JP2003340453A - Water modifying apparatus - Google Patents

Water modifying apparatus

Info

Publication number
JP2003340453A
JP2003340453A JP2002158039A JP2002158039A JP2003340453A JP 2003340453 A JP2003340453 A JP 2003340453A JP 2002158039 A JP2002158039 A JP 2002158039A JP 2002158039 A JP2002158039 A JP 2002158039A JP 2003340453 A JP2003340453 A JP 2003340453A
Authority
JP
Japan
Prior art keywords
water
electrolytic cell
electrodes
capturing
alkaline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002158039A
Other languages
Japanese (ja)
Other versions
JP3788389B2 (en
Inventor
Takahiro Mita
隆浩 三田
Kenji Nakamura
賢治 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2002158039A priority Critical patent/JP3788389B2/en
Publication of JP2003340453A publication Critical patent/JP2003340453A/en
Application granted granted Critical
Publication of JP3788389B2 publication Critical patent/JP3788389B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water modifying apparatus wherein potable water is modified into alkali water to make the addition of mineral components to the potable water possible by providing a collecting means utilizing particles collected by filtering the produced alkali water. <P>SOLUTION: This water modifying apparatus is provided with: an electrolyzed water forming means 10 which has 1st and 2nd electrodes 12, 13, an intermediate electrode 14 composed of magnesium and an electrolytic cell 11 to which the potable water is introduced and which modifies the serice water into the alkali water by applying voltage between the 1st and the 2nd electrodes 12, 13 to dissolve Mg<SP>2+</SP>ions in the electrolytic cell 11; and the collecting means 20 which is provided on the down stream side of the electrolytic cell 11 and which fillers and collects the particles in the alkali water. A 2nd water feed pipe 30b for introducing the potable water bypassing the electrolytic cell 11 is provided in the collecting means 20. When the electrolyzed water producing means 10 is stopped, the potable water introduced through the 2nd water feed pipe 30b is passed through the particles collected in the collecting means 20 to add the mineral components in the potable water. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、上水をアルカリ水
またはミネラル水に改質する水改質装置に関するもので
あり、特に、アルカリ水の改質中に発生する微粒子の利
用に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water reforming apparatus for reforming tap water into alkaline water or mineral water, and more particularly to utilization of fine particles generated during reforming of alkaline water.

【0002】[0002]

【従来の技術】従来、この種の水改質装置として、例え
ば、特開2001−191078号公報に記載のものが
開示されている。この公報では、改質する上水が導入さ
れた電解槽と、導電性金属で形成され、対向して電解槽
内に配設される第1、第2電極と、マグネシウムで形成
され、第1、第2電極間に配設される一枚または複数枚
の中間電極と、この第1、第2電極に直流電圧を印加す
る電圧印加手段とから構成している。
2. Description of the Related Art Conventionally, a water reforming apparatus of this type has been disclosed in, for example, Japanese Patent Laid-Open No. 2001-191078. In this publication, an electrolytic cell into which tap water to be reformed is introduced, first and second electrodes formed of a conductive metal and facing each other in the electrolytic cell, and formed of magnesium, , One or a plurality of intermediate electrodes arranged between the second electrodes, and voltage applying means for applying a DC voltage to the first and second electrodes.

【0003】そして、第1、第2電極間に電圧が印加さ
れると、隣り合う電極間に電位差が発生するのでマグネ
シウムで形成した中間電極からMg2+イオンが溶解し、
電解槽内の上水がアルカリ性に改質されてアルカリ水と
なる。
When a voltage is applied between the first and second electrodes, a potential difference is generated between the adjacent electrodes, so that Mg 2+ ions are dissolved from the intermediate electrode formed of magnesium,
The clean water in the electrolyzer is reformed into alkaline water to become alkaline water.

【0004】[0004]

【発明が解決しようとする課題】ところで、発明者らの
研究によると、上記公報のようにマグネシウムで形成し
た電極を用いてアルカリ水を生成するときに、過剰なM
2+イオンを溶解させるとOH-と反応してアルカリ水
中にMg(OH)2のコロイド粒子が生成されることを
見出した。しかも、このMg(OH)2のコロイド粒子
は2酸化マグネシウムからなるミネラル成分であり、そ
れ自身を核として上水中に含まれる粒子を凝集し易い物
性を有していることが分かった。従って、マグネシウム
電極を用いるとミネラル成分を含有したアルカリ水が生
成されることを見出した。ところが、市場の要求では健
康志向のために純のアルカリ水や純のミネラル水を摂取
したい要望がある。
By the way, according to the research conducted by the present inventors, when alkaline water is produced using an electrode formed of magnesium as in the above publication, an excessive amount of M is generated.
It has been found that when g 2+ ions are dissolved, they react with OH to form colloidal particles of Mg (OH) 2 in alkaline water. Moreover, it has been found that the Mg (OH) 2 colloidal particles are a mineral component composed of magnesium dioxide, and have physical properties in which the particles contained in the tap water are easily aggregated by themselves as a nucleus. Therefore, it was found that alkaline water containing a mineral component is generated by using a magnesium electrode. However, in the market demand, there is a desire to ingest pure alkaline water or pure mineral water for health consciousness.

【0005】そこで、本発明の目的は、上記点を鑑みた
ものであり、アルカリ水の生成時に濾過、捕捉した粒子
を利用する捕捉手段を設けることで、上水をアルカリ水
に改質および上水にミネラル成分の添加可能とした水改
質装置を提供することにある。
Therefore, an object of the present invention is to solve the above-mentioned problems, and by providing a trapping means that utilizes particles that have been filtered and trapped during the generation of alkaline water, the tap water is reformed into alkaline water and the water is purified. An object of the present invention is to provide a water reformer capable of adding a mineral component to water.

