JP2003342375A - Thermally decomposable organic polymer for forming cavity among multilayer wirings - Google Patents

Thermally decomposable organic polymer for forming cavity among multilayer wirings

Info

Publication number
JP2003342375A
JP2003342375A JP2002152176A JP2002152176A JP2003342375A JP 2003342375 A JP2003342375 A JP 2003342375A JP 2002152176 A JP2002152176 A JP 2002152176A JP 2002152176 A JP2002152176 A JP 2002152176A JP 2003342375 A JP2003342375 A JP 2003342375A
Authority
JP
Japan
Prior art keywords
thermally decomposable
organic polymer
decomposable organic
forming
wirings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002152176A
Other languages
Japanese (ja)
Other versions
JP3765289B2 (en
Inventor
Takahiko Kurosawa
孝彦 黒澤
Masayuki Takahashi
昌之 高橋
Kinji Yamada
欣司 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Priority to JP2002152176A priority Critical patent/JP3765289B2/en
Publication of JP2003342375A publication Critical patent/JP2003342375A/en
Application granted granted Critical
Publication of JP3765289B2 publication Critical patent/JP3765289B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a thermally decomposable organic polymer for forming a cavity among multilayer wirings and a film made from the polymer, and more particularly to obtain a thermally decomposable organic polymer for forming a cavity among multilayer wirings, which polymer is capable of forming a cavity among metallic wirings in e.g. a semiconductor element because it has a specified heat resistant temperature and a specified heat decomposition temperature, and a film comprising the polymer. <P>SOLUTION: The thermally decomposable polymer shows a weight loss of at most 5 wt.% when heated at 350°C for 1 hr in an inert gas or vacuum atmosphere and shows a weight loss of at least 80 wt.% when heated at 500°C for 1 hr in the atmosphere. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、多層配線間の空洞
形成用熱分解性有機系ポリマーおよび膜に関し、さらに
詳しくは、特定の耐熱温度と特定の熱分解温度を有する
ことで例えば半導体素子などにおける金属配線間に容易
に空洞構造を形成させることが可能な多層配線間の空洞
形成用熱分解性有機系ポリマーおよび膜に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermally decomposable organic polymer and film for forming cavities between multi-layered wirings, and more specifically, to have a specific heat resistance temperature and a specific thermal decomposition temperature, for example, a semiconductor device or the like. The present invention relates to a thermally decomposable organic polymer and film for forming a cavity between multi-layer wirings, which can easily form a cavity structure between metal wirings.

【0002】[0002]

【従来の技術】従来、半導体素子などにおける層間絶縁
膜として、CVD法などの真空プロセスで形成されたシ
リカ(SiO2 )膜が多用されている。また、主に平坦
化を目的として、SOG(Spin on Glas
s)膜と呼ばれるテトラアルコキシランの加水分解生成
物を主成分とする塗布型の絶縁膜も使用されている。近
年、半導体素子などの高集積化に伴い、配線相互間の寄
生容量を低減して配線遅延を改善することを目的に、低
誘電率の層間絶縁膜に対する要求が高まっている。しか
しながら、CVD法では比較的緻密な膜が得られるため、
誘電率2.5以下の低誘電率を得ることが難しい。ま
た、SOGの多孔質化では、多孔質化に伴う吸湿性の増加
により誘電率が上昇するため、膜密度低下による低誘電
率化の効果が相殺され、低誘電率膜を得ることが難し
い。また、有機SOGと呼ばれるポリオルガノシロキサ
ンを主成分とする低誘電率の層間絶縁膜が開発されてい
るが、誘電率2.3以下の低誘電率を得ようとした場
合、半導体素子形成加工時に必要な膜強度が得られない
という課題がある。そこで配線相互間の寄生容量を低減
させる方法として、例えば特開平9-172068公報や特開平
8-83839公報、特開2001-85519公報に記載されているよ
うな配線間に空洞のある半導体装置が提案されている。
2. Description of the Related Art Conventionally, a silica (SiO 2 ) film formed by a vacuum process such as a CVD method is often used as an interlayer insulating film in a semiconductor device or the like. Further, mainly for the purpose of flattening, SOG (Spin on Glass)
s) A coating type insulating film called a film, which mainly contains a hydrolysis product of tetraalkoxylane, is also used. In recent years, along with the high integration of semiconductor elements and the like, there is an increasing demand for an interlayer insulating film having a low dielectric constant for the purpose of reducing parasitic capacitance between wirings and improving wiring delay. However, since a relatively dense film can be obtained by the CVD method,
It is difficult to obtain a low dielectric constant of 2.5 or less. Further, when SOG is made porous, the dielectric constant increases due to an increase in hygroscopicity accompanying the increase in porosity, so the effect of lowering the dielectric constant due to the decrease in film density is offset, and it is difficult to obtain a low dielectric constant film. In addition, a low dielectric constant interlayer insulating film containing polyorganosiloxane called organic SOG as a main component has been developed. However, when a low dielectric constant of 2.3 or less is to be obtained, a semiconductor element is formed during processing. There is a problem that the required film strength cannot be obtained. Therefore, as a method for reducing the parasitic capacitance between wirings, for example, Japanese Patent Laid-Open No. 9-172068 or Japanese Patent Laid-Open No.
There is proposed a semiconductor device having a cavity between wirings as described in 8-83839 and JP 2001-85519 A.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、これら
従来の方法では、まず金属配線の間が有機レジストやシ
リカ化合物で埋められた構造を作成した後、エッチング
もしくはアッシングにより有機レジストやシリカ化合物
を除去し金属配線間に空洞を形成させており、操作が煩
雑で有るという問題点が有った。
However, in these conventional methods, a structure in which metal wiring is filled with an organic resist or a silica compound is first formed, and then the organic resist or the silica compound is removed by etching or ashing. Since a cavity is formed between the metal wirings, there is a problem that the operation is complicated.

