JP2003344576A - Boiling water reactor equipment - Google Patents

Boiling water reactor equipment

Info

Publication number
JP2003344576A
JP2003344576A JP2002151683A JP2002151683A JP2003344576A JP 2003344576 A JP2003344576 A JP 2003344576A JP 2002151683 A JP2002151683 A JP 2002151683A JP 2002151683 A JP2002151683 A JP 2002151683A JP 2003344576 A JP2003344576 A JP 2003344576A
Authority
JP
Japan
Prior art keywords
water
reactor
pipe
control rod
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002151683A
Other languages
Japanese (ja)
Inventor
Hisatoshi Shirahama
寿敏 白濱
Shiyouichirou Kinoshita
詳一郎 木下
Takeshi Takahashi
高橋  健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2002151683A priority Critical patent/JP2003344576A/en
Publication of JP2003344576A publication Critical patent/JP2003344576A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the amount of materials in safety equipment which functions as standby equipment during normal operation of a reactor while assuring the safety against a single failure including a fracture of an injection pipe of high pressure ECCS (emergency core cooling system) of the reactor. <P>SOLUTION: The boiling water reactor equipment is constituted so that a line for directly injecting high pressure water supplied from CRD pumps 1a and 1b to an RPV 15 by bypassing a water pressure control unit 7a of a control rod driving system of boiling water reactor equipment is added, all of the CRD pumps can be actuated by receiving an actuation signal at a time of a failure occurring in the equipment or at an abnormal transient time, and valves installed in pipes 3a and 3b and injection pipes 4a and 4b can be controlled so that supply destination of the high pressure water from the CRD pumps 1a and 1b is changed from the water pressure control unit 7a to the reactor pressure vessel 15. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、非常用炉心冷却系
を有する沸騰水型原子炉設備に関わる。
TECHNICAL FIELD The present invention relates to a boiling water nuclear reactor facility having an emergency core cooling system.

【0002】[0002]

【従来の技術】沸騰水型原子炉設備(以下、BWR)
は、原子炉圧力容器内の冷却水を原子炉圧力容器内の炉
心に循環させるために、原子炉圧力容器(以下、RP
V)の外側に配備したポンプと原子炉圧力容器内とを配
管で接続している。それに対して、改良型沸騰水型原子
炉設備(以下、ABWR)は、冷却水を炉心に循環させ
るポンプを原子炉圧力容器自体に装備してポンプと原子
炉圧力容器内とを連通する配管が存在しない。そのた
め、ABWRはBWRに比較して、配管破断による事故
の規模が低減できる利点がある。
2. Description of the Related Art Boiling water reactor equipment (hereinafter referred to as BWR)
In order to circulate the cooling water in the reactor pressure vessel to the reactor core in the reactor pressure vessel (hereinafter referred to as RP
The pump installed outside V) and the inside of the reactor pressure vessel are connected by piping. On the other hand, the improved boiling water reactor facility (hereinafter referred to as ABWR) is equipped with a pump for circulating cooling water in the reactor core in the reactor pressure vessel itself, and a pipe for communicating the pump with the inside of the reactor pressure vessel is provided. not exist. Therefore, the ABWR has an advantage over the BWR in that the scale of an accident due to pipe breakage can be reduced.

【0003】一方、ABWRとBWRのいずれもが、事
故時及び異常な過渡時においてRPVに水を注水して炉心
を冷却する非常用炉心冷却系(以下、ECCS)と、炉
心の出力を低下させるために制御棒を炉心へ水圧で挿入
する為の制御棒駆動系(以下、CRD系)を有する。
On the other hand, both the ABWR and the BWR reduce the power output of the emergency core cooling system (hereinafter, ECCS) for injecting water into the RPV to cool the core at the time of accident and abnormal transient. Therefore, it has a control rod drive system (hereinafter, CRD system) for hydraulically inserting the control rod into the core.

【0004】CRD系の水圧は高圧系ECCSの水圧と
同程度の高圧を有するものであるから、そのCRD系を
高圧系ECCSとして使用する公知例が特開昭61−26
0191号公報に掲載されている。その従来の技術における
CRD系のECCSとしての使用について以下に説明す
る。
Since the water pressure of the CRD system is as high as the water pressure of the high pressure system ECCS, there is a known example in which the CRD system is used as the high pressure system ECCS.
It is published in Japanese Patent No. 0191. The use of the CRD system as an ECCS in the related art will be described below.