【0006】[0006]

【課題を解決するための手段】上記、目的を達成するた
めに、請求項1ないし請求項4に記載の技術的手段を採
用する。すなわち、請求項1に記載の発明では、マグネ
シウムで形成された第1、第2電極(12、13)、お
よび改質する上水が導入される電解槽(11)を有し、
第1、第2電極(12、13)間に電圧を印加させ電解
槽(11)内にMg2+イオンを溶解させて上水をアルカ
リ水に改質する電解水生成手段(10)と、電解槽(1
1)の下流側に設けられ、アルカリ水中に含まれる粒子
を濾過、捕捉する捕捉手段(20)とを備え、かつ捕捉
手段(20)は、電解槽(11)を迂回した上水を導入
する給水手段(30b)が設けられ、電解水生成手段
(10)が停止のときに、給水手段(30b)から導か
れる上水を捕捉手段(20)により捕捉した粒子に通水
させて上水にミネラル成分を添加することを特徴として
いる。
In order to achieve the above object, the technical means described in claims 1 to 4 is adopted. That is, the invention according to claim 1 has the first and second electrodes (12, 13) made of magnesium, and the electrolytic cell (11) into which the clean water to be reformed is introduced,
Electrolyzed water producing means (10) for applying a voltage between the first and second electrodes (12, 13) to dissolve Mg 2+ ions in the electrolyzer (11) to reform tap water to alkaline water. Electrolyzer (1
1) is provided on the downstream side and is provided with a trapping means (20) for filtering and trapping particles contained in alkaline water, and the trapping means (20) introduces tap water bypassing the electrolytic cell (11). When the water supply means (30b) is provided and the electrolyzed water producing means (10) is stopped, the clean water introduced from the water supply means (30b) is passed through the particles captured by the capture means (20) to obtain clean water. It is characterized by adding mineral components.

【0007】請求項1に記載の発明によれば、マグネシ
ウムで形成した第1、第2電極(12、13)からMg
2+イオンを溶解させてアルカリ水に改質するときに、過
剰なMg2+イオンを溶解させるとOH-と反応してアル
カリ水中にMg(OH)2のコロイド粒子が生成され
る。このコロイド粒子は、2酸化マグネシウムよりなる
ミネラル成分を備え、それ自身を核として上水中に含ま
れる粒子を凝集し易い物性を有している。
According to the first aspect of the present invention, the first and second electrodes (12, 13) made of magnesium are converted to Mg.
When 2+ ions are dissolved and reformed into alkaline water, if excess Mg 2+ ions are dissolved, they react with OH to form colloidal particles of Mg (OH) 2 in alkaline water. The colloidal particles have a mineral component made of magnesium dioxide, and have physical properties such that the particles contained in the tap water have a property of easily aggregating.

【0008】そこで、本発明では、上記コロイド粒子を
濾過、捕捉する捕捉手段(20)を電解槽(11)の下
流側に設け、かつ捕捉手段(20)に上水を導入する給
水手段(30b)を設け、上水を捕捉手段(20)に通
水させることで、捕捉した粒子に通水させて上水にミネ
ラル成分を添加することにより、アルカリ水の生成時に
は、過剰なミネラル成分が捕捉手段(20)により確実
に濾過、捕捉された純のアルカリ水が生成できるととも
に、アルカリ水の生成時に濾過、捕捉した粒子に直接上
水を通水することにより純のミネラル水が生成できる。
Therefore, in the present invention, a trapping means (20) for filtering and trapping the colloidal particles is provided on the downstream side of the electrolytic cell (11), and a water supply means (30b) for introducing tap water into the trapping means (20). ) Is provided, and the tap water is passed through the trapping means (20) to pass through the trapped particles to add a mineral component to the tap water, so that an excessive mineral component is trapped during the generation of alkaline water. By the means (20), pure alkaline water that is reliably filtered and captured can be generated, and pure mineral water can be generated by directly passing clean water to the particles that have been filtered and captured when generating alkaline water.

【0009】また、アルカリ水の生成時に濾過、捕捉し
たコロイド粒子を利用してミネラル水を生成できるた
め、ミネラル水の生成のための部品点数を増加させなく
ても、アルカリ水およびミネラル水の選択できる水質改
質装置の提供ができる。
Further, since colloidal particles that have been filtered and captured during the production of alkaline water can be used to produce mineral water, it is possible to select alkaline water and mineral water without increasing the number of parts for producing mineral water. It is possible to provide a water quality reforming device that can be used.

【0010】しかも、ミネラル水の生成時には、濾過、
捕捉した粒子を溶解させてしまうため、捕捉手段(2
0)の捕捉部を清掃するメインテナンス期間を長くする
ことができる。
Moreover, when mineral water is produced, filtration,
Since the captured particles are dissolved, the capturing means (2
It is possible to lengthen the maintenance period for cleaning the capture unit of 0).

【0011】請求項2に記載の発明では、導電性金属で
形成された第1、第2電極(12、13)、この第1、
第2電極(12、13)間に配設されマグネシウムで形
成された一枚または複数枚の中間電極(14)、および
改質する上水が導入される電解槽(11)を有し、第
1、第2電極(12、13)間に電圧を印加させ電解槽
(11)内にMg2+イオンを溶解させて上水をアルカリ
水に改質する電解水生成手段(10)と、電解槽(1
1)の下流側に設けられ、アルカリ水内に含まれる微粒
子を濾過、捕捉する捕捉手段(20)とを備え、かつ捕
捉手段(20)は、電解槽(11)を迂回した上水を導
入する給水手段(30b)が設けられ、電解水生成手段
(10)が停止のときに、給水手段(30b)から導か
れる上水を捕捉手段(20)により捕捉した粒子に通水
させて上水にミネラル成分を添加することを特徴として
いる。
According to the second aspect of the invention, the first and second electrodes (12, 13) made of a conductive metal, the first,
A second electrode (12, 13) is disposed between the one or more intermediate electrodes (14) formed of magnesium, and an electrolytic cell (11) into which reforming tap water is introduced, Electrolyzed water producing means (10) for reforming tap water into alkaline water by applying voltage between the first and second electrodes (12, 13) to dissolve Mg 2+ ions in the electrolytic cell (11), and electrolysis Tank (1
1) is provided on the downstream side and is provided with a trapping means (20) for filtering and trapping fine particles contained in alkaline water, and the trapping means (20) introduces tap water bypassing the electrolytic cell (11). Water supply means (30b) is provided, and when the electrolyzed water generating means (10) is stopped, clean water introduced from the water supply means (30b) is passed through the particles captured by the capture means (20) to obtain clean water. It is characterized by adding a mineral component to.