【0004】[0004]

【課題を解決するための手段】本発明は、特定の耐熱温
度と特定の熱分解温度を有する多層配線間の空洞形成用
熱分解性有機系ポリマーに関し、本発明の多層配線間の
空洞形成用熱分解性有機系ポリマーはエッチングやアッ
シングなどの操作が必要なく簡便な熱処理のみで除去す
ることが可能であり、かつ耐熱温度以下では配線加工プ
ロセスに十分対応可能な機械的強度を持つものである。
従って、本発明の多層配線間の空洞形成用熱分解性有機
系ポリマーを用いることで半導体素子などにおける金属
配線間に容易に空洞構造を形成させることが可能となる
ものである。
The present invention relates to a thermally decomposable organic polymer for forming cavities between multilayer wirings having a specific heat-resistant temperature and a specific thermal decomposition temperature. The thermally decomposable organic polymer can be removed by simple heat treatment without the need for operations such as etching and ashing, and it has sufficient mechanical strength to withstand the wiring process below the heat resistant temperature. .
Therefore, by using the thermally decomposable organic polymer for forming a cavity between the multilayer wirings of the present invention, it becomes possible to easily form a cavity structure between metal wirings in a semiconductor element or the like.

【0005】[0005]

【発明の実施の形態】本発明は、不活性ガス雰囲気中ま
たは真空雰囲気中、350℃で1時間加熱した際の重量
減少が5重量%以下、かつ500℃で1時間加熱した際
の重量減少が80重量%以上である多層配線間の空洞形
成用熱分解性有機系ポリマーである。本発明に記載の特
定の耐熱温度と特定の熱分解温度を有する多層配線間の
空洞形成用熱分解性有機系ポリマーは、簡便な熱処理の
みで除去することが可能であり、かつ耐熱温度以下では
配線加工プロセスに十分対応可能な機械的強度を持つも
のである。従って、本発明の多層配線間の空洞形成用熱
分解性有機系ポリマーを用いることで半導体素子などに
おける金属配線間に容易に空洞構造を形成させることが
可能となるものである。ここで、不活性ガスとしてはヘ
リウム、ネオン、アルゴン、クリプトン、キセノン、ラ
ドン等の希ガス類の他、窒素等を挙げることができる。
使用する不活性ガスとしては、純度99.9容量%以上
のものが通常用いられ、99.99容量%以上のものが
好ましく、99.999容量%以上のものが特に好まし
い。用いられる不活性ガスとしては、窒素、アルゴン、
ヘリウムが好ましい。また、真空雰囲気としては、通常
100Torr以下、好ましくは10Torr以下、特
に好ましくは1Torr以下が用いられる。
BEST MODE FOR CARRYING OUT THE INVENTION According to the present invention, the weight reduction when heated at 350 ° C. for 1 hour in an inert gas atmosphere or a vacuum atmosphere is 5% by weight or less, and the weight reduction when heated at 500 ° C. for 1 hour. Is 80% by weight or more and is a thermally decomposable organic polymer for forming cavities between multilayer wirings. The heat-decomposable organic polymer for forming cavities between the multilayer wirings having the specific heat-resistant temperature and the specific heat-decomposition temperature described in the present invention can be removed only by a simple heat treatment, and at a heat-resistant temperature or less, It has sufficient mechanical strength to cope with the wiring process. Therefore, by using the thermally decomposable organic polymer for forming a cavity between the multilayer wirings of the present invention, it becomes possible to easily form a cavity structure between metal wirings in a semiconductor element or the like. Here, examples of the inert gas include rare gases such as helium, neon, argon, krypton, xenon, and radon, and nitrogen.
As the inert gas to be used, one having a purity of 99.9% by volume or higher is usually used, preferably 99.99% by volume or more, and particularly preferably 99.999% by volume or more. The inert gas used is nitrogen, argon,
Helium is preferred. The vacuum atmosphere is usually 100 Torr or less, preferably 10 Torr or less, and particularly preferably 1 Torr or less.

【0006】本発明の多層配線間の空洞形成用熱分解性
有機系ポリマーは、不活性ガス雰囲気中または真空雰囲
気中350℃で1時間加熱された際の重量減少が通常5
重量%以下、好ましくは3重量%以下、特に好ましくは
1重量%以下である。本発明の多層配線間の空洞形成用
熱分解性有機系ポリマーは、通常半導体素子の金属配線
等の加工が行われる350℃以下の温度で熱的に安定で
あり、半導体素子形成加工用の材料として好ましい。ま
た、本発明の多層配線間の空洞形成用熱分解性有機系ポ
リマーは、不活性ガス雰囲気中または真空雰囲気中50
0℃で1時間加熱された際の重量減少が通常80重量%
以上、好ましくは90重量%以上、さらに好ましくは9
5重量%以上、特に好ましくは99重量%以上である。
The heat-decomposable organic polymer for forming voids between the multilayer wirings of the present invention usually has a weight loss of 5 when heated at 350 ° C. for 1 hour in an inert gas atmosphere or a vacuum atmosphere.
It is not more than 3% by weight, preferably not more than 3% by weight, particularly preferably not more than 1% by weight. The thermally decomposable organic polymer for forming voids between multi-layered wirings of the present invention is thermally stable at a temperature of 350 ° C. or lower at which metal wiring of semiconductor elements is usually processed, and is a material for semiconductor element formation processing. Is preferred as Further, the thermally decomposable organic polymer for forming a cavity between the multilayer wirings of the present invention is used in an inert gas atmosphere or a vacuum atmosphere.
Weight loss when heated at 0 ° C for 1 hour is usually 80% by weight
Or more, preferably 90% by weight or more, more preferably 9
It is 5% by weight or more, particularly preferably 99% by weight or more.