【0005】前述の公知例は、前記BWRのECCSに
おいて高圧系ECCSの作動信頼性を向上する目的でC
RD系を高圧系ECCSとして使用した例である。この
公知例ではCRD系に備わる制御棒駆動水ポンプ(以
下、CRDポンプ)の下流側の配管と高圧系ECCSを
構成している高圧炉心スプレイ系(以下、HPCS系)
の高圧炉心スプレイ配管(以下、HPCS配管)とを接
続した構成を備える。各配管には弁が装着され、配管内
の水の流れを制御している。
The above-mentioned publicly known example is intended to improve the operational reliability of the high-voltage ECCS in the BWR ECCS.
In this example, the RD system is used as a high pressure ECCS. In this known example, a high-pressure core spray system (hereinafter, HPCS system) that constitutes a high-pressure system ECCS with a pipe on the downstream side of a control rod drive water pump (hereinafter, CRD pump) provided in the CRD system.
The high pressure core spray pipe (hereinafter referred to as HPCS pipe) is connected. Each pipe is equipped with a valve to control the flow of water in the pipe.

【0006】このような公知例の場合には、通常運転時
はCRDポンプからの高圧水を配管を介してCRD系の
水圧制御ユニット(以下、HCU)に連続的なパージ水
及びHCUアキュムレータ圧力を供給し、事故時及び異
常な過渡時において高圧系ECCSの作動が不調な場合
にはCRDポンプからの高圧水をHPCS配管を介して
RPVに高圧冷却水を供給する。
In the case of such a known example, during normal operation, high-pressure water from the CRD pump is continuously supplied to the CRD water pressure control unit (hereinafter referred to as HCU) through a pipe so as to supply continuous purge water and HCU accumulator pressure. When the operation of the high pressure system ECCS is unsuccessful at the time of an accident or an abnormal transient, the high pressure water from the CRD pump is supplied to the RPV through the HPCS pipe.

【0007】これによって、事故時及び異常な過渡時に
おいてECCSの多重故障によりHPCS系が作動しな
い場合であっても、CRDポンプから供給される高圧水
をHPCS配管を介してRPVに注水し、炉心の冷却を
行う。
As a result, even if the HPCS system does not operate due to multiple failures of the ECCS at the time of an accident and an abnormal transient, the high pressure water supplied from the CRD pump is injected into the RPV through the HPCS pipe, and the core is cooled. Cool down.

【0008】[0008]

【発明が解決しようとする課題】CRD系を高圧系EC
CSに用いる場合、BWRにおける従来の技術では前記
のようにCRD系からの高圧水はHPCS配管を介して
炉心部にスプレイされる。
[Problems to be Solved by the Invention] CRD system is a high-voltage system EC
When used for CS, in the conventional technique of BWR, as described above, the high pressure water from the CRD system is sprayed to the core through the HPCS pipe.

【0009】しかしRPVへの注水用の配管としてHP
CS系とCRD系がHPCS配管を共用しているため、
HPCS配管の破断や注入隔離弁の開閉不良などにより
HPCS配管が使用できない場合には、HPCS系だけでは
なくCRD系の高圧水もRPVに供給することが出来なく
なるという課題があった。
However, HP is used as a pipe for water injection into the RPV.
Since the CS system and CRD system share the HPCS piping,
Due to breakage of HPCS piping or opening / closing of injection isolation valve
When HPCS piping cannot be used, there was a problem that not only HPDS system but also CRD system high pressure water could not be supplied to RPV.

【0010】また従来のABWRやBWRにおけるCR
D系では、通常運転時に待機設備となるECCS等の安
全系の機器員数を可能な限り削減することで機器単品の
コストを低減し、建設コストに関係する建屋容積を最小
限にとどめ、更に機器の点検及び保守作業を減少させる
ことが望まれているが、安全系の機器員数を可能な限り
削減したい一方で原子炉の安全性の維持も両立させる必
要がある。
CR in conventional ABWR and BWR
In the D system, the number of safety equipment such as ECCS, which becomes a standby facility during normal operation, is reduced as much as possible to reduce the cost of individual equipment, minimize the building volume related to construction cost, and further It is desirable to reduce the number of inspections and maintenance work of the equipment, but it is necessary to reduce the number of safety system personnel as much as possible while maintaining the safety of the reactor.