【0012】請求項2に記載の発明によれば、前項の請
求項1では、マグネシウムで形成された第1、第2電極
(12、13)であったが、例えば複数枚の中間電極
(14)をマグネシウムで形成させることにより、マグ
ネシウム材の電極(14)の総面積が広く取れ、多量の
Mg(OH)2のコロイド粒子が生成できるため小容量
の電解槽(11)でも短時間にアルカリ水に改質できる
とともに、ミネラル成分の濾過、捕捉も短時間にでき
る。
According to the second aspect of the present invention, the first and second electrodes (12, 13) made of magnesium are used in the first aspect of the present invention. However, for example, a plurality of intermediate electrodes (14) are used. ) Is made of magnesium, the total area of the magnesium electrode (14) can be made large, and a large amount of Mg (OH) 2 colloidal particles can be generated, so that even in a small-capacity electrolytic cell (11), alkali Not only can it be reformed into water, but it can also filter and trap mineral components in a short time.

【0013】請求項3に記載の発明では捕捉手段(2
0)の上流側には、電解槽(11)から捕捉手段(2
0)に向けて流通させるか、または給水手段(30b)
から捕捉手段(20)に向けて流通させるかのいずれか
一方の流通方向に切り換える切換手段(32)を設けた
ことを特徴としている。
According to the invention of claim 3, the capturing means (2
0) upstream from the electrolytic cell (11) to capture means (2
0) or water supply means (30b)
It is characterized in that a switching means (32) for switching to one of the circulation directions from the flow direction to the capturing means (20) is provided.

【0014】請求項3に記載の発明によれば、切換手段
(32)として、例えば流れ方向を切り換える三方弁な
どの切換弁を設けたことにより、アルカリ水およびミネ
ラル水が容易に選択できる水質改質装置が提供できる。
According to the third aspect of the present invention, as the switching means (32), a switching valve such as a three-way valve for switching the flow direction is provided, so that the alkaline water and the mineral water can be easily selected. Quality equipment can be provided.

【0015】請求項4に記載の発明では、切換手段(3
2)は、電解水生成手段(10)が停止のときに、給水
手段(30b)から捕捉手段(20)に向けて流通させ
るように制御させることを特徴としている。
According to a fourth aspect of the invention, the switching means (3
2) is characterized in that when the electrolyzed water producing means (10) is stopped, it is controlled so as to flow from the water supply means (30b) toward the trapping means (20).

【0016】請求項4に記載の発明によれば、例えば上
述した三方弁を給水手段(30b)から捕捉手段(2
0)に向けて流通させるように制御させることにより、
ミネラル水の生成のための動力を必要としないことで低
コスト、かつ簡素な構造でミネラル水の生成ができる。
According to the fourth aspect of the invention, for example, the above-mentioned three-way valve from the water supply means (30b) to the capturing means (2).
By controlling the distribution to 0),
Since no power is required to generate mineral water, it is possible to generate mineral water at a low cost and with a simple structure.

【0017】なお、上記各手段の括弧内の符号は、後述
する実施形態の具体的手段との対応関係を示すものであ
る。
The reference numerals in the parentheses of the above means indicate the correspondence with the specific means of the embodiments described later.

【0018】[0018]

【発明の実施の形態】以下、本発明の一実施形態を図1
に基づいて説明する。図1は、本実施形態の水改質装置
の全体構成を示す模式図である。水改質装置は、上水が
導入されアルカリ水を生成する電解水生成手段10、生
成されたアルカリ水を濾過、捕捉する捕捉手段20、流
れ方向を切り換える切換手段である三方弁32、および
電解水生成手段10、三方弁32を制御する制御装置4
0からなる機能部品と、これらの機能部品を接続する給
水配管経路30から構成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described below with reference to FIG.
It will be described based on. FIG. 1 is a schematic diagram showing the overall configuration of the water reforming apparatus of this embodiment. The water reforming device includes electrolyzed water producing means 10 for producing alkaline water by introducing tap water, capturing means 20 for filtering and capturing the produced alkaline water, three-way valve 32 as switching means for switching the flow direction, and electrolysis. Control device 4 for controlling water generating means 10 and three-way valve 32
It is composed of a functional component consisting of 0 and a water supply piping path 30 connecting these functional components.

【0019】給水配管経路30は、図1に示すように、
上流端が図示しない給水弁を介して上水道に接続され、
下流端が後述する電解槽11の一端に接続する第1給水
配管30aと、上流端が第1給水配管30aの途中から
分岐され、下流端が三方弁32に接続される給水手段で
ある第2給水配管30bと、三方弁32と捕捉手段20
とを接続する接続配管33と、電解槽11の他端と三方
弁32とを接続する接続配管34と、捕捉手段20と図
示しない吐水弁とを接続する吐水配管31とから構成し
ている。
The water supply piping path 30 is, as shown in FIG.
The upstream end is connected to the water supply via a water supply valve not shown,
A first water supply pipe 30a whose downstream end is connected to one end of the electrolytic cell 11 described later, and a second water supply means in which the upstream end is branched from the middle of the first water supply pipe 30a and the downstream end is connected to the three-way valve 32. Water supply pipe 30b, three-way valve 32, and capturing means 20
It is composed of a connection pipe 33 which connects the other end of the electrolytic cell 11 and the three-way valve 32, and a water discharge pipe 31 which connects the catching means 20 and a water discharge valve (not shown).