【0007】本発明の多層配線間の空洞形成用熱分解性
有機系ポリマーは500℃以下での良好な熱分解性を有
し、半導体素子形成加工時に通常用いられるエッチング
やアッシングなどの煩雑な操作が必要なく簡便な熱処理
のみで除去することが可能であり、半導体素子などにお
ける金属配線間に容易に空洞構造を形成させることを可
能とするものである。さらに、本発明の多層配線間の空
洞形成用熱分解性有機系ポリマーは通常300℃、好ま
しくは310℃、特に好ましくは320℃以上のガラス
転移温度を有する。本発明の多層配線間の空洞形成用熱
分解性有機系ポリマーは、前記のような高いガラス転移
温度を有するため、半導体素子中の金属配線形成時等に
高温にさらされた際にも相転移に伴う大きな体積変化を
示すことが無く、配線形状の安定性を保つ点で好まし
い。また、本発明の多層配線間の空洞形成用熱分解性有
機系ポリマーは、半導体素子形成加工に耐えうる十分な
機械的強度を有している。具体的には、本発明の多層配
線間の空洞形成用熱分解性有機系ポリマーは通常0.2
GPa以上、好ましくは0.3GPa以上、特に好まし
くは0.4GPa以上の硬度と、通常2.0GPa以
上、好ましくは3.0GPa以上、特に好ましくは4.
0GPa以上の弾性率を有するため、CMP等の半導体
素子形成加工に適応することが可能である。
The thermally decomposable organic polymer for forming cavities between multi-layered wirings of the present invention has a good thermal decomposability at 500 ° C. or less, and complicated operations such as etching and ashing that are usually used during semiconductor element formation processing. It is unnecessary and can be removed only by a simple heat treatment, which makes it possible to easily form a cavity structure between metal wirings in a semiconductor element or the like. Further, the thermally decomposable organic polymer for forming voids between the multilayer wirings of the present invention has a glass transition temperature of usually 300 ° C., preferably 310 ° C., particularly preferably 320 ° C. or higher. Since the thermally decomposable organic polymer for forming voids between the multilayer wirings of the present invention has a high glass transition temperature as described above, it undergoes a phase transition even when exposed to a high temperature when forming metal wirings in a semiconductor device. It is preferable in that the shape of the wiring does not show a large volume change and the stability of the wiring shape is maintained. Further, the thermally decomposable organic polymer for forming voids between the multi-layer wirings of the present invention has sufficient mechanical strength to withstand the semiconductor element forming process. Specifically, the thermally decomposable organic polymer for forming a cavity between the multilayer wirings of the present invention is usually 0.2.
A hardness of at least GPa, preferably at least 0.3 GPa, particularly preferably at least 0.4 GPa, and usually 2.0 GPa or more, preferably 3.0 GPa or more, particularly preferably 4.
Since it has an elastic modulus of 0 GPa or more, it can be applied to semiconductor element forming processing such as CMP.

【0008】本発明の多層配線間の空洞形成用熱分解性
有機系ポリマーとしては種々のポリマー種が使用でき、
例えばポリオレフィン、ポリアリーレン、ポリエーテ
ル、ポリエステル、ポリアミド、ポリイミド、ポリウレ
タン、ポリウレア、ポリイミン、ポリスルフィド、等を
挙げることができる。また、本発明の多層配線間の空洞
形成用熱分解性有機系ポリマーは種々の方法で合成する
ことができ、例えば、重縮合、重付加、等の逐次反応
や、ラジカル付加重合、カチオン重合、アニオン重合、
開環重合、等の連鎖反応で合成することができる。
Various polymer species can be used as the thermally decomposable organic polymer for forming a cavity between the multilayer wirings of the present invention.
For example, polyolefin, polyarylene, polyether, polyester, polyamide, polyimide, polyurethane, polyurea, polyimine, polysulfide, etc. can be mentioned. Further, the thermally decomposable organic polymer for forming a cavity between the multilayer wirings of the present invention can be synthesized by various methods, for example, sequential reaction such as polycondensation, polyaddition, radical addition polymerization, cationic polymerization, Anionic polymerization,
It can be synthesized by a chain reaction such as ring-opening polymerization.

【0009】本発明の多層配線間の空洞形成用熱分解性
有機系ポリマーは、ポリマー骨格中の芳香族成分の量が
通常50重量%以下、好ましくは35重量%以下、特に
好ましくは25重量%以下である。ポリマー骨格中の芳
香族成分の量が50重量%を越える場合には、十分な熱
分解性が得られない場合がある。ここで芳香族成分とは
ベンゼンおよびその誘導体であり、例えばビフェニルの
ように2個以上のベンゼン環が各独立に離れているもの
や、例えばナフタリン、アントラセン等のように縮合環
式構造のものも含む。また、これらのベンゼンおよびそ
の誘導体に結合している水素原子は他の置換基、例えば
アルキル基、水酸基、エーテル基、カルボニル基、カル
ボキシル基、エステル基、アミノ基、アミド基、ニトロ
基、イソシアナト基、ハロゲノ基、メルカプト基、チオ
ール基、チオニル基、スルフォニル基、シリル基等と置
換されていても良い。これらベンゼンおよびその誘導体
は単独でまたはおのおの異なる2種類以上を組み合わせ
て用いることができる。
In the thermally decomposable organic polymer for forming voids between multilayer wirings of the present invention, the amount of the aromatic component in the polymer skeleton is usually 50% by weight or less, preferably 35% by weight or less, particularly preferably 25% by weight. It is the following. If the amount of the aromatic component in the polymer skeleton exceeds 50% by weight, sufficient thermal decomposability may not be obtained. Here, the aromatic component is benzene and its derivatives, and examples thereof include those in which two or more benzene rings are independently separated from each other, such as biphenyl, and condensed ring structures such as naphthalene and anthracene. Including. The hydrogen atoms bonded to these benzenes and their derivatives are other substituents such as alkyl groups, hydroxyl groups, ether groups, carbonyl groups, carboxyl groups, ester groups, amino groups, amide groups, nitro groups and isocyanato groups. It may be substituted with a halogeno group, a mercapto group, a thiol group, a thionyl group, a sulfonyl group, a silyl group or the like. These benzenes and their derivatives can be used alone or in combination of two or more different types.