【0011】本発明の目的はABWRやBWRにおける
CRD系のECCSとしての利用に際して、ECCSの
注入配管破断を含む単一故障が生じた場合であってもR
PVに確実に冷却水を供給して炉心部の冷却が可能とな
る機器構成を提供し、更には経済性の向上を図ることで
ある。
It is an object of the present invention to use a CRD system in an ABWR or a BWR as an ECCS, even if a single failure including a break in the injection pipe of the ECCS occurs.
An object of the present invention is to provide a device configuration capable of reliably supplying cooling water to PV to cool the core portion, and further to improve economic efficiency.

【0012】[0012]

【課題を解決するための手段】本発明の目的を達成する
手段は、ABWRやBWRにおけるCRD系のCRDポ
ンプで昇圧させた高圧水を、HCUを経由せずにRPV
に直接注入できる配管及び弁を備えることによって、C
RD系にECCSの機能を他のECCSとは独立させて
持たせてECCSの注入配管の破断時でもCRD系から
確実に注水できるようにするとともに、通常時において
待機状態にある高圧炉心スプレイ系といった高圧系EC
CSを削除可能な構成とする。
Means for achieving the object of the present invention is to obtain high-pressure water pressurized by a CRD system CRD pump in ABWR or BWR without passing through HCU.
By providing piping and valves that can be directly injected into
The RD system has the function of ECCS independently of other ECCS so that water can be reliably injected from the CRD system even when the injection pipe of the ECCS is broken. High-voltage EC
The CS can be deleted.

【0013】[0013]

【発明の実施の形態】改良型沸騰水型原子炉設備(以
下、ABWR)におけるCRD系と高圧系ECCSの系統図
を図1に示す。ABWRでは、配管破断などによる事故
時及び異常な過渡変化時において原子炉がスクラムした
場合に炉心の崩壊熱除去を行うためにECCSが複数設
置されている。
BEST MODE FOR CARRYING OUT THE INVENTION A system diagram of a CRD system and a high pressure system ECCS in an improved boiling water reactor facility (abbreviated below as ABWR) is shown in FIG. In ABWR, a plurality of ECCSs are installed in order to remove decay heat of the reactor core when a nuclear reactor scrams during an accident due to pipe breakage or during an abnormal transient change.

【0014】図1において、ABWRには、事故時及び
異常な過渡変化時における原子炉圧力容器(以下、RP
V)15の圧力が高い場合にRPV15内の炉心部に冷
却水を注水する高圧系ECCSとして、原子炉隔離時冷
却系ポンプ(以下、RCICポンプ)16,RCICポ
ンプ16を駆動するための原子炉隔離時冷却系蒸気ター
ビン(以下、RCICタービン)17,RCICポンプ
16で水源から汲み上げて昇圧させた高圧水をRPV1
5内に圧送する原子炉隔離時冷却系配管(以下、RCI
C配管)18からなる原子炉隔離時冷却系(以下、RC
IC系)が1系列設置される。このRCIC系は、RP
V15の圧力が高い場合にRPV15内の炉心部に冷却
水を注水することができることから、高圧注入系であ
る。
In FIG. 1, an ABWR is a reactor pressure vessel (hereinafter, RP) at the time of an accident and an abnormal transient change.
V) As a high pressure system ECCS for injecting cooling water into the core part of the RPV 15 when the pressure of 15 is high, a reactor isolation cooling system pump (hereinafter, RCIC pump) 16 and a reactor for driving the RCIC pump 16 High-pressure water pumped from a water source by an RCIC pump 16 and a steam turbine (hereinafter, RCIC turbine) 17 for isolation cooling system to raise the pressure is RPV1.
Reactor isolation cooling system piping (hereinafter referred to as RCI)
Reactor isolation cooling system consisting of C pipe 18 (hereinafter RC
One IC system) is installed. This RCIC system is RP
When the pressure of V15 is high, cooling water can be injected into the core of the RPV 15, which is a high-pressure injection system.

【0015】更に、ABWRには、高圧系ECCSとし
て、CRDポンプ1a,1bで水源から汲み上げて昇圧
させた水を互いに独立した注入配管4a,4bと弁5
a,5bを経由してRPV15内に圧送する2系列の注
水系が高圧注入系として設置される。CRDポンプ1
a,1bからの水供給による注水系は図2において「高
圧注水系:CRD」と表示してある。
Further, in the ABWR, as high pressure system ECCS, water pumped up from the water source by the CRD pumps 1a, 1b to raise the pressure is injected pipes 4a, 4b and a valve 5 independent from each other.
Two series of water injection systems that pressure-feed into the RPV 15 via a and 5b are installed as a high-pressure injection system. CRD pump 1
The water injection system by water supply from a and 1b is shown as "high pressure water injection system: CRD" in FIG.

