lead battery 1. The OFF terminal is not connected to any of them.

【0017】電流センサ7の出力端子は、後述するマイ
クロコンピュータ(以下、マイコンという。)8に内蔵
されたA/Dコンバータに接続されている。このため、
電流センサ7から出力されたホール電圧はA/Dコンバ
ータでデジタル値に変換され、マイコン8はセルモータ
3を流れる電流値Iを取り込むことができる。また、鉛
電池1の外部出力端子は、A/Dコンバータに接続され
ており、A/Dコンバータの出力側はマイコン8に接続
されている。このため、マイコン8は、鉛電池1の電圧
値Vをデジタル値で取り込むことができる。なお、マイ
コン8は、インターフェースを介して上位の車輌側マイ
コン10と通信可能である。
The output terminal of the current sensor 7 is connected to an A / D converter built in a microcomputer 8 (to be referred to as a microcomputer hereinafter). For this reason,
The Hall voltage output from the current sensor 7 is converted into a digital value by an A / D converter, and the microcomputer 8 can take in the current value I flowing through the starter motor 3. The external output terminal of the lead battery 1 is connected to an A / D converter, and the output side of the A / D converter is connected to the microcomputer 8. For this reason, the microcomputer 8 can take in the voltage value V of the lead battery 1 as a digital value. The microcomputer 8 can communicate with a host vehicle-side microcomputer 10 via an interface.

【0018】マイコン8は、中央演算処理装置として機
能するCPU、充電状態検知システム11の基本制御プ
ログラム及び種々の設定値等が格納されたROM、CP
Uのワークエリアとして働くとともにデータを一時的に
記憶するRAM等を含んで構成されている。また、発電
機2、セルモータ3及び補機5の他端、鉛電池1の負極
外部出力端子及びマイコンは、それぞれグランドに接続
されている。
The microcomputer 8 includes a CPU functioning as a central processing unit, a ROM storing a basic control program of the charge state detection system 11, various set values, and the like.
It is configured to include a RAM that serves as a work area for the U and temporarily stores data. The other end of the generator 2, the cell motor 3, and the auxiliary machine 5, the negative electrode external output terminal of the lead battery 1, and the microcomputer are connected to the ground, respectively.

【0019】<動作>次に、フローチャートを参照し
て、充電状態検知システム11の動作についてマイコン
8のCPUを主体として説明する。なお、初期状態にお
いてマイコン8に電源が投入されると、ROMに格納さ
れた種々の設定値はRAMに移行され、以下の充電状態
検知ルーチンが実行される。
<Operation> Next, the operation of the charging state detection system 11 will be described mainly with the CPU of the microcomputer 8 referring to a flowchart. When the microcomputer 8 is turned on in the initial state, various setting values stored in the ROM are transferred to the RAM, and the following charge state detection routine is executed.

【0020】図3に示すように、充電状態検知ルーチン
では、まずステップ302において、セルモータ3に流
れる電流値Iを取り込む。次に、ステップ304におい
て、IGNスイッチ9がSTART端子の位置か否かを
判定するために、電流値Iが閾値(例えば、0.1
(A))以上か否かを判断し、否定判定のときはステッ
プ302に戻り、肯定判断のときは、次のステップ30
6で鉛電池1の電圧値Vを取り込む。
As shown in FIG. 3, in the charge state detection routine, first, in step 302, a current value I flowing through the starter motor 3 is fetched. Next, in step 304, in order to determine whether or not the IGN switch 9 is at the position of the START terminal, the current value I is set to a threshold (for example, 0.1).
(A)) It is determined whether or not this is the case. If a negative determination is made, the process returns to step 302;
At 6, the voltage value V of the lead battery 1 is taken.

【0021】次にステップ308では、取り込んだ電流
値I及び電池電圧値Vから鉛電池1の内部抵抗値rを演
算する。すなわち、IGNスイッチ9がSTART端子
に接続されると、内部抵抗値rを有する鉛電池1と、抵
抗値Rを有するセルモータ3とが閉回路を構成する。こ
のため、電流値I=電圧値V/(鉛電池1の内部抵抗値
r+セルモータ3の抵抗値R)の関係式が成立する。セ
ルモータ3の抵抗値Rとセルモータ3を流れる電流値I
とは、公知のように一定の関係がある。CPUは、電流
値Iと抵抗値Rとの特性がテーブル化されたI−Rテー
ブルを用いて、電流値Iから抵抗値Rを求めて、上述し
た式に、電流値I、電圧値V及び抵抗値Rを代入して内
部抵抗値rを演算する。
Next, at step 308, the internal resistance value r of the lead-acid battery 1 is calculated from the taken current value I and battery voltage value V. That is, when the IGN switch 9 is connected to the START terminal, the lead battery 1 having the internal resistance value r and the cell motor 3 having the resistance value R form a closed circuit. Therefore, a relational expression of current value I = voltage value V / (internal resistance value r of lead battery 1 + resistance value R of self-motor 3) is established. The resistance value R of the starter motor 3 and the current value I flowing through the starter motor 3
Has a certain relationship as is known. The CPU obtains the resistance value R from the current value I using an IR table in which characteristics of the current value I and the resistance value R are tabulated, and calculates the current value I, the voltage value V, The internal resistance value r is calculated by substituting the resistance value R.

【0022】ステップ310では、エンジン4の始動時
か否かを判定するために、セルモータ3に流れる電流値
Iがエンジン始動を許容する所定電流値(例えば、10
0A)以上かを判断し、肯定判断(エンジン始動時)の
ときは、次のステップ312において、図6に示すよう
に、電流特性曲線の傾きが小さく精度の高い内部抵抗値
rと充電状態との関係を利用して、鉛電池1の充電状態
を演算して充電状態検知ルーチンを終了する。一方、否
定判定のとき(2度がけ時)は、電流特性曲線の傾きが
大きく(図6の30A)、内部抵抗値rから充電状態
(SOC)を演算すると充電状態の精度が低くなるの
で、否定判断のときの電流特性曲線を利用しないで(無
効とし)精度の高いバッテリの内部抵抗値や充電状態を
演算するために、ステップ302に戻る。
In step 310, in order to determine whether or not the engine 4 has started, the current value I flowing through the starter motor 3 is set to a predetermined current value (for example, 10
0A) or more, and in the case of an affirmative determination (at the time of engine start), in the next step 312, as shown in FIG. Using the relationship, the state of charge of the lead battery 1 is calculated, and the charge state detection routine ends. On the other hand, when the determination is negative (during two degrees), the slope of the current characteristic curve is large (30A in FIG. 6), and when the state of charge (SOC) is calculated from the internal resistance value r, the accuracy of the state of charge is reduced. The process returns to step 302 in order to calculate the highly accurate internal resistance value and state of charge of the battery without using (disabling) the current characteristic curve at the time of the negative determination.

【0023】以上のように、本実施形態の電気自動車2
0に搭載された充電状態検知システム11では、セルモ
ータ3に流れる電流値Iが100A以上かを判定し(ス
テップ310)、否定判定のときに、電流特性曲線の傾
きが大きいため精度の低い内部抵抗値rと充電状態(S
OC)との関係を利用せず無効にし、精度の良い内部抵
抗値rと充電状態との関係を利用してバッテリの充電状
態を演算するので(ステップ312)、鉛電池1の充電
状態を高精度で検知することができる。従って、本実施
形態の電気自動車では、アイドルストップ・スタート時
にエンジンが始動不能に陥ることを防止することができ
る。
As described above, the electric vehicle 2 of the present embodiment
In the charging state detection system 11 mounted on the zero, it is determined whether the current value I flowing through the starter motor 3 is 100 A or more (step 310). When the negative determination is made, the internal resistance with low accuracy is low because the slope of the current characteristic curve is large. The value r and the state of charge (S
OC), the battery state of charge is calculated using the accurate relationship between the internal resistance value r and the state of charge (step 312). It can be detected with accuracy. Therefore, in the electric vehicle according to the present embodiment, it is possible to prevent the engine from being unable to start at the time of idling stop / start.

【0024】なお、本実施形態では、充電状態検知シス
テム11により、鉛電池1の内部抵抗値rを演算した後
に、エンジン始動時か否かを判定した例を示したが、エ
ンジン始動時か否かを判定した後に内部抵抗値rを演算
するようにしてもよい。
In the present embodiment, an example has been shown in which the charge state detection system 11 calculates the internal resistance value r of the lead battery 1 and then determines whether or not to start the engine. After the determination is made, the internal resistance value r may be calculated.

【0025】また、本実施形態では、充電状態検知シス
テム11により、エンジン4の始動時か否かを判定する
ために、エンジン始動を許容する所定電流値が100A
の例を示したが、電流値はこれに限定されるものではな
く、セルモータ3の仕様に応じて変更されることは云う
までもない。
Further, in the present embodiment, in order for the charging state detection system 11 to determine whether or not the engine 4 is starting, the predetermined current value allowing the engine starting is 100 A.
However, it is needless to say that the current value is not limited to this, and may be changed according to the specifications of the starter motor 3.

【0026】更に、本実施形態では、中央、OFF、O
N/ACC及びSTART端子を有したIGNスイッチ
9を例示したが、少なくともOFF、ON/ACC及び
START端子に切り替え可能であれば、IGNスイッ
チの形状や各端子の数などは限定されるものではなく、
ON端子とACC端子とが分離されたIGNスイッチを
用いてもよい。
Further, in this embodiment, the center, OFF, O
Although the IGN switch 9 having the N / ACC and START terminals has been illustrated, the shape of the IGN switch and the number of each terminal are not limited as long as at least the switch can be switched to the OFF, ON / ACC and START terminals. ,
An IGN switch in which the ON terminal and the ACC terminal are separated may be used.

【0027】(第2実施形態)次に、本発明を電気自動
車に適用した第2の実施の形態について説明する。本実
施形態の充電状態検知システムは、発電機2に流れる電
流からエンジン始動時か否かを判定するものである。な
お、本実施形態以下の実施形態において、第1実施形態
と同一の構成要素及びステップには同一の符号を付して
その説明を省略し、異なる箇所のみ説明する。
(Second Embodiment) Next, a second embodiment in which the present invention is applied to an electric vehicle will be described. The charge state detection system according to the present embodiment determines whether or not the engine has started based on the current flowing through the generator 2. In the following embodiments, the same components and steps as those in the first embodiment are denoted by the same reference numerals, and the description thereof will be omitted. Only different points will be described.

【0028】図4に示すように、本実施形態では、充電
状態検知システム12に、ダイオードと発電機2との間
にホール素子等の電流センサ6が挿入されており、第1
実施形態に示した電流センサ7を欠いている。電流セン
サ6の出力端子は、マイコン8に接続されている。この
ため、本実施形態では、CPUは、ダイオードと発電機
2との間に流れる電流値Iを取り込むことができ、電
流値Iが所定値以下(例えば、0.1A以下)かを判
断することで、発電機2が停止中、換言すればエンジン
停止中(始動時)か否かを判断することができる。
As shown in FIG. 4, in the present embodiment, a current sensor 6 such as a Hall element is inserted between the diode and the generator 2 in the state-of-charge detection system 12, and
The current sensor 7 shown in the embodiment is missing. The output terminal of the current sensor 6 is connected to the microcomputer 8. Therefore, in the present embodiment, CPU may incorporate a current value I G flowing between the diodes and the generator 2, a current value I G is less than a predetermined value (e.g., 0.1 A or less) or the determination By doing so, it is possible to determine whether or not the generator 2 is stopped, in other words, whether or not the engine is stopped (during start-up).

【0029】図3及び図4に示すように、本実施形態で
は、ステップ310で、エンジンの動作状態を判断する
ために、ダイオードと発電機2との間に流れる電流値I
が0.1A以下かを判断し、肯定判断(エンジン停止
中)のときは、次のステップ312に進み、否定判定の
ときは、ステップ302に戻る。
As shown in FIGS. 3 and 4, in this embodiment, in step 310, in order to determine the operating state of the engine, the current value I flowing between the diode and the generator 2 is determined.
It is determined whether G is 0.1 A or less. If the determination is affirmative (the engine is stopped), the process proceeds to the next step 312, and if the determination is negative, the process returns to step 302.

【0030】以上のように、本実施形態の電気自動車に
搭載された充電状態検知システム12では、ダイオード
と発電機2との間に流れる電流値Iが0.1A以下
(エンジン停止中)かを判定し(ステップ310)、否
定判定のときに、精度良く充電状態を演算することがで
きない内部抵抗値rを無効にし、精度良く充電状態を演
算する(ステップ312)ので、精度の低い鉛電池1の
充電状態を検知するのを回避することができる。従っ
て、本実施形態の電気自動車では、アイドルストップ・
スタート時にエンジンが始動不能に陥ることを防止する
ことができる。
As described above, in the state-of-charge detection system 12 mounted on the electric vehicle according to the present embodiment, whether the current value I G flowing between the diode and the generator 2 is 0.1 A or less (during engine stop). (Step 310), and in the case of a negative determination, the internal resistance value r for which the state of charge cannot be calculated with high accuracy is invalidated, and the state of charge is calculated with high accuracy (step 312). It is possible to avoid detecting the state of charge 1. Therefore, in the electric vehicle of the present embodiment, the idle stop
It is possible to prevent the engine from being unable to start at the time of start.

【0031】(第3実施形態)次に、本発明を電気自動
車に適用した第3の実施の形態について説明する。本実
施形態の充電状態検知システムは、発電機2が発電する
電圧からエンジン始動時か否かを判定するものである。
(Third Embodiment) Next, a third embodiment in which the present invention is applied to an electric vehicle will be described. The state-of-charge detection system of this embodiment determines whether or not the engine has been started based on the voltage generated by the generator 2.

【0032】図5に示すように、本実施形態では、充電
状態検知システム12に、発電機2に発電機2の電圧を
検出するためのA/Dコンバータ16が接続されてお
り、第1実施形態に示した電流センサ7を欠いている。
A/Dコンバータ16の出力端子は、マイコン8に接続
されている。このため、本実施形態では、CPUは、発
電機2の電圧値Vを取り込むことができ、電圧値V
が所定値以下か(例えば、5V以下か)を判断すること
で、発電機2が停止中、換言すればエンジン停止中(始
動時)か否かを判断することができる。
As shown in FIG. 5, in this embodiment, an A / D converter 16 for detecting the voltage of the generator 2 is connected to the generator 2 in the charging state detection system 12, and the first embodiment The current sensor 7 shown in the embodiment is missing.
The output terminal of the A / D converter 16 is connected to the microcomputer 8. Therefore, in this embodiment, CPU may incorporate a voltage value V G of the generator 2, the voltage value V G
Is less than or equal to a predetermined value (for example, 5 V or less), it can be determined whether or not the generator 2 is stopped, in other words, whether or not the engine is stopped (at the time of starting).

【0033】図3及び図5に示すように、本実施形態で
は、ステップ310で、エンジン4の動作状態を判断す
るために、発電機2の電圧値Vが5V以下かを判断
し、肯定判断(エンジン停止中)のときは、次のステッ
プ312に進み、否定判定のときは、ステップ302に
戻る。
As shown in FIGS. 3 and 5, in the present embodiment, at step 310, to determine the operating state of the engine 4, the voltage value V G of the generator 2 is to determine less 5V, positive When it is determined (during engine stop), the process proceeds to the next step 312, and when it is negative, the process returns to step 302.

【0034】以上のように、本実施形態の電気自動車に
搭載された充電状態検知システム12では、発電機2の
電圧値Vが5V以下(エンジン停止中)かを判定し
(ステップ310)、否定判定のときに、精度良く充電
状態を演算することができない内部抵抗値rを無効に
し、精度良く充電状態を演算する(ステップ312)の
で、精度の低い鉛電池1の充電状態を検知するのを回避
することができる。従って、本実施形態の電気自動車で
は、アイドルストップ・スタート時にエンジンが始動不
能に陥ることを防止することができる。
[0034] As described above, in this embodiment of the electric vehicle in the mounted state of charge detection system 12, the voltage value V G of the generator 2 determines whether the following 5V (engine stopped) (step 310), When a negative determination is made, the internal resistance value r for which the state of charge cannot be calculated with high accuracy is invalidated, and the state of charge is calculated with high accuracy (step 312), so that the state of charge of the lead battery 1 with low accuracy is detected. Can be avoided. Therefore, in the electric vehicle according to the present embodiment, it is possible to prevent the engine from being unable to start at the time of idling stop / start.

【0035】なお、上記実施形態では、A/Dコンバー
タをマイコン8の外部に設けた例を示したが、マイコン
8内に設けるようにしてもよい。また、上記実施形態で
は、鉛電池1に36Vの鉛電池を例示したが、12Vの
鉛電池を用いる場合にも本発明は適用可能である。
In the above embodiment, the example in which the A / D converter is provided outside the microcomputer 8 has been described. However, the A / D converter may be provided inside the microcomputer 8. In the above embodiment, the lead battery 1 is a 36V lead battery. However, the present invention can be applied to a case where a 12V lead battery is used.

【0036】[0036]

【発明の効果】以上説明したように、本発明によれば、
充電状態検知システムが演算精度の低い内部抵抗値と充
電状態との関係は利用せずに、演算精度の高い内部抵抗
値と充電状態との関係を利用してバッテリの充電状態を
演算するので、バッテリの充電状態を高精度で検知する
ことができる、という効果を得ることができる。
As described above, according to the present invention,
Since the state-of-charge detection system does not use the relationship between the internal resistance value and the state of charge with low calculation accuracy and calculates the state of charge of the battery using the relationship between the internal resistance value and the state of charge with high calculation accuracy, The effect that the state of charge of the battery can be detected with high accuracy can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明が適用可能な実施形態の電気自動車の側
面図である。
FIG. 1 is a side view of an electric vehicle according to an embodiment to which the present invention can be applied.

【図2】第1実施形態の電気自動車の充電状態検知シス
テムを示すブロック図である。
FIG. 2 is a block diagram illustrating a charge state detection system for the electric vehicle according to the first embodiment.

【図3】充電状態検知システムの充電状態検知ルーチン
を示すフローチャートである。
FIG. 3 is a flowchart illustrating a charge state detection routine of the charge state detection system.

【図4】第2実施形態の電気自動車の充電状態検知シス
テムを示すブロック図である。
FIG. 4 is a block diagram illustrating a charge state detection system for an electric vehicle according to a second embodiment.

【図5】第3実施形態の電気自動車の充電状態検知シス
テムを示すブロック図である。
FIG. 5 is a block diagram illustrating a charge state detection system for an electric vehicle according to a third embodiment.

【図6】セルモータを流れる電流に対する電池の内部抵
抗と充電状態との関係を示す電流特性曲線である。
FIG. 6 is a current characteristic curve showing a relationship between a battery internal resistance and a state of charge with respect to a current flowing through a starter motor.

【符号の説明】[Explanation of symbols]

1 鉛電池(バッテリ) 2 発電機 3 セルモータ 4 エンジン 8 マイコン(判定手段、演算手段) 9 イグニッション(IGN)スイッチ 11、12、13 充電状態検知システム 20 電気自動車 1 Lead battery (battery) 2 generator 3 cell motor 4 Engine 8 Microcomputer (judgment means, calculation means) 9 Ignition (IGN) switch 11,12,13 Charge state detection system 20 electric vehicles

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H02J 7/00 H02J 7/00 P H02P 9/04 H02P 9/04 M Fターム(参考) 5G003 AA07 BA01 DA04 EA05 FA06 GC05 5H030 AA00 AS08 BB10 FF41 5H115 PA08 PC06 PG04 PI16 PI24 PI29 PI30 PO06 PU08 PU24 PU26 PU29 PV07 QE01 QN03 RE01 RE03 SE02 TE01 TI02 TI05 TI06 TI10 TR19 TU17 5H590 AA08 CA07 CA23 CC01 CD01 CE05 EA01 EA13 FA01 FA05 FB01 FC17 GA02 GA04 GB05 JA02 JB02 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H02J 7/00 H02J 7/00 P H02P 9/04 H02P 9/04 MF term (Reference) 5G003 AA07 BA01 DA04 EA05 FA06 GC05 5H030 AA00 AS08 BB10 FF41 5H115 PA08 PC06 PG04 PI16 PI24 PI29 PI30 PO06 PU08 PU24 PU26 PU29 PV07 QE01 QN03 RE01 RE03 SE02 TE01 TI02 TI05 TI06 TI10 TR19 TU17 5H590 AA08 CA07 CA23 CC01 CD01 FA05 FA01 FA01 GB01 EA01 JA02 JB02

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 バッテリからイグニッションスイッチを
介してエンジン始動用セルモータに流れる電流値がエン
ジン始動を許容する所定電流値以上かを判定する判定手
段と、 前記判定手段による判定が肯定のときの前記バッテリの
内部抵抗値に応じて前記バッテリの充電状態を演算する
演算手段と、を備えたことを特徴とする充電状態検知シ
ステム。
1. A determination means for determining whether a current value flowing from a battery to an engine start cell motor via an ignition switch is equal to or greater than a predetermined current value allowing an engine start, and the battery when the determination by the determination means is affirmative. Calculating means for calculating the state of charge of the battery according to the internal resistance value of the battery.
【請求項2】 エンジンの回転により発電する発電機の
電流値又は電圧値が所定値以下かを判定する判定手段
と、 前記判定手段による判定が肯定のときのバッテリの内部
抵抗値に応じて前記バッテリの充電状態を演算する演算
手段と、を備えたことを特徴とする充電状態検知システ
ム。
A determining means for determining whether a current value or a voltage value of a generator for generating electric power by rotation of the engine is equal to or less than a predetermined value; and A charge state detection system comprising: a calculation unit that calculates a charge state of a battery.
【請求項3】 請求項1又は請求項2に記載の充電状態
検知システムを備えた電気自動車。
3. An electric vehicle equipped with the charging state detection system according to claim 1.
JP2002153267A 2002-05-28 2002-05-28 Charge state detection system and automobile equipped with the system Expired - Lifetime JP3687628B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002153267A JP3687628B2 (en) 2002-05-28 2002-05-28 Charge state detection system and automobile equipped with the system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002153267A JP3687628B2 (en) 2002-05-28 2002-05-28 Charge state detection system and automobile equipped with the system

Publications (2)

Publication Number Publication Date
JP2003348707A true JP2003348707A (en) 2003-12-05
JP3687628B2 JP3687628B2 (en) 2005-08-24

Family

ID=29770338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002153267A Expired - Lifetime JP3687628B2 (en) 2002-05-28 2002-05-28 Charge state detection system and automobile equipped with the system

Country Status (1)

Country Link
JP (1) JP3687628B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008082990A (en) * 2006-09-29 2008-04-10 Shin Kobe Electric Mach Co Ltd Battery state detector, and lead-acid battery for automobile
JP2010019845A (en) * 2008-07-10 2010-01-28 Commissariat A L'energie Atomique Determination method of state of charge of battery in charging or discharging phase at constant current
JP2011252821A (en) * 2010-06-03 2011-12-15 Shin Kobe Electric Mach Co Ltd Battery control system
JP2011257214A (en) * 2010-06-08 2011-12-22 Shin Kobe Electric Mach Co Ltd Battery state estimating device and battery information notifying device
JP2013198319A (en) * 2012-03-21 2013-09-30 Honda Motor Co Ltd Power generation control device in idle stop vehicle
JP2013253855A (en) * 2012-06-07 2013-12-19 General Electric Co <Ge> Systems and methods for predicting battery power-delivery performance
US8872481B2 (en) 2011-04-27 2014-10-28 General Electric Company Systems and methods for predicting battery power-delivery performance

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008082990A (en) * 2006-09-29 2008-04-10 Shin Kobe Electric Mach Co Ltd Battery state detector, and lead-acid battery for automobile
JP2010019845A (en) * 2008-07-10 2010-01-28 Commissariat A L'energie Atomique Determination method of state of charge of battery in charging or discharging phase at constant current
JP2011252821A (en) * 2010-06-03 2011-12-15 Shin Kobe Electric Mach Co Ltd Battery control system
JP2011257214A (en) * 2010-06-08 2011-12-22 Shin Kobe Electric Mach Co Ltd Battery state estimating device and battery information notifying device
US8872481B2 (en) 2011-04-27 2014-10-28 General Electric Company Systems and methods for predicting battery power-delivery performance
JP2013198319A (en) * 2012-03-21 2013-09-30 Honda Motor Co Ltd Power generation control device in idle stop vehicle
JP2013253855A (en) * 2012-06-07 2013-12-19 General Electric Co <Ge> Systems and methods for predicting battery power-delivery performance

Also Published As

Publication number Publication date
JP3687628B2 (en) 2005-08-24

Similar Documents

Publication Publication Date Title
JP4032854B2 (en) Battery state detection system and automobile equipped with the system
US7893652B2 (en) Battery control apparatus, electric vehicle, and computer-readable medium storing a program that causes a computer to execute processing for estimating a state of charge of a secondary battery
US8237398B2 (en) Electric system, charging device and charging method for electric system for discharging of a power storage mechanism for resetting a state of a charge
JP4066732B2 (en) Battery remaining capacity estimation method
JP5070790B2 (en) Battery state detection system and automobile equipped with the same
JP4288958B2 (en) Degradation estimation method
JP6674139B2 (en) Vehicle and its battery state detection system
JP5163229B2 (en) Battery state detection system and automobile equipped with the same
JP5162971B2 (en) Battery state detection system and automobile
JP2009241646A (en) Battery state determination system, and automobile having the system
EP1079496B1 (en) Abnormality detection apparatus for power supply circuit
JP2008074257A (en) Battery deterioration determination device
JP3687628B2 (en) Charge state detection system and automobile equipped with the system
JP2004025982A (en) Method of estimating remaining capacity of battery
JP6468104B2 (en) Power system
JP6607353B2 (en) Vehicle and its battery state detection system
JP2007278851A (en) Battery state detection system
JP2003319503A (en) Vehicle power source controlling method, vehicle power source controlling device, and vehicle power source controlling program
JP3687463B2 (en) Control device for hybrid vehicle
KR100551279B1 (en) COMPLEMENT METHOD FOR THE FIRST STATE Of CHARGE OF ELECTRIC VEHICLE
JP7172690B2 (en) BATTERY SYSTEM AND SECONDARY BATTERY SOC ESTIMATION METHOD
JP2004130909A (en) Battery state detection system
JP2021136809A (en) Control device of electric vehicle
JP2020134355A (en) Battery system
JP2001037001A (en) Motor-driven vehicle

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050530

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3687628

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080617

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090617

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100617

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110617

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120617

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130617

Year of fee payment: 8

EXPY Cancellation because of completion of term