【0010】また、本発明の多層配線間の空洞形成用熱
分解性有機系ポリマーは、ポリマー骨格中に環状脂肪族
成分を通常30重量%以上、好ましくは40重量%以
上、特に好ましくは50重量%以上含む。ポリマー骨格
中の環状脂肪族成分量が30重量%に満たない場合は、
耐熱性と熱分解性が前記請求項1の範囲を外れる場合が
ある。ここで環状脂肪族成分とは炭素原子が環状に結合
した構造を持つ炭素環式化合物のうち前記芳香族成分に
属さないもので有り、例えばシクロプロパン環、シクロ
ブタン環、シクロペンタン環、シクロヘキサン環、シク
ロヘプタン環、シクロオクタン環、シクロノナン環、シ
クロデカン環、シクロウンデカン環、シクロドデカン環
等の環状構造が単独もしくは2個以上組合わさった構造
を指す。この環状脂肪族成分は、芳香族性を示さない範
囲で炭素−炭素二重結合および炭素−炭素三重結合構造
をその一部に含有することもできる。また、この環状脂
肪族成分は、環構造を形成している炭素原子の一部、好
ましくは50%未満、特に好ましくは30%未満が酸
素、窒素、珪素、りん、いおうから選ばれる少なくとも
1種類以上の元素で置き換えられていても良い。さら
に、この環状脂肪族成分中の環構造上の水素原子は他の
置換基、例えばアルキル基、水酸基、エーテル基、カル
ボニル基、カルボキシル基、エステル基、アミノ基、ア
ミド基、ニトロ基、イソシアナト基、ハロゲノ基、メル
カプト基、チオール基、チオニル基、スルフォニル基、
シリル基等と置換されていても良い。これら環状脂肪族
成分は単独で用いることも、おのおの異なる2種以上を
組み合わせて用いることもできる。
Further, the thermally decomposable organic polymer for forming voids between multi-layered wirings of the present invention contains a cycloaliphatic component in the polymer skeleton in an amount of usually 30% by weight or more, preferably 40% by weight or more, particularly preferably 50% by weight. % Or more is included. When the amount of cycloaliphatic component in the polymer skeleton is less than 30% by weight,
The heat resistance and the heat decomposability may be out of the range of claim 1. Here, the cycloaliphatic component is one that does not belong to the aromatic component among carbocyclic compounds having a structure in which carbon atoms are cyclically bonded, for example, a cyclopropane ring, a cyclobutane ring, a cyclopentane ring, a cyclohexane ring, It refers to a structure in which one or a combination of two or more cyclic structures such as a cycloheptane ring, a cyclooctane ring, a cyclononane ring, a cyclodecane ring, a cycloundecane ring, and a cyclododecane ring. This cycloaliphatic component can also contain a carbon-carbon double bond and a carbon-carbon triple bond structure in a part thereof as long as it does not exhibit aromaticity. Further, in this cyclic aliphatic component, a part of carbon atoms forming the ring structure, preferably less than 50%, particularly preferably less than 30%, is at least one selected from oxygen, nitrogen, silicon, phosphorus and sulfur. It may be replaced with the above elements. Further, the hydrogen atom on the ring structure in this cycloaliphatic component is another substituent, for example, an alkyl group, a hydroxyl group, an ether group, a carbonyl group, a carboxyl group, an ester group, an amino group, an amide group, a nitro group, an isocyanato group. , Halogeno group, mercapto group, thiol group, thionyl group, sulfonyl group,
It may be substituted with a silyl group or the like. These cyclic aliphatic components can be used alone or in combination of two or more different kinds.

【0011】本発明の多層配線間の空洞形成用熱分解性
有機系ポリマーは必要に応じて膜の形状に加工して用い
ることができる。本発明の多層配線間の空洞形成用熱分
解性有機系ポリマーの膜は、本発明の多層配線間の空洞
形成用熱分解性有機系ポリマーおよび/またはその前駆
体を単独でまたは必要に応じて有機溶剤などで希釈した
後、スピンコート法、ディップコート法、ロールコート
法、フローコート法、スプレーコート法、ホットプレス
法等の種々の方法で膜の形状とし、さらに必要に応じて
前記熱分解温度以下の温度に加熱することにより不要な
有機溶剤を除去する事により得ることができる。
The thermally decomposable organic polymer for forming cavities between multilayer wirings of the present invention can be used after being processed into a film shape, if necessary. The film of the thermally decomposable organic polymer for forming cavities between the multi-layered wirings of the present invention includes the thermally decomposable organic polymer for forming cavities between the multi-layered wirings of the present invention and / or a precursor thereof alone or as necessary. After diluting with an organic solvent, etc., it is formed into a film shape by various methods such as spin coating method, dip coating method, roll coating method, flow coating method, spray coating method and hot pressing method, and further, if necessary, the above thermal decomposition. It can be obtained by removing unnecessary organic solvent by heating to a temperature below the temperature.

【0012】本発明の多層配線間の空洞形成用熱分解性
有機系ポリマーを用いることで半導体素子などにおける
金属配線間に容易に空洞構造を形成させることが可能と
なる。具体的には、例えば半導体基板の所定の第一の絶
縁膜の表面を本発明の多層配線間の空洞形成用熱分解性
有機系ポリマーで被覆する(図1(a)参照)。次に、前
記ポリマーを通常のリソグラフィ技術およびエッチング
技術を用いて金属配線を形成するための空間をパターニ
ングする(図1(b)参照)。さらに、前記ポリマーに形
成されたパターン中に通常のメッキやCVD等の方法で
Cu、Al、W、Mo等の金属を埋め込む(図1(c)参
照)。なお、金属を埋め込む際に金属の拡散を防止する
目的でTaNやTiN等の層を前記ポリマーと金属の間
に形成することもできる。また、金属を埋め込んだ後C
MPにより表面を平坦化する事ができる。次に、前記金
属を埋め込んだポリマー上に第二の絶縁膜を通常のスピ
ンコートやCVD法等により形成する(図1(d)参
照)。最後に、加熱により前記ポリマーを除去すること
で金属配線間に空洞を形成することができる(図1(e)
参照)。ポリマーの除去は多層金属配線の各層ごとに行
うことも、図1(a)から図1(d)までの工程を繰り返した
のち何層かをまとめて行うこともできる。
By using the thermally decomposable organic polymer for forming a cavity between the multilayer wirings of the present invention, it becomes possible to easily form a cavity structure between metal wirings in a semiconductor device or the like. Specifically, for example, the surface of a predetermined first insulating film of a semiconductor substrate is coated with the thermally decomposable organic polymer for forming cavities between multilayer wirings of the present invention (see FIG. 1 (a)). Next, the polymer is patterned into a space for forming a metal wiring by using an ordinary lithography technique and an etching technique (see FIG. 1B). Furthermore, in the pattern formed on the polymer, a method such as ordinary plating or CVD is used.
A metal such as Cu, Al, W, or Mo is embedded (see FIG. 1 (c)). A layer of TaN, TiN, or the like may be formed between the polymer and the metal in order to prevent the diffusion of the metal when the metal is embedded. Also, after embedding a metal, C
The surface can be flattened by MP. Next, a second insulating film is formed on the polymer in which the metal is embedded by a usual spin coating method or a CVD method (see FIG. 1 (d)). Finally, the polymer can be removed by heating to form cavities between the metal wirings (Fig. 1 (e)).
reference). The removal of the polymer can be performed for each layer of the multi-layer metal wiring, or can be performed for several layers collectively after repeating the steps of FIGS. 1 (a) to 1 (d).

【0013】[0013]

【実施例】以下、本発明を実施例を挙げてさらに具体的
に説明する。ただし、以下の記載は、本発明の態様例を
概括的に示すものであり、特に理由なく、かかる記載に
より本発明は限定されるものではない。なお、実施例お
よび比較例中の部および%は、特記しない限り、それぞ
れ重量部および重量%であることを示している。また、
各種の評価は、次のようにして行なった。重量減少 熱重量測定法(TG)により、窒素雰囲気中、任意の温
度で1時間加熱した際の重量変化を測定した。ガラス転移温度 示差走査熱量測定法(DSC)により測定した。弾性率および硬度 ナノインデンテーション法により測定した。
EXAMPLES The present invention will be described more specifically below with reference to examples. However, the following description is a general description of example embodiments of the present invention, and the present invention is not limited to the description without particular reason. In addition, unless otherwise indicated, the part and% in an Example and a comparative example have shown that it is a weight part and weight%, respectively. Also,
Various evaluations were performed as follows. Weight reduction The weight change was measured by thermogravimetry (TG) when heated at an arbitrary temperature for 1 hour in a nitrogen atmosphere. Glass transition temperature It was measured by a differential scanning calorimetry (DSC). Elastic modulus and hardness Measured by the nanoindentation method.

【0014】実施例1 窒素雰囲気下、1,3−ビス(アミノメチル)シクロヘ
キサン14.2g(0.1mol)をN−メチル−2−
ピロリドン(NMP)200mLに溶解し、攪拌しなが
ら25℃で2,3,5−トリカルボキシ−シクロペンタ
ン−アセチックアシッド(TCA)二無水物22.4g
(0.1mol)を添加し、懸濁させた後、50℃に昇
温して3時間反応させた。その後、この反応溶液をアセ
トン中に投入して凝固し、乾燥させてポリマー粉末33
gを得た。次に、このポリマー粉末をN,N−ジメチル
ホルムアミド(DMF)に溶解し、シリコンウエハ上に
スピンコート法により塗布した後、350℃で30分間
加熱処理をして、透明な塗膜を得た。この塗膜の重量減
少、ガラス転移温度、弾性率および硬度を前記方法によ
り測定したところ、表1に記載の結果を得た。
Example 1 Under a nitrogen atmosphere, 14.2-g (0.1 mol) of 1,3-bis (aminomethyl) cyclohexane was added to N-methyl-2-.
Dissolved in 200 mL of pyrrolidone (NMP), and stirred at 25 ° C. at 2,3,5-tricarboxy-cyclopentane-acetic acid (TCA) dianhydride 22.4 g
(0.1 mol) was added and suspended, and then the temperature was raised to 50 ° C. and the reaction was performed for 3 hours. Then, the reaction solution is put into acetone to be solidified and dried to obtain a polymer powder 33.
g was obtained. Next, this polymer powder was dissolved in N, N-dimethylformamide (DMF) and applied on a silicon wafer by spin coating, followed by heat treatment at 350 ° C. for 30 minutes to obtain a transparent coating film. . When the weight loss, glass transition temperature, elastic modulus and hardness of this coating film were measured by the above methods, the results shown in Table 1 were obtained.

【0015】実施例2 ジアミノジフェニルエーテル(DDE)20.48g
(0.102mol)をN,N−ジメチルアセトアミド
(DMAc)247.5gに溶解した後、TCA二無水
物23.15g(0.103mol)を粉末のまま加え
て攪拌しながら25℃で24時間反応させた。次いで、
前記反応溶液にさらにDMAcを加えてポリマー濃度を
6.1%とした溶液30gを100mLのフラスコに移
し、この溶液に無水酢酸1.32gおよびピリジン1.
02gを順次加えて混合、攪拌した後、135℃で2時
間反応させた。次いで、反応生成物を大量のメタノール
に注いでポリマーを凝固し回収した後、80℃で一晩乾
燥した。得られたポリマーを再度DMAcに溶解し、シ
リコンウエハ上にスピンコート法により塗布した後、3
50℃で30分間加熱処理をして、透明な塗膜を得た。
この塗膜の重量減少、ガラス転移温度、弾性率および硬
度を前記方法により測定したところ、表1に記載の結果
を得た。
Example 2 Diaminodiphenyl ether (DDE) 20.48 g
(0.102 mol) was dissolved in 247.5 g of N, N-dimethylacetamide (DMAc), and then 23.15 g (0.103 mol) of TCA dianhydride was added as powder and reacted at 25 ° C. for 24 hours while stirring. Let Then
30 g of a solution in which DMAc was further added to the reaction solution to make the polymer concentration 6.1% was transferred to a 100 mL flask, and 1.32 g of acetic anhydride and 1.
02 g were sequentially added, mixed and stirred, and then reacted at 135 ° C. for 2 hours. Then, the reaction product was poured into a large amount of methanol to coagulate and collect the polymer, and then dried at 80 ° C. overnight. The obtained polymer is again dissolved in DMAc and applied on a silicon wafer by spin coating, and then 3
Heat treatment was performed at 50 ° C. for 30 minutes to obtain a transparent coating film.
When the weight loss, glass transition temperature, elastic modulus and hardness of this coating film were measured by the above methods, the results shown in Table 1 were obtained.

【0016】実施例3 100mLのガラス製耐圧ビンに窒素雰囲気下で、脱水
したトルエン56mL、ビシクロ[2,2,1]ヘプト−
5−エン−2−スピロ−無水コハク酸0.89g(5m
mol)、ビシクロ[2,2,1]ヘプト−2−エン8.
93g(95mmol)、分子量調整剤として、1−ヘ
キセン84.2mg(1mmol)、1,5−シクロオ
クタジエン4.33mg(0.04mmol)を仕込ん
だ。耐圧ビンの口をゴムパッキン付き穴あき王冠でキャ
ップしてシールした。さらに、予め六フッ化アンチモン
酸で変性したオクタン酸ニッケル[HSbF6/Ni = 1 (モル
比)で−30℃で反応させたもの]を0.04mol、三
フッ化ホウ素エチルエーテル錯体0.36mmol、ト
リエチルアルミニウム0.40mmolの順に触媒成分
を仕込み、30℃、3時間重合を行った。このポリマー
溶液を脱水された塩化メチレン300mL中に注ぎ、ポ
リマーを凝固した。このポリマーをトルエンに溶解し、
再び塩化メチレン中に注ぎ、再沈精製した。このポリマ
ーを80℃、17時間、減圧下で乾燥した。得られたポ
リマーをトルエンに溶解し、シリコンウエハ上にスピン
コート法により塗布した後、350℃で30分間加熱処
理をして、透明な塗膜を得た。この塗膜の重量減少、ガ
ラス転移温度、弾性率および硬度を前記方法により測定
したところ、表1に記載の結果を得た。
Example 3 56 mL of dehydrated toluene and bicyclo [2,2,1] hept-in a 100 mL glass pressure-resistant bottle under a nitrogen atmosphere.
5-en-2-spiro-succinic anhydride 0.89 g (5 m
mol), bicyclo [2,2,1] hept-2-ene 8.
93 g (95 mmol), 1-hexene 84.2 mg (1 mmol) and 1,5-cyclooctadiene 4.33 mg (0.04 mmol) were charged as a molecular weight modifier. The mouth of the pressure resistant bottle was capped and sealed with a perforated crown with rubber packing. Furthermore, 0.04 mol of nickel octanoate [HSbF6 / Ni = 1 (molar ratio) reacted at -30 ° C] previously modified with hexafluoroantimonic acid, boron trifluoride ethyl ether complex 0.36 mmol, A catalyst component was charged in the order of 0.40 mmol of triethylaluminum, and polymerization was carried out at 30 ° C. for 3 hours. The polymer solution was poured into 300 mL of dehydrated methylene chloride to coagulate the polymer. Dissolve this polymer in toluene,
It was again poured into methylene chloride and purified by reprecipitation. The polymer was dried under reduced pressure at 80 ° C. for 17 hours. The obtained polymer was dissolved in toluene, applied on a silicon wafer by a spin coating method, and then heat-treated at 350 ° C. for 30 minutes to obtain a transparent coating film. When the weight loss, glass transition temperature, elastic modulus and hardness of this coating film were measured by the above methods, the results shown in Table 1 were obtained.

【0017】比較例1 9,9−ビス(4−ヒドロキシフェニル)フロオレン3
5.04gと50%水酸化ナトリウム水溶液16.00
gをDMAc100gと共にフラスコに入れ、窒素雰囲
気下で140℃で5時間加熱を行った。この際、発生す
る水蒸気を系外に除去した。この溶液に2,4−ジクロ
ロトルエン16.03gと塩化第一銅2.2gを加え、
160℃で8時間反応を行った。反応液を冷却した後、
溶液中の不溶物を濾過で除去し、メタノール中に再沈殿
を行った。この沈殿したポリマーをイオン交換水で十分
洗浄した後、シクロヘキサノンに溶解させ、不溶物を除
去し、さらにアセトン中で再沈殿させた。この沈殿した
ポリマーを60℃の真空オーブン中で24時間乾燥させ
た。得られたポリマーをシクロヘキサノンに溶解し、シ
リコンウエハ上にスピンコート法により塗布した後、3
50℃で30分間加熱処理をして、透明な塗膜を得た。
この塗膜の重量減少、ガラス転移温度、弾性率および硬
度を前記方法により測定したところ、表1に記載の結果
を得た。
Comparative Example 1 9,9-bis (4-hydroxyphenyl) fluorene 3
5.04 g and 50% sodium hydroxide aqueous solution 16.00
g was put in a flask together with 100 g of DMAc, and heated at 140 ° C. for 5 hours under a nitrogen atmosphere. At this time, the generated steam was removed to the outside of the system. To this solution, 16.03 g of 2,4-dichlorotoluene and 2.2 g of cuprous chloride were added,
The reaction was carried out at 160 ° C for 8 hours. After cooling the reaction solution,
The insoluble matter in the solution was removed by filtration, and reprecipitation was performed in methanol. The precipitated polymer was thoroughly washed with ion-exchanged water, dissolved in cyclohexanone to remove insoluble materials, and reprecipitated in acetone. The precipitated polymer was dried in a vacuum oven at 60 ° C for 24 hours. The obtained polymer was dissolved in cyclohexanone and applied on a silicon wafer by spin coating, and then 3
Heat treatment was performed at 50 ° C. for 30 minutes to obtain a transparent coating film.
When the weight loss, glass transition temperature, elastic modulus and hardness of this coating film were measured by the above methods, the results shown in Table 1 were obtained.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【発明の効果】本発明は、特定の耐熱温度と特定の熱分
解温度を有する多層配線間の空洞形成用熱分解性有機系
ポリマーに関し、本発明の多層配線間の空洞形成用熱分
解性有機系ポリマーはエッチングやアッシングなどの操
作が必要なく簡便な熱処理のみで除去することが可能で
あり、かつ耐熱温度以下では配線加工プロセスに十分対
応可能な機械的強度を持つものである。従って、本発明
の多層配線間の空洞形成用熱分解性有機系ポリマーを用
いることで半導体素子などにおける金属配線間に容易に
空洞構造を形成させることが可能となるものである。
Industrial Applicability The present invention relates to a thermally decomposable organic polymer for forming cavities between multilayer wirings having a specific heat resistance temperature and a specific thermal decomposition temperature. The base polymer can be removed only by a simple heat treatment without requiring an operation such as etching or ashing, and has a mechanical strength that can sufficiently cope with a wiring processing process at a heat resistant temperature or lower. Therefore, by using the thermally decomposable organic polymer for forming a cavity between the multilayer wirings of the present invention, it becomes possible to easily form a cavity structure between metal wirings in a semiconductor element or the like.

【0020】[0020]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の多層配線間空洞形成方法のプロセスを
示す模式図。
FIG. 1 is a schematic view showing a process of a method for forming a cavity between multi-layer wirings of the present invention.

【符号の説明】[Explanation of symbols]

1; 絶縁膜1 2; ポリマー 3; 金属 4; 絶縁膜2 5; 空洞 1; insulating film 1 2; Polymer 3; metal 4; insulating film 2 5; Cavity

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4J031 BA21 BA28 BA29 BB01 BB02 BB03 BB04 BD23 BD24 BD30 5F033 HH08 HH11 HH19 HH20 HH21 HH32 HH33 QQ09 QQ37 QQ48 QQ74 QQ85 RR21 RR22 RR30 SS11 SS22 WW00 WW03 WW05 XX01 XX25    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4J031 BA21 BA28 BA29 BB01 BB02                       BB03 BB04 BD23 BD24 BD30                 5F033 HH08 HH11 HH19 HH20 HH21                       HH32 HH33 QQ09 QQ37 QQ48                       QQ74 QQ85 RR21 RR22 RR30                       SS11 SS22 WW00 WW03 WW05                       XX01 XX25

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 不活性ガス雰囲気中または真空雰囲気
中、350℃で1時間加熱した際の重量減少が5重量%
以下、かつ500℃で1時間加熱した際の重量減少が8
0重量%以上である多層配線間の空洞形成用熱分解性有
機系ポリマー。
1. A weight loss of 5% by weight when heated at 350 ° C. for 1 hour in an inert gas atmosphere or a vacuum atmosphere.
Below, and weight loss of 8 hours when heated at 500 ℃
A thermally decomposable organic polymer for forming voids between multi-layer wirings, which is 0% by weight or more.
【請求項2】 ガラス転移温度が300℃以上である請
求項1記載の多層配線間の空洞形成用熱分解性有機系ポ
リマー。
2. The thermally decomposable organic polymer for forming voids between multilayer wirings according to claim 1, which has a glass transition temperature of 300 ° C. or higher.
【請求項3】 25℃における硬度が0.2GPa以上か
つ弾性率が2GPa以上である請求項1記載の多層配線
間の空洞形成用熱分解性有機系ポリマー。
3. The thermally decomposable organic polymer for forming cavities between multilayer wirings according to claim 1, which has a hardness at 25 ° C. of 0.2 GPa or more and an elastic modulus of 2 GPa or more.
【請求項4】 ポリマー中の芳香族成分が50重量%以
下である請求項1記載の多層配線間の空洞形成用熱分解
性有機系ポリマー。
4. The thermally decomposable organic polymer for forming cavities between multilayer wirings according to claim 1, wherein the aromatic component in the polymer is 50% by weight or less.
【請求項5】 ポリマー中に環状脂肪族成分を30重量
%以上含むことを特徴とする請求項1記載の多層配線間
の空洞形成用熱分解性有機系ポリマー。
5. The thermally decomposable organic polymer for forming voids between multilayer wirings according to claim 1, wherein the polymer contains a cyclic aliphatic component in an amount of 30% by weight or more.
【請求項6】 請求項1−5いずれかに記載の多層配線
間の空洞形成用熱分解性有機系ポリマーからなる膜。
6. A film made of a thermally decomposable organic polymer for forming a cavity between the multilayer wirings according to claim 1.
【請求項7】 半導体基板上に形成された第一の絶縁膜
の表面を請求項1−5記載いずれかに記載の多層配線間
の空洞形成用熱分解性有機系ポリマーで被覆する工程
と、前記多層配線間の空洞形成用熱分解性有機系ポリマ
ーをパターニングする工程と、前記多層配線間の空洞形
成用熱分解性有機系ポリマーに形成されたパターン中に
金属配線を形成する工程と、金属配線を含有する前記多
層配線間の空洞形成用熱分解性有機系ポリマー上に第二
の絶縁膜を形成する工程と、加熱により前記多層配線間
の空洞形成用熱分解性有機系ポリマーを除去する工程に
より金属配線間に空洞を形成する事を特徴とする、配線
間の空洞形成方法。
7. A step of coating the surface of the first insulating film formed on a semiconductor substrate with the thermally decomposable organic polymer for forming voids between multilayer wirings according to claim 1-5. Patterning a thermally decomposable organic polymer for forming cavities between the multi-layered wiring, forming metal wiring in a pattern formed in the thermally decomposable organic polymer for forming cavities between the multi-layered wiring, and Forming a second insulating film on the thermally decomposable organic polymer for forming cavities between the multi-layered wirings, and removing the thermally decomposable organic polymer for cavity formation between the multi-layered wirings by heating. A method for forming a cavity between wirings, characterized in that a cavity is formed between metal wirings by a process.
JP2002152176A 2002-05-27 2002-05-27 Cavity formation method between multilayer wiring Expired - Fee Related JP3765289B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002152176A JP3765289B2 (en) 2002-05-27 2002-05-27 Cavity formation method between multilayer wiring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002152176A JP3765289B2 (en) 2002-05-27 2002-05-27 Cavity formation method between multilayer wiring

Publications (2)

Publication Number Publication Date
JP2003342375A true JP2003342375A (en) 2003-12-03
JP3765289B2 JP3765289B2 (en) 2006-04-12

Family

ID=29769563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002152176A Expired - Fee Related JP3765289B2 (en) 2002-05-27 2002-05-27 Cavity formation method between multilayer wiring

Country Status (1)

Country Link
JP (1) JP3765289B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008243907A (en) * 2007-03-26 2008-10-09 Jsr Corp Composition for forming cavity between conductive layers, sacrifice film for forming cavity between conductive layers, and method of forming cavity between conductive layers
JP2012503171A (en) * 2008-09-16 2012-02-02 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Exhaust gas protective layer for high temperature ChemFET exhaust gas sensor
KR20170013939A (en) 2014-05-29 2017-02-07 에이제트 일렉트로닉 머티어리얼스 (룩셈부르크) 에스.에이.알.엘. Void forming composition, semiconductor device provided with voids formed using composition, and method for manufacturing semiconductor device using composition
KR20170040271A (en) 2014-07-31 2017-04-12 에이제트 일렉트로닉 머티어리얼스 (룩셈부르크) 에스.에이.알.엘. Sacrificial film composition, method for preparing same, semiconductor device having voids formed using said composition, and method for manufacturing semiconductor device using said composition
KR20180065925A (en) * 2016-12-07 2018-06-18 도쿄엘렉트론가부시키가이샤 Method of manufacturing semiconductor device
KR20190070859A (en) * 2017-12-13 2019-06-21 도쿄엘렉트론가부시키가이샤 Semiconductor device manufacturing method
JP2020053446A (en) * 2018-09-25 2020-04-02 東京エレクトロン株式会社 Method for manufacturing semiconductor device
CN111681989A (en) * 2019-03-11 2020-09-18 东京毅力科创株式会社 Method for manufacturing semiconductor device
JP7390194B2 (en) 2020-01-17 2023-12-01 東京エレクトロン株式会社 Air gap formation method

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008243907A (en) * 2007-03-26 2008-10-09 Jsr Corp Composition for forming cavity between conductive layers, sacrifice film for forming cavity between conductive layers, and method of forming cavity between conductive layers
JP2012503171A (en) * 2008-09-16 2012-02-02 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Exhaust gas protective layer for high temperature ChemFET exhaust gas sensor
US10435555B2 (en) 2014-05-29 2019-10-08 Az Electronic Materials (Luxembourg) S.A.R.L Void forming composition, semiconductor device provided with voids formed using composition, and method for manufacturing semiconductor device using composition
KR20170013939A (en) 2014-05-29 2017-02-07 에이제트 일렉트로닉 머티어리얼스 (룩셈부르크) 에스.에이.알.엘. Void forming composition, semiconductor device provided with voids formed using composition, and method for manufacturing semiconductor device using composition
KR20170040271A (en) 2014-07-31 2017-04-12 에이제트 일렉트로닉 머티어리얼스 (룩셈부르크) 에스.에이.알.엘. Sacrificial film composition, method for preparing same, semiconductor device having voids formed using said composition, and method for manufacturing semiconductor device using said composition
KR102317534B1 (en) 2016-12-07 2021-10-27 도쿄엘렉트론가부시키가이샤 Method of manufacturing semiconductor device
JP2018098220A (en) * 2016-12-07 2018-06-21 東京エレクトロン株式会社 Semiconductor device manufacturing method
KR20180065925A (en) * 2016-12-07 2018-06-18 도쿄엘렉트론가부시키가이샤 Method of manufacturing semiconductor device
KR20190070859A (en) * 2017-12-13 2019-06-21 도쿄엘렉트론가부시키가이샤 Semiconductor device manufacturing method
JP2019106490A (en) * 2017-12-13 2019-06-27 東京エレクトロン株式会社 Semiconductor device manufacturing method
CN110034063A (en) * 2017-12-13 2019-07-19 东京毅力科创株式会社 The manufacturing method of semiconductor device
US11495490B2 (en) 2017-12-13 2022-11-08 Tokyo Electron Limited Semiconductor device manufacturing method
CN110034063B (en) * 2017-12-13 2023-10-20 东京毅力科创株式会社 Method for manufacturing semiconductor device
KR102642184B1 (en) * 2017-12-13 2024-03-04 도쿄엘렉트론가부시키가이샤 Semiconductor device manufacturing method
JP2020053446A (en) * 2018-09-25 2020-04-02 東京エレクトロン株式会社 Method for manufacturing semiconductor device
JP7065741B2 (en) 2018-09-25 2022-05-12 東京エレクトロン株式会社 Manufacturing method of semiconductor device
CN111681989A (en) * 2019-03-11 2020-09-18 东京毅力科创株式会社 Method for manufacturing semiconductor device
JP7390194B2 (en) 2020-01-17 2023-12-01 東京エレクトロン株式会社 Air gap formation method

Also Published As

Publication number Publication date
JP3765289B2 (en) 2006-04-12

Similar Documents

Publication Publication Date Title
US6060170A (en) Functional groups for thermal crosslinking of polymeric systems
EP0889920B1 (en) Polyphenylene oligomers and polymers
JP4765076B2 (en) Method for synthesizing polyarylene and polyarylene produced by the method
WO1999029761A2 (en) Poly(arylene ether) compositions and methods of manufacture thereof
JP2002534546A (en) Low dielectric constant polymer with good adhesion and toughness and articles made from the polymer
JP4865663B2 (en) Insulating film forming composition
JP2003342375A (en) Thermally decomposable organic polymer for forming cavity among multilayer wirings
JP2009079137A (en) Film-forming composition and method for forming film
EP1418618B1 (en) Method of forming cavites between multilayered wirings
JP2000191752A (en) Polyphenylene oligomer and polymer
CN100575385C (en) Acquisition has the composition and the method for the polyarylene network of thermal expansion reduction
JP2001106880A (en) Composition containing curable oligomer
TW492981B (en) Oligomer, uncured polymer or cured polymer, a process for forming an uncured polymer or a cured polymer, and an integrated circuit article
JP2010070618A (en) Composition for forming insulating film, the insulating film, and electronic device
JP2008063451A (en) Aromatic ethynyl compound, resin composition, varnish, resin film and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3765289

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090203

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100203

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100203

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110203

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110203

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120203

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130203

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130203

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130203

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees