JP2003347589A - Led chip - Google Patents

Led chip

Info

Publication number
JP2003347589A
JP2003347589A JP2002154335A JP2002154335A JP2003347589A JP 2003347589 A JP2003347589 A JP 2003347589A JP 2002154335 A JP2002154335 A JP 2002154335A JP 2002154335 A JP2002154335 A JP 2002154335A JP 2003347589 A JP2003347589 A JP 2003347589A
Authority
JP
Japan
Prior art keywords
emitting layer
light emitting
light
insulating film
type semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002154335A
Other languages
Japanese (ja)
Other versions
JP4123830B2 (en
Inventor
Takuma Hashimoto
拓磨 橋本
Masaru Sugimoto
勝 杉本
Hideyoshi Kimura
秀吉 木村
Wataru Noda
渉 野田
Eiji Shiohama
英二 塩濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2002154335A priority Critical patent/JP4123830B2/en
Publication of JP2003347589A publication Critical patent/JP2003347589A/en
Application granted granted Critical
Publication of JP4123830B2 publication Critical patent/JP4123830B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an LED chip that can materialize a small chip package and has a high light extraction efficiency. <P>SOLUTION: The LED chip 1 is structured such that a quantum well structure comprising an n-type semiconductor layer 3 and light-emitting layer 4 of a GaN compound semiconductor, and a p-type semiconductor layer 5 are laminated in order on the crystal of a translucent substrate 2. The n-type semiconductor layer 3 and the p-type semiconductor layer 5 each are provided with feeders 6 and 7 for the n-side electrode and p-side electrode on the surfaces of both semiconductor layers 3 and 5 opposite to the translucent substrate 2. Further, an insulating film 8 is formed onto the side and bottom surfaces of both semiconductor layers 3 and 5 except where the feeders 6 and 7 are built. Here, in order that light moving in parallel with the light-emitting layer 4 in the light-emitting layer 4 may be totally reflected in the light extraction direction, the end face of the light-emitting layer 4 is inclined toward a face A parallel to the light- emitting layer 4 so that the angle that its normal L1 forms with the face A parallel to the light-emitting layer 4 may become a specified angle or more. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、結晶基板上にp型
半導体層、n型半導体層を形成したLEDチップに関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an LED chip having a p-type semiconductor layer and an n-type semiconductor layer formed on a crystal substrate.

【0002】[0002]

【従来の技術】従来、例えばInGaNなどの窒化ガリ
ウム(GaN)系の化合物半導体LEDチップ1は、一
般的に図9に示すような構造を有している。つまり、サ
ファイアのような透光性基板2の結晶上に窒化ガリウム
のバッファ層(図示せず)を形成し、その上にn型窒化
ガリウム層(以下n型半導体層と言う)3、更にその上
に多層の量子井戸構造層(発光層を含む)4を順次形成
し、また更にその上にp型窒化ガリウム層(p型半導体
層と言う)5を形成してLEDチップ1を構成してあ
る。場合によっては更にその上に光取り出し率向上のた
めのキャップ層が形成されることがある。また、電気的
に絶縁するためn型半導体層3、発光層4及びp型半導
体層5の側面および下面を絶縁膜8で覆っている。
2. Description of the Related Art Conventionally, a gallium nitride (GaN) based compound semiconductor LED chip 1 such as InGaN generally has a structure as shown in FIG. That is, a buffer layer (not shown) of gallium nitride is formed on a crystal of the translucent substrate 2 such as sapphire, and an n-type gallium nitride layer (hereinafter referred to as an n-type semiconductor layer) 3 is formed thereon. A multilayer quantum well structure layer (including a light emitting layer) 4 is sequentially formed thereon, and a p-type gallium nitride layer (referred to as a p-type semiconductor layer) 5 is further formed thereon to form the LED chip 1. is there. In some cases, a cap layer for improving the light extraction rate may be further formed thereon. Further, the side and lower surfaces of the n-type semiconductor layer 3, the light-emitting layer 4, and the p-type semiconductor layer 5 are covered with an insulating film 8 for electrical insulation.

【0003】発光層付近の構造は、一般に、バンドギャ
ップの小さい発光層をバンドギャップの大きいクラッド
層で挟んだダブルへテロ(DH)構造と呼ばれる層構造
を成している。このDH構造によって、正孔や電子が発
光層にトラップされ、正孔と電子とが再結合する確率が
増大したことが、GaN系LEDにおいて従来のGaA
s系LEDと同程度の発光効率が得られた一因と考えら
れているところで、基板として用いるサファイアは導電
性がないため、p型半導体層5と発光層4の一部をエッ
チング除去し、n型半導体層3を露出させてその上にn
型半導体層3に対応するn側電極を形成している。従っ
て、窒化ガリウム系LEDチップ1では、半導体層形成
面側にn,pの二種類の電極が存在している構造が一般
的であり、n側及びp側の各電極上には、ワイヤボンデ
ィング或いはバンプ接合に適した面積を有する丸形若し
くは四角形の給電部(パッド)6,7を1つずつ形成す
るのが通常である。
[0003] The structure near the light emitting layer generally has a layer structure called a double hetero (DH) structure in which a light emitting layer having a small band gap is sandwiched between cladding layers having a large band gap. This DH structure traps holes and electrons in the light-emitting layer and increases the probability of recombination of holes and electrons.
It is considered that sapphire used as a substrate has no conductivity, so that a part of the p-type semiconductor layer 5 and a part of the light emitting layer 4 are removed by etching, which is considered to be one of the causes of obtaining the same luminous efficiency as the s-based LED. The n-type semiconductor layer 3 is exposed and n
An n-side electrode corresponding to the type semiconductor layer 3 is formed. Therefore, the gallium nitride LED chip 1 generally has a structure in which two types of electrodes, n and p, are present on the semiconductor layer forming surface side, and wire bonding is performed on each of the n-side and p-side electrodes. Alternatively, it is usual to form round or square power supply portions (pads) 6, 7 each having an area suitable for bump bonding.

【0004】[0004]

【発明が解決しようとする課題】ところで、上述のよう
なDH構造を有するLEDチップ1では、発光層4と、
発光層4に近接するクラッド層との屈折率差によって、
発光層4で生じた光の内、少なからぬ割合の光が、発光
層4とクラッド層との界面で全反射を繰り返しながら、
発光層4と平行な向きに進行して発光層4端面に到達
し、LEDチップ1の側面から外部へと放射される。そ
のため、LEDチップ1の側面から放射される光を光の
取り出し方向に取り出して利用するためには、LEDチ
ップ1の外部に反射部を設置する必要があり、LEDチ
ップ1を配線基板などに実装して使用する場合はLED
チップ1の実装部を小型にできないという問題があっ
た。
By the way, in the LED chip 1 having the DH structure as described above, the light emitting layer 4
Due to the difference in the refractive index between the light emitting layer 4 and the cladding layer adjacent thereto,
A considerable percentage of the light generated in the light emitting layer 4 repeats total reflection at the interface between the light emitting layer 4 and the cladding layer,
The light proceeds in a direction parallel to the light emitting layer 4, reaches the end face of the light emitting layer 4, and is emitted from the side surface of the LED chip 1 to the outside. Therefore, in order to extract and use the light radiated from the side surface of the LED chip 1 in the light extraction direction, it is necessary to install a reflection portion outside the LED chip 1 and mount the LED chip 1 on a wiring board or the like. LED when used
There is a problem that the mounting portion of the chip 1 cannot be reduced in size.

【0005】また、近年、1個のLEDチップ1から得
られる光量を増大させるために、チップの大型化を目指
す開発傾向にあり、チップの大型化に伴う発光面内での
発光むらを緩和するために、本発明者らは、p側及びn
側の電極を複数の電極に分けるといった電極部に関する
改良を提案している(特願2001−124556参
照)。しかしながら、電極構造が複雑になると、発光層
と平行な向きに進行する光がLEDチップ1の側面から
外部へ放射される以前に、電極部で散乱されるなどして
減衰し、光取り出し効率が低下するというような悪影響
が考えられる。
In recent years, in order to increase the amount of light obtained from one LED chip 1, there has been a development trend to increase the size of the chip, and light emission unevenness in the light emitting surface due to the increase in size of the chip has been reduced. For this reason, we consider p-side and n-side
There has been proposed an improvement relating to an electrode portion such as dividing the electrode on the side into a plurality of electrodes (see Japanese Patent Application No. 2001-124556). However, when the electrode structure is complicated, light traveling in the direction parallel to the light emitting layer is attenuated by being scattered by the electrode portion before being emitted from the side surface of the LED chip 1 to the outside, and the light extraction efficiency is reduced. An adverse effect such as a decrease is considered.

【0006】本発明は上記問題点に鑑みて為されたもの
であり、その目的とするところは、チップ実装部の小型
化が可能で光取り出し効率の高いLEDチップを提供す
ることにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and an object of the present invention is to provide an LED chip having a high light extraction efficiency, in which a chip mounting portion can be reduced in size.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、請求項1の発明では、結晶基板上に少なくとも一対
のp型半導体層及びn型半導体層を形成し、p型半導体
層とn型半導体層との対向部に発光層を設け、p型半導
体層、発光層及びn型半導体層の側面を少なくとも覆う
絶縁膜を設けたLEDチップにおいて、発光層内を発光
層と平行に進行する光が光の取り出し方向へ全反射され
るように、発光層の端面、又は、発光層の端面に接する
絶縁膜の外側面の内、少なくとも何れか一方の面を、そ
の法線が発光層に平行な面と成す角度を所定の角度以上
とするように、発光層に平行な面に対して傾斜させたこ
とを特徴とする。
According to a first aspect of the present invention, at least a pair of a p-type semiconductor layer and an n-type semiconductor layer are formed on a crystal substrate. In an LED chip provided with a light-emitting layer at a portion facing the type semiconductor layer and provided with an insulating film covering at least the side surfaces of the p-type semiconductor layer, the light-emitting layer, and the n-type semiconductor layer, the light-emitting layer travels in parallel with the light-emitting layer. The end face of the light emitting layer, or at least one of the outer surfaces of the insulating film in contact with the end face of the light emitting layer, so that the light is totally reflected in the light extraction direction, the normal of the light emitting layer to the light emitting layer. It is characterized by being inclined with respect to the plane parallel to the light emitting layer so that the angle formed with the parallel plane is equal to or larger than a predetermined angle.

【0008】請求項2の発明では、請求項1の発明にお
いて、発光層の端面の法線と発光層に平行な面とが成す
角度を鋭角とし、絶縁膜の屈折率を発光層の屈折率で除
した値の逆正弦以上としたことを特徴とする。
According to a second aspect of the present invention, in the first aspect of the present invention, the angle formed between the normal to the end face of the light emitting layer and a plane parallel to the light emitting layer is an acute angle, and the refractive index of the insulating film is changed to the refractive index of the light emitting layer. And a value greater than the inverse sine of the value divided by.

【0009】請求項3の発明では、請求項1の発明にお
いて、発光層の端面と発光層に平行な面とを略直交さ
せ、発光層の端面に接する絶縁膜の外側面の法線と発光
層に平行な面とが成す角度を鋭角とし、その角度を、基
板実装後の完成状態において絶縁膜の外側面が接する物
質の屈折率を絶縁膜の屈折率で除した値の逆正弦以上と
したことを特徴とする請求項4の発明では、請求項1の
発明において、発光層の端面の法線と発光層に平行な面
とが成す第1の角度と、発光層の端面に接する絶縁膜の
外側面の法線と発光層に平行な面とが成す第2の角度と
はそれぞれ鋭角であって、第2の角度を第1の角度より
も大きくし、第1の角度を、絶縁膜の屈折率を発光層の
屈折率で除した値の逆正弦よりも小さい角度とし、且
つ、第2の角度と第1の角度との差に、発光層の屈折率
を絶縁膜の屈折率で除した値に第1の角度の正弦を乗じ
た値の逆正弦を加算した値を、基板実装後の完成状態に
おいて絶縁膜の外側面が接する物質の屈折率を絶縁膜の
屈折率で除した値の逆正弦以上としたことを特徴とす
る。
According to a third aspect of the present invention, in the first aspect of the present invention, the end face of the light emitting layer and the plane parallel to the light emitting layer are substantially perpendicular to each other, and the normal to the outer face of the insulating film in contact with the end face of the light emitting layer is emitted. The angle formed by the plane parallel to the layer is an acute angle, and the angle is equal to or greater than the inverse sine of the value obtained by dividing the refractive index of the substance in contact with the outer surface of the insulating film in the completed state after mounting the substrate by the refractive index of the insulating film. According to a fourth aspect of the present invention, in the first aspect of the present invention, the first angle formed between the normal to the end face of the light emitting layer and a plane parallel to the light emitting layer, and the insulation in contact with the end face of the light emitting layer. The second angle formed between the normal to the outer surface of the film and the plane parallel to the light emitting layer is an acute angle, and the second angle is larger than the first angle, and the first angle is insulated. An angle smaller than the inverse sine of a value obtained by dividing the refractive index of the film by the refractive index of the light emitting layer, and the second angle and the first angle The value obtained by adding the inverse sine of the value obtained by dividing the refractive index of the light emitting layer by the refractive index of the insulating film to the difference from the angle and the value obtained by multiplying the sine of the first angle by the sine of the insulating film in the completed state after mounting on the substrate Wherein the refractive index of a substance in contact with the outer surface is divided by an inverse sine of a value obtained by dividing by a refractive index of the insulating film.

【0010】請求項5の発明では、請求項4の発明にお
いて、発光層の端面に接する絶縁膜の外側面を、発光層
の端面と非平行としたことを特徴とする。
According to a fifth aspect of the present invention, in the fourth aspect, the outer surface of the insulating film in contact with the end surface of the light emitting layer is not parallel to the end surface of the light emitting layer.

【0011】請求項6の発明では、請求項1乃至5の何
れか1つの発明において、絶縁膜の外側に金属膜を設け
たことを特徴とする。
According to a sixth aspect of the present invention, in any one of the first to fifth aspects of the present invention, a metal film is provided outside the insulating film.

【0012】請求項7の発明では、請求項6の発明にお
いて、金属膜を、p型半導体層又はn型半導体層の内少
なくとも何れか一方への配線部として兼用したことを特
徴とする。
According to a seventh aspect of the present invention, in the sixth aspect, the metal film also serves as a wiring portion for at least one of the p-type semiconductor layer and the n-type semiconductor layer.

【0013】請求項8の発明では、請求項1乃至7の何
れか1つの発明において、チップ側面を発光層と平行な
面に対して斜めに傾斜させたことを特徴とする。
According to an eighth aspect of the present invention, in any one of the first to seventh aspects of the present invention, the chip side surface is inclined with respect to a plane parallel to the light emitting layer.

【0014】請求項9の発明では、請求項1乃至8の何
れか1つの発明において、p型半導体層とn型半導体層
の各々に接続するp側電極とn側電極を半導体層形成側
のチップ面に設け、複数のp側電極と、複数のn側電極
とを、略平行に等間隔で交互に並行配列して、複数のp
側電極の配列方向と交差する方向における一方の端を互
いに連結して櫛形に形成するとともに、複数のn側電極
の配列方向と交差する方向における他方の端を互いに連
結して櫛形に形成して成ることを特徴とする。
According to a ninth aspect of the present invention, in any one of the first to eighth aspects of the present invention, the p-side electrode and the n-side electrode connected to each of the p-type semiconductor layer and the n-type semiconductor layer are formed on the semiconductor layer forming side. A plurality of p-side electrodes and a plurality of n-side electrodes are provided on the chip surface, and are alternately and substantially parallel arranged at equal intervals in parallel.
One end in a direction intersecting the arrangement direction of the side electrodes is connected to each other to form a comb shape, and the other end in a direction intersecting the arrangement direction of the plurality of n-side electrodes is connected to each other to form a comb shape. It is characterized by comprising.

【0015】請求項10の発明では、請求項9の発明に
おいて、各電極の連結されていない側の端部に丸みをも
たせたことを特徴とする。
According to a tenth aspect of the present invention, in the ninth aspect of the present invention, the ends of the electrodes not connected are rounded.

【0016】請求項11の発明では、請求項1乃至10
の何れか1つの発明において、p型半導体層とn型半導
体層との対を複数対積層したことを特徴とする。
In the eleventh aspect of the present invention, the first to tenth aspects are provided.
In any one of the inventions described above, a plurality of pairs of a p-type semiconductor layer and an n-type semiconductor layer are stacked.

【0017】[0017]

【発明の実施の形態】本発明の実施の形態を図面を参照
して説明する。
Embodiments of the present invention will be described with reference to the drawings.

【0018】(実施形態1)本実施形態のLEDチップ
の断面図を図1に示す。本実施形態では、サファイアの
ような透光性基板2の結晶上に、GaN系化合物半導体
のn型半導体層3、発光層4を含む量子井戸構造、及び
p型半導体層5を順番に積層してある。そして、n型半
導体層3及びp型半導体層5の各々には、n側電極及び
p側電極の給電部6,7が両半導体層3,5における透
光性基板2と反対側の面に設けてある。また、n型及び
p型の各半導体層3,5と発光層4の側面及び下面に
は、n側及びp側電極の給電部6,7が形成された部位
を除いて絶縁膜8を形成してある。尚、本実施形態では
絶縁膜8の材料として屈折率が約1.5のSiOを用
いている。また、図1中の矢印は発光層4で生じた光の
内、発光層4と平行な方向に進行して発光層4の端面に
到達した光の光路の一例を示している。
(Embodiment 1) FIG. 1 shows a cross-sectional view of an LED chip of this embodiment. In the present embodiment, an n-type semiconductor layer 3 of a GaN-based compound semiconductor, a quantum well structure including a light-emitting layer 4, and a p-type semiconductor layer 5 are sequentially stacked on a crystal of a translucent substrate 2 such as sapphire. It is. In each of the n-type semiconductor layer 3 and the p-type semiconductor layer 5, power supply portions 6 and 7 of the n-side electrode and the p-side electrode are provided on the surfaces of the semiconductor layers 3 and 5 on the side opposite to the light-transmitting substrate 2. It is provided. An insulating film 8 is formed on the side and lower surfaces of the n-type and p-type semiconductor layers 3 and 5 and the light emitting layer 4 except for the portions where the power supply portions 6 and 7 of the n-side and p-side electrodes are formed. I have. In this embodiment, SiO 2 having a refractive index of about 1.5 is used as the material of the insulating film 8. The arrows in FIG. 1 indicate an example of the optical path of the light generated in the light emitting layer 4 that travels in a direction parallel to the light emitting layer 4 and reaches the end face of the light emitting layer 4.

【0019】ここで、本実施形態では発光層4の端面の
法線L1と、発光層4に平行な面Aとの成す角度θ
(鋭角)が、絶縁膜8の屈折率nを発光層4の屈折
率nで除した値の逆正弦以上となり(θ≧sin
−1(n/n))、透光性基板2に近い側ほど幅広
となるように、発光層4を含む両半導体層3,5の側面
をエッチングしている。例えば発光層4の屈折率n
約2.6、SiOからなる絶縁膜8の屈折率nが約
1.5の場合、sin−1(n/n)=35.2と
なるので、本実施形態では角度θが約40度となるよ
うに、発光層4を含む両半導体層3,5の側面をエッチ
ングして、斜面を形成している。
Here, in the present embodiment, the angle θ formed between the normal L 1 to the end face of the light emitting layer 4 and the plane A parallel to the light emitting layer 4.
1 (acute angle) becomes a refractive index n 2 of the insulating film 8 over the arcsine of a value obtained by dividing a refractive index n 1 of the light-emitting layer 4 (theta 1 ≧ sin
−1 (n 2 / n 1 )), the side surfaces of both the semiconductor layers 3 and 5 including the light emitting layer 4 are etched so as to be wider on the side closer to the light transmitting substrate 2. For example the refractive index n 1 of the light-emitting layer 4 is about 2.6, the refractive index n 2 of the insulating film 8 made of SiO 2 is about 1.5, and sin -1 (n 2 / n 1 ) = 35.2 since, in the present embodiment, as the angle theta 1 is about 40 degrees, the side surfaces of the two semiconductor layers 3 and 5 including the light emitting layer 4 is etched to form a slope.

【0020】本実施形態のLEDチップ1を図示しない
配線基板にフェースダウンの状態で実装して、点灯させ
たところ、発光層4で発生し、発光層4とクラッド層と
の界面で全反射を繰り返しながら、発光層4と平行な向
きに進行して発光層4の端面に到達した光は、発光層4
の端面で光取り出し方向(透光性基板2側)に全反射さ
れるので、発光層4の端面から側方に放射される無駄な
光を少なくして、光取り出し効率を高めることができ
る。
When the LED chip 1 of this embodiment is mounted face down on a wiring board (not shown) and turned on, the LED chip 1 is generated in the light emitting layer 4 and totally reflected at the interface between the light emitting layer 4 and the cladding layer. While repeating, the light traveling in the direction parallel to the light emitting layer 4 and reaching the end face of the light emitting layer 4
The light is totally reflected in the light extraction direction (the light-transmitting substrate 2 side) at the end face of the light emitting layer 4, so that useless light radiated laterally from the end face of the light emitting layer 4 can be reduced, and the light extraction efficiency can be increased.

【0021】尚、本実施形態ではLEDチップ1とし
て、フェースダウンの状態で配線基板に実装される構造
のものを例に説明を行ったが、LEDチップ1をフェー
スダウンの状態で配線基板に実装される構造のものに限
定する趣旨のものではなく、図2に示すようにフェース
アップの状態で配線基板に実装される場合には、発光層
4内を発光層4と平行な向きに進行する光が、発光層4
の端面で光の取り出し面側(透光性基板2と反対側)に
全反射されるように、発光層4の端面の法線L1と発光
層4に平行な面Aとの成す角度θが、絶縁膜8の屈折
率nを発光層4の屈折率nで除した値の逆正弦以上
となり(θ≧sin−1(n/n))、透光性基
板2から遠い側ほど幅広となるように、発光層4を含む
両半導体層3,5の側面をエッチングなどの方法でカッ
トすれば良い。尚、図2中の7aはp型半導体層5の上
面に形成された透光性の金属膜からなるp側電極であ
る。
In this embodiment, the LED chip 1 has a structure in which the LED chip 1 is mounted on the wiring board in a face-down state. However, the LED chip 1 is mounted on the wiring board in a face-down state. The structure is not limited to the structure described above, and when the light emitting layer 4 is mounted on the wiring board in a face-up state as shown in FIG. The light is emitted from the light emitting layer 4
The angle θ 1 between the normal L 1 of the end face of the light emitting layer 4 and the plane A parallel to the light emitting layer 4 so that the light is completely reflected on the light extraction surface side (the side opposite to the light transmitting substrate 2) at the end face of the light emitting layer 4. but it becomes the refractive index n 2 of the insulating film 8 over the arcsine of a value obtained by dividing a refractive index n 1 of the light-emitting layer 4 (θ 1 ≧ sin -1 ( n 2 / n 1)), a transparent substrate 2 The side surfaces of the two semiconductor layers 3 and 5 including the light emitting layer 4 may be cut by a method such as etching so that the farther side becomes wider. Incidentally, 7a in FIG. 2 is a p-side electrode made of a light-transmitting metal film formed on the upper surface of the p-type semiconductor layer 5.

【0022】(実施形態2)本実施形態のLEDチップ
の断面図を図3に示す。尚、LEDチップ1の基本構成
は実施形態1と同様であるので、同一の構成要素には同
一の符号を付して、その説明は省略する。また、図3中
の矢印は発光層4で生じた光の内、発光層4と平行な方
向に進行して発光層4の端面に到達した光の光路の一例
を示している。
(Embodiment 2) FIG. 3 is a sectional view of an LED chip according to this embodiment. Since the basic configuration of the LED chip 1 is the same as that of the first embodiment, the same components are denoted by the same reference numerals and description thereof will be omitted. Arrows in FIG. 3 indicate an example of an optical path of light that has traveled in a direction parallel to the light emitting layer 4 and has reached the end face of the light emitting layer 4 among the light generated in the light emitting layer 4.

【0023】実施形態1では透光性基板2の側面が、発
光層4に平行な面と略直交しているのに対して、本実施
形態では透光性基板2の側面を、発光層4を含む両半導
体層3,5の側面と同様、発光層4に平行な面に対して
斜めにカットしており、透光性基板2の側面を発光層4
と平行な面に対して斜めに傾斜させることで、発光層4
から透光性基板2の側面に向かって進行する光の内、透
光性基板2の側面で光取り出し方向(図3の上側)へ全
反射される割合が増加し、光取り出し効率をさらに向上
させている。また直方体形状のLEDチップ1では、チ
ップ側面に入射した光が全反射されてチップ内部を進行
した場合、入射角が変化しないために別の面でも再び全
反射されてしまい、チップ内で全反射を繰り返して進行
する所謂繰り返し完全反射が発生するが、図3に示すよ
うにチップ側面を傾斜させることで、繰り返し完全反射
が起こりにくくなり、光の取り出し効率が向上する。
In the first embodiment, the side surface of the light-transmitting substrate 2 is substantially orthogonal to the plane parallel to the light emitting layer 4, whereas in the present embodiment, the side surface of the light transmitting substrate 2 is Are cut obliquely to a plane parallel to the light emitting layer 4 like the side surfaces of the semiconductor layers 3 and 5 including the light emitting layer 4.
The light emitting layer 4 is tilted obliquely with respect to a plane parallel to
Of the light traveling toward the side surface of the light-transmitting substrate 2 from the side, the ratio of the total reflection in the light extraction direction (upper side in FIG. 3) on the side surface of the light-transmitting substrate 2 increases, further improving the light extraction efficiency. Let me. In the case of the LED chip 1 having a rectangular parallelepiped shape, when light incident on the side surface of the chip is totally reflected and travels inside the chip, the incident angle does not change, so that the light is totally reflected again on another surface. The so-called repetitive perfect reflection that occurs by repeating the above steps occurs. However, by inclining the chip side face as shown in FIG. 3, the repetitive perfect reflection is less likely to occur and the light extraction efficiency is improved.

【0024】また図3に示すLEDチップ1では、絶縁
膜8の外側面に金属膜9a,9bを蒸着させており、さ
らにLEDチップ1の下面側の絶縁膜8に蒸着させた金
属膜9aをn型半導体層3と接合させ、n型半導体層3
への配線部を金属膜9aで兼用する構造としている。こ
こで、金属膜9aによりn型半導体層3への配線部を兼
用しているので、LEDチップ1をフェースダウンの状
態で配線基板に実装する際には、n側電極の給電部6に
比べて面積的に広い金属膜9aにバンプを接合すること
ができ、LEDチップ1の配線基板への実装が容易にな
る。また、n側電極の給電部6に比べて金属膜9aの方
が面積が広いので、より大きなバンプを用いたり、複数
個のバンプを用いることができ、LEDチップ1と配線
基板との間の熱抵抗を小さくして、LEDチップ1の放
熱性を高めることができる。
In the LED chip 1 shown in FIG. 3, metal films 9a and 9b are deposited on the outer surface of the insulating film 8, and the metal film 9a deposited on the insulating film 8 on the lower surface side of the LED chip 1 is also provided. bonding with the n-type semiconductor layer 3;
The structure is such that the metal film 9a also serves as a wiring portion to the wiring. Here, since the metal film 9a also serves as a wiring portion to the n-type semiconductor layer 3, when the LED chip 1 is mounted on a wiring board in a face-down state, compared with the power supply portion 6 of the n-side electrode. The bumps can be bonded to the metal film 9a which is large in area and area, and the mounting of the LED chip 1 on the wiring board becomes easy. In addition, since the metal film 9a has a larger area than the power supply section 6 of the n-side electrode, a larger bump or a plurality of bumps can be used, and the distance between the LED chip 1 and the wiring board can be increased. The heat resistance of the LED chip 1 can be improved by reducing the thermal resistance.

【0025】また、絶縁膜8の外側に蒸着した金属膜9
a,9bは、入射した光を光の取り出し方向へ反射する
反射部としても機能するので、光の取り出し効率がさら
に向上するという効果が得られる。
Further, a metal film 9 deposited outside the insulating film 8
Since a and 9b also function as reflectors for reflecting the incident light in the light extraction direction, the effect of further improving the light extraction efficiency can be obtained.

【0026】尚、本実施形態では実施形態1のLEDチ
ップ1において、チップ側面を発光層4と平行な面に対
して傾斜させるとともに、絶縁膜8の外側に金属膜9
a,9bを蒸着して、金属膜9bでn型半導体層3への
配線部を兼用しているが、後述の実施形態において、本
実施形態と同様に、チップ側面を発光層4と平行な面に
対して傾斜させたり、絶縁膜8の外側に金属膜9a,9
bを蒸着して、金属膜9bでn型半導体層3への配線部
を兼用したりしても良いことは言うまでもない。
In this embodiment, in the LED chip 1 of the first embodiment, the side surface of the chip is inclined with respect to a plane parallel to the light emitting layer 4 and the metal film 9 is formed outside the insulating film 8.
Although a and 9b are deposited and the metal film 9b also serves as a wiring portion to the n-type semiconductor layer 3, in a later-described embodiment, similarly to this embodiment, the chip side surface is parallel to the light emitting layer 4. The metal films 9a and 9
It goes without saying that b may be deposited and the metal film 9b may also serve as the wiring portion to the n-type semiconductor layer 3.

【0027】(実施形態3)本実施形態のLEDチップ
の断面図を図4に示す。本実施形態では、サファイアの
ような透光性基板2の結晶上に、GaN系化合物半導体
のn型半導体層3、発光層4を含む量子井戸構造、及び
p型半導体層5を順番に積層してある。そして、n型半
導体層3及びp型半導体層5の各々には、n側電極及び
p側電極の給電部6,7が両半導体層3,5における透
光性基板2と反対側の面に設けてある。また、n型及び
p型の各半導体層3,5の側面及び下面には、n側及び
p側電極への給電部6,7の形成部位を除いて絶縁膜8
を形成してある。尚、本実施形態では絶縁膜8の材料と
して屈折率nが約2.0の窒化ケイ素を用いている。
また、図4中の矢印は発光層4で生じた光の内、発光層
4と平行な方向に進行して発光層4の端面に到達した光
の光路の一例を示している。
(Embodiment 3) FIG. 4 shows a sectional view of an LED chip of this embodiment. In the present embodiment, an n-type semiconductor layer 3 of a GaN-based compound semiconductor, a quantum well structure including a light-emitting layer 4, and a p-type semiconductor layer 5 are sequentially stacked on a crystal of a translucent substrate 2 such as sapphire. It is. In each of the n-type semiconductor layer 3 and the p-type semiconductor layer 5, power supply portions 6 and 7 of the n-side electrode and the p-side electrode are provided on the surfaces of the semiconductor layers 3 and 5 on the side opposite to the light-transmitting substrate 2. It is provided. The insulating film 8 is formed on the side and lower surfaces of the n-type and p-type semiconductor layers 3 and 5 except for the portions where the power supply portions 6 and 7 for the n-side and p-side electrodes are formed.
Is formed. In this embodiment the refractive index n 2 is using about 2.0 of silicon nitride as a material of the insulating film 8.
Arrows in FIG. 4 indicate an example of an optical path of light emitted from the light emitting layer 4 that travels in a direction parallel to the light emitting layer 4 and reaches an end face of the light emitting layer 4.

【0028】また、本実施形態のLEDチップ1はフェ
ースダウンの状態で図示しない配線基板に実装され、L
EDチップ1の周囲を屈折率nが約1.4の透光性の
封止樹脂(図示せず)で封止している。
The LED chip 1 of this embodiment is mounted face down on a wiring board (not shown).
Around the ED chip 1 is the refractive index n 3 is sealed at about 1.4 of the translucent sealing resin (not shown).

【0029】ここで、上述した実施形態1では発光層4
の端面の法線L1と、発光層4に平行な面Aとの成す角
度θが、絶縁膜8の屈折率nを発光層4の屈折率n
で除した値の逆正弦以上となるように、発光層4を含
む両半導体層3,5の側面をエッチングしているのに対
して、本実施形態では発光層4の端面を発光層4に平行
な面Aと略直交させている(すなわち発光層4の端面の
法線を発光層4に平行な面Aと平行させている)。そし
て、発光層4の側面に接する絶縁膜8の外側面の法線L
2と、発光層4に平行な面Aとの成す角度(鋭角)θ
が、封止樹脂の屈折率nを絶縁膜の屈折率nで除し
た値の逆正弦以上となるように(θ≧sin−1(n
/n))、絶縁膜8の外側面をエッチングなどの方
法でカットして傾斜面8aを形成している。例えば絶縁
膜8の屈折率nが約2.0、封止樹脂の屈折率n
約1.4の場合、sin−1(n/n)≒44とな
るので、本実施形態では角度θが約45度となるよう
に、発光層4に接する絶縁膜8の外側面をエッチングし
て、傾斜面8aを形成している。このように、発光層4
に接する絶縁膜8の外側面を発光層4と平行な面Aに対
して傾斜させることで、発光層4と平行な向きに進行す
る光が、絶縁膜8の外側面に設けた傾斜面8aで光の取
り出し方向へ全反射されるから、従来のLEDチップ1
に比べて光の取り出し方向への光の取り出し効率を向上
させることができる。
Here, in the first embodiment, the light emitting layer 4
The angle θ 1 between the normal L 1 to the end face of the light emitting layer 4 and the plane A parallel to the light emitting layer 4 changes the refractive index n 2 of the insulating film 8 to the refractive index n of the light emitting layer 4.
The side surfaces of the two semiconductor layers 3 and 5 including the light-emitting layer 4 are etched so as to have a value equal to or greater than the inverse sine of the value obtained by dividing by 1 , whereas in the present embodiment, the end surface of the light-emitting layer 4 is (That is, the normal of the end face of the light emitting layer 4 is parallel to the plane A parallel to the light emitting layer 4). Then, the normal L to the outer surface of the insulating film 8 in contact with the side surface of the light emitting layer 4
2 and the plane A parallel to the light emitting layer 4 (acute angle) θ 2
But so that the refractive index n 3 of the sealing resin than arcsine of a value obtained by dividing the refractive index n 2 of the insulating film 2 ≧ sin -1 (n
3 / n 2 )), the outer surface of the insulating film 8 is cut by a method such as etching to form the inclined surface 8a. For example the refractive index n 2 is approximately 2.0 of the insulating film 8, when the refractive index n 3 of the sealing resin is about 1.4, since the sin -1 (n 3 / n 2 ) ≒ 44, the present embodiment in such an angle theta 2 is about 45 degrees, the outer surface of the insulating film 8 in contact with the light-emitting layer 4 is etched to form an inclined surface 8a. Thus, the light emitting layer 4
Is inclined with respect to a plane A parallel to the light emitting layer 4 so that light traveling in a direction parallel to the light emitting layer 4 can be inclined by the inclined surface 8 a provided on the outer surface of the insulating film 8. Is totally reflected in the light extraction direction by the conventional LED chip 1
It is possible to improve the light extraction efficiency in the light extraction direction as compared with the above.

【0030】(実施形態4)本実施形態のLEDチップ
の断面図を図5に示す。本実施形態では、サファイアの
ような透光性基板2の結晶上に、GaN系化合物半導体
のn型半導体層3、屈折率nが約2.6の発光層4を
含む量子井戸構造、及びp型半導体層5を順番に積層し
てある。そして、n型半導体層3及びp型半導体層5の
各々には、n側電極及びp側電極の給電部6,7が両半
導体層3,5における透光性基板2と反対側の面に設け
てある。また、n型及びp型の各半導体層3,5と発光
層4の側面及び下面には、n側及びp側電極への給電部
6,7の形成部位を除いて、屈折率nが約1.5のS
iOからなる絶縁膜8を形成してある。このLEDチ
ップ1はフェースダウンの状態で図示しない実装基板に
実装され、LEDチップ1の周囲を屈折率nが約1.
2の透光性の封止樹脂(図示せず)で封止している。
尚、図4中の矢印は発光層4で生じた光の内、発光層4
と平行な方向に進行して発光層4の端面に到達した光の
光路の一例を示している。
(Embodiment 4) FIG. 5 is a sectional view of an LED chip according to this embodiment. In the present embodiment, a quantum well structure including an n-type semiconductor layer 3 of a GaN-based compound semiconductor and a light emitting layer 4 having a refractive index n 1 of about 2.6 on a crystal of a light transmitting substrate 2 such as sapphire; The p-type semiconductor layers 5 are sequentially stacked. In each of the n-type semiconductor layer 3 and the p-type semiconductor layer 5, power supply portions 6 and 7 of the n-side electrode and the p-side electrode are provided on the surfaces of the semiconductor layers 3 and 5 on the side opposite to the light-transmitting substrate 2. It is provided. The refractive index n 2 is set on the side surfaces and the lower surface of each of the n-type and p-type semiconductor layers 3 and 5 and the light emitting layer 4 except for the portions where the power supply portions 6 and 7 for the n-side and p-side electrodes are formed. About 1.5 S
An insulating film 8 made of iO 2 is formed. The LED chip 1 is mounted on a mounting board (not shown) in a state of face-down, the periphery of the LED chip 1 is a refractive index n 3 of about 1.
2 and is sealed with a light-transmitting sealing resin (not shown).
The arrow in FIG. 4 indicates the light emitting layer 4 of the light generated in the light emitting layer 4.
3 shows an example of an optical path of light that travels in a direction parallel to FIG.

【0031】ところで、上述した各実施形態のLEDチ
ップ1では、発光層4の端面の法線L1、又は、発光層
4の端面に接する絶縁膜8の外側面8aの法線L2と、
発光層4に平行な面Aとがそれぞれ成す角θ,θ
が、θ≧sin−1(n/n)、θ≧sin
−1(n/n)なる条件を満たすように、発光層4
の端面、又は、発光層4の端面に接する絶縁膜8の外側
面8aの内の一方のみを、発光層4と平行な面Aに対し
て傾斜させているが、LEDチップ1の大型化に伴って
電極構造が複雑化した場合、上記角度θ,θを単独
で大きくできない場合も想定される。また、電極構造が
比較的単純な構造であったとしても、使用する絶縁膜8
や封止樹脂の材料によっては、発光層4と絶縁膜8との
屈折率n,nの差、絶縁膜8と封止樹脂との屈折率
,nの差が小さくなって、上記の条件式を満たす
ために角度θ,θの値を製作が困難なほど大きい値
に設定しなければならない場合も考えられる。
By the way, in the LED chip 1 of each embodiment described above, the normal L1 of the end face of the light emitting layer 4 or the normal L2 of the outer face 8a of the insulating film 8 which is in contact with the end face of the light emitting layer 4,
The angles θ 1 and θ formed by the plane A parallel to the light emitting layer 4 respectively.
2 is θ 1 ≧ sin −1 (n 2 / n 1 ), θ 2 ≧ sin
-1 (n 3 / n 2 ) so as to satisfy the condition of
, Or only one of the outer surfaces 8a of the insulating film 8 in contact with the end surface of the light emitting layer 4 is inclined with respect to the plane A parallel to the light emitting layer 4. If the electrode structure is complicated, the angles θ 1 and θ 2 may not be increased alone. Even if the electrode structure is relatively simple, the insulating film 8 to be used can be used.
Depending on the material of the sealing resin, the difference between the refractive indexes n 1 and n 2 between the light emitting layer 4 and the insulating film 8 and the difference between the refractive indexes n 2 and n 3 between the insulating film 8 and the sealing resin become small. In some cases, the values of the angles θ 1 and θ 2 must be set to values that are so large that production is difficult to satisfy the above conditional expressions.

【0032】そこで、本実施形態では図5に示すよう
に、発光層4の端面の法線L1と面Aとの成す第1の角
度(鋭角)がθとなるように、発光層4の端面を面A
に対して傾斜させるとともに、発光層4の端面に接する
絶縁膜8の外側面8aの法線L2と面Aとの成す第2の
角度(鋭角)が第1の角度θよりも大きい角度θ
なるように、発光層4の端面が接する絶縁膜8の外側面
8aを面Aに対して傾斜させている。
[0032] Therefore, in the present embodiment, as shown in FIG. 5, as the first angle formed between the normal line L1 and the surface A of the end face of the light-emitting layer 4 (acute) becomes theta 1, the light-emitting layer 4 End face to face A
And a second angle (acute angle) between the normal L2 of the outer surface 8a of the insulating film 8 and the surface A in contact with the end surface of the light emitting layer 4 is larger than the first angle θ1. 2 , the outer surface 8a of the insulating film 8 with which the end surface of the light emitting layer 4 contacts is inclined with respect to the surface A.

【0033】ここで、上記の角度θを、絶縁膜8の屈
折率nを発光層4の屈折率nで除した値の逆正弦よ
りも小さい値とし(θ<sin−1(n
))、且つ、第2の角度θと第1の角度θとの
差に、発光層4の屈折率nを絶縁膜8の屈折率n
除した値に角度θの正弦を乗じた値の逆正弦を加算し
た値αを、基板実装後の完成状態において絶縁膜8の外
側面が接する封止樹脂の屈折率nを絶縁膜8の屈折率
で除した値の逆正弦以上とするように(α=(θ
−θ)+sin−1((n/n)・sinθ
≧sin−1(n/n ))、角度θ,θの値を
設定している。例えば発光層4の屈折率nが約2.
6、絶縁膜8の屈折率nが約1.5、封止樹脂の屈折
率nが約1.2の場合は、θ<sin−1(n
)=35.2、α≧sin−1(n/n)=5
3.1となるので、上記の条件式を満足するように、本
実施形態では角度θ=25°、角度θ=40°とし
ている。
Here, the angle θ1Of the insulating film 8
Folding ratio n2Is the refractive index n of the light emitting layer 41Arc sine of the value divided by
Smaller value (θ1<Sin-1(N2/
n1)) And the second angle θ2And the first angle θ1With
The difference is the refractive index n of the light emitting layer 4.1Is the refractive index n of the insulating film 82so
Divided by the angle θ1Add the inverse sine of the value multiplied by the sine of
The value α outside the insulating film 8 in the completed state after mounting on the substrate.
Refractive index n of the sealing resin with which the side surface contacts3Is the refractive index of the insulating film 8
n2(Α = (θ2
−θ1) + Sin-1((N1/ N2) · Sin θ1)
≧ sin-1(N3/ N 2)), Angle θ1, Θ2The value of
You have set. For example, the refractive index n of the light emitting layer 41Is about 2.
6. Refractive index n of insulating film 82Is about 1.5, refraction of sealing resin
Rate n3Is about 1.2, θ1<Sin-1(N2/
n1) = 35.2, α ≧ sin-1(N3/ N2) = 5
3.1, so that the above conditional expression is satisfied.
In the embodiment, the angle θ1= 25 °, angle θ2= 40 °
ing.

【0034】この時、α=62°となり、発光層4内を
発光層4と平行な方向に進行する光が、発光層4と絶縁
膜8との界面で屈折し、絶縁膜8の外側面に設けた傾斜
面8aに対して臨界条件(α≧sin−1(n
))を超える入射角αで入射するので、絶縁膜8の
外側面に設けた傾斜面8aで光の取り出し方向へ全反射
されることになり、従来のLEDチップ1に比べて光の
取り出し方向への光の取り出し効率が向上する。
At this time, α = 62 °, and the light traveling in the light emitting layer 4 in the direction parallel to the light emitting layer 4 is refracted at the interface between the light emitting layer 4 and the insulating film 8, and the outer surface of the insulating film 8 Critical condition (α ≧ sin −1 (n 3 /
n 2 )), the light is totally reflected in the light extraction direction by the inclined surface 8 a provided on the outer surface of the insulating film 8. Light extraction efficiency in the light extraction direction is improved.

【0035】上述した実施形態1〜3のLEDチップ1
のように、発光層4の端面、又は、発光層4の端面が接
する絶縁膜8の外側面の内の一方のみを傾斜させる場合
は、角度θ,θが大きい値となって、製作が難しい
場合があるが、本実施形態では発光層4の端面、およ
び、発光層4の端面が接する絶縁膜8の外側面を、それ
ぞれ、発光層4と平行な面Aに対して、製作可能な角度
θ,θで傾斜させているので、LEDチップ1の製
造が容易であり、発光層4内を発光層4と平行な方向に
進行する光を、光の取り出し方向に全反射させることが
できる。また、発光層4及び絶縁膜8として、屈折率n
と屈折率nとの差が小さいような組み合わせの材料
を用いたり、絶縁膜8及び封止樹脂として、屈折率n
と屈折率n との差が小さいような組み合わせの材料を
用いることができ、絶縁膜8や封止樹脂に使用できる材
料の種類が増えるから、材料選択の自由度が向上すると
いう利点もある。
The LED chips 1 of the first to third embodiments described above
The end face of the light emitting layer 4 or the end face of the light emitting layer 4
When only one of the outer surfaces of the insulating film 8 is inclined
Is the angle θ1, Θ2Is large and difficult to manufacture
In some cases, in this embodiment, the end face of the light emitting layer 4 and
And the outer surface of the insulating film 8 with which the end surface of the light emitting layer 4 is in contact.
The angle which can be manufactured with respect to the plane A parallel to the light emitting layer 4
θ1, Θ2The LED chip 1
It is easy to fabricate the light emitting layer 4 in a direction parallel to the light emitting layer 4.
The traveling light can be totally reflected in the light extraction direction.
it can. The light emitting layer 4 and the insulating film 8 have a refractive index n
1And the refractive index n2Combination material with small difference from
Or the refractive index n as the insulating film 8 and the sealing resin.2
And the refractive index n 3Materials that have a small difference from
Materials that can be used and can be used for the insulating film 8 and the sealing resin
As the number of types of ingredients increases, the degree of freedom in material selection increases
There is also an advantage.

【0036】尚、本実施形態では発光層4の端面と、発
光層4の端面に接する絶縁膜8の外側面とを非平行とし
ているが(θ≠θ)、図6に示すように、θ<s
in −1(n/n))、α≧sin−1(n/n
)なる条件を満足するように角度θ,θを設定す
るとともに、発光層4の端面と、発光層4の端面に接す
る絶縁膜8の外側面とを略平行としても良く(θ=θ
)、上述と同様に光の取り出し効率を向上させること
ができる。
In the present embodiment, the end face of the light emitting layer 4 is
The outer surface of the insulating film 8 that is in contact with the end surface of the optical layer 4 is non-parallel.
1≠ θ2), As shown in FIG.1<S
in -1(N2/ N1)), Α ≧ sin-1(N3/ N
2) To satisfy the condition1, Θ2Set
And contact the end face of the light emitting layer 4 and the end face of the light emitting layer 4
May be substantially parallel to the outer surface of the insulating film 8 (θ1= Θ
2), To improve the light extraction efficiency as described above.
Can be.

【0037】ところで、発光層4の端面と、発光層4の
端面に接する絶縁膜8の外側面とを略平行にした場合、
半導体層の厚みによっては、図6に示すように、半導体
層の端面と絶縁膜8の外側面との間で全反射を複数回繰
り返した後に、透光性基板2を通してLEDチップ1の
外部へ放射される場合が考えられ、光路が長くなること
で光量の減衰や配光むらが発生する可能性がある。それ
に対して、図5に示すように発光層4の端面と、発光層
4の端面に接する絶縁膜8の外側面とを非平行にすれ
ば、絶縁膜8の外側面で全反射した光は、そのまま光の
取り出し面側に放射され、上述のような繰り返し反射は
発生しないので、発光層4の端面と発光層4の端面に接
する絶縁膜8の外側面とを非平行にした場合は略平行に
した場合に比べて、光の取り出し効率がさらに向上する
という利点がある。
When the end surface of the light emitting layer 4 and the outer surface of the insulating film 8 in contact with the end surface of the light emitting layer 4 are substantially parallel,
Depending on the thickness of the semiconductor layer, as shown in FIG. 6, after total reflection is repeated a plurality of times between the end surface of the semiconductor layer and the outer surface of the insulating film 8, the light is transmitted to the outside of the LED chip 1 through the translucent substrate 2. It is conceivable that the light is radiated, and there is a possibility that attenuation of the light amount or uneven light distribution may occur due to the longer optical path. On the other hand, if the end surface of the light emitting layer 4 is not parallel to the outer surface of the insulating film 8 in contact with the end surface of the light emitting layer 4 as shown in FIG. Since the light is radiated to the light extraction surface as it is and the above-described repetitive reflection does not occur, it is almost impossible to make the end surface of the light emitting layer 4 and the outer surface of the insulating film 8 in contact with the end surface of the light emitting layer 4 non-parallel. There is an advantage that the light extraction efficiency is further improved as compared with the case where they are parallel.

【0038】(実施形態5)本発明の実施形態5を図7
(a)(b)を参照して説明する。尚、LEDチップ1
の基本的な構成は実施形態1と同様であるので、同一の
構成要素には同一の符号を付して、その説明は省略す
る。
(Embodiment 5) FIG. 7 shows Embodiment 5 of the present invention.
Description will be made with reference to (a) and (b). In addition, LED chip 1
Is basically the same as that of the first embodiment, the same components are denoted by the same reference numerals, and description thereof will be omitted.

【0039】図7(a)は本実施形態のLEDチップ1
の電極配置を説明する説明図である。LEDチップ1の
発光面は一辺が約1mmの正方形をしており、従来のL
EDチップに比べて大型である。ここで、複数の短冊状
のn側電極6aと、複数の短冊状のp側電極7aとが、
平行且つ等間隔に交互に並行配列され、複数のn側電極
6aの配列方向と交差する方向における一方の端を互い
に連結して櫛形に形成するとともに、複数のp側電極7
aの配列方向と交差する方向における他方の端を互いに
連結して櫛形に形成している。そして、複数のn側電極
6aを連結する連結部6cに給電部6を形成するととも
に、複数のp側電極7aを連結する連結部7cに給電部
7を形成しており、複数のn側電極6aと複数のp側電
極7aとを等間隔で交互に並行配列することで、発光面
の輝度を均一にできる。尚、n側及びp側電極6a,7
aやその給電部6,7は例えばAu或いはAlを蒸着す
るなどして形成される。
FIG. 7A shows the LED chip 1 of the present embodiment.
FIG. 4 is an explanatory diagram illustrating the electrode arrangement of FIG. The light emitting surface of the LED chip 1 has a square shape with a side of about 1 mm.
Larger than ED chips. Here, the plurality of strip-shaped n-side electrodes 6a and the plurality of strip-shaped p-side electrodes 7a are
One end in a direction intersecting with the arrangement direction of the plurality of n-side electrodes 6 a is alternately arranged in parallel and at equal intervals, and is connected to each other to form a comb shape.
The other ends in a direction intersecting with the arrangement direction of a are connected to each other to form a comb shape. The power supply section 6 is formed at the connection section 6c connecting the plurality of n-side electrodes 6a, and the power supply section 7 is formed at the connection section 7c connecting the plurality of p-side electrodes 7a. By alternately arranging the 6a and the plurality of p-side electrodes 7a at equal intervals in parallel, the luminance of the light emitting surface can be made uniform. The n-side and p-side electrodes 6a, 7
a and its power supply parts 6 and 7 are formed, for example, by depositing Au or Al.

【0040】ここで、積層方向において透光性基板2に
近い側に形成された複数のn側電極6aは、給電部6か
ら遠ざかるにつれて、幅寸法が徐々に狭くなっている。
また、n側電極6a上では給電部6から離れた点ほど、
その近傍の発光層4を所定の光量で発光させるのに必要
な電流密度は小さくなる。したがって、n側電極6aの
幅寸法を、必要な電流密度の減少に合わせて狭めれば、
n側電極6aに対向するp側電極7aと接続されたp型
半導体層5や発光層4の面積を大きく取ることができ、
発光効率がさらに向上する。また、LEDチップ1の半
導体層形成側のチップ面の全域に亘るように幅広の電極
を形成した場合、各々の電極が半導体層形成側のチップ
面から放射される光の反射部として機能することにな
り、光の取り出し効率が向上するという利点がある。ま
た、複数のn側電極6aにおいて櫛の歯に相当する部位
の互いに連結されていない側の端部と、複数のp側電極
7aにおいて櫛の歯に相当する部位の互いに連結されて
いない側の端部とは、先端部に電界が集中しやすいた
め、先端部に丸みを持たせることで電界の集中を抑える
ことができ、発光輝度をさらに均一にできる。
Here, the width of the plurality of n-side electrodes 6 a formed on the side closer to the light-transmitting substrate 2 in the laminating direction gradually decreases as the distance from the power supply section 6 increases.
On the n-side electrode 6a, the further away from the power supply unit 6, the more
The current density required to cause the adjacent light emitting layer 4 to emit light with a predetermined amount of light is reduced. Therefore, if the width of the n-side electrode 6a is reduced in accordance with the required current density,
The area of the p-type semiconductor layer 5 and the light-emitting layer 4 connected to the p-side electrode 7a facing the n-side electrode 6a can be increased,
The luminous efficiency is further improved. Further, when wide electrodes are formed so as to cover the entire chip surface on the semiconductor layer forming side of the LED chip 1, each electrode functions as a reflecting portion of light emitted from the semiconductor layer forming side chip surface. And there is an advantage that the light extraction efficiency is improved. Further, the ends of the plurality of n-side electrodes 6a corresponding to the teeth of the comb not connected to each other and the ends of the plurality of p-side electrodes 7a corresponding to the teeth of the comb which are not connected to each other. In the end portion, the electric field tends to be concentrated at the front end portion. Therefore, by making the front end portion round, the concentration of the electric field can be suppressed, and the emission luminance can be made more uniform.

【0041】また図7(b)は、図7(a)のB−B’
線断面図を示しており、絶縁膜8の材料には屈折率n
が約1.5のSiOを用いている。また、このLED
チップ1はフェースダウンの状態で図示しない実装基板
に実装され、LEDチップ1の周囲を屈折率nが約
1.2の透光性を有する封止樹脂(図示せず)で封止し
ている。
FIG. 7B is a sectional view taken along the line BB 'of FIG.
FIG. 4 shows a cross-sectional view of the line, and the material of the insulating film 8 has a refractive index n 2.
Uses about 1.5 SiO 2 . Also, this LED
Chip 1 is mounted on a mounting board (not shown) in a state of face-down, the periphery of the LED chip 1 is a refractive index n 3 is sealed with a sealing resin having about 1.2 translucent (not shown) I have.

【0042】ここで、本実施形態においても実施形態4
と同様に、発光層4(屈折率n=約2.6)の端面の
法線L1が発光層4と平行な面Aと成す角度をθ、発
光層4の端面と接する絶縁膜8の外側面の法線L2が発
光層4と平行な面Aと成す角度をθとすると、角度θ
を、絶縁膜8の屈折率nを発光層4の屈折率n
除した値の逆正弦より小さい値とし(θ<sin−1
(n/n))、且つ、角度θと角度θとの差
に、発光層4の屈折率nを絶縁膜8の屈折率n で除
した値に角度θの正弦を乗じた値の逆正弦を加算した
値αを、基板実装後の完成状態において絶縁膜8の外側
面が接する封止樹脂の屈折率nを絶縁膜8の屈折率n
で除した値の逆正弦以上とするように(α=(θ
θ)+sin−1((n/n)・sinθ)≧
sin−1(n/n))、角度θ,θの値を設
定している。例えば発光層4の屈折率nが約2.6、
絶縁膜8の屈折率nが約1.5、封止樹脂の屈折率n
が約1.2の場合は、θ<sin−1(n
)=35.2、α≧sin−1(n/n)=5
3.1となるので、上記の条件式を満足するように、本
実施形態では角度θ=25°、角度θ=40°とし
ている。
Here, also in this embodiment, the fourth embodiment
Similarly, the light emitting layer 4 (refractive index n1= About 2.6) of the end face
The angle between normal L1 and plane A parallel to light emitting layer 4 is θ1, Departure
A normal L2 on the outer surface of the insulating film 8 in contact with the end surface of the optical layer 4 is emitted.
The angle formed by the plane A parallel to the optical layer 4 is θ2Then the angle θ
1Is the refractive index n of the insulating film 82Is the refractive index n of the light emitting layer 41so
Value smaller than the inverse sine of the divided value (θ1<Sin-1
(N2/ N1)) And the angle θ2And angle θ1Difference with
The refractive index n of the light emitting layer 41Is the refractive index n of the insulating film 8 2Divided by
Angle θ1Added the inverse sine of the value multiplied by the sine of
The value α is set outside the insulating film 8 in the completed state after mounting on the substrate.
Refractive index n of sealing resin in contact with the surface3Is the refractive index n of the insulating film 8
2(Α = (θ2
θ1) + Sin-1((N1/ N2) · Sin θ1) ≧
sin-1(N3/ N2)), Angle θ1, Θ2Set the value of
I have decided. For example, the refractive index n of the light emitting layer 41Is about 2.6,
Refractive index n of insulating film 82Is about 1.5, the refractive index n of the sealing resin
3Is about 1.2, θ1<Sin-1(N2/
n1) = 35.2, α ≧ sin-1(N3/ N2) = 5
3.1, so that the above conditional expression is satisfied.
In the embodiment, the angle θ1= 25 °, angle θ2= 40 °
ing.

【0043】この時、α=62°となり、発光層4内を
発光層4と平行な方向に進行する光が、発光層4と絶縁
膜8との界面で屈折し、絶縁膜8の外側面に設けた傾斜
面8aに対して臨界条件(α≧sin−1(n
))を超える入射角αで入射するので、絶縁膜8の
外側面に設けた傾斜面8aで光の取り出し方向へ全反射
されることになり、従来のLEDチップ1に比べて光の
取り出し方向への光の取り出し効率が向上する。
At this time, α = 62 °, and light traveling in the light emitting layer 4 in the direction parallel to the light emitting layer 4 is refracted at the interface between the light emitting layer 4 and the insulating film 8, and the outer surface of the insulating film 8 Critical condition (α ≧ sin −1 (n 3 /
n 2 )), the light is totally reflected in the light extraction direction by the inclined surface 8 a provided on the outer surface of the insulating film 8. Light extraction efficiency in the light extraction direction is improved.

【0044】本実施形態のような複雑な電極構造を有し
ている場合、発光層4内を発光層4と平行な方向に進行
する光が、電極で乱反射されるなどして、光の取り出し
面側への光の取り出し効率が減少する可能性があるが、
図7(b)に示すように、n側電極6aによって複数に
分かれている発光層4の端面を斜めにカットするととも
に、発光層4の端面に接する絶縁膜8の外側面を斜めに
カットしているので、発光層4内を発光層4と平行な方
向に進行する光を、光の取り出し方向に全反射させるこ
とができ、従来のLEDチップ1に比べて光の取り出し
効率を向上させることができる。尚、本実施形態では、
実施形態1のLEDチップ1においてn側電極及びp側
電極を櫛形に形成して、n側電極の櫛の歯に相当する部
位と、p側電極の櫛の歯に相当する部位とを、平行且つ
等間隔に交互に配置しているが、他の実施形態のLED
チップ1において本実施形態の電極構造を適用しても良
いことは言うまでもない。
In the case of having a complicated electrode structure as in the present embodiment, light that travels in the light emitting layer 4 in a direction parallel to the light emitting layer 4 is diffusely reflected by the electrode, and the light is extracted. There is a possibility that the light extraction efficiency to the surface side may decrease,
As shown in FIG. 7B, the end surface of the light emitting layer 4 divided into a plurality by the n-side electrode 6a is cut obliquely, and the outer surface of the insulating film 8 in contact with the end surface of the light emitting layer 4 is cut obliquely. Therefore, light traveling in the light emitting layer 4 in a direction parallel to the light emitting layer 4 can be totally reflected in the light extraction direction, and the light extraction efficiency can be improved as compared with the conventional LED chip 1. Can be. In this embodiment,
In the LED chip 1 of the first embodiment, the n-side electrode and the p-side electrode are formed in a comb shape, and a portion corresponding to the comb teeth of the n-side electrode and a portion corresponding to the comb teeth of the p-side electrode are parallel to each other. And are arranged alternately at equal intervals, but LEDs of other embodiments
It goes without saying that the electrode structure of the present embodiment may be applied to the chip 1.

【0045】(実施形態6)本発明の実施形態6を図8
を参照して説明する。上述した実施形態4では、透光性
基板2上にn型半導体層3と発光層4を含む量子井戸構
造とp型半導体層5とを順番に積層したpn接合部を1
組だけ形成しているのに対して、本実施形態では、n型
半導体層3と発光層4を含む量子井戸構造とp型半導体
層5とを順番に積層したpn接合部10a〜10cを3
組積み重ねた構造を有しており、1つのLEDチップ1
内に発光層4が3層存在するので、実施形態4に比べて
1個当たりのLEDチップ1の光量を増大させることが
できる。尚、LEDチップ1の基本構成は実施形態4と
同様であるので、同一の構成要素には同一の符号を付し
て、その説明は省略する。
(Embodiment 6) FIG. 8 shows Embodiment 6 of the present invention.
This will be described with reference to FIG. In the fourth embodiment described above, a pn junction in which a quantum well structure including an n-type semiconductor layer 3 and a light-emitting layer 4 and a p-type semiconductor layer 5 are sequentially stacked on a light-transmitting substrate 2 is formed as one pn junction.
In the present embodiment, only the pn junctions 10 a to 10 c in which the quantum well structure including the n-type semiconductor layer 3 and the light emitting layer 4 and the p-type semiconductor layer 5 are sequentially stacked are formed.
One LED chip 1 having a stacked structure
Since there are three light emitting layers 4 therein, the amount of light per LED chip 1 can be increased as compared with the fourth embodiment. Since the basic configuration of the LED chip 1 is the same as that of the fourth embodiment, the same components are denoted by the same reference numerals and description thereof will be omitted.

【0046】本実施形態では、半導体層のうち透光性基
板2から最も遠いp型半導体層5の表面と、各pn接合
部10a〜10cの端面とを絶縁膜8で覆っているが、
絶縁膜8の材料としては、屈折率nが約1.5のSi
を用いている。また、このLEDチップ1はフェー
スダウンの状態で図示しない実装基板に実装され、チッ
プの周囲は屈折率nが約1.2の透光性の封止樹脂
(図示せず)で封止されている。
In the present embodiment, the surface of the p-type semiconductor layer 5 farthest from the light-transmitting substrate 2 of the semiconductor layers and the end faces of the pn junctions 10a to 10c are covered with the insulating film 8.
As the material of the insulating film 8, a refractive index n 2 of about 1.5 Si
O 2 is used. Further, the LED chip 1 is mounted on a mounting board (not shown) in a state of face-down, around the tip refractive index n 3 is sealed at about 1.2 transparent sealing resin (not shown) ing.

【0047】ここで、各pn接合部10a〜10cの端
面の形状は、実施形態4で説明した図5に示すLEDチ
ップ1と同様であり、発光層4(屈折率n=約2.
6)の端面の法線L1が発光層4と平行な面Aと成す角
度をθ、発光層4の端面と接する絶縁膜8の外側面の
法線L2が発光層4と平行な面Aと成す角度をθとす
ると、角度θを、絶縁膜8の屈折率nを発光層4の
屈折率nで除した値の逆正弦より小さい値とし(θ
<sin−1(n/n))、且つ、角度θと角度
θとの差に、発光層4の屈折率nを絶縁膜8の屈折
率nで除した値に角度θの正弦を乗じた値の逆正弦
を加算した値αを、基板実装後の使用状態において絶縁
膜8の外側面が接する封止樹脂の屈折率nを絶縁膜8
の屈折率n で除した値の逆正弦以上とするように(α
=(θ−θ)+sin−1((n/n)・si
nθ)≧sin−1(n/n))、角度θ,θ
の値を設定している。例えば発光層4の屈折率n
約2.6、絶縁膜8の屈折率nが約1.5、封止樹脂
の屈折率nが約1.2の場合は、θ<sin
−1(n/n)=35.2、α≧sin−1(n
/n)=53.1となるので、上記の条件式を満足す
るように、本実施形態では角度θ=25°、角度θ
=40°としている。
Here, the ends of the respective pn junctions 10a to 10c
The shape of the surface is the same as the LED chip shown in FIG.
The light emitting layer 4 (refractive index n1= About 2.
6) The angle formed by the normal L1 of the end face to the plane A parallel to the light emitting layer 4
Degree θ1Of the outer surface of the insulating film 8 in contact with the end surface of the light emitting layer 4
The angle between normal L2 and plane A parallel to light emitting layer 4 is θ2Toss
The angle θ1Is the refractive index n of the insulating film 82Of the light emitting layer 4
Refractive index n1Is smaller than the inverse sine of the value divided by (θ1
<Sin-1(N2/ N1)) And the angle θ2And angle
θ1And the refractive index n of the light emitting layer 41Of the insulating film 8
Rate n2Angle θ1Inverse sine of sine multiplied by
Is insulated in the state of use after mounting on the board
The refractive index n of the sealing resin with which the outer surface of the film 8 contacts3To the insulating film 8
Refractive index n 2(Α)
= (Θ2−θ1) + Sin-1((N1/ N2) ・ Si
1) ≧ sin-1(N3/ N2)), Angle θ1, Θ
2Is set. For example, the refractive index n of the light emitting layer 41But
About 2.6, refractive index n of insulating film 82About 1.5, sealing resin
Refractive index n3Is about 1.2, θ1<Sin
-1(N2/ N1) = 35.2, α ≧ sin-1(N3
/ N2) = 53.1, so that the above conditional expression is satisfied.
As described above, in the present embodiment, the angle θ1= 25 °, angle θ 2
= 40 °.

【0048】この時、α=62°となり、発光層4内を
発光層4と平行な方向に進行する光が、発光層4と絶縁
膜8との界面で屈折し、絶縁膜8の外側面に設けた傾斜
面8aに対して臨界条件(α≧sin−1(n
))を超える入射角αで入射するので、絶縁膜8の
外側面に設けた傾斜面8aで光の取り出し方向へ全反射
されることになり、従来のLEDチップ1に比べて光の
取り出し方向への光の取り出し効率が向上する。
At this time, α = 62 °, and the light traveling in the light emitting layer 4 in the direction parallel to the light emitting layer 4 is refracted at the interface between the light emitting layer 4 and the insulating film 8, and the outer surface of the insulating film 8 Critical condition (α ≧ sin −1 (n 3 /
n 2 )), the light is totally reflected in the light extraction direction by the inclined surface 8 a provided on the outer surface of the insulating film 8. Light extraction efficiency in the light extraction direction is improved.

【0049】尚、本実施形態では対向するn型半導体層
3とp型半導体層5とを含むpn接合部を3組形成して
いるが、pn接合部の数は2組以上であれば何組でも良
く、1個当たりのLEDチップ1の光量を大きくでき
る。また、複数の発光層4は、全て同じ波長の光を放射
するものでも良いが、一部又は全ての発光層4が互いに
異なる波長の光を放射するようにしても良い。また、上
述した各実施形態において、対向するn型半導体層3と
p型半導体層5とを含むpn接合部を複数組形成しても
良く、本実施形態と同様に1個当たりのLEDチップ1
の光量を大きくできる。
In the present embodiment, three sets of pn junctions including the opposing n-type semiconductor layer 3 and p-type semiconductor layer 5 are formed. A pair may be used, and the light quantity of one LED chip 1 can be increased. Further, the plurality of light emitting layers 4 may all emit light of the same wavelength, but a part or all of the light emitting layers 4 may emit light of different wavelengths. In each of the above-described embodiments, a plurality of sets of pn junctions including the opposing n-type semiconductor layer 3 and p-type semiconductor layer 5 may be formed.
Light amount can be increased.

【0050】ところで、上述した各実施形態において
は、透光性基板2としてサファイア基板を例に説明を行
ったが、透光性基板2をサファイア基板に限定する趣旨
のものではなく、配線基板にフェースダウンの状態で実
装する場合には、透光性の結晶基板であればどのような
基板を用いても良く、サファイア以外のSiCやGaI
Nなどの結晶基板を用いても良い。また、LEDチップ
1を配線基板にフェースアップの状態で実装する場合に
は、透光性を有していない結晶基板でも良い。
By the way, in each of the embodiments described above, the sapphire substrate is described as an example of the light-transmitting substrate 2, but the light-transmitting substrate 2 is not limited to the sapphire substrate, but is not limited to the sapphire substrate. When mounting in a face-down state, any substrate may be used as long as it is a translucent crystal substrate, and SiC or GaI other than sapphire may be used.
A crystal substrate such as N may be used. When the LED chip 1 is mounted on the wiring board in a face-up state, a crystal substrate having no translucency may be used.

【0051】また、n型半導体層3及びp型半導体層5
の各々に接続されたn側及びp側電極の給電部6,7は
それぞれ結晶基板における半導体層側のチップ面に設け
ているが、例えばSiCのように導電性を有する結晶基
板を用いた場合には、結晶基板に近い側の半導体層(本
実施形態の場合はn型半導体層3)に接続される電極
を、結晶基板における半導体層側と反対側の表面に形成
しても良い。
The n-type semiconductor layer 3 and the p-type semiconductor layer 5
Are provided on the chip surface on the semiconductor layer side of the crystal substrate, respectively. For example, when a conductive crystal substrate such as SiC is used. Alternatively, an electrode connected to the semiconductor layer closer to the crystal substrate (the n-type semiconductor layer 3 in this embodiment) may be formed on the surface of the crystal substrate opposite to the semiconductor layer side.

【0052】また、上記各実施形態では結晶基板上に、
n型半導体層3、発光層4を含む量子井戸構造、及びp
型半導体層5をこの順番で積層してあるが、p型半導体
層5、発光層4を含む量子井戸構造、及びn型半導体層
3の順番で積層するようにしても良い。また更に、n型
半導体層3及びp型半導体層5としてGaN系化合物半
導体を例に説明を行っているが、半導体の種類を上記の
ものに限定する趣旨のものではなく、GaAs系化合物
半導体などでも良い。また、発光層4付近の構造として
は量子井戸構造を用いているが、特に量子井戸構造に限
定するものではなく、それ以外の構造のものを用いても
良い。
In each of the above embodiments, the crystal substrate is
a quantum well structure including an n-type semiconductor layer 3 and a light emitting layer 4;
Although the type semiconductor layers 5 are stacked in this order, the p-type semiconductor layer 5, the quantum well structure including the light emitting layer 4, and the n-type semiconductor layer 3 may be stacked in this order. Further, the GaN-based compound semiconductor has been described as an example of the n-type semiconductor layer 3 and the p-type semiconductor layer 5, but this is not intended to limit the types of semiconductors to those described above. But it is good. Further, although a quantum well structure is used as a structure near the light emitting layer 4, the structure is not particularly limited to the quantum well structure, and other structures may be used.

【0053】[0053]

【発明の効果】上述のように、請求項1の発明は、結晶
基板上に少なくとも一対のp型半導体層及びn型半導体
層を形成し、p型半導体層とn型半導体層との対向部に
発光層を設け、p型半導体層、発光層及びn型半導体層
の側面を少なくとも覆う絶縁膜を設けたLEDチップに
おいて、発光層内を発光層と平行に進行する光が光の取
り出し方向へ全反射されるように、発光層の端面、又
は、発光層の端面に接する絶縁膜の外側面の内、少なく
とも何れか一方の面を、その法線が発光層に平行な面と
成す角度を所定の角度以上とするように、発光層に平行
な面に対して傾斜させたことを特徴とし、発光層の端
面、又は、発光層の端面に接する絶縁膜の外側面の内、
少なくとも何れか一方の面を、その法線が発光層に平行
な面と成す角度を所定の角度以上とするように、発光層
に平行な面に対して傾斜させることで、発光層内を発光
層と平行な方向に進行する光を、発光層の端面、又は、
発光層の端面に接する絶縁膜の外側面の何れかで光の取
り出し方向へ全反射させているので、光の取り出し方向
へ放射される光量を増やして、光の取り出し効率を高め
ることができる。さらに、従来のLEDチップのよう
に、発光層内を発光層と平行な方向に進行する光を光の
取り出し方向に反射する部材をLEDチップの外側に設
ける場合に比べて、LEDチップの実装部を小型にでき
るから、光の取り出し効率を高めた小型のLEDチップ
を実現できる。
As described above, according to the first aspect of the present invention, at least a pair of a p-type semiconductor layer and an n-type semiconductor layer are formed on a crystal substrate, and an opposing portion between the p-type semiconductor layer and the n-type semiconductor layer is formed. In an LED chip provided with a light-emitting layer, and an insulating film covering at least the side surfaces of the p-type semiconductor layer, the light-emitting layer, and the n-type semiconductor layer, light traveling in the light-emitting layer in parallel with the light-emitting layer is directed in a light extraction direction. As for total reflection, the end face of the light-emitting layer, or at least one of the outer faces of the insulating film in contact with the end face of the light-emitting layer, has an angle formed by a normal to a plane parallel to the light-emitting layer. As a predetermined angle or more, characterized by being inclined with respect to the plane parallel to the light emitting layer, the end face of the light emitting layer, or, of the outer surface of the insulating film in contact with the end face of the light emitting layer,
At least one of the surfaces is inclined with respect to the surface parallel to the light emitting layer so that the angle formed by the normal line to the surface parallel to the light emitting layer is equal to or larger than a predetermined angle. Light traveling in a direction parallel to the layer, the end face of the light-emitting layer, or
Since the light is totally reflected in any of the outer surfaces of the insulating film in contact with the end surface of the light emitting layer in the light extraction direction, the amount of light emitted in the light extraction direction can be increased, and the light extraction efficiency can be increased. Furthermore, as compared with a conventional LED chip in which a member that reflects light traveling in a direction parallel to the light emitting layer in the light emitting layer in a light extraction direction is provided outside the LED chip, Can be reduced in size, so that a small LED chip with improved light extraction efficiency can be realized.

【0054】請求項2の発明は、請求項1の発明におい
て、発光層の端面の法線と発光層に平行な面とが成す角
度を鋭角とし、絶縁膜の屈折率を発光層の屈折率で除し
た値の逆正弦以上としたことを特徴とし、発光層内を発
光層と平行な方向に進行する光が、発光層の端面で光の
取り出し方向に全反射されるので、光の取り出し方向へ
放射される光量を増やして、光の取り出し効率を高める
ことができる。
According to a second aspect of the present invention, in the first aspect of the present invention, the angle between the normal to the end face of the light emitting layer and the plane parallel to the light emitting layer is an acute angle, and the refractive index of the insulating film is the refractive index of the light emitting layer. The light that travels in a direction parallel to the light-emitting layer in the light-emitting layer is totally reflected at the end face of the light-emitting layer in the light extraction direction. The light extraction efficiency can be increased by increasing the amount of light radiated in the direction.

【0055】請求項3の発明は、請求項1の発明におい
て、発光層の端面と発光層に平行な面とを略直交させ、
発光層の端面に接する絶縁膜の外側面の法線と発光層に
平行な面とが成す角度を鋭角とし、その角度を、基板実
装後の完成状態において絶縁膜の外側面が接する物質の
屈折率を絶縁膜の屈折率で除した値の逆正弦以上とした
ことを特徴とし、発光層内を発光層と平行な方向に進行
する光が、発光層の端面と接する絶縁膜の外側面で、光
の取り出し方向に全反射されるので、光の取り出し方向
へ放射される光量を増やして、光の取り出し効率を高め
ることができる。
According to a third aspect of the present invention, in the first aspect of the present invention, the end face of the light emitting layer and the plane parallel to the light emitting layer are substantially orthogonal to each other;
The angle between the normal to the outer surface of the insulating film that is in contact with the end surface of the light emitting layer and the surface parallel to the light emitting layer is an acute angle, and the angle is determined by the refraction of the material that the outer surface of the insulating film touches in the completed state after mounting on the board. Light that travels in a direction parallel to the light-emitting layer in the light-emitting layer is characterized in that the light traveling in the light-emitting layer in a direction parallel to the light-emitting layer is the outer surface of the insulating film in contact with the end face of the light-emitting layer. Since the light is totally reflected in the light extraction direction, the amount of light emitted in the light extraction direction can be increased, and the light extraction efficiency can be increased.

【0056】請求項4の発明は、請求項1の発明におい
て、発光層の端面の法線と発光層に平行な面とが成す第
1の角度と、発光層の端面に接する絶縁膜の外側面の法
線と発光層に平行な面とが成す第2の角度とはそれぞれ
鋭角であって、第2の角度を第1の角度よりも大きく
し、第1の角度を、絶縁膜の屈折率を発光層の屈折率で
除した値の逆正弦よりも小さい角度とし、且つ、第2の
角度と第1の角度との差に、発光層の屈折率を絶縁膜の
屈折率で除した値に第1の角度の正弦を乗じた値の逆正
弦を加算した値を、基板実装後の完成状態において絶縁
膜の外側面が接する物質の屈折率を絶縁膜の屈折率で除
した値の逆正弦以上としたことを特徴とし、発光層内を
発光層と平行な方向に進行する光は、絶縁膜との界面で
屈折された後、絶縁膜の外側面に入射するのであるが、
絶縁膜の外側面への入射角が臨界角以下となり、絶縁膜
の外側面で光の取り出し方向に全反射されるから、光の
取り出し方向へ放射される光量を増やして、光りの取り
出し効率を高めることができる。また、絶縁膜や封止材
料に使用できる材料は屈折率によって或る程度決まって
しまうが、発光層の端面と、発光層の端面に接する絶縁
膜の外側面の両方を発光層と平行な面に対して傾斜させ
た場合は、何れか一方の面のみを傾斜させた場合に比べ
て、各材料の屈折率の設定の自由度が高くなり、その結
果、使用できる材料の自由度が高くなるという効果があ
る。
According to a fourth aspect of the present invention, in the first aspect of the present invention, the first angle formed between the normal to the end face of the light emitting layer and a plane parallel to the light emitting layer, and the outside angle of the insulating film in contact with the end face of the light emitting layer. The second angle formed between the normal to the side surface and the plane parallel to the light emitting layer is an acute angle, and the second angle is set to be larger than the first angle. The refractive index of the light emitting layer was divided by the refractive index of the insulating film by an angle smaller than the inverse sine of the value obtained by dividing the refractive index by the refractive index of the light emitting layer, and the difference between the second angle and the first angle. The value obtained by adding the inverse sine of the value obtained by multiplying the value by the sine of the first angle to the value obtained by dividing the refractive index of the substance in contact with the outer surface of the insulating film in the completed state after mounting the substrate by the refractive index of the insulating film. It is characterized by having an inverse sine or more, and light traveling in a direction parallel to the light emitting layer in the light emitting layer is refracted at the interface with the insulating film and then insulated. Although for the incident on the outer surface,
Since the angle of incidence on the outer surface of the insulating film becomes less than the critical angle and is totally reflected on the outer surface of the insulating film in the light extraction direction, the amount of light radiated in the light extraction direction is increased to increase the light extraction efficiency. Can be enhanced. In addition, the materials that can be used for the insulating film and the sealing material are determined to some extent by the refractive index, but both the end face of the light emitting layer and the outer face of the insulating film in contact with the end face of the light emitting layer are parallel to the light emitting layer. When it is inclined with respect to, the degree of freedom in setting the refractive index of each material is higher than in the case where only one of the surfaces is inclined, and as a result, the degree of freedom of usable materials is higher. This has the effect.

【0057】請求項5の発明は、請求項4の発明におい
て、発光層の端面に接する絶縁膜の外側面を、発光層の
端面と非平行としたことを特徴とし、発光層の端面に接
する絶縁膜の外側面と発光層の端面とを平行にした場合
は、発光層内を発光層と平行な方向に進行した光が絶縁
膜の外側面で一旦反射された後、絶縁膜の外側面と発光
層の端面との間で反射を繰り返して光の取り出し方向へ
放射されるため、光路が長くなって光量が減衰したり配
光むらが発生するといった問題が発生するが、発光層の
端面に接する絶縁膜の外側面と発光層の端面とを非平行
にすることで、絶縁膜の外側面と発光層の端面との間で
反射が繰り返されるのを防止し、光路長を短くして光量
の減衰や配光むらを低減できるという効果がある。
According to a fifth aspect of the present invention, in the invention of the fourth aspect, the outer surface of the insulating film in contact with the end face of the light emitting layer is not parallel to the end face of the light emitting layer, and is in contact with the end face of the light emitting layer. When the outer surface of the insulating film and the end surface of the light emitting layer are parallel to each other, light traveling in the light emitting layer in a direction parallel to the light emitting layer is once reflected by the outer surface of the insulating film, and then the outer surface of the insulating film. Since the light is emitted in the light extraction direction by repeating reflection between the light emitting layer and the end face of the light emitting layer, there arises a problem that the optical path becomes longer, the light amount is attenuated, and uneven light distribution occurs. By making the outer surface of the insulating film in contact with the end surface of the light emitting layer non-parallel with the outer surface of the insulating film, the reflection between the outer surface of the insulating film and the end surface of the light emitting layer is prevented from being repeated, and the optical path length is shortened. There is an effect that attenuation of light amount and uneven light distribution can be reduced.

【0058】請求項6の発明は、請求項1乃至5の何れ
か1つの発明において、絶縁膜の外側に金属膜を設けた
ことを特徴とし、絶縁膜の外側面で反射せずに透過した
光を金属膜の表面で反射させることにより、光の取り出
し方向に放射される光量を増やして、光の取り出し効率
を向上させることができる。
According to a sixth aspect of the present invention, in any one of the first to fifth aspects of the present invention, a metal film is provided outside the insulating film, and the light is transmitted without being reflected on the outer surface of the insulating film. By reflecting light on the surface of the metal film, the amount of light emitted in the light extraction direction can be increased, and the light extraction efficiency can be improved.

【0059】請求項7の発明は、請求項6の発明におい
て、金属膜を、p型半導体層又はn型半導体層の内少な
くとも何れか一方への配線部として兼用したことを特徴
とし、金属膜で配線部を兼用しているので、フェースダ
ウンの状態で実装する場合には、半導体層に設けた電極
部に比べて面積の広い金属膜にバンプを接合すれば良
く、基板への実装を容易に行えるという効果がある。さ
らに、半導体層に設けた電極部に比べて金属膜の方が面
積が広いので、より大きなバンプを用いたり、複数のバ
ンプを使用することができ、LEDチップと基板との間
の熱抵抗を小さくして、放熱性を高めることができる。
According to a seventh aspect of the present invention, in the sixth aspect of the present invention, the metal film is also used as a wiring portion to at least one of the p-type semiconductor layer and the n-type semiconductor layer. When mounting in a face-down state, it is only necessary to bond the bump to a metal film with a larger area than the electrode part provided on the semiconductor layer, which makes mounting on the board easy. There is an effect that can be performed. Furthermore, since the metal film has a larger area than the electrode portion provided on the semiconductor layer, a larger bump or a plurality of bumps can be used, and the thermal resistance between the LED chip and the substrate is reduced. By reducing the size, heat dissipation can be improved.

【0060】請求項8の発明は、請求項1乃至7の何れ
か1つの発明において、チップ側面を発光層と平行な面
に対して斜めに傾斜させたことを特徴とし、チップ側面
を発光層と平行な面に対して略直交させた場合、チップ
側面で一旦全反射された光が、LEDチップの他の面で
次々に全反射されて、チップ内を進行する所謂繰り返し
完全反射が発生するが、チップ側面を発光層と平行な面
に対して斜めに傾斜させているので、繰り返し完全反射
の発生を抑制して、光の取り出し効率を向上させること
ができる。
According to an eighth aspect of the present invention, in any one of the first to seventh aspects of the present invention, the chip side surface is inclined with respect to a plane parallel to the light emitting layer. When the light is substantially perpendicular to a plane parallel to the LED chip, the light once totally reflected on the side surface of the chip is totally reflected one after another on the other surface of the LED chip, so that a so-called repeated perfect reflection that travels inside the chip occurs. However, since the side surface of the chip is inclined obliquely with respect to a plane parallel to the light emitting layer, the occurrence of complete reflection is suppressed repeatedly, and the light extraction efficiency can be improved.

【0061】請求項9の発明は、請求項1乃至8の何れ
か1つの発明において、p型半導体層とn型半導体層の
各々に接続するp側電極とn側電極を半導体層形成側の
チップ面に設け、複数のp側電極と、複数のn側電極と
を、略平行に等間隔で交互に並行配列して、複数のp側
電極の配列方向と交差する方向における一方の端を互い
に連結して櫛形に形成するとともに、複数のn側電極の
配列方向と交差する方向における他方の端を互いに連結
して櫛形に形成して成ることを特徴とし、チップ面にp
型半導体層とn型半導体層の各々に接続する電極を略平
行に等間隔で並行配置しているので、発光面内で発光輝
度を均一にできる。
According to a ninth aspect of the present invention, in any one of the first to eighth aspects, the p-side electrode and the n-side electrode connected to the p-type semiconductor layer and the n-type semiconductor layer, respectively, are formed on the semiconductor layer forming side. Provided on the chip surface, a plurality of p-side electrodes and a plurality of n-side electrodes are alternately arranged in parallel and at substantially equal intervals, and one end in a direction intersecting the arrangement direction of the plurality of p-side electrodes is A plurality of n-side electrodes are connected to each other to form a comb, and the other ends in a direction intersecting the arrangement direction of the plurality of n-side electrodes are connected to each other to form a comb.
Since the electrodes connected to each of the n-type semiconductor layer and the n-type semiconductor layer are arranged substantially in parallel at equal intervals, light emission luminance can be made uniform within the light emitting surface.

【0062】請求項10の発明は、請求項9の発明にお
いて、各電極の連結されていない側の端部に丸みをもた
せたことを特徴とし、先端部に電界が集中するのを防止
して、発光面内での発光輝度をさらに均一にできる。
A tenth aspect of the present invention is characterized in that, in the ninth aspect of the present invention, the ends of the electrodes not connected are rounded to prevent the electric field from concentrating at the tip. In addition, the light emission luminance in the light emitting surface can be made more uniform.

【0063】請求項11の発明は、請求項1乃至10の
何れか1つの発明において、p型半導体層とn型半導体
層との対を複数対積層したことを特徴とし、発光層を複
数設けることで、1個当たりのLEDチップの光量を増
大させることができる。
According to an eleventh aspect, in any one of the first to tenth aspects, a plurality of pairs of a p-type semiconductor layer and an n-type semiconductor layer are stacked, and a plurality of light emitting layers are provided. This makes it possible to increase the amount of light per LED chip.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態1のLEDチップの断面図である。FIG. 1 is a cross-sectional view of an LED chip according to a first embodiment.

【図2】同上の別のLEDチップの断面図である。FIG. 2 is a sectional view of another LED chip of the above.

【図3】実施形態2のLEDチップの断面図である。FIG. 3 is a cross-sectional view of an LED chip according to a second embodiment.

【図4】実施形態3のLEDチップの断面図である。FIG. 4 is a cross-sectional view of an LED chip according to a third embodiment.

【図5】実施形態4のLEDチップの断面図である。FIG. 5 is a cross-sectional view of an LED chip according to a fourth embodiment.

【図6】同上の別のLEDチップの断面図である。FIG. 6 is a cross-sectional view of another LED chip of the above.

【図7】実施形態5のLEDチップを示し、(a)は電
極の配置を上側から見た図、(b)はB−B’断面図で
ある。
FIGS. 7A and 7B show an LED chip according to a fifth embodiment, in which FIG. 7A is a diagram in which the arrangement of electrodes is viewed from above, and FIG.

【図8】実施形態6のLEDチップの断面図である。FIG. 8 is a sectional view of an LED chip according to a sixth embodiment.

【図9】従来のLEDチップの断面図である。FIG. 9 is a cross-sectional view of a conventional LED chip.

【符号の説明】[Explanation of symbols]

1 LEDチップ 2 透光性基板 3 n型半導体層 4 発光層 5 p型半導体層 6,7 給電部 8 絶縁膜 A 面 L1 法線 1 LED chip 2 Translucent substrate 3 n-type semiconductor layer 4 Light-emitting layer 5 p-type semiconductor layer 6,7 power supply 8 Insulating film A side L1 normal

───────────────────────────────────────────────────── フロントページの続き (72)発明者 木村 秀吉 大阪府門真市大字門真1048番地松下電工株 式会社内 (72)発明者 野田 渉 大阪府門真市大字門真1048番地松下電工株 式会社内 (72)発明者 塩濱 英二 大阪府門真市大字門真1048番地松下電工株 式会社内 Fターム(参考) 5F041 AA03 AA04 AA05 AA33 AA47 CA04 CA05 CA12 CA13 CA40 CA46 CA74 CA88 CA93 CB11 CB15 CB36 DA04 DA09    ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Hideyoshi Kimura             1048 Kadoma Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Works, Ltd.             In the formula company (72) Inventor Wataru Noda             1048 Kadoma Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Works, Ltd.             In the formula company (72) Inventor Eiji Shiohama             1048 Kadoma Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Works, Ltd.             In the formula company F term (reference) 5F041 AA03 AA04 AA05 AA33 AA47                       CA04 CA05 CA12 CA13 CA40                       CA46 CA74 CA88 CA93 CB11                       CB15 CB36 DA04 DA09

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】結晶基板上に少なくとも一対のp型半導体
層及びn型半導体層を形成し、前記p型半導体層と前記
n型半導体層との対向部に発光層を設け、p型半導体
層、発光層及びn型半導体層の側面を少なくとも覆う絶
縁膜を設けたLEDチップにおいて、発光層内を発光層
と平行に進行する光が光の取り出し方向へ全反射される
ように、発光層の端面、又は、発光層の端面に接する絶
縁膜の外側面の内、少なくとも何れか一方の面を、その
法線が発光層に平行な面と成す角度を所定の角度以上と
するように、発光層に平行な面に対して傾斜させたこと
を特徴とするLEDチップ。
A p-type semiconductor layer formed on at least a pair of a p-type semiconductor layer and an n-type semiconductor layer on a crystal substrate; and a light-emitting layer provided at a portion where the p-type semiconductor layer and the n-type semiconductor layer face each other. In an LED chip provided with an insulating film that covers at least the side surfaces of the light emitting layer and the n-type semiconductor layer, the light emitting layer is formed such that light traveling in the light emitting layer in parallel with the light emitting layer is totally reflected in the light extraction direction. The end face, or at least one of the outer faces of the insulating film that is in contact with the end face of the light emitting layer, emits light so that an angle formed by a normal line to a plane parallel to the light emitting layer is equal to or larger than a predetermined angle. An LED chip which is inclined with respect to a plane parallel to a layer.
【請求項2】前記発光層の端面の法線と発光層に平行な
面とが成す角度を鋭角とし、前記絶縁膜の屈折率を前記
発光層の屈折率で除した値の逆正弦以上としたことを特
徴とする請求項1記載のLEDチップ。
2. An angle formed between a normal line of an end face of the light emitting layer and a plane parallel to the light emitting layer is an acute angle, and a value obtained by dividing a refractive index of the insulating film by a refractive index of the light emitting layer is an inverse sine or more. The LED chip according to claim 1, wherein:
【請求項3】前記発光層の端面と前記発光層に平行な面
とを略直交させ、前記発光層の端面に接する前記絶縁膜
の外側面の法線と前記発光層に平行な面とが成す角度を
鋭角とし、その角度を、基板実装後の完成状態において
前記絶縁膜の外側面が接する物質の屈折率を前記絶縁膜
の屈折率で除した値の逆正弦以上としたことを特徴とす
る請求項1記載のLEDチップ。
3. An end face of the light emitting layer and a plane parallel to the light emitting layer are substantially orthogonal to each other, and a normal line of an outer surface of the insulating film in contact with the end face of the light emitting layer and a plane parallel to the light emitting layer. The angle formed is an acute angle, and the angle is equal to or greater than the inverse sine of the value obtained by dividing the refractive index of the substance in contact with the outer surface of the insulating film in the completed state after mounting on the substrate by the refractive index of the insulating film. The LED chip according to claim 1.
【請求項4】前記発光層の端面の法線と発光層に平行な
面とが成す第1の角度と、前記発光層の端面に接する前
記絶縁膜の外側面の法線と前記発光層に平行な面とが成
す第2の角度とはそれぞれ鋭角であって、前記第2の角
度を前記第1の角度よりも大きくし、前記第1の角度
を、前記絶縁膜の屈折率を前記発光層の屈折率で除した
値の逆正弦よりも小さい角度とし、且つ、前記第2の角
度と前記第1の角度との差に、前記発光層の屈折率を前
記絶縁膜の屈折率で除した値に前記第1の角度の正弦を
乗じた値の逆正弦を加算した値を、基板実装後の完成状
態において前記絶縁膜の外側面が接する物質の屈折率を
前記絶縁膜の屈折率で除した値の逆正弦以上としたこと
を特徴とする請求項1記載のLEDチップ。
4. A first angle formed by a normal line of an end face of the light emitting layer and a plane parallel to the light emitting layer, a normal angle of an outer surface of the insulating film in contact with the end face of the light emitting layer, and the light emitting layer. The second angles formed by the parallel surfaces are acute angles, and the second angle is greater than the first angle, the first angle is the refractive index of the insulating film, and the refractive index is the light emission. An angle smaller than the inverse sine of the value obtained by dividing the refractive index of the layer is used, and the difference between the second angle and the first angle is divided by the refractive index of the light emitting layer by the refractive index of the insulating film. The value obtained by adding the inverse sine of the value obtained by multiplying the value obtained by multiplying the sine of the first angle, the refractive index of the material with which the outer surface of the insulating film is in contact with the completed state after mounting on the substrate is the refractive index of the insulating film. 2. The LED chip according to claim 1, wherein the value is equal to or greater than the inverse sine of the divided value.
【請求項5】前記発光層の端面に接する前記絶縁膜の外
側面を、前記発光層の端面と非平行としたことを特徴と
する請求項4記載のLEDチップ。
5. The LED chip according to claim 4, wherein an outer surface of said insulating film in contact with an end surface of said light emitting layer is not parallel to an end surface of said light emitting layer.
【請求項6】前記絶縁膜の外側に金属膜を設けたことを
特徴とする請求項1乃至5の何れか1つに記載のLED
チップ。
6. The LED according to claim 1, wherein a metal film is provided outside the insulating film.
Chips.
【請求項7】前記金属膜を、p型半導体層又はn型半導
体層の内少なくとも何れか一方への配線部として兼用し
たことを特徴とする請求項6記載のLEDチップ。
7. The LED chip according to claim 6, wherein said metal film also serves as a wiring portion for at least one of a p-type semiconductor layer and an n-type semiconductor layer.
【請求項8】チップ側面を発光層と平行な面に対して斜
めに傾斜させたことを特徴とする請求項1乃至7の何れ
か1つに記載のLEDチップ。
8. The LED chip according to claim 1, wherein a side surface of the LED chip is inclined with respect to a plane parallel to the light emitting layer.
【請求項9】p型半導体層とn型半導体層の各々に接続
するp側電極とn側電極を半導体層形成側のチップ面に
設け、複数のp側電極と、複数のn側電極とを、略平行
に等間隔で交互に並行配列して、複数のp側電極の配列
方向と交差する方向における一方の端を互いに連結して
櫛形に形成するとともに、複数のn側電極の配列方向と
交差する方向における他方の端を互いに連結して櫛形に
形成して成ることを特徴とする請求項1乃至8の何れか
1つに記載のLEDチップ。
9. A p-side electrode and an n-side electrode connected to each of a p-type semiconductor layer and an n-type semiconductor layer are provided on a chip surface on a semiconductor layer forming side, and a plurality of p-side electrodes and a plurality of n-side electrodes are provided. Are arranged substantially in parallel and alternately at equal intervals, one end in a direction intersecting the arrangement direction of the plurality of p-side electrodes is connected to each other to form a comb shape, and the arrangement direction of the plurality of n-side electrodes The LED chip according to any one of claims 1 to 8, wherein the other ends in a direction intersecting with the LED chip are connected to each other to form a comb shape.
【請求項10】前記各電極の連結されていない側の端部
に丸みをもたせたことを特徴とする請求項9記載のLE
Dチップ。
10. The LE according to claim 9, wherein an end of each of the electrodes which is not connected is rounded.
D chip.
【請求項11】前記p型半導体層と前記n型半導体層と
の対を複数対積層したことを特徴とする請求項1乃至1
0の何れか1つに記載のLEDチップ。
11. The semiconductor device according to claim 1, wherein a plurality of pairs of said p-type semiconductor layer and said n-type semiconductor layer are laminated.
0. The LED chip according to any one of 0.
JP2002154335A 2002-05-28 2002-05-28 LED chip Expired - Lifetime JP4123830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002154335A JP4123830B2 (en) 2002-05-28 2002-05-28 LED chip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002154335A JP4123830B2 (en) 2002-05-28 2002-05-28 LED chip

Publications (2)

Publication Number Publication Date
JP2003347589A true JP2003347589A (en) 2003-12-05
JP4123830B2 JP4123830B2 (en) 2008-07-23

Family

ID=29771167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002154335A Expired - Lifetime JP4123830B2 (en) 2002-05-28 2002-05-28 LED chip

Country Status (1)

Country Link
JP (1) JP4123830B2 (en)

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005008792A1 (en) * 2003-07-18 2005-01-27 Sanyo Electric Co., Ltd. Light emitting diode
JP2005183757A (en) * 2003-12-22 2005-07-07 Matsushita Electric Ind Co Ltd Semiconductor light emitting element and its manufacturing method
JP2005259768A (en) * 2004-03-09 2005-09-22 Sanyo Electric Co Ltd Light emitting element and its manufacturing method
JP2006005215A (en) * 2004-06-18 2006-01-05 Stanley Electric Co Ltd Semiconductor light emitting device and manufacturing method therefor
JP2006128202A (en) * 2004-10-26 2006-05-18 Kyocera Corp Light-emitting device and illuminator using the same
JP2006148067A (en) * 2004-11-23 2006-06-08 Samsung Electro Mech Co Ltd Gan-based compound semiconductor light emitting device
JP2006245058A (en) * 2005-02-28 2006-09-14 Mitsubishi Cable Ind Ltd GaN SERIES LIGHT EMITTING DIODE AND LIGHT EMITTING DEVICE
JP2007019467A (en) * 2005-06-10 2007-01-25 Sony Corp Light emitting diode, manufacturing method thereof, back-light thereof, lighting system thereof, and display thereof and electronic equipment
JP2007027724A (en) * 2005-07-12 2007-02-01 Samsung Electro Mech Co Ltd Light emitting diode and method of manufacturing the same
WO2007034971A1 (en) * 2005-09-20 2007-03-29 Showa Denko K.K. Group iii nitride semiconductor light-emitting device
JP2007157850A (en) * 2005-12-01 2007-06-21 Stanley Electric Co Ltd Semiconductor light emitting element and manufacturing method thereof
JP2007221146A (en) * 2006-02-16 2007-08-30 Lg Electronics Inc Vertical light emitting device and its manufacturing method
JP2008523601A (en) * 2004-12-09 2008-07-03 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Lighting system
JP2008172225A (en) * 2007-01-05 2008-07-24 Uni Light Touchtek Corp Manufacturing method of light-emitting diode array
JP2008251604A (en) * 2007-03-29 2008-10-16 Toyoda Gosei Co Ltd Light-emitting device and its manufacturing method
JP2009033205A (en) * 2005-02-14 2009-02-12 Showa Denko Kk Method for fabricating nitride semiconductor light-emitting device
JP2009038319A (en) * 2007-08-03 2009-02-19 Nichia Corp Semiconductor light emitting element
JP2009188370A (en) * 2008-02-01 2009-08-20 Seoul Opto Devices Co Ltd Light emitting diode and method for manufacturing the same
JP2010098334A (en) * 2010-02-01 2010-04-30 Sanyo Electric Co Ltd Method for manufacturing light-emitting element
JP2012059524A (en) * 2010-09-08 2012-03-22 Stanley Electric Co Ltd Lighting fixture for vehicle
JP2012084933A (en) * 2005-06-22 2012-04-26 Seoul Opto Devices Co Ltd Light emitting device and method of manufacturing the same
JP2012182276A (en) * 2011-03-01 2012-09-20 Sony Corp Light emitting unit and display device
JP2012527116A (en) * 2009-05-11 2012-11-01 クリー インコーポレイテッド Semiconductor light-emitting diode having a reflective structure and manufacturing method thereof
US8304800B2 (en) 2010-05-24 2012-11-06 Lg Innotek Co., Ltd. Light emitting device, light emitting device package, and lighting device system
JP2013065773A (en) * 2011-09-20 2013-04-11 Toshiba Corp Semiconductor light-emitting element
JP2013084705A (en) * 2011-10-07 2013-05-09 Citizen Holdings Co Ltd Semiconductor light emitting element and manufacturing method of the same
JP2013225640A (en) * 2012-03-23 2013-10-31 Toshiba Corp Semiconductor light-emitting device and method of manufacturing the same
US8741715B2 (en) 2009-04-29 2014-06-03 Cree, Inc. Gate electrodes for millimeter-wave operation and methods of fabrication
JP2014515560A (en) * 2011-06-01 2014-06-30 コーニンクレッカ フィリップス エヌ ヴェ Light-emitting device bonded to support substrate
US8878245B2 (en) 2006-11-30 2014-11-04 Cree, Inc. Transistors and method for making ohmic contact to transistors
WO2015008184A1 (en) * 2013-07-18 2015-01-22 Koninklijke Philips N.V. Highly reflective flip chip led die
JP2015056652A (en) * 2013-09-13 2015-03-23 株式会社東芝 Nitride semiconductor light-emitting device
JP2016004959A (en) * 2014-06-19 2016-01-12 サンケン電気株式会社 Light emitting device
CN105355747A (en) * 2015-10-28 2016-02-24 江苏新广联半导体有限公司 Sapphire-substrate single-electrode LED chip structure and preparation method thereof
US9484499B2 (en) 2007-04-20 2016-11-01 Cree, Inc. Transparent ohmic contacts on light emitting diodes with carrier substrates
WO2017073759A1 (en) * 2015-10-29 2017-05-04 京セラ株式会社 Light-emitting element, light receiving and emitting element module, and optical sensor
WO2017195507A1 (en) * 2016-05-11 2017-11-16 日機装株式会社 Deep ultraviolet light emitting element
USD826871S1 (en) 2014-12-11 2018-08-28 Cree, Inc. Light emitting diode device
EP1583159B1 (en) * 2004-03-29 2019-01-30 Stanley Electric Co., Ltd. Semiconductor light emitting device capable of suppressing silver migration of reflection film made of silver
KR20190100062A (en) * 2018-02-19 2019-08-28 니치아 카가쿠 고교 가부시키가이샤 Light emitting element
WO2020044991A1 (en) * 2018-08-28 2020-03-05 ソニーセミコンダクタソリューションズ株式会社 Light emitting element and electronic device
CN111052412A (en) * 2017-08-25 2020-04-21 夏普株式会社 Micro LED element, image display element, and manufacturing method
CN111525008A (en) * 2017-02-17 2020-08-11 首尔伟傲世有限公司 Light emitting diode with side reflective layer

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107123713B (en) * 2016-02-25 2019-12-27 上海芯元基半导体科技有限公司 Device structure suitable for monochromatic light LED wafer level packaging
KR20200079122A (en) 2018-12-24 2020-07-02 삼성전자주식회사 Micro light emitting diode and manufacturing method of micro emitting diode

Cited By (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005008792A1 (en) * 2003-07-18 2006-11-09 三洋電機株式会社 Light emitting diode
CN100391016C (en) * 2003-07-18 2008-05-28 三洋电机株式会社 Light-emitting diode
WO2005008792A1 (en) * 2003-07-18 2005-01-27 Sanyo Electric Co., Ltd. Light emitting diode
JP2005183757A (en) * 2003-12-22 2005-07-07 Matsushita Electric Ind Co Ltd Semiconductor light emitting element and its manufacturing method
JP2005259768A (en) * 2004-03-09 2005-09-22 Sanyo Electric Co Ltd Light emitting element and its manufacturing method
US7968897B2 (en) 2004-03-09 2011-06-28 Sanyo Electric Co., Ltd. Light-emitting device having a support substrate and inclined sides
EP1583159B1 (en) * 2004-03-29 2019-01-30 Stanley Electric Co., Ltd. Semiconductor light emitting device capable of suppressing silver migration of reflection film made of silver
JP2006005215A (en) * 2004-06-18 2006-01-05 Stanley Electric Co Ltd Semiconductor light emitting device and manufacturing method therefor
JP4632697B2 (en) * 2004-06-18 2011-02-16 スタンレー電気株式会社 Semiconductor light emitting device and manufacturing method thereof
JP2006128202A (en) * 2004-10-26 2006-05-18 Kyocera Corp Light-emitting device and illuminator using the same
JP2006148067A (en) * 2004-11-23 2006-06-08 Samsung Electro Mech Co Ltd Gan-based compound semiconductor light emitting device
JP2012109639A (en) * 2004-11-23 2012-06-07 Samsung Led Co Ltd LIGHT-EMITTING ELEMENT OF GaN-BASED COMPOUND SEMICONDUCTOR
JP2008523601A (en) * 2004-12-09 2008-07-03 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Lighting system
JP2009033205A (en) * 2005-02-14 2009-02-12 Showa Denko Kk Method for fabricating nitride semiconductor light-emitting device
JP2006245058A (en) * 2005-02-28 2006-09-14 Mitsubishi Cable Ind Ltd GaN SERIES LIGHT EMITTING DIODE AND LIGHT EMITTING DEVICE
JP4678211B2 (en) * 2005-02-28 2011-04-27 三菱化学株式会社 Light emitting device
JP2007019467A (en) * 2005-06-10 2007-01-25 Sony Corp Light emitting diode, manufacturing method thereof, back-light thereof, lighting system thereof, and display thereof and electronic equipment
US9929208B2 (en) 2005-06-22 2018-03-27 Seoul Vlosys Co., Ltd. Light emitting device
US9627435B2 (en) 2005-06-22 2017-04-18 Seoul Viosys Co., Ltd. Light emitting device
JP2012084933A (en) * 2005-06-22 2012-04-26 Seoul Opto Devices Co Ltd Light emitting device and method of manufacturing the same
US9209223B2 (en) 2005-06-22 2015-12-08 Seoul Viosys Co., Ltd. Light emitting device and method of manufacturing the same
JP2014112713A (en) * 2005-06-22 2014-06-19 Seoul Viosys Co Ltd Light-emitting device and manufacturing method therefor
US10340309B2 (en) 2005-06-22 2019-07-02 Seoul Viosys Co., Ltd. Light emitting device
JP2007027724A (en) * 2005-07-12 2007-02-01 Samsung Electro Mech Co Ltd Light emitting diode and method of manufacturing the same
WO2007034971A1 (en) * 2005-09-20 2007-03-29 Showa Denko K.K. Group iii nitride semiconductor light-emitting device
EP1935037A1 (en) * 2005-09-20 2008-06-25 Showa Denko K.K. Group iii nitride semiconductor light-emitting device
KR101035878B1 (en) * 2005-09-20 2011-05-20 쇼와 덴코 가부시키가이샤 Group ? nitride semiconductor light-emitting device
US8866186B2 (en) 2005-09-20 2014-10-21 Toyoda Gosei Co., Ltd. Group III nitride semiconductor light-emitting device
EP1935037A4 (en) * 2005-09-20 2012-03-28 Showa Denko Kk Group iii nitride semiconductor light-emitting device
JP2007157850A (en) * 2005-12-01 2007-06-21 Stanley Electric Co Ltd Semiconductor light emitting element and manufacturing method thereof
CN102751415A (en) * 2006-02-16 2012-10-24 Lg电子株式会社 Light emitting device having vertical structure and method for manufacturing the same
JP2007221146A (en) * 2006-02-16 2007-08-30 Lg Electronics Inc Vertical light emitting device and its manufacturing method
JP2013034010A (en) * 2006-02-16 2013-02-14 Lg Electronics Inc Vertical light-emitting device
US8878245B2 (en) 2006-11-30 2014-11-04 Cree, Inc. Transistors and method for making ohmic contact to transistors
JP2008172225A (en) * 2007-01-05 2008-07-24 Uni Light Touchtek Corp Manufacturing method of light-emitting diode array
JP2008251604A (en) * 2007-03-29 2008-10-16 Toyoda Gosei Co Ltd Light-emitting device and its manufacturing method
US9484499B2 (en) 2007-04-20 2016-11-01 Cree, Inc. Transparent ohmic contacts on light emitting diodes with carrier substrates
JP2009038319A (en) * 2007-08-03 2009-02-19 Nichia Corp Semiconductor light emitting element
US9397266B2 (en) 2007-11-14 2016-07-19 Cree, Inc. Lateral semiconductor light emitting diodes having large area contacts
US8643039B2 (en) 2007-11-14 2014-02-04 Cree, Inc. Lateral semiconductor Light Emitting Diodes having large area contacts
JP2009188370A (en) * 2008-02-01 2009-08-20 Seoul Opto Devices Co Ltd Light emitting diode and method for manufacturing the same
US8741715B2 (en) 2009-04-29 2014-06-03 Cree, Inc. Gate electrodes for millimeter-wave operation and methods of fabrication
JP2012527116A (en) * 2009-05-11 2012-11-01 クリー インコーポレイテッド Semiconductor light-emitting diode having a reflective structure and manufacturing method thereof
JP2010098334A (en) * 2010-02-01 2010-04-30 Sanyo Electric Co Ltd Method for manufacturing light-emitting element
JP4509217B2 (en) * 2010-02-01 2010-07-21 三洋電機株式会社 Method for manufacturing light emitting device
US8304800B2 (en) 2010-05-24 2012-11-06 Lg Innotek Co., Ltd. Light emitting device, light emitting device package, and lighting device system
JP2012059524A (en) * 2010-09-08 2012-03-22 Stanley Electric Co Ltd Lighting fixture for vehicle
JP2012182276A (en) * 2011-03-01 2012-09-20 Sony Corp Light emitting unit and display device
JP2017108156A (en) * 2011-06-01 2017-06-15 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Light-emitting device bonded to supporting substrate
JP2014515560A (en) * 2011-06-01 2014-06-30 コーニンクレッカ フィリップス エヌ ヴェ Light-emitting device bonded to support substrate
JP2019114804A (en) * 2011-06-01 2019-07-11 ルミレッズ ホールディング ベーフェー Light-emitting device bonded to supporting substrate
CN111509103A (en) * 2011-06-01 2020-08-07 亮锐控股有限公司 Light emitting device bonded to a support substrate
JP2013065773A (en) * 2011-09-20 2013-04-11 Toshiba Corp Semiconductor light-emitting element
JP2013084705A (en) * 2011-10-07 2013-05-09 Citizen Holdings Co Ltd Semiconductor light emitting element and manufacturing method of the same
EP2642534A3 (en) * 2012-03-23 2015-12-30 Kabushiki Kaisha Toshiba Semiconductor light emitting device and method for manufacturing the same
JP2013225640A (en) * 2012-03-23 2013-10-31 Toshiba Corp Semiconductor light-emitting device and method of manufacturing the same
US9444013B2 (en) 2012-03-23 2016-09-13 Kabushiki Kaisha Toshiba Semiconductor light emitting device and method for manufacturing the same
JP2019179927A (en) * 2013-07-18 2019-10-17 ルミレッズ ホールディング ベーフェー High reflection flip chip LED die
JP2016528728A (en) * 2013-07-18 2016-09-15 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. High reflection flip chip LED die
WO2015008184A1 (en) * 2013-07-18 2015-01-22 Koninklijke Philips N.V. Highly reflective flip chip led die
JP2015056652A (en) * 2013-09-13 2015-03-23 株式会社東芝 Nitride semiconductor light-emitting device
JP2016004959A (en) * 2014-06-19 2016-01-12 サンケン電気株式会社 Light emitting device
USD826871S1 (en) 2014-12-11 2018-08-28 Cree, Inc. Light emitting diode device
CN105355747A (en) * 2015-10-28 2016-02-24 江苏新广联半导体有限公司 Sapphire-substrate single-electrode LED chip structure and preparation method thereof
WO2017073759A1 (en) * 2015-10-29 2017-05-04 京セラ株式会社 Light-emitting element, light receiving and emitting element module, and optical sensor
JPWO2017073759A1 (en) * 2015-10-29 2018-06-21 京セラ株式会社 Light emitting element, light emitting / receiving element module, and optical sensor
CN109314157A (en) * 2016-05-11 2019-02-05 日机装株式会社 Deep-UV light-emitting element
US20190067520A1 (en) * 2016-05-11 2019-02-28 Nikkiso Co., Ltd Deep ultraviolet light emitting device
US11355670B2 (en) 2016-05-11 2022-06-07 Nikkiso Co., Ltd. Deep ultraviolet light emitting device
TWI730079B (en) * 2016-05-11 2021-06-11 日商日機裝股份有限公司 Deep ultraviolet light emitting element
JP2017204568A (en) * 2016-05-11 2017-11-16 日機装株式会社 Deep uv light-emitting element
CN109314157B (en) * 2016-05-11 2021-05-11 日机装株式会社 Deep ultraviolet light-emitting element
WO2017195507A1 (en) * 2016-05-11 2017-11-16 日機装株式会社 Deep ultraviolet light emitting element
CN111525008A (en) * 2017-02-17 2020-08-11 首尔伟傲世有限公司 Light emitting diode with side reflective layer
CN111052412A (en) * 2017-08-25 2020-04-21 夏普株式会社 Micro LED element, image display element, and manufacturing method
US10903394B2 (en) 2018-02-19 2021-01-26 Nichia Corporation Light emitting element
JP2019145618A (en) * 2018-02-19 2019-08-29 日亜化学工業株式会社 Light-emitting element
KR20190100062A (en) * 2018-02-19 2019-08-28 니치아 카가쿠 고교 가부시키가이샤 Light emitting element
US11715814B2 (en) 2018-02-19 2023-08-01 Nichia Corporation Light emitting element including first and second semiconductor layered bodies having defined relative lateral surface angles
KR102595630B1 (en) * 2018-02-19 2023-10-31 니치아 카가쿠 고교 가부시키가이샤 Light emitting element
WO2020044991A1 (en) * 2018-08-28 2020-03-05 ソニーセミコンダクタソリューションズ株式会社 Light emitting element and electronic device
JPWO2020044991A1 (en) * 2018-08-28 2021-08-12 ソニーセミコンダクタソリューションズ株式会社 Light emitting elements and electronic devices
JP7307077B2 (en) 2018-08-28 2023-07-11 ソニーセミコンダクタソリューションズ株式会社 Light-emitting elements and electronic devices
US11923479B2 (en) 2018-08-28 2024-03-05 Sony Semiconductor Solutions Corporation Light-emitting element and electronic apparatus

Also Published As

Publication number Publication date
JP4123830B2 (en) 2008-07-23

Similar Documents

Publication Publication Date Title
JP2003347589A (en) Led chip
US9755106B2 (en) Light emitting diode with improved light extraction efficiency
US8823031B2 (en) Semiconductor light emitting device including metal reflecting layer
JP6600521B2 (en) Lens and light emitting element module including the same
JP4644193B2 (en) Semiconductor light emitting device
JP6558654B2 (en) Optoelectronic semiconductor chip, optoelectronic semiconductor component, and production method of optoelectronic semiconductor chip
TWI514612B (en) Radiation-emitting chip comprising at least one semiconductor body
CN111092138A (en) Flip-chip type light emitting diode chip
JP6810927B2 (en) Light emitting element package and lighting equipment including it
JP2006100787A (en) Light emitting device and light emitting element
KR20100091207A (en) Improved led structure
JP5849388B2 (en) Semiconductor light emitting device
JP5850036B2 (en) Light emitting device
TW554552B (en) Radiation-emitting chip and radiation-emitting element
TW201611339A (en) Semiconductor light emitting device
JP2014139997A (en) Light-emitting element and light-emitting element package
JP2008311471A (en) Light emitting device
JP2016171188A (en) Semiconductor light emission device and manufacturing method for the same
US10096753B2 (en) Light emitting device
JP6661964B2 (en) Light emitting device
KR20120002130A (en) Flip-chip light-emitting device and method of manufacturing the same
JP2006073618A (en) Optical element and manufacturing method thereof
KR20200079122A (en) Micro light emitting diode and manufacturing method of micro emitting diode
JP2020021964A (en) Light-emitting element and light-emitting element package
JP5931006B2 (en) Light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080415

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080428

R151 Written notification of patent or utility model registration

Ref document number: 4123830

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

EXPY Cancellation because of completion of term