【0016】また事故時及び異常な過渡変化時におい
て、RPV15の圧力が低い場合にRPV15内の炉心
部に冷却水を注水する低圧系ECCSとして、残留熱除
去系(以下、RHR図1に記載なし。)が3系列設置さ
れる。ABWRではこれらの高圧系ECCS及び低圧系
ECCSを1系列ずつ組み合わせて、図2のように区分
I,区分II,区分III とし、それぞれの系統機能の達成
に必要な配管,弁,機器を区分毎に独立させた構成とし
ている。なおこれらのECCSは通常電源に加えて非常
用ディーゼル発電設備からも区分毎に独立して電源供給
される。
Further, in the event of an accident or abnormal transient change, when the pressure of the RPV 15 is low, a residual heat removal system (hereinafter not shown in RHR FIG. 1 is used as a low pressure system ECCS for injecting cooling water into the core portion of the RPV 15. 3) are installed. In ABWR, these high-voltage system ECCS and low-voltage system ECCS are combined one by one to be classified into Category I, Category II, and Category III as shown in Fig. 2, and the piping, valves, and equipment required to achieve each system function are classified by category. It has been made independent. In addition to the normal power source, these ECCSs are also independently powered by the emergency diesel power generation facility for each category.

【0017】CRD系では、水源から供給される水をC
RDポンプ1a,1bにより加圧し、その加圧による高
圧水は配管3a,3bと弁2a,2bを経由して水圧制
御ユニット(以下、HCU)7aのアキュムレータを連
続加圧する。電動・水圧駆動式制御棒駆動機構(以下、
FMCRD)17a,18aは、電動駆動により制御棒
(図中には記載なし。以下、CR)のRPV15内の炉
心に対する挿入位置を変化させて原子炉炉心の反応度を
制御する。
In the CRD system, the water supplied from the water source is C
The RD pumps 1a and 1b pressurize, and the high-pressure water resulting from the pressurization continuously pressurizes the accumulator of the water pressure control unit (hereinafter, HCU) 7a via the pipes 3a and 3b and the valves 2a and 2b. Electric / water pressure control rod drive mechanism (hereinafter,
The FMCRDs 17a and 18a control the reactivity of the reactor core by electric drive to change the insertion position of the control rod (not shown in the drawing; hereinafter CR) with respect to the core in the RPV 15.

【0018】沸騰水型原子炉設備の事故時及び異常な過
渡変化時には、HCU7aに保持した圧力をFMCRD
17a,18aに開放することにより水圧で炉心にCR
を全挿入して炉心の出力を急低下させるスクラムを行っ
て原子炉を安全に停止する。また原子炉の通常運転時に
は、スクラムに備えてCRDポンプ1a,1bにより加
圧した高圧水をHCU7aへ連続的に供給してHCU7
aの蓄圧タンク内を加圧して高圧水の充填状態を保持す
る。これと同時に、FMCRD17a,18a,インタ
ーナルポンプ(図中に記載なし)及び原子炉冷却材浄化
系ポンプ(図中に記載なし)等にRPV内圧力以上に加
圧されたパージ水を供給し、RPV15や原子炉冷却材
バウンダリに直結する機器への原子炉水の混入を防いで
いる。
At the time of an accident of the boiling water reactor facility and during an abnormal transient change, the pressure held in the HCU 7a is applied to the FMCRD.
CR to the core by hydraulic pressure by opening to 17a, 18a
Is fully inserted to perform a scrum that causes a rapid decrease in core power, and the reactor is safely shut down. Further, during normal operation of the nuclear reactor, the high pressure water pressurized by the CRD pumps 1a and 1b in preparation for the scrum is continuously supplied to the HCU 7a.
The inside of the accumulator tank a is pressurized to maintain the high-pressure water filling state. At the same time, the FMCRD 17a, 18a, the internal pump (not shown in the figure), the reactor coolant purification system pump (not shown in the figure), etc., is supplied with purge water pressurized above the RPV internal pressure, This prevents the mixture of reactor water into the equipment directly connected to the RPV 15 and the reactor coolant boundary.

【0019】なおCRDポンプ1a,1bは、機器保護
の観点から当該機器へのパージ水を供給するので、通常
電源に加えて非常用ディーゼル発電設備からもCRDポ
ンプ1a,1bを駆動するための電力が供給される。ま
た弁8,弁10及び配管9は、HCU7aのメンテナン
ス時においてCRDポンプ1a,1bからの余剰な高圧
水を必要時のみ配管11を介して原子炉給水配管12へ
バイパスするために設けられており、CRD系に1組だ
け設置されている。
Since the CRD pumps 1a and 1b supply purge water to the equipment from the viewpoint of equipment protection, electric power for driving the CRD pumps 1a and 1b from the emergency diesel power generation facility in addition to the normal power source. Is supplied. Further, the valve 8, the valve 10 and the pipe 9 are provided for bypassing excess high-pressure water from the CRD pumps 1a, 1b to the reactor water supply pipe 12 via the pipe 11 only when necessary during maintenance of the HCU 7a. , Only one set is installed in the CRD system.

【0020】以上のようにABWRの制御棒駆動系(以
下、CRD系)の系統構成は構成されて、RPV15に
対する高圧注入系に利用したり、スクラム時におけるC
Rの炉心への全挿入を急速に行うための高圧水のFMC
RD17a,18aへの供給を司る。
As described above, the system configuration of the control rod drive system (hereinafter, CRD system) of the ABWR is configured so that it can be used as a high-pressure injection system for the RPV 15 or at the time of scram.
High pressure water FMC for rapid full insertion of R into the core
It controls the supply to the RDs 17a and 18a.

【0021】図1に、本発明の実施の形態においてCR
D系をECCSとして使用した場合の高圧系ECCSの
系統図を示す。
FIG. 1 shows a CR according to the embodiment of the present invention.
The system diagram of the high pressure system ECCS when D system is used as ECCS is shown.

【0022】CRDポンプ1a,1bの下流側の配管3
a,3bより注入配管4a,4bを分岐し、一端をそれ
ぞれ独立にRPV15に直接接続する。RPV15に注
入配管4a,4bを直接接続することで、CRDポンプ
1a,1bで高圧にされた水源の水はRPV15へ他の
ECCSの配管経路を経由することなく直接に注水され
る。そのため、他のECCSの配管破断を含むECCS
の単一故障が生じても高圧系ECCSの機能維持が可能
となる。
Piping 3 downstream of the CRD pumps 1a, 1b
Injection pipes 4a and 4b are branched from a and 3b, and one ends thereof are directly connected to the RPV 15 independently. By directly connecting the injection pipes 4a and 4b to the RPV 15, the water of the water source, which has been pressurized to high pressure by the CRD pumps 1a and 1b, is directly injected into the RPV 15 without passing through another piping line of ECCS. Therefore, ECCS including pipe break of other ECCS
Even if a single failure occurs, the function of the high voltage ECCS can be maintained.

【0023】またCRDポンプ1a,1b吐出側には配
管3a,3bと注入配管4a,4bの分岐位置より下流
側に弁2a,2bを設置し、また注入配管4a,4bに
おいては弁5a,5bを設置する。事故時及び異常な過
渡変化時以外の通常運転時は弁2a,2bを開き、弁5
a,5bを閉じることで配管6を介してHCU7aに連
続的なパージ水及びHCUアキュムレータ圧力を供給す
る。
Further, valves 2a and 2b are installed on the discharge side of the CRD pumps 1a and 1b downstream of the branch positions of the pipes 3a and 3b and the injection pipes 4a and 4b, and the valves 5a and 5b are provided in the injection pipes 4a and 4b. Set up. During normal operation except during an accident and abnormal transient changes, the valves 2a and 2b are opened and the valve 5
By closing a and 5b, continuous purge water and HCU accumulator pressure are supplied to the HCU 7a via the pipe 6.

【0024】CRDポンプ1a,1bは2台のうち通常
は1台が高圧水を供給し、1台は予備基である。事故時
及び異常な過渡時には起動信号によってCRDポンプが
全台起動し、また通常時は弁2a,2bを開、弁5a,
5bを閉する制御が、前述の起動信号に基づいて弁2
a,2bを閉、弁5a,5bを開する制御とする。
Of the two CRD pumps 1a and 1b, normally one supplies high-pressure water and one is a spare base. All CRD pumps are activated by an activation signal at the time of an accident and abnormal transition, and normally, valves 2a and 2b are opened and valves 5a,
The control for closing the valve 5b is based on the above-mentioned start signal.
The control is such that a and 2b are closed and valves 5a and 5b are opened.

【0025】これによって通常時には常用系として運転
しているCRD系が、事故及び異常な過渡時には高圧炉
心注水系(以下、HPCF系)に代わってRCIC系と
連携してRPV15に高圧系ECCSとして冷却水の供
給を行うことができるため、ABWRにおける経済性の
向上と従来のABWRと同等の高圧系ECCSの信頼性
を実現できる。
As a result, the CRD system, which is normally operating as a normal system, cools the RPV 15 as a high pressure system ECCS in cooperation with the RCIC system instead of the high pressure core water injection system (hereinafter, HPCF system) in the event of an accident or abnormal transient. Since water can be supplied, it is possible to improve the economic efficiency of the ABWR and achieve the reliability of the high pressure ECCS equivalent to that of the conventional ABWR.

【0026】なお弁8,弁10及び配管9は、HCU7
aのメンテナンス時においてCRDポンプ1a,1bか
らの余剰な高圧水を一時的に配管11を介して原子炉給
水配管12へバイパスするために設けられており、CR
D系に1組設置されている。
The valves 8, 10 and the piping 9 are the HCU 7
It is provided to temporarily bypass excess high-pressure water from the CRD pumps 1a and 1b through the pipe 11 to the reactor water supply pipe 12 during maintenance of a.
One set is installed in the D system.

【0027】図2は本発明の実施の形態におけるECC
Sの区分構成の例を示している。そのECCSの区分構
成を説明すると次のとおりである。即ち、ECCSは、
RPV内圧力が高圧時でもRPV内に冷却水を注入可能な
高圧系ECCSと、低圧時にRPV内に冷却水を注入す
る低圧系ECCSから構成され、起動信号により起動す
る。図2では、RCIC系101の1系列とCRD系1
02,103の2系列設置として高圧系ECCSを形成
した例を示している。低圧系ECCSはRHR系10
4,105,106の3系列で構成する。ECCSは高
圧系ECCS,低圧系ECCSを1組ずつ組み合わせて
区分I,区分II,区分III とし、それぞれの系統機能の
達成に必要な配管,弁,機器,電源等を区分毎に独立さ
せた構成としている。なおCRD系は従来同様、通常電
源に加えて非常用ディーゼル発電設備からも電源供給さ
れる。
FIG. 2 shows the ECC according to the embodiment of the present invention.
The example of the division structure of S is shown. The division structure of the ECCS is as follows. That is, ECCS
It is composed of a high pressure system ECCS that can inject cooling water into the RPV even when the RPV internal pressure is high, and a low pressure system ECCS that injects cooling water into the RPV when the pressure is low, and is activated by a start signal. In FIG. 2, one series of RCIC system 101 and CRD system 1
An example in which a high-voltage ECCS is formed as a two-series installation of 02 and 103 is shown. Low-voltage ECCS is RHR system 10
It is composed of three series of 4, 105 and 106. ECCS are classified into Category I, Category II, and Category III by combining one set of high-voltage system ECCS and low-voltage system ECCS, and the piping, valves, equipment, power supply, etc. required to achieve each system function are configured separately for each group. I am trying. The CRD system is supplied with power from the emergency diesel power generation facility in addition to the normal power supply as in the conventional case.

【0028】このように、本発明の実施例によれば、C
RD系からRPVに直接注入可能なラインを設けること
で、配管破断を含む高圧系ECCSの単一故障に対する
信頼性を高くすることができる。
Thus, according to the embodiment of the present invention, C
By providing a line that can be directly injected into the RPV from the RD system, it is possible to increase the reliability for a single failure of the high pressure system ECCS including pipe breakage.

【0029】又、ABWRが従来備えていた通常時には
常に待機状態とされていた2系統のHPCF系を削除
し、CRD系に2系統のHPCF系による注水機能を担
わせることができることから、プラントの物量低減,建
設コスト及びメンテナンスコスト低減,HPCF系削除
による非常用ディーゼル発電設備の容量低減が可能とな
るシステムを提供でき、更に従来のABWRにおけるE
CCSと同等の機能安定性を得ることができる。
In addition, since the two HPCF systems which were always in the standby state at normal times, which were conventionally provided in the ABWR, can be deleted and the CRD system can be made to perform the water injection function by the two HPCF systems, It is possible to provide a system that can reduce the amount of materials, construction costs and maintenance costs, and reduce the capacity of emergency diesel power generation equipment by eliminating the HPCF system.
Functional stability equivalent to that of CCS can be obtained.

【0030】[0030]

【発明の効果】本発明によれば、CRD系からRPVに
直接注入可能なラインを設けることで、従来の技術と比
較して配管破断を含む高圧系ECCSの単一故障に対す
る信頼性を高くすることができる。
According to the present invention, by providing a line that can be directly injected from the CRD system to the RPV, the reliability of a high-voltage system ECCS including a pipe breakage against a single failure is increased as compared with the conventional technique. be able to.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態によるABWRにおける高
圧系ECCSの系統図である。
FIG. 1 is a system diagram of a high voltage ECCS in an ABWR according to an embodiment of the present invention.

【図2】本発明の実施の形態によるECCSの区分構成
を示す図である。
FIG. 2 is a diagram showing a division structure of ECCS according to the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1a,1b…制御棒駆動水ポンプ(CRDポンプ)、2
a,2b,5a,5b…弁、3a,3b…配管、4a,
4b…注入配管、7…水圧制御ユニット(HCU)、15
…原子炉圧力容器(RPV)、16…原子炉隔離時冷却系
ポンプ(RCICポンプ)。
1a, 1b ... Control rod drive water pump (CRD pump), 2
a, 2b, 5a, 5b ... valve, 3a, 3b ... piping, 4a,
4b ... injection pipe, 7 ... water pressure control unit (HCU), 15
... Reactor pressure vessel (RPV), 16 ... Reactor isolation cooling system pump (RCIC pump).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 健 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所原子力事業部内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Ken Takahashi             3-1-1 Sachimachi, Hitachi City, Ibaraki Prefecture Stock Association             Hitachi, Ltd. Nuclear Business Division

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】原子炉圧力容器へ注水する非常用炉心冷却
系と、 沸騰水型原子炉設備の制御棒駆動機構を駆動させる水を
蓄積する水圧制御ユニットと、前記水圧制御ユニットに
水を第1の配管を通じて圧送する制御棒駆動水ポンプと
を有する制御棒駆動系と、 前記非常用炉心冷却系とは独立した経路で前記制御棒駆
動水ポンプからの水を前記原子炉圧力容器内へ導く第2
の配管と、 前記第1の配管に設けられた第1の弁と、 前記第2の配管に設けられた第2の弁と、を有する沸騰
水型原子炉設備。
1. An emergency core cooling system for injecting water into a reactor pressure vessel, a water pressure control unit for accumulating water for driving a control rod drive mechanism of a boiling water reactor facility, and water for the water pressure control unit. 1. A control rod drive system having a control rod drive water pump for pressure-feeding through one pipe, and a water path from the control rod drive water pump into the reactor pressure vessel via a path independent of the emergency core cooling system. Second
B), a first valve provided in the first pipe, and a second valve provided in the second pipe.
【請求項2】原子炉圧力容器へ注水する非常用炉心冷却
系と、 沸騰水型原子炉設備の制御棒駆動機構を駆動させる水を
蓄積する水圧制御ユニットと、前記水圧制御ユニットに
水を第1の配管を通じて圧送する制御棒駆動水ポンプと
を有する制御棒駆動系と、 前記非常用炉心冷却系とは独立した経路で前記制御棒駆
動水ポンプからの水を前記原子炉圧力容器内へ導く第2
の配管と、 前記第1の配管に設けられ、前記原子炉圧力容器内に水
を補給する場合に発せられる起動信号により閉じるよう
に設定された第1の弁と、 前記第2の配管に設けられ、原子炉圧力容器内に冷却水
を補給する場合に発せられる起動信号により開くように
設定された第2の弁と、を有する沸騰水型原子炉設備。
2. An emergency core cooling system for injecting water into a reactor pressure vessel, a water pressure control unit for accumulating water for driving a control rod drive mechanism of a boiling water reactor facility, and water for the water pressure control unit. 1. A control rod drive system having a control rod drive water pump for pressure-feeding through one pipe, and a water path from the control rod drive water pump into the reactor pressure vessel via a path independent of the emergency core cooling system. Second
And a first valve provided in the first pipe, the first valve being set to be closed by a start signal issued when water is replenished in the reactor pressure vessel, and the second pipe provided in the second pipe. And a second valve set to be opened by a start signal issued when replenishing cooling water into the reactor pressure vessel, the boiling water reactor facility.
【請求項3】原子炉圧力容器へ注水する非常用炉心冷却
系として高圧系非常用炉心冷却系を有し、 前記高圧系非常用炉心冷却系は、前記原子炉圧力容器へ
注水する1系統の原子炉隔離時冷却系と、 沸騰水型原子炉設備の制御棒駆動系に備わる制御棒駆動
水ポンプと、前記沸騰水型原子炉設備が有する原子炉圧
力容器内への他の注水経路とは独立した経路で前記制御
棒駆動水ポンプからの水を前記原子炉圧力容器内へ導く
配管と、前記配管の途中に設けられた弁とを備えた相互
に独立した2系列の注水系によって構成されている沸騰
水型原子炉設備。
3. A high pressure system emergency core cooling system is provided as an emergency core cooling system for injecting water into the reactor pressure vessel, and the high pressure system emergency core cooling system is a system for injecting water into the reactor pressure vessel. What is the cooling system during reactor isolation, the control rod drive water pump provided in the control rod drive system of boiling water reactor equipment, and the other water injection paths into the reactor pressure vessel of the boiling water reactor equipment? It is configured by two mutually independent water injection systems including a pipe for guiding water from the control rod drive water pump into the reactor pressure vessel through an independent path, and a valve provided in the middle of the pipe. Boiling water reactor equipment.
JP2002151683A 2002-05-27 2002-05-27 Boiling water reactor equipment Pending JP2003344576A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002151683A JP2003344576A (en) 2002-05-27 2002-05-27 Boiling water reactor equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002151683A JP2003344576A (en) 2002-05-27 2002-05-27 Boiling water reactor equipment

Publications (1)

Publication Number Publication Date
JP2003344576A true JP2003344576A (en) 2003-12-03

Family

ID=29769189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002151683A Pending JP2003344576A (en) 2002-05-27 2002-05-27 Boiling water reactor equipment

Country Status (1)

Country Link
JP (1) JP2003344576A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009031079A (en) * 2007-07-26 2009-02-12 Toshiba Corp Emergency core cooling system
JP2015040809A (en) * 2013-08-23 2015-03-02 中国電力株式会社 Emergency reactor core cooling backup system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009031079A (en) * 2007-07-26 2009-02-12 Toshiba Corp Emergency core cooling system
JP2015040809A (en) * 2013-08-23 2015-03-02 中国電力株式会社 Emergency reactor core cooling backup system

Similar Documents

Publication Publication Date Title
US9031183B2 (en) Emergency core cooling system
US8817941B2 (en) Pressurized water reactor plant
US10529457B2 (en) Defense in depth safety paradigm for nuclear reactor
US20020101951A1 (en) Boiling water reactor nuclear power plant
TWI482174B (en) Emergency furnace heart cooling system and boiling water type atomic energy unit
CN111081399B (en) Emergency reactor core cooling system of nuclear power plant
JPH0411836B2 (en)
JPS60254000A (en) Emergency feedwater facility for steam generator
JP2953787B2 (en) Light water reactor
JP2003344576A (en) Boiling water reactor equipment
JP2004061192A (en) Nuclear power generation facilities
JP6348855B2 (en) Emergency core cooling system for nuclear power plants
JPH05264774A (en) Emergency reactor cooling equipment
JPH1090468A (en) Emergency core cooling system
JP5844319B2 (en) Emergency core cooling backup equipment
Conway et al. Simplified safety and containment systems for the IRIS reactor
CN112750540A (en) Safe injection system and method and nuclear power system
JPH0755984A (en) Reactor supply water equipment
RU2102800C1 (en) Power plant
JP7408470B2 (en) Nuclear plant water supply equipment
JP3984038B2 (en) Boiling water nuclear power plant
Severa Reconstruction of the Emergency Core Cooling System (ECCS), Confinement Spray System (SSK) and Pressurizer Safety Valves and Relief Line (PVKO)
Tang et al. Study on Modifications of CPR1000 Nuclear Plants for Design Extension Conditions
JPH10160884A (en) Emergency core-cooling system of reactor power plant
JPS61243397A (en) Emergency core cooling device for nuclear reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040827

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071204