【0020】三方弁32は、図中の矢印aで示す電解槽
11から捕捉手段20に向けて流通する流れ方向か、ま
たは図中の矢印bで示す電解槽11を迂回した上水を捕
捉手段20に向けて流通する流れ方向のいずれか一方の
流れ方向に切り換える切換弁である。この三方弁32は
制御装置40により制御され、電解水生成手段10を作
動させないときには、上水が第2給水配管30bから捕
捉手段20に直接導入されるように流れ方向を切り換え
る。つまり、ミネラル水を吐水させたいときに、矢印b
で示す流れ方向に切り換えられる。
The three-way valve 32 captures the tap water that flows from the electrolytic cell 11 indicated by the arrow a in the drawing toward the trapping means 20, or tap water that bypasses the electrolytic cell 11 indicated by the arrow b in the figure. It is a switching valve that switches to either one of the flow directions that flow toward 20. The three-way valve 32 is controlled by the controller 40, and when the electrolyzed water producing means 10 is not operated, the flow direction is switched so that the clean water is directly introduced from the second water supply pipe 30b into the capturing means 20. In other words, when you want to sprinkle mineral water, use arrow b
The flow direction is changed to the direction indicated by.

【0021】電解水生成手段10は、上水が導入される
電解槽11と、電解槽11内に対向して配設される第
1、第2電極12、13と、この第1、第2電極12、
13との間に配設される複数の中間電極14と、第1、
第2電極12、13間に直流電圧を印加する電圧印加手
段15とから構成している。
The electrolyzed water producing means 10 includes an electrolyzer 11 into which tap water is introduced, first and second electrodes 12 and 13 arranged in the electrolyzer 11 so as to face each other, and the first and second electrodes. Electrode 12,
A plurality of intermediate electrodes 14 disposed between the first and second intermediate electrodes 14,
It comprises a voltage applying means 15 for applying a DC voltage between the second electrodes 12 and 13.

【0022】電解槽11は、アルカリに強いプラスチッ
クなどの材料で形成された容器であり、一端が第1給水
配管30aに接続され、他端が接続配管34に接続され
て,アルカリ水を吐水させたいときに、上水を導入して
その上水をアルカリ性に改質するための容器である。そ
して、電解槽11内に配設される第1、第2電極12、
13は、導電性金属である、例えば、Ti材にPtメッ
キかPtを焼成したものかのいずれかで板状に形成され
ている。また、3枚の中間電極14は、マグネシウムの
材料で板状に形成され、電気絶縁性の図示しないスペー
サを介して、各中間電極14が互いに略平行に配設され
るように所定間隔を設けて第1、第2電極12、13間
に積層されている。
The electrolyzer 11 is a container made of a material such as an alkali-resistant plastic and has one end connected to the first water supply pipe 30a and the other end connected to the connection pipe 34 to discharge alkaline water. This is a container for introducing clean water and reforming the clean water to be alkaline when desired. Then, the first and second electrodes 12 disposed in the electrolytic cell 11,
Reference numeral 13 is a conductive metal, and is formed into a plate shape by, for example, either a Ti material plated with Pt or Pt baked. Further, the three intermediate electrodes 14 are formed in a plate shape with a material of magnesium, and are provided with a predetermined interval so that the respective intermediate electrodes 14 are arranged substantially parallel to each other via an electrically insulating spacer (not shown). Is laminated between the first and second electrodes 12 and 13.

【0023】そして、第1、第2電極12、13は、直
流電圧を印加する電圧印加手段15に接続している。こ
の電圧印加手段15は、第1電極12が陽極、第2電極
13が陰極になるように直流電圧(例えば、17V)を
印加する第1通電モード(例えば、2分間)と、第1電
極12が陰極、第2電極13が陽極になるように直流電
圧(例えば、17V)を印加する第2通電モード(例え
ば、2分間)とを交互に極性を切り換えて通電を行うよ
うにしている。さらに、第1、第2電極12、13に印
加する電圧は、電解槽11内を流れる電流が所定値とな
るように制御装置40により調整される。
The first and second electrodes 12 and 13 are connected to a voltage applying means 15 for applying a DC voltage. The voltage applying means 15 applies a direct current voltage (for example, 17 V) so that the first electrode 12 serves as an anode and the second electrode 13 serves as a cathode, and a first energization mode (for example, 2 minutes), and the first electrode 12 Is a cathode and a second energization mode (for example, 2 minutes) in which a DC voltage (for example, 17 V) is applied so that the second electrode 13 serves as an anode is alternately switched in polarity for energization. Further, the voltage applied to the first and second electrodes 12 and 13 is adjusted by the control device 40 so that the current flowing in the electrolytic cell 11 has a predetermined value.

【0024】なお、制御装置40は図示しない操作パネ
ルからの操作信号によって三方弁32および電圧印加手
段15を制御するように構成されている。そして、操作
パネルには、アルカリ水またはミネラル水のいずれかを
選択する図示しないアルカリスイッチとミネラルスイッ
チとが設けられている。
The control device 40 is constructed so as to control the three-way valve 32 and the voltage applying means 15 by an operation signal from an operation panel (not shown). Then, the operation panel is provided with an alkali switch and a mineral switch (not shown) for selecting either alkaline water or mineral water.

【0025】捕捉手段20は、濾材となる濾過部材20
aが内部に収容されて、アルカリ水の生成時に、電解槽
11内でアルカリ水に改質された上水に含まれる粒子を
濾過、捕捉するとともに、ミネラル水の生成時に濾過部
材20aに上水を通水させることで、上記アルカリ水の
生成時に濾過部材20aにより濾過、捕捉した粒子を溶
解させることで、上水にミネラル成分を添加させるもの
である。
The trapping means 20 is a filtering member 20 serving as a filtering material.
a is housed inside, and when the alkaline water is generated, the particles contained in the clean water that has been reformed into the alkaline water in the electrolytic cell 11 are filtered and captured, and the clean water is supplied to the filter member 20a when the mineral water is generated. By passing water through the particles, the particles that have been filtered and captured by the filtering member 20a when the alkaline water is generated are dissolved, thereby adding the mineral component to the tap water.

【0026】次に、以上の構成による水改質装置の作動
について説明する。まず、アルカリ水を生成させたいと
きには、図示しないアルカリスイッチを操作させること
で、制御装置40により、三方弁32が図中の矢印aで
示す流れ方向、つまり、上水道から導いた上水が電解槽
11に導入され、改質された上水を捕捉手段20に向け
て流す方向に切り換える。次に、制御装置40により電
圧印加手段15を制御して、第1電極12と第2電極1
3との間に電圧V0を通電させて、電解槽11内の上水
を電気分解を行なう。
Next, the operation of the water reforming apparatus having the above structure will be described. First, when it is desired to generate alkaline water, by operating an alkali switch (not shown), the control device 40 causes the three-way valve 32 to flow in the direction indicated by the arrow a in the figure, that is, the tap water led from the tap water is electrolyzed. It switches to the direction in which the reformed tap water introduced into 11 is made to flow toward the trapping means 20. Next, the voltage applying means 15 is controlled by the control device 40 to control the first electrode 12 and the second electrode 1.
A voltage V 0 is applied between the electrolyzer 3 and the electrolyzer 3 to electrolyze the tap water in the electrolytic cell 11.

【0027】両電極12、13間に電圧V0が印加され
ることで、隣り合う電極間にほぼV0/4の電圧がかか
る。つまり、各電極間12、13、14には同量の上水
で満たされており、各電極間の電気抵抗が略同一である
ため電圧Voがほぼ1/4ずつに分圧されることにな
る。
[0027] By the voltage V 0 is applied between the electrodes 12 and 13, the voltage of approximately between adjacent electrodes V 0/4 is applied. That is, the electrodes 12, 13, 14 are filled with the same amount of clean water, and the electric resistances between the electrodes are substantially the same, so that the voltage Vo is divided into about 1/4. Become.

【0028】隣り合う電極間にV0/4の電圧が印加さ
れるので、中間電極14の陽極となる面では、Mg2+
オンが溶解し、陰極となるもう一方の面ではOH-イオ
ンと水素ガス(H2)が生成されて上水に混じるので電
解槽11内の上水がアルカリ性に改質される。さらに、
過剰のMg2+イオンは、下記、化学式のように、OH -
イオンと結合してMg(OH)2が生成される。
Between adjacent electrodes V0/ 4 voltage is applied
Therefore, on the surface of the intermediate electrode 14 that serves as the anode,2+I
On is melted and OH is formed on the other surface that becomes the cathode.-Io
And hydrogen gas (H2) Is generated and mixes with tap water
The clean water in the dissolution tank 11 is reformed to be alkaline. further,
Excess Mg2+Ions are OH as shown in the chemical formula below. -
Combined with ions, Mg (OH)2Is generated.

【0029】[0029]

【化1】 Mg2++2OH-→Mg(OH)2 このMg(OH)2は、コロイド粒子として生成される
ため、これを核として上水に含まれる成分、粒子などが
凝集し、やがて粗大なフロックを形成する。従って、電
解槽11の下流側に設けられた捕捉手段20により、微
粒子を濾過、捕捉されることで、図示しない吐水弁から
吐水されるアルカリ水に過剰なMg(OH)2のコロイ
ド粒子の吐出を防止することができる。なお、このMg
(OH)2は、2酸化マグネシウムからなるミネラル成
分である。
Embedded image Mg 2+ + 2OH → Mg (OH) 2 Since this Mg (OH) 2 is produced as colloidal particles, the components, particles, etc. contained in the tap water aggregate with this as a core, and eventually become coarse. To form flock. Therefore, by capturing and trapping the fine particles by the trapping means 20 provided on the downstream side of the electrolytic cell 11, excess colloidal particles of Mg (OH) 2 are discharged into the alkaline water discharged from the water discharge valve (not shown). Can be prevented. In addition, this Mg
(OH) 2 is a mineral component composed of magnesium dioxide.

【0030】また、電圧印加手段15は、第1通電モー
ド(例えば、2分間)と第2通電モード(例えば、2分
間)とを交互に極性を切り換えて通電を行うことによ
り、第1、第2電極12、13が、陽極と陰極に交互に
切り替わることで、マグネシウム電極の消耗の均等化が
図れる。
Further, the voltage applying means 15 alternately switches the polarity between the first energization mode (for example, 2 minutes) and the second energization mode (for example, 2 minutes) to perform energization. By alternately switching the two electrodes 12 and 13 to the anode and the cathode, the wear of the magnesium electrode can be equalized.

【0031】なお、一方の低電位側の電極では、水素イ
オン2H+が電子を受け取って水素ガスH2になる反応が
起きている。この水素ガスH2は、図示しない空気抜き
口から外部に排気するようになっている。このガス放出
により、電極14に接する水は攪拌され、電極面上の濃
縮物、例えば塩化イオンなどは洗い出される。そこで、
陽極表面に集中する塩化物イオンの濃度が濃くなる前
に、 極性を入れ換えて分散させる。これを繰り返すこ
とにより、電極表面の荒れを防止することができ電極の
寿命の長期化が図れる。
At one of the electrodes on the low potential side, a reaction occurs in which hydrogen ions 2H + receive electrons and become hydrogen gas H 2 . The hydrogen gas H 2 is exhausted to the outside through an air vent (not shown). Due to this gas release, the water in contact with the electrode 14 is agitated, and the concentrate such as chloride ions on the electrode surface is washed out. Therefore,
Before the concentration of chloride ions concentrated on the surface of the anode becomes thicker, the polarities are changed and dispersed. By repeating this, the surface of the electrode can be prevented from being roughened, and the life of the electrode can be extended.

【0032】従って、電圧印加手段15を第1通電モー
ドと第2通電モードとを交互に切り替えて通電を行うこ
とにより、電極表面の荒れを防止することができ第1お
よび第2電極12、13の寿命の長期化が図れる。
Therefore, by alternately switching the voltage application means 15 between the first energization mode and the second energization mode to energize, the surface of the electrodes can be prevented from being roughened and the first and second electrodes 12, 13 can be prevented. The life of can be extended.

【0033】次に、ミネラル水を生成したいときは、図
示しないミネラルスイッチを操作することで、制御装置
40により、三方弁32が図中の矢印bで示す流れ方
向、つまり、上水道から導いた上水が直接捕捉手段20
に通水される流れ方向に切り換える。これにより、電解
槽11を迂回した上水が捕捉手段20に通水されること
で、上述したアルカリ水の生成時に濾過、補足したコロ
イド粒子を溶解させて上水にミネラル成分を添加する。
これにより、図示しない吐水弁からミネラル水を吐水す
るようになっている。
Next, when it is desired to generate mineral water, by operating a mineral switch (not shown), the control device 40 causes the three-way valve 32 to flow in the direction indicated by the arrow b in FIG. Water is directly captured 20
Switch to the direction of water flow. As a result, the clean water that bypasses the electrolytic cell 11 is passed through the trapping means 20, whereby the colloidal particles that have been filtered and captured when the alkaline water is generated are dissolved, and a mineral component is added to the clean water.
As a result, mineral water is discharged from a water discharge valve (not shown).

【0034】以上の一実施形態の水改質装置によれば、
マグネシウムで形成した中間電極14からMg2+イオン
を溶解させてアルカリ水に改質するときに、過剰なMg
2+イオンを溶解させるとOH-と反応してアルカリ水中
にMg(OH)2のコロイド粒子が生成される。このコ
ロイド粒子は、2酸化マグネシウムよりなるミネラル成
分を備え、それ自身を核として上水中に含まれる粒子を
凝集し易い物性を有している。
According to the water reforming apparatus of the above embodiment,
When the Mg 2+ ion is dissolved from the intermediate electrode 14 made of magnesium to modify it into alkaline water, excess Mg is used.
When 2+ ions are dissolved, they react with OH to form colloidal particles of Mg (OH) 2 in alkaline water. The colloidal particles have a mineral component made of magnesium dioxide, and have physical properties such that the particles contained in the tap water have a property of easily aggregating.

【0035】そこで、本実施形態では、上記コロイド粒
子を濾過、捕捉する捕捉手段20を電解槽11の下流側
に設け、かつ捕捉手段20に上水を導入する第2給水配
管30bを設け、上水を捕捉手段20に通水させること
で、捕捉したコロイド粒子に通水させて上水にミネラル
成分を添加することにより、アルカリ水の生成時には、
過剰なミネラル成分が捕捉手段20により確実に濾過、
捕捉された純のアルカリ水が生成できるとともに、アル
カリ水の生成時に濾過、捕捉した粒子に直接上水を通水
することにより純のミネラル水が生成できる。
Therefore, in this embodiment, a trapping means 20 for filtering and trapping the colloidal particles is provided on the downstream side of the electrolytic cell 11, and a second water supply pipe 30b for introducing tap water to the trapping means 20 is provided. By passing water through the trapping means 20, water is passed through the trapped colloidal particles and a mineral component is added to the clean water.
The excess mineral component is reliably filtered by the capturing means 20,
Pure alkaline water that has been captured can be produced, and pure mineral water can be produced by directly passing clean water to the particles that have been filtered and captured when producing alkaline water.

【0036】また、アルカリ水の生成時に濾過、捕捉し
たコロイド粒子を利用してミネラル水を生成できるた
め、ミネラル水の生成のための部品点数を増加させなく
ても、アルカリ水およびミネラル水の選択できる水質改
質装置の提供ができる。
Further, since the colloidal particles filtered and captured during the production of the alkaline water can be used to produce the mineral water, it is possible to select the alkaline water and the mineral water without increasing the number of parts for producing the mineral water. It is possible to provide a water quality reforming device that can be used.

【0037】さらに、ミネラル水の生成時には、濾過、
捕捉した粒子を溶解させてしまうため、捕捉手段20の
捕捉部を清掃するメインテナンス期間を長くすることが
できる。
Furthermore, when mineral water is produced, filtration,
Since the captured particles are dissolved, the maintenance period for cleaning the capturing part of the capturing means 20 can be lengthened.

【0038】また、流れ方向を切り換えるための三方弁
32を設けたことにより、アルカリ水およびミネラル水
が容易に選択できる水質改質装置が提供できる。さら
に、三方弁32を第2給水配管30bから捕捉手段20
に向けて流通させるように制御させることにより、ミネ
ラル水の生成のための動力を必要としないことで低コス
ト、かつ簡素な構造でミネラル水の生成ができる。
Further, by providing the three-way valve 32 for switching the flow direction, it is possible to provide a water quality reforming device in which alkaline water and mineral water can be easily selected. Furthermore, the three-way valve 32 is connected to the capturing means 20 from the second water supply pipe 30b.
By controlling so as to circulate the mineral water toward, it is possible to generate the mineral water at a low cost and with a simple structure because power for generating the mineral water is not required.

【0039】また、第1通電モードと第2通電モードと
を交互に切り替えて通電を行うことにより、中間電極1
4の両面が、陽極および陰極に交互に切り替わること
で、マグネシウム電極の消耗の均等化が図れる。
In addition, the first electrode energization mode and the second electrode energization mode are alternately switched to energize the intermediate electrode 1.
By alternately switching both surfaces of No. 4 to the anode and the cathode, the wear of the magnesium electrode can be equalized.

【0040】(他の実施形態)以上の一実施形態では、
電解槽11内に対向して配設され、Ti材にPtメッキ
かPtを焼成したものからなる第1、第2電極12、1
3と、この第1、第2電極12、13との間に配設され
る複数枚のマグネシウムからなる中間電極14とを有す
る電解水生成手段10でアルカリ水を生成したが、第
1、第2電極12、13をマグネシウムの材料で形成
し、中間電極14がなくてもよい。
(Other Embodiments) In the above embodiment,
The first and second electrodes 12 and 1 which are arranged to face each other in the electrolytic cell 11 and are made of a Pt plated Pt or Pt fired Ti material.
Alkaline water was generated by the electrolyzed water generating means 10 having the intermediate electrode 14 made of a plurality of magnesium and disposed between the first and second electrodes 12 and 13. The two electrodes 12 and 13 may be formed of a magnesium material and the intermediate electrode 14 may be omitted.

【0041】具体的には、図2に示すように、電解槽1
1内にマグネシウムからなる第1、第2電極12、13
を配設されたものである。なお、図中の符号は、一実施
形態と同じ構成のものは、一実施形態と同じ符号を付し
て説明は省略している。
Specifically, as shown in FIG. 2, the electrolytic cell 1
First and second electrodes 12 and 13 made of magnesium in 1
Are arranged. In addition, the reference numerals in the drawings have the same configurations as those in the embodiment, and the same reference numerals as those in the embodiment are given, and the description thereof is omitted.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態における水改質装置の全体
構成を示す模式図である。
FIG. 1 is a schematic diagram showing an overall configuration of a water reforming apparatus according to an embodiment of the present invention.

【図2】他の実施形態における水改質装置の全体構成を
示す模式図である。
FIG. 2 is a schematic diagram showing an overall configuration of a water reforming apparatus in another embodiment.

【符号の説明】[Explanation of symbols]

10…電解水生成手段 11…電解槽 12、13…第1、第2電極 14…中間電極 20…捕捉手段 30b…第2給水配管(給水手段) 32…三方弁(切換手段) 10 ... Electrolyzed water generating means 11 ... Electrolytic bath 12, 13 ... First and second electrodes 14 ... Intermediate electrode 20 ... Capture means 30b ... second water supply pipe (water supply means) 32 ... Three-way valve (switching means)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 1/68 540 C02F 1/68 540E 540Z Fターム(参考) 4D061 DA03 DB08 DB09 EA02 EA03 EB01 EB05 EB31 EB39 ED20 FA09 GC16 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C02F 1/68 540 C02F 1/68 540E 540Z F term (reference) 4D061 DA03 DB08 DB09 EA02 EA03 EB01 EB05 EB31 EB39 ED20 FA09 GC16

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 マグネシウムで形成された第1、第2電
極(12、13)、および改質する上水が導入される電
解槽(11)を有し、前記第1、第2電極(12、1
3)間に電圧を印加させ前記電解槽(11)内にMg2+
イオンを溶解させて上水をアルカリ水に改質する電解水
生成手段(10)と、 前記電解槽(11)の下流側に設けられ、アルカリ水中
に含まれる粒子を濾過、捕捉する捕捉手段(20)とを
備え、 かつ前記捕捉手段(20)は、前記電解槽(11)を迂
回した上水を導入する給水手段(30b)が設けられ、
前記電解水生成手段(10)が停止のときに、前記給水
手段(30b)から導かれる上水を前記捕捉手段(2
0)により捕捉した粒子に通水させて上水にミネラル成
分を添加することを特徴とする水改質装置。
1. The first and second electrodes (12, 12) having first and second electrodes (12, 13) made of magnesium and an electrolytic cell (11) into which reforming tap water is introduced. 1
3) A voltage is applied between the two, and Mg 2+ is introduced into the electrolytic cell (11).
Electrolyzed water generating means (10) for dissolving ions to reform tap water into alkaline water, and capturing means provided downstream of the electrolytic cell (11) for filtering and capturing particles contained in alkaline water ( 20), and the capturing means (20) is provided with a water supply means (30b) for introducing clean water bypassing the electrolytic cell (11),
When the electrolyzed water producing means (10) is stopped, the tap water introduced from the water supply means (30b) is collected by the capturing means (2).
A water reforming device characterized in that a mineral component is added to tap water by passing water through the particles captured in 0).
【請求項2】 導電性金属で形成された第1、第2電極
(12、13)、前記第1、第2電極(12、13)間
に配設されマグネシウムで形成された一枚または複数枚
の中間電極(14)、および改質する上水が導入される
電解槽(11)を有し、前記第1、第2電極(12、1
3)間に電圧を印加させ前記電解槽(11)内にMg2+
イオンを溶解させて上水をアルカリ水に改質する電解水
生成手段(10)と、 前記電解槽(11)の下流側に設けられ、前記アルカリ
水中に含まれる粒子を濾過、捕捉する捕捉手段(20)
とを備え、 かつ前記捕捉手段(20)は、前記電解槽(11)を迂
回した上水を導入する給水手段(30b)が設けられ、
前記電解水生成手段(10)が停止のときに、前記給水
手段(30b)から導かれる上水を前記捕捉手段(2
0)により捕捉した粒子に通水させて上水にミネラル成
分を添加することを特徴とする水改質装置。
2. A first and a second electrode (12, 13) made of a conductive metal, and one or more sheets made of magnesium arranged between the first and second electrodes (12, 13). It has a sheet of intermediate electrodes (14) and an electrolytic cell (11) into which reforming tap water is introduced, and the first and second electrodes (12, 1) are provided.
3) A voltage is applied between the two, and Mg 2+ is introduced into the electrolytic cell (11).
Electrolyzed water generating means (10) for dissolving ions to reform tap water into alkaline water, and a capturing means provided downstream of the electrolytic cell (11) for filtering and capturing particles contained in the alkaline water. (20)
And the capturing means (20) is provided with a water supply means (30b) for introducing clean water bypassing the electrolytic cell (11),
When the electrolyzed water producing means (10) is stopped, the tap water introduced from the water supply means (30b) is collected by the capturing means (2).
A water reforming device characterized in that a mineral component is added to tap water by passing water through the particles captured in 0).
【請求項3】 前記捕捉手段(20)の上流側には、前
記電解槽(11)から前記捕捉手段(20)に向けて流
通させるか、または前記給水手段(30b)から前記捕
捉手段(20)に向けて流通させるかのいずれか一方の
流通方向に切り換える切換手段(32)を設けたことを
特徴とする請求項1または請求項2に記載の水改質装
置。
3. The upstream side of the capturing means (20) is circulated from the electrolytic cell (11) toward the capturing means (20) or from the water supply means (30b) to the capturing means (20). ), The water reforming apparatus according to claim 1 or 2, further comprising a switching means (32) for switching to one of the circulation directions.
【請求項4】 前記切換手段(32)は、前記電解水生
成手段(10)が停止のときに、前記給水手段(30
b)から前記捕捉手段(20)に向けて流通させるよう
に制御させることを特徴とする請求項3に記載の水改質
装置。
4. The switching means (32) is provided with the water supply means (30) when the electrolyzed water producing means (10) is stopped.
The water reformer according to claim 3, wherein the water reformer is controlled so as to flow from b) toward the trapping means (20).
JP2002158039A 2002-05-30 2002-05-30 Water reformer Expired - Fee Related JP3788389B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002158039A JP3788389B2 (en) 2002-05-30 2002-05-30 Water reformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002158039A JP3788389B2 (en) 2002-05-30 2002-05-30 Water reformer

Publications (2)

Publication Number Publication Date
JP2003340453A true JP2003340453A (en) 2003-12-02
JP3788389B2 JP3788389B2 (en) 2006-06-21

Family

ID=29773583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002158039A Expired - Fee Related JP3788389B2 (en) 2002-05-30 2002-05-30 Water reformer

Country Status (1)

Country Link
JP (1) JP3788389B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010214242A (en) * 2009-03-13 2010-09-30 Takaoka Kasei Kogyo Kk Hydrogen water generator
US9089602B2 (en) 2008-07-25 2015-07-28 Reven Pharmaceuticals, Inc. Compositions and methods for the prevention and treatment of cardiovascular diseases
US9572810B2 (en) 2010-07-22 2017-02-21 Reven Pharmaceuticals, Inc. Methods of treating or ameliorating skin conditions with a magnetic dipole stabilized solution

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9089602B2 (en) 2008-07-25 2015-07-28 Reven Pharmaceuticals, Inc. Compositions and methods for the prevention and treatment of cardiovascular diseases
US9089511B2 (en) 2008-07-25 2015-07-28 Reven Pharmaceuticals, Inc. Compositions and methods for the prevention and treatment of cardiovascular diseases
US9101537B2 (en) 2008-07-25 2015-08-11 Reven Pharmaceuticals, Inc. Compositions and methods for the prevention and treatment of cardiovascular diseases
US9775798B2 (en) 2008-07-25 2017-10-03 Reven Pharmaceuticals, Inc. Compositions and methods for the prevention and treatment of cardiovascular diseases
US11110053B2 (en) 2008-07-25 2021-09-07 Reven Pharmaceuticals Inc. Compositions and methods for the prevention and treatment of cardiovascular diseases
JP2010214242A (en) * 2009-03-13 2010-09-30 Takaoka Kasei Kogyo Kk Hydrogen water generator
US9572810B2 (en) 2010-07-22 2017-02-21 Reven Pharmaceuticals, Inc. Methods of treating or ameliorating skin conditions with a magnetic dipole stabilized solution
US9867849B2 (en) 2010-07-22 2018-01-16 Reven Pharmaceuticals, Inc. Methods of treating or ameliorating skin conditions with a magnetic dipole stabilized solution
US11202798B2 (en) 2010-07-22 2021-12-21 Reven Pharmaceuticals, Inc. Method of treating or ameliorating skin conditions with a magnetic dipole stabilized solution

Also Published As

Publication number Publication date
JP3788389B2 (en) 2006-06-21

Similar Documents

Publication Publication Date Title
TWI535894B (en) Electrolysis system and electrolysis method for the same
CN101960661B (en) Device and method for performing a reverse electrodialysis process
JP5574877B2 (en) Ozone water generator
AU2014212394B2 (en) Rechargeable electrochemical cells
JP3820248B2 (en) Electrolytic water conditioner
JP5971521B2 (en) Metal manufacturing method
JP2003340453A (en) Water modifying apparatus
JP2004298832A (en) Method and apparatus for making electrolytic water, and method and apparatus for making electrolytic hypo-water
JP2000317451A (en) Alkaline ionized water producer
US5225054A (en) Method for the recovery of cyanide from solutions
JP6000673B2 (en) Ozone water generator refresh cleaning method
JP2009233503A (en) Water softener and hot water supplier using it
JP2003200166A (en) Operation method for liquid passing type electric double- layered condenser desalting apparatus
JP2004313977A (en) Water reformer
JPH08134678A (en) Ozonized water producing device
KR20010049521A (en) Electrolysis process
JP6650586B2 (en) Electrolyzed water generator
JPH0910769A (en) Production of electrolytic ion water
JP2010036142A (en) Water softener, and hot water supply device with the same
CN201198454Y (en) Electrolyzing ion water maker with boron-doped diamond electrodes
JP2008100174A (en) Daily life water feed method and arrangement
JP2003033766A (en) Apparatus for generating electrolytic water
JP4363639B2 (en) Electrolytic ion water generator
JP2003080261A (en) Water cleaning equipment
JP3695918B2 (en) Regeneration method of ferric chloride solution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060320

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees