JP2003343623A - Manufacturing method of sliding member - Google Patents

Manufacturing method of sliding member

Info

Publication number
JP2003343623A
JP2003343623A JP2003020260A JP2003020260A JP2003343623A JP 2003343623 A JP2003343623 A JP 2003343623A JP 2003020260 A JP2003020260 A JP 2003020260A JP 2003020260 A JP2003020260 A JP 2003020260A JP 2003343623 A JP2003343623 A JP 2003343623A
Authority
JP
Japan
Prior art keywords
composite material
carbon fiber
fine particles
sliding
fiber reinforced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003020260A
Other languages
Japanese (ja)
Inventor
Toshihiro Fukagawa
敏弘 深川
Akira Obara
昭 小原
Tetsuya Ogawa
鉄也 小川
Satoshi Yoshida
聡 吉田
Hisashi Murai
悠 村井
Satoshi Takesako
聡 竹迫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Mitsubishi Kagaku Sanshi Corp
Original Assignee
Honda Motor Co Ltd
Mitsubishi Kagaku Sanshi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Mitsubishi Kagaku Sanshi Corp filed Critical Honda Motor Co Ltd
Priority to JP2003020260A priority Critical patent/JP2003343623A/en
Publication of JP2003343623A publication Critical patent/JP2003343623A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sliding member made of carbon fiber reinforced composite member having an improved friction coefficient without sacrificing abrasive resistance. <P>SOLUTION: A manufacturing method of a sliding member comprises depositing hyperfine particles made of a single element, carbide, nitride, or oxide of group IV to VI onto near a surface near the carbon fiber reinforced composite member. As an example described is immersing the carbon fiber reinforced composite member in a solvent with the hyperfine particles dispersed. And hafnium, tantalum, and tungsten are listed as an example of the group IV to VI constituting the hyperfine particles. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、摩擦係数が高く、
耐摩耗性にも優れた、炭素繊維強化炭素複合材からなる
摺動材の製造方法に関する。
TECHNICAL FIELD The present invention has a high coefficient of friction,
The present invention relates to a method for producing a sliding material made of a carbon fiber reinforced carbon composite material which is also excellent in wear resistance.

【0002】[0002]

【従来の技術】炭素繊維強化炭素複合材(以下、C/C
複合材と言うことがある)は、通常、炭素繊維集合物に
樹脂を含浸又は混合して加熱成形したもの、あるいは炭
素繊維構造物(炭素繊維プリフォーム)を非酸化雰囲気
中で焼成し、緻密化、更に、必要に応じて黒鉛化処理す
ることにより製造される。かかるC/C複合材は、比強
度が大きく、軽量、かつ高温での使用に耐え得る材料と
して、従来から摺動部材用、駆動継ぎ手用、制動機構用
等の材料として使用されており、特に、航空機、一般車
輌、レース車輌のブレーキ、クラッチ等の摺動材として
注目されている。
2. Description of the Related Art Carbon fiber reinforced carbon composite materials (hereinafter C / C
A composite material may be referred to as a composite material, which is usually obtained by impregnating or mixing a carbon fiber aggregate with a resin and then heat-molding it, or by firing a carbon fiber structure (carbon fiber preform) in a non-oxidizing atmosphere to obtain a dense structure. It is produced by subjecting the polymer to a graphitization treatment and, if necessary, a graphitization treatment. Such a C / C composite material has a large specific strength, is lightweight, and has been conventionally used as a material for sliding members, drive joints, braking mechanisms, etc., as a material that can withstand use at high temperatures. It is attracting attention as a sliding material for brakes, clutches, etc. of aircraft, general vehicles and racing vehicles.

【0003】C/C複合材を摺動材として使用する場
合、高温高圧の高負荷条件下で使用されるため、その摩
擦係数及び耐摩耗性を向上させるための改良方法が種々
提案されている。その中で、C/C複合材の表面に、C
VD法等の気相成長法や、塗布法、含浸法などによって
SiC層を被覆する方法が多数提案されている。しかし
ながら、この方法による摺動材では、耐摩耗性が改善さ
れるが、摩擦係数が低くなる傾向がある。また、嵩密度
が高くて軽量化に支障をきたすうえ、製造コストが高く
なりがちである。
When a C / C composite material is used as a sliding material, it is used under high temperature, high pressure and high load conditions. Therefore, various improvement methods have been proposed for improving its friction coefficient and wear resistance. . Among them, on the surface of C / C composite material, C
A large number of methods have been proposed for coating the SiC layer by vapor phase growth methods such as the VD method, coating methods, and impregnation methods. However, although the sliding material produced by this method has improved wear resistance, it tends to have a low coefficient of friction. Further, the bulk density is high, which hinders weight reduction and tends to increase the manufacturing cost.

【0004】一方、炭素繊維プリフォームに、ヌープ硬
度300kg/mm2以上の無機物質の微粒子を添加し
た後、成形し、焼成緻密化する方法により、耐摩耗性に
優れた摺動材が得られることが知られている(特開平7
−101783号)。しかしながら、この方法で得られ
る摺動材では、耐摩耗性の向上は認められるものの、摩
擦係数の向上が十分ではない。
On the other hand, by adding fine particles of an inorganic substance having a Knoop hardness of 300 kg / mm 2 or more to a carbon fiber preform, followed by molding and densification by firing, a sliding material having excellent wear resistance can be obtained. It is known (Japanese Patent Application Laid-Open No. H7-7
-101783). However, in the sliding material obtained by this method, although the abrasion resistance is improved, the friction coefficient is not sufficiently improved.

【0005】[0005]

【発明が解決しようとする課題】C/C複合材をブレー
キやクラッチ等の摺動材として使用する場合、特にレー
ス車両用ブレーキ材やクラッチ材として使用する場合
は、短時間の減速や摺動面積を少なくするために高摩擦
係数の摺動材が望まれる。また、高負荷の摺動時には、
摺動材が高温となりフェードによる摩擦係数の低下が問
題である。そこで、本発明が解決しようとする課題は、
軽量で耐摩耗性に優れ、高負荷でも摩擦係数の高いC/
C複合材からなる摺動材を提供することにある。
When a C / C composite material is used as a sliding material for a brake, a clutch, etc., particularly when it is used as a brake material or a clutch material for a race vehicle, deceleration and sliding for a short time. A sliding material having a high friction coefficient is desired to reduce the area. Also, when sliding under high load,
The problem is that the sliding material becomes hot and the friction coefficient decreases due to fading. Therefore, the problem to be solved by the present invention is
Lightweight and excellent in wear resistance, C / with high friction coefficient even under high load
It is to provide a sliding material made of a C composite material.

【0006】[0006]

【発明が解決しようとする課題】C/C複合材をブレー
キやクラッチ等の摺動材として使用する場合、特にレー
ス車両用ブレーキ材やクラッチ材として使用する場合
は、短時間の減速や摺動面積を少なくするために高摩擦
係数の摺動材が望まれる。また、高負荷の摺動時には、
摺動材が高温となりフェードによる摩擦係数の低下が問
題である。そこで、本発明が解決しようとする課題は、
軽量で耐摩耗性に優れ、高負荷でも摩擦係数の高いC/
C複合材からなる摺動材を提供することにある。
When a C / C composite material is used as a sliding material for a brake, a clutch, etc., particularly when it is used as a brake material or a clutch material for a race vehicle, deceleration and sliding for a short time. A sliding material having a high friction coefficient is desired to reduce the area. Also, when sliding under high load,
The problem is that the sliding material becomes hot and the friction coefficient decreases due to fading. Therefore, the problem to be solved by the present invention is
Lightweight and excellent in wear resistance, C / with high friction coefficient even under high load
It is to provide a sliding material made of a C composite material.

【0007】[0007]

【課題を解決するための手段】本発明は、上記の課題を
解決するために鋭意検討を重ねた結果達成されたもので
あって、その要旨は、炭素繊維強化炭素複合材の表面近
傍に、4族から6族元素の単体又はその炭化物、窒化
物、酸化物からなる微粒子を担持させることを特徴とす
る摺動材の製造方法に存する。
Means for Solving the Problems The present invention has been achieved as a result of intensive studies for solving the above problems, and the gist thereof is to provide a carbon fiber reinforced carbon composite material in the vicinity of the surface thereof. The present invention resides in a method for producing a sliding material, which is characterized in that fine particles composed of a simple substance of Group 4 to Group 6 elements or their carbides, nitrides, and oxides are carried.

【0008】[0008]

【発明の実施形態】以下、本発明を詳細に説明する。本
発明はC/C複合材に特定の無機物質の微粒子を添加し
てなる摺動材の製造方法である。ここでのC/C複合材
自体は、特定の微粒子を添加する点を除き、一般に公知
の方法で製造されるものであり、その種類においても特
に制限はない。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below. The present invention is a method for producing a sliding material, which comprises adding fine particles of a specific inorganic substance to a C / C composite material. The C / C composite material itself is manufactured by a generally known method except that specific fine particles are added, and the kind thereof is not particularly limited.

【0009】例えば、C/C複合材の原料の炭素繊維と
しては、ピッチ系、PAN系のいずれも使用することが
できる。炭素繊維のプリフォームの形態は、一次元配向
プリフォーム、平織り、朱子織り、織布等の2次元織布
積層プリフォーム、二次元ランダムに配向した二次元不
織布プリフォーム、三次元配向プリフォーム、フェル
ト、トウ等、種々のプリフォームを用いることができ
る。これらのプリフォームを緻密化・熱処理することに
より、C/C複合材は製造されるが、緻密化マトリック
スとしては、樹脂や、ピッチ、CVD炭素等が使用で
き、これらの一種類または複数の種類の緻密化マトリッ
クスを組み合わせて使用することができる。
For example, as the carbon fiber as a raw material of the C / C composite material, either pitch type or PAN type can be used. The form of the carbon fiber preform includes a one-dimensional oriented preform, a two-dimensional woven laminated preform such as a plain weave, a satin weave, and a woven fabric, a two-dimensional randomly oriented two-dimensional nonwoven fabric preform, a three-dimensional oriented preform, Various preforms such as felt and tow can be used. A C / C composite material is manufactured by densifying and heat-treating these preforms. As a densification matrix, resin, pitch, CVD carbon, etc. can be used. Can be used in combination.

【0010】緻密化マトリックスとして使用する樹脂と
しては、フェノール樹脂、フラン樹脂、エポキシ樹脂な
どが挙げられるが、特に炭化歩留まりの高いフェノール
樹脂が好ましい。また、緻密化マトリックスとしてピッ
チ及びCVD炭素を使用する場合、その等方性、異方性
の種類は問わない。通常、緻密化の途中ないし最終まで
の段階で、通常1000℃以上、好ましくは1300℃
以上で、通常3000℃以下、好ましくは2400℃以
下の条件下で、温度で熱処理することによりC/C複合
材が製造される。かかるC/C複合材の嵩密度は通常
1.5〜2.2g/cm3、好ましくは1.6〜2.0
g/cm3、気孔率は通常3〜25%、好ましくは5〜
20%である。
Examples of the resin used as the densified matrix include a phenol resin, a furan resin and an epoxy resin, and a phenol resin having a high carbonization yield is particularly preferable. Moreover, when using pitch and CVD carbon as a densification matrix, the isotropic and anisotropic types do not matter. Usually, 1000 ° C or higher, preferably 1300 ° C during the densification process to the final stage.
As described above, the C / C composite material is produced by heat treatment at a temperature of usually 3000 ° C. or lower, preferably 2400 ° C. or lower. The bulk density of the C / C composite material is usually 1.5 to 2.2 g / cm 3 , preferably 1.6 to 2.0.
g / cm 3 , porosity is usually 3 to 25%, preferably 5 to
20%.

【0011】本発明の摺動材は、以上のようなC/C複
合材に以下の無機物質の微粒子を任意の方法で含有させ
たものである。ここでの無機物質の微粒子は、4族から
6族元素の単体又はその炭化物、窒化物、酸化物であ
る。そのうち、特にハフニウム、タンタル、タングステ
ン又はそれらの炭化物、窒化物、酸化物が好ましく、炭
化ハフニウム、タングステン及びタンタルが特に好まし
い。かかる微粒子は複数の種類のものを併用してもよ
い。
The sliding material of the present invention comprises the above C / C composite material containing the following fine particles of an inorganic substance by an arbitrary method. The fine particles of the inorganic substance here are a simple substance of Group 4 to Group 6 elements or their carbides, nitrides, and oxides. Of these, hafnium, tantalum, tungsten, or their carbides, nitrides, and oxides are particularly preferable, and hafnium carbide, tungsten, and tantalum are particularly preferable. A plurality of types of such fine particles may be used in combination.

【0012】微粒子の粒子径は、通常0.01μm以
上、好ましくは0.1μm以上であり、また、通常10
μm以下、好ましくは5μm以下、特に好ましくは1μ
m以下である。摺動材の摩擦係数及び摩耗量の改善に
は、添加物ができるだけ微粒子で存在していることが好
ましい。摺動面に存在する添加物が、研磨成分としてC
/C複合材基材を削り、その研削抵抗で摩擦係数が高く
なるが、添加物の粒子径が大きいと研削されるC/C複
合材基材も大きくなり、結果として摩耗が増大するもの
と推定される。従って、粒子径が10μmよりも大きく
なると、摩耗が多くなるばかりでなく、炭素繊維強化炭
素複合基材への添加が不均一になり、特に炭素繊維強化
炭素複合基材の気孔に微粒子を担持させる場合は気孔に
微粒子が入りにくくなるのであまり好ましくない。一
方、粒子径が0.01μmよりも小さくなると、摩耗低
下の効果が少なくなる上、微粒子を粉砕するためのコス
トが高くなるので好ましくない。なお、ここで言う粒子
径とは、レーザー法により測定した数平均粒子径のこと
をいう。
The particle size of the fine particles is usually 0.01 μm or more, preferably 0.1 μm or more, and usually 10
μm or less, preferably 5 μm or less, particularly preferably 1 μm
m or less. In order to improve the friction coefficient and the wear amount of the sliding material, it is preferable that the additive be present in the form of fine particles as much as possible. The additive present on the sliding surface is C as a polishing component.
/ C composite material base material is ground, the friction coefficient becomes high due to the grinding resistance, but if the particle size of the additive is large, the C / C composite material base material to be ground also becomes large, resulting in increased wear. Presumed. Therefore, if the particle size is larger than 10 μm, not only is abrasion increased, but addition to the carbon fiber-reinforced carbon composite substrate becomes uneven, and in particular, fine particles are carried in the pores of the carbon fiber-reinforced carbon composite substrate. In this case, it is not preferable because it becomes difficult for fine particles to enter the pores. On the other hand, if the particle size is smaller than 0.01 μm, the effect of reducing wear is reduced and the cost for pulverizing the fine particles is increased, which is not preferable. The particle size referred to here means the number average particle size measured by the laser method.

【0013】以上の微粒子をC/C複合材に含有させる
方法には何ら制限はないが、プリフォームや低緻密化品
への担持は、C/C複合材の気孔が多く、担持させた微
粒子が脱落したり、脱落を防止するために樹脂等で固定
する必要がある。また、C/C複合材は高温で熱処理し
て製造するので、微粒子の種類によっては、熱処理によ
り性質が変化してしまう可能性がある。そこで、C/C
複合材を緻密化して基材として仕上げてから、その気孔
中に微粒子を含浸する方法が好ましい。
There is no limitation on the method of incorporating the above-mentioned fine particles into the C / C composite material, but the C / C composite material has a large number of pores so that it can be supported on a preform or a low-density product. Must be fixed with a resin or the like to prevent it from falling off. Further, since the C / C composite material is manufactured by heat treatment at a high temperature, the properties may change due to the heat treatment depending on the type of fine particles. So C / C
A method is preferred in which the composite material is densified and finished as a base material, and then fine particles are impregnated into the pores.

【0014】例えば、以下の方法がある。無機物質の微
粒子を分散させた溶剤中にC/C複合材を浸漬し、該C
/C複合材の内部の気孔に存在する気体を除去、次いで
微粒子及び溶剤をC/C複合材内部の気孔に含浸させた
後、溶剤を除去、乾燥する方法が挙げられる。また、乾
燥後、必要に応じて、焼成処理を行ってもよい。溶剤中
に分散させる微粒子の量は、予めC/C複合材の気孔量
を測定し、その気孔量と目標の含浸量に合わせて調整し
てもよい。含浸に用いる溶剤としては、後で乾燥させた
時に炭素繊維強化炭素複合基材に残留しないものが適し
ており、沸点が200℃以下の溶剤、例えば、水、エタ
ノール、プロパノール等のアルコール類、グリコール類
等が使用される。また、微粒子の分散性を高めるため
に、ポリエチレンオキサイド等の増粘剤を加え、溶剤の
粘度を調整することができる。
For example, there are the following methods. The C / C composite material is immersed in a solvent in which fine particles of an inorganic substance are dispersed,
A method of removing the gas existing in the pores inside the / C composite material, then impregnating the pores inside the C / C composite material with the fine particles and the solvent, and then removing the solvent and drying. In addition, after the drying, a firing treatment may be performed, if necessary. The amount of fine particles to be dispersed in the solvent may be adjusted in advance by measuring the amount of pores of the C / C composite material and adjusting the amount of pores and the target impregnation amount. As the solvent used for the impregnation, those which do not remain in the carbon fiber reinforced carbon composite substrate when dried later are suitable, and the solvent having a boiling point of 200 ° C. or lower, for example, alcohols such as water, ethanol and propanol, glycol Kinds etc. are used. Further, in order to enhance the dispersibility of the fine particles, a viscosity increasing agent such as polyethylene oxide can be added to adjust the viscosity of the solvent.

【0015】微粒子の含有量は、C/C複合材の総重量
の通常0.01重量%以上、好ましくは0.1重量%以
上であり、また、通常3重量%以下、好ましくは1重量
%以下である。0.01重量%未満であると効果が充分
に得られない。一方、3重量%を超えると微粒子同士の
摩擦が起こり摩擦係数が低下するばかりでなく、C/C
複合材への添加含浸が難しくなる場合がある。また、該
微粒子は、炭素繊維強化炭素複合材の表面近傍に担持さ
れていることが望ましく、微粒子の表面から少なくとも
1mm以上、好ましくは3mm以上10mm以下の内部ま
で含浸され、担持された状態にあるのがよい。1mm未
満の含浸では、摩擦による摩耗で摺動材の厚みが1mm
未満まで減少したときに含浸微粒子の効果がなくなる。
また、10mmを超える含浸は、緻密化度の高いC/C
複合材の場合には難しく、一般に、摩擦材として使用す
る部分の厚みは多くの場合10mm以下で十分である。
The content of the fine particles is usually 0.01% by weight or more, preferably 0.1% by weight or more, and usually 3% by weight or less, preferably 1% by weight, based on the total weight of the C / C composite material. It is the following. If it is less than 0.01% by weight, the effect cannot be sufficiently obtained. On the other hand, if it exceeds 3% by weight, not only friction of fine particles occurs but the coefficient of friction decreases, but also C / C
Additional impregnation into the composite may be difficult. Further, it is desirable that the fine particles are supported near the surface of the carbon fiber reinforced carbon composite material, and at least from the surface of the fine particles.
It is preferable that the inside of 1 mm or more, preferably 3 mm or more and 10 mm or less is impregnated and supported. If the impregnation is less than 1 mm, the sliding material will have a thickness of 1 mm due to abrasion due to friction.
The effect of impregnated fine particles disappears when the amount is reduced to less than 1.
In addition, if the impregnation exceeds 10 mm, C / C with a high degree of densification
In the case of a composite material, it is difficult, and in general, the thickness of the portion used as a friction material is often 10 mm or less.

【0016】以上のような本発明の特定のC/C複合材
からなる摺動材は、ディスクとパッドから構成される場
合、ディスク、パッドのいずれか一方、又は、ディスク
とパッドの両方に微粒子を含有させることができる。ま
た、ディスクとパッドの両方に微粒子を含有させる場合
は、ディスクとパッドに含有する微粒子の種類は同じで
あっても違っていてもよい。
When the sliding material made of the specific C / C composite material of the present invention as described above is composed of a disk and a pad, fine particles are formed on either the disk or the pad, or both the disk and the pad. Can be included. When both the disc and the pad contain fine particles, the types of fine particles contained in the disc and the pad may be the same or different.

【0017】[0017]

【実施例】以下、本発明を実施例を用いて更に詳細に説
明するが、本発明はその要旨を超えない限り、以下の実
施例により限定されるものではない。 実施例1 PAN系炭素繊維の3次元プリフォーム(嵩密度0.4
5g/cm3)に、ピッチを含浸した後に焼成する緻密
化工程を繰り返し、2000℃で熱処理して気孔率10
%、嵩密度1.80g/cm3のC/C複合材を製造し
た。これを外径274φのディスクブレーキ形状に加工
し、平均粒子径0.9μmのHfCを2.3重量%とポ
リエチレンオキサイド0.1重量%を含む水:イソプロ
パノール(重量比7:3)の混合溶液に浸漬し、50T
orr以下の減圧にした後常圧に戻して、HfC粒子と
溶剤をC/C複合材に含浸させた。その後、乾燥により
溶剤を除去する操作を2回繰り返して、HfCがC/C
複合材に対し0.3重量%含浸されたディスクブレーキ
を得た。このデイスクブレーキを半分に切断して実体顕
微鏡で観察したところ、摺動表面から少なくとも3mm
の部位までは充分にHfCの微粒子が入っている事が確
認できた。一方、ディスクと同じPAN系炭素繊維の3
次元プリフォームに、ピッチを含浸した後に焼成する緻
密化工程を繰り返し、1600℃で熱処理して、気孔率
13%、嵩密度1.70g/cm3のC/C複合材製パ
ッドを得た。以上の方法で得たC/C複合材製ディスク
/パッドを摺動面の平均回転周速30m/s、摺動面圧
300PSI、単位面積当たりの吸収エネルギー(ディス
ク)が750J/cm2の条件で摩擦試験を行った結
果、平均の摩擦係数が0.49、ディスクの摩耗率が
8.7×10-4mm/stop/surf.、パッドの摩耗率が8.
7×10-4mm/stop/surf.であった。以上の結果を評価
結果を表―1に示す。
EXAMPLES The present invention will be described in more detail below with reference to examples, but the present invention is not limited to the following examples as long as the gist thereof is not exceeded. Example 1 Three-dimensional preform of PAN-based carbon fiber (bulk density 0.4
The densification step of impregnating with pitch after 5 g / cm 3 ) and firing is repeated, and heat treatment is performed at 2000 ° C. to obtain a porosity of 10
%, And a bulk density of 1.80 g / cm 3 was produced. This was processed into a disc brake shape with an outer diameter of 274φ, and a mixed solution of water: isopropanol (weight ratio 7: 3) containing 2.3% by weight of HfC having an average particle size of 0.9 μm and 0.1% by weight of polyethylene oxide. Soak in 50T
After reducing the pressure to or or less, the pressure was returned to normal pressure, and the HfC particles and the solvent were impregnated into the C / C composite material. After that, the operation of removing the solvent by drying is repeated twice, and HfC becomes C / C.
A disc brake impregnated with 0.3% by weight of the composite material was obtained. When this disc brake was cut in half and observed with a stereomicroscope, at least 3 mm from the sliding surface
It was confirmed that HfC fine particles were sufficiently contained up to the area. On the other hand, 3 of the same PAN-based carbon fiber as the disc
A densification step of impregnating the three- dimensional preform with pitch and then firing was repeated, and heat treatment was performed at 1600 ° C. to obtain a C / C composite material pad having a porosity of 13% and a bulk density of 1.70 g / cm 3 . The C / C composite material disk / pad obtained by the above method was used under the conditions that the average rotational peripheral speed of the sliding surface was 30 m / s, the sliding surface pressure was 300 PSI, and the absorbed energy per unit area (disk) was 750 J / cm 2 . As a result of a friction test, the average friction coefficient was 0.49, the disc wear rate was 8.7 × 10 −4 mm / stop / surf., And the pad wear rate was 8.
It was 7 × 10 −4 mm / stop / surf. The evaluation results are shown in Table-1.

【0018】比較例1 実施例1のディスクにHfCを含浸しなかった他は、実
施例1と同一方法でC/C複合材製ディスクとパッドを
製造した。実施例1と同じ摩擦試験を行った評価結果を
表―1に示す。 比較例2 実施例1と同様にして得られたC/C複合材ディスク基
材に平均粒子径1.0μmのSiCを0.36%含浸
し、ディスクブレーキを得た。実施例1と同じパッドと
組み合わせ、実施例1と同じ摩擦試験を行った評価結果
を表―1に示す。 比較例3 実施例1と同様にして得られたC/C複合材ディスク基
材に平均粒子径1.0μmの、BNを0.2%含浸し、
ディスクブレーキを得た。実施例1と同じパッドと組み
合わせ、実施例1と同じ摩擦試験を行った評価結果を表
−1に示す。
Comparative Example 1 A C / C composite disk and pad were manufactured in the same manner as in Example 1 except that the disk of Example 1 was not impregnated with HfC. The evaluation results of the same friction test as in Example 1 are shown in Table-1. Comparative Example 2 A C / C composite material disk substrate obtained in the same manner as in Example 1 was impregnated with 0.36% of SiC having an average particle diameter of 1.0 μm to obtain a disk brake. Table 1 shows the evaluation results obtained by conducting the same friction test as in Example 1 in combination with the same pad as in Example 1. Comparative Example 3 A C / C composite disk substrate obtained in the same manner as in Example 1 was impregnated with 0.2% of BN having an average particle diameter of 1.0 μm,
Got a disc brake. Table 1 shows the evaluation results obtained by conducting the same friction test as in Example 1 in combination with the same pad as in Example 1.

【0019】[0019]

【表1】 [Table 1]

【0020】実施例2 実施例1と同様にして得られたC/C複合材ディスク基
材に平均粒子径0.6μmのWを0.7%含浸した後に
1600℃で熱処理し、WとC/C複合材基材を反応さ
せ、ディスクブレーキを得た。得られたC/C複合材デ
ィスクを半分に切断してSEM−EDX(Scanning Ele
ctron Microscope - Energy DispersiveX-ray analyze
r)で観察したところ、摺動表面から少なくとも3mm
の部位までは充分にW原子が検出された。また、該C/
C複合材ディスクをX線回折により分析したところ、炭
素のピークの他、WCとW2Cのピークが検出された。
パッドは、PAN系炭素繊維の2次元プリフォーム(嵩密
度0.63g/cm3)に、ピッチを含浸した後焼成す
る緻密化工程を繰り返し、2000℃で熱処理して気孔
率16%、嵩密度1.65g/cm3の基材を作製し
た。パッドには含浸を行わず、Wを含浸したディスクと
組み合わせ実施例1と同じ摩擦試験を行った。評価結果
を表―2に示す。 比較例4 実施例2のディスクにWを含浸しなかった他は、実施例
2と同一方法でC/C複合材製ディスクとパッドを製造
した。実施例2と同じ摩擦試験を行った。評価結果を表
―2に示す。
Example 2 A C / C composite material disk substrate obtained in the same manner as in Example 1 was impregnated with 0.7% of W having an average particle size of 0.6 μm and then heat-treated at 1600 ° C. to obtain W and C. The / C composite material substrate was reacted to obtain a disc brake. The obtained C / C composite material disc was cut in half and SEM-EDX (Scanning Ele
ctron Microscope-Energy DispersiveX-ray analyze
At least 3 mm from the sliding surface when observed under r)
W atoms were sufficiently detected up to the site. Also, the C /
When the C composite disk was analyzed by X-ray diffraction, WC and W2C peaks were detected in addition to the carbon peak.
The pad is a two-dimensional preform of PAN-based carbon fiber (bulk density: 0.63 g / cm 3 ), which is repeatedly densified by impregnating pitch and then firing, and heat-treated at 2000 ° C. to have a porosity of 16% and a bulk density. A base material of 1.65 g / cm 3 was prepared. The pad was not impregnated and the same friction test as in Example 1 was performed in combination with a disc impregnated with W. The evaluation results are shown in Table-2. Comparative Example 4 A C / C composite disk and pad were manufactured in the same manner as in Example 2 except that the disk of Example 2 was not impregnated with W. The same friction test as in Example 2 was performed. The evaluation results are shown in Table-2.

【0021】[0021]

【表2】 [Table 2]

【0022】実施例3 実施例1と同様にして得られたC/C複合材ディスク基
材に平均粒子径0.6μmのTaを0.28%含浸した
後に1600℃で熱処理し、TaとC/C複合材基材を
反応させ、ディスクブレーキを得た。得られたC/C複
合材ディスクを半分に切断してSEM−EDX(Scanni
ng Electron Microscope - Energy Dispersive X-ray a
nalyzer)で観察したところ、摺動表面から少なくとも
3mmの部位までは充分にTa原子が検出された。ま
た、該C/C複合材ディスクをX線回折により分析した
ところ、炭素のピークの他、TaCのピークが検出され
た。パッドは、PAN系炭素繊維の2次元プリフォーム
(嵩密度0.63g/cm3)に、ピッチを含浸した後
焼成する緻密化工程を繰り返し、1600℃で熱処理し
て気孔率15%、嵩密度1.67g/cm3の基材を作
製した。パッドには含浸を行わず、Taを含浸したディ
スクと組み合わせ実施例1と同じ摩擦試験を行った。評
価結果を表―3に示す。
Example 3 A C / C composite disk substrate obtained in the same manner as in Example 1 was impregnated with 0.28% of Ta having an average particle size of 0.6 μm and then heat-treated at 1600 ° C. to obtain Ta and C. The / C composite material substrate was reacted to obtain a disc brake. The resulting C / C composite disc was cut in half and SEM-EDX (Scanni
ng Electron Microscope-Energy Dispersive X-ray a
As a result of observation with a nalyzer), Ta atoms were sufficiently detected from the sliding surface to a site of at least 3 mm. When the C / C composite material disc was analyzed by X-ray diffraction, a TaC peak was detected in addition to the carbon peak. The pad is a two-dimensional preform of PAN-based carbon fiber (bulk density: 0.63 g / cm 3 ), which is repeatedly densified by impregnating pitch and then firing, and heat-treated at 1600 ° C. to have a porosity of 15% and a bulk density. A base material of 1.67 g / cm 3 was prepared. The pad was not impregnated and the same friction test as in Example 1 was performed in combination with the disc impregnated with Ta. The evaluation results are shown in Table-3.

【0023】実施例4 実施例3と同様にして得られたC/C複合材ディスク基
材に平均粒子径1.0μmのTiNを0.26%含浸し
ディスクブレーキを得た。実施例3と同じパッドと組み
合わせ実施例3と同じ摩擦試験を行った。評価結果を表
―3に示す。 実施例5 実施例3と同様にして得られたC/C複合材ディスク基
材に平均粒子径1.0μmのMoCを0.35%含浸し
ディスクブレーキを得た。実施例3と同じパッドと組み
合わせ実施例3と同じ摩擦試験を行った。評価結果を表
―3に示す。 比較例5 実施例3のディスクにTaを含浸しなかった他は、実施
例3と同一方法でC/C複合材製ディスクとパッドを製
造した。実施例3と同じ摩擦試験を行った。評価結果を
表―3に示す。
Example 4 A C / C composite material disk substrate obtained in the same manner as in Example 3 was impregnated with 0.26% of TiN having an average particle diameter of 1.0 μm to obtain a disk brake. The same friction test as in Example 3 was performed in combination with the same pad as in Example 3. The evaluation results are shown in Table-3. Example 5 A C / C composite material disk substrate obtained in the same manner as in Example 3 was impregnated with 0.35% of MoC having an average particle diameter of 1.0 μm to obtain a disk brake. The same friction test as in Example 3 was performed in combination with the same pad as in Example 3. The evaluation results are shown in Table-3. Comparative Example 5 A C / C composite disk and pad were manufactured in the same manner as in Example 3 except that the disk of Example 3 was not impregnated with Ta. The same friction test as in Example 3 was performed. The evaluation results are shown in Table-3.

【0024】[0024]

【表3】 [Table 3]

【0025】[0025]

【発明の効果】本発明によれば、耐摩耗性を損なうこと
なく、摩擦係数の高い炭素繊維強化炭素複合材からなる
摺動材が提供される。
According to the present invention, there is provided a sliding member made of a carbon fiber reinforced carbon composite material having a high friction coefficient without impairing wear resistance.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小原 昭 香川県坂出市番の州町1番地 三菱化学産 資株式会社内 (72)発明者 小川 鉄也 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 (72)発明者 吉田 聡 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 (72)発明者 村井 悠 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 (72)発明者 竹迫 聡 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 Fターム(参考) 3J058 BA41 BA76 FA01 GA27 GA44 GA73 GA82 GA88 GA89 GA92 GA93    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Akira Ohara             No. 1 state town in Sakaide City, Kagawa Prefecture Mitsubishi Chemical             Shishi Co., Ltd. (72) Inventor Tetsuya Ogawa             1-4-1 Chuo Stock Market, Wako City, Saitama Prefecture             Inside Honda Research Laboratory (72) Inventor Satoshi Yoshida             1-4-1 Chuo Stock Market, Wako City, Saitama Prefecture             Inside Honda Research Laboratory (72) Inventor Yu Murai             1-4-1 Chuo Stock Market, Wako City, Saitama Prefecture             Inside Honda Research Laboratory (72) Inventor Satoshi Takesako             1-4-1 Chuo Stock Market, Wako City, Saitama Prefecture             Inside Honda Research Laboratory F term (reference) 3J058 BA41 BA76 FA01 GA27 GA44                       GA73 GA82 GA88 GA89 GA92                       GA93

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】炭素繊維強化炭素複合材の表面近傍に、4
族から6族元素の単体又はその炭化物、窒化物、酸化物
からなる微粒子を担持させることを特徴とする摺動材の
製造方法。
1. A carbon fiber-reinforced carbon composite material is provided with 4
A method for producing a sliding material, which comprises supporting fine particles of a simple substance of Group 6 to Group 6 elements or their carbides, nitrides, and oxides.
【請求項2】炭素繊維強化炭素複合材を、微粒子を分散
させた溶剤中に浸漬させることにより、炭素繊維強化炭
素複合材の表面近傍に微粒子を担持させる請求項1の摺
動材の製造方法。
2. The method for producing a sliding material according to claim 1, wherein the carbon fiber reinforced carbon composite material is immersed in a solvent in which the fine particles are dispersed to carry the fine particles near the surface of the carbon fiber reinforced carbon composite material. .
【請求項3】炭素繊維強化炭素複合材の総重量の0.0
1重量%以上、1重量%以下の微粒子を担持させる請求
項1又は2の摺動材の製造方法。
3. The total weight of the carbon fiber reinforced carbon composite material is 0.0
The method for producing a sliding member according to claim 1, wherein 1% by weight or more and 1% by weight or less of fine particles are supported.
【請求項4】微粒子の平均粒子径が、0.01μm以
上、5μm以下である請求項1〜3のいずれかの摺動材
の製造方法。
4. The method for producing a sliding member according to claim 1, wherein the fine particles have an average particle size of 0.01 μm or more and 5 μm or less.
【請求項5】炭素繊維強化炭素複合材の嵩密度が1.5
〜2.2g/cm3である請求項1〜4のいずれかの摺
動材の製造方法。
5. The bulk density of the carbon fiber reinforced carbon composite material is 1.5.
~2.2g / cm 3 in any of the method for producing a sliding member according to claim 1 to 4,.
【請求項6】炭素繊維強化炭素複合材の気孔率が3〜2
5%である請求項1〜5のいずれかの摺動材の製造方
法。
6. The porosity of the carbon fiber reinforced carbon composite material is 3 to 2.
It is 5%, The manufacturing method of the sliding material in any one of Claims 1-5.
【請求項7】4族から6族元素がハフニウム、タンタ
ル、タングステンのいずれかである請求項1〜6のいず
れかの摺動材の製造方法。
7. The method for producing a sliding material according to claim 1, wherein the group 4 to 6 element is any one of hafnium, tantalum and tungsten.
JP2003020260A 2003-01-29 2003-01-29 Manufacturing method of sliding member Pending JP2003343623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003020260A JP2003343623A (en) 2003-01-29 2003-01-29 Manufacturing method of sliding member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003020260A JP2003343623A (en) 2003-01-29 2003-01-29 Manufacturing method of sliding member

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002151461A Division JP3414391B1 (en) 2002-05-24 2002-05-24 Sliding material

Publications (1)

Publication Number Publication Date
JP2003343623A true JP2003343623A (en) 2003-12-03

Family

ID=29774719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003020260A Pending JP2003343623A (en) 2003-01-29 2003-01-29 Manufacturing method of sliding member

Country Status (1)

Country Link
JP (1) JP2003343623A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009503396A (en) * 2005-07-29 2009-01-29 サーフィス トランスフォームズ ピーエルシー Brake disc and clutch disc improvements or improvements related to brake discs and clutch discs
US8216667B2 (en) 2005-02-14 2012-07-10 Toyo Tanso Co., Ltd. Tantalum carbide-coated carbon material and production method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8216667B2 (en) 2005-02-14 2012-07-10 Toyo Tanso Co., Ltd. Tantalum carbide-coated carbon material and production method thereof
JP5275567B2 (en) * 2005-02-14 2013-08-28 東洋炭素株式会社 Tantalum carbide-coated carbon material and method for producing the same
JP2009503396A (en) * 2005-07-29 2009-01-29 サーフィス トランスフォームズ ピーエルシー Brake disc and clutch disc improvements or improvements related to brake discs and clutch discs

Similar Documents

Publication Publication Date Title
JP4653294B2 (en) Composite material reinforced with fiber bundles
JP3309858B2 (en) Fast molding process for fiber preforms and structural composites
DE60125798T2 (en) COMPOSITE MATERIALS WITH CERAMIC MATRIX ON BORCARBID BASIS
CN1269770C (en) Stitched fibre preformed element preparing method for manufacturing composite material element
US7575799B2 (en) Carbon fiber containing ceramic particles
JP3414391B1 (en) Sliding material
EP2634159B1 (en) Carbon-fiber-reinforced silicon-carbide-based composite material
JPH11292662A (en) Fiber composite material and its use
US10000425B2 (en) Systems and methods for carbon structures incorporating silicon carbide whiskers
US20100018815A1 (en) C-c composite brakes with improved wear rates
JPWO2003068707A1 (en) Oxidation resistant carbon fiber reinforced carbon composite material and method for producing the same
JP2008526662A (en) Molding composite material
US6261692B1 (en) Carbon-carbon composites containing ceramic power and method for preparing the same
JP6783183B2 (en) Carbon short fiber reinforced composite material and its manufacturing method
JP2000081062A (en) Brake member
小谷政規 et al. Fabrication and oxidation-resistance property of allylhydridopolycarbosilane-derived SiC/SiC composites
Kryachek Friction composites: traditions and new solutions (review). Part 2. Composite materials
JP2003343623A (en) Manufacturing method of sliding member
JP4925727B2 (en) Protective member
JP2020529382A (en) Preforms for creating components of the braking system
EP1464634B1 (en) Carbonaceous ceramic material
EP1359132A1 (en) Composites, applications, and process for manufacturing said composites
JP6982401B2 (en) Manufacturing method of carbon short fiber reinforced composite material
JP6921787B2 (en) Braking material and its manufacturing method
US20210171814A1 (en) Fixed abrasive article

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040906

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080108