JP2003339725A - Fracture reintegration induction apparatus and method - Google Patents

Fracture reintegration induction apparatus and method

Info

Publication number
JP2003339725A
JP2003339725A JP2002147185A JP2002147185A JP2003339725A JP 2003339725 A JP2003339725 A JP 2003339725A JP 2002147185 A JP2002147185 A JP 2002147185A JP 2002147185 A JP2002147185 A JP 2002147185A JP 2003339725 A JP2003339725 A JP 2003339725A
Authority
JP
Japan
Prior art keywords
fracture
bone
reduction
bone fragment
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002147185A
Other languages
Japanese (ja)
Other versions
JP4056791B2 (en
Inventor
Makoto Samejima
誠 鮫島
Yoshihiro Furuyui
義浩 古結
Sakuo Yonenobu
策雄 米延
Nobuhiko Sugano
伸彦 菅野
Shinichi Tamura
進一 田村
Yoshinobu Sato
嘉伸 佐藤
Yoshikazu Nakajima
義和 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2002147185A priority Critical patent/JP4056791B2/en
Publication of JP2003339725A publication Critical patent/JP2003339725A/en
Application granted granted Critical
Publication of JP4056791B2 publication Critical patent/JP4056791B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/60Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like for external osteosynthesis, e.g. distractors, contractors
    • A61B17/66Alignment, compression or distraction mechanisms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations

Landscapes

  • Health & Medical Sciences (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Orthopedics, Nursing, And Contraception (AREA)
  • Surgical Instruments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance the workability and work efficiency of reintegration work by ensuring quantitative properties in fracture reintegration treatment in a fracture reintegration induction apparatus and method. <P>SOLUTION: A fracture affected part is photographed by an X-ray perspective apparatus 11 and a plurality of photographed images photographed by an image processor 14 are subjected to coordinates conversion and synthesized to form a three-dimensional image of bone pieces. The joining position of the fractured ends is designated on the basis of the three-dimensional image of bone pieces formed by a reintegration simulation setting means 16 to designate the joining position of the fracture ends to set the moving locus moving quantity of the bone pieces from the fracture position to the fracture position. A control quantity setting device 17 sets the moving locus and moving quantity of the traction device 15 on the basis of the moving locus and moving quantity of bone pieces to reset the fracture affected part by the drive operation of the traction device 15. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、骨折した患部にお
ける骨片ずれを修復する骨折整復誘導装置及び方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bone fracture reduction guide device and method for repairing a bone fragment shift in a fractured affected part.

【0002】[0002]

【従来の技術】人体の骨折患部の治療は、患者をベッド
に寝かせた状態で、患者の骨折患部を複数回X線撮影
(例えば、上下、左右の撮影)して骨片のずれを確認し
た後、牽引することで骨折患部を整復し、骨折患部の整
復位置が適正かどうかを再度X線撮影して確認してい
る。
2. Description of the Related Art For treatment of a fractured part of a human body, a patient is laid on a bed and X-rays of the fractured part of the patient are performed a plurality of times (for example, up, down, left and right) to confirm the displacement of bone fragments. After that, the affected part of the fracture is reduced by being towed, and whether or not the reduced position of the affected part of the fracture is appropriate is confirmed again by X-ray photography.

【0003】[0003]

【発明が解決しようとする課題】ところが、従来の骨折
整復治療では、骨折患部のX線撮影画像に基づいて術者
が骨折患部を牽引して適正な接合位置に整復するもので
あるが、骨折した骨片の牽引方向や牽引力等は定量性が
なく、各術者の経験によるところが大きい。また術者の
肉体労働を強いていることになる。そのため、術者の技
量によって骨折治療の完治期間にずれが生じてしまうと
いう問題がある。更に、X線撮影を頻繁に行うため、患
者及び術者に対する被爆の問題がある。
However, in the conventional bone fracture reduction treatment, an operator pulls the bone fracture affected portion based on an X-ray image of the bone fracture affected portion to reduce the bone fracture to an appropriate joint position. The pulling direction and pulling force of the bone fragments are not quantitative and depend largely on the experience of each operator. Moreover, it means that the surgeon is forced to do physical labor. Therefore, there is a problem in that there is a gap in the healing period of the fracture treatment depending on the skill of the operator. Further, since radiography is frequently performed, there is a problem of exposure to the patient and the operator.

【0004】本発明はこのような問題を解決するもので
あり、骨折整復治療における定量性を確保して整復作業
の作業性及び作業効率の向上を図った骨折整復誘導装置
及び方法を提供することを目的とする。
The present invention solves such a problem, and provides a bone fracture reduction guide device and method which ensure the quantitativeness in the bone fracture reduction treatment and improve the workability and the work efficiency of the bone reduction work. With the goal.

【0005】[0005]

【課題を解決するための手段】上述の目的を達成するた
めの請求項1の発明の骨折整復誘導装置は、骨折患部を
撮影する骨折患部撮影手段と、該骨折患部撮影手段が撮
影した撮影画像に基づいて骨折断端の接合位置を指定し
て骨折位置から該接合位置までの骨片の移動軌跡及び移
動量を設定する整復シミュレーション設定手段と、前記
骨折患部における一方の骨片に保持して移動可能な骨片
移動手段と、前記整復シミュレーション設定手段が設定
した骨片の移動軌跡及び移動量に基づいて前記骨片移動
手段の移動順序、移動量、移動方向を設定する制御量設
定手段とを具えたことを特徴とするものである。
In order to achieve the above-mentioned object, the fracture reduction guide device of the invention of claim 1 is a bone fracture affected part photographing means for photographing a bone fracture affected part, and a photographed image photographed by the bone fracture affected part photographing means. Reduction simulation setting means for setting the movement locus and movement amount of the bone fragment from the fracture position to the joint position by designating the joint position of the fracture end based on, and holding it in one bone fragment in the fracture affected part A movable bone piece moving means, and a control amount setting means for setting a moving order, a moving amount, and a moving direction of the bone piece moving means based on the moving trajectory and the moving amount of the bone piece set by the reduction simulation setting means. It is characterized by having.

【0006】請求項2の発明の骨折整復誘導装置では、
前記骨折患部撮影手段を3次元の撮影画像を取得するX
線透視装置とし、該X線透視装置にマーカを付けて該マ
ーカの3次元位置を計測する3次元計測装置を設け、前
記骨折患部に対して複数箇所の3次元撮影画像と前記マ
ーカの3次元位置・方向座標により整復に必要な範囲の
骨全体の画像に作成する画像処理手段を設けたことを特
徴としている。
According to the bone fracture reduction guide device of the invention of claim 2,
The bone fracture affected area photographing means is used to obtain a three-dimensional photographed image X
A fluoroscopy device is provided with a three-dimensional measuring device for measuring the three-dimensional position of the marker by attaching a marker to the X-ray fluoroscopic device, and a three-dimensional photographed image of a plurality of locations and the three-dimensional image of the marker with respect to the affected part of the bone fracture. It is characterized in that image processing means is provided for creating an image of the entire bone within the range necessary for reduction using the position / direction coordinates.

【0007】請求項3の発明の骨折整復誘導装置では、
前記画像処理手段は作成した骨折患部の3次元画像に基
づいて骨片の分離を行って各骨片の3次元画像を作成
し、前記整復シミュレーション設定手段は、該骨片の3
次元画像に基づいて骨折断端の接合位置を指定すること
を特徴としている。
In the bone fracture reduction guide device of the third aspect of the invention,
The image processing means creates a three-dimensional image of each bone fragment by separating the bone fragment based on the created three-dimensional image of the fracture affected part, and the reduction simulation setting means sets the three-dimensional image of the bone fragment.
The feature is that the joint position of the fracture end is designated based on the three-dimensional image.

【0008】請求項4の発明の骨折整復誘導装置では、
前記整復シミュレーション設定手段は、前記骨折患部撮
影手段が撮影した撮影画像と予め記憶した骨正常位置と
を比較して前記骨折断端の接合位置を指定することを特
徴としている。
According to the bone fracture reduction guide device of the invention of claim 4,
The reduction simulation setting unit specifies the joint position of the fracture end by comparing a captured image captured by the fracture affected part imaging unit with a normal bone position stored in advance.

【0009】請求項5の発明の骨折整復誘導装置では、
前記骨片移動手段が保持した一方の骨片にマーカを付け
る骨片マーカ付着手段と、該骨片マーカ付着手段が付け
たマーカの3次元位置を計測する3次元計測装置とを設
け、前記制御量設定手段は、該3次元計測装置が測定し
たマーカの移動軌跡及び移動量と、前記整復シミュレー
ション設定手段が設定した骨片の移動軌跡及び移動量と
の誤差を検出し、この誤差が所定値を越えたときには前
記骨片移動手段の補正量を設定することを特徴としてい
る。
In the bone fracture reduction guide device of the fifth aspect of the present invention,
The bone fragment marker attaching means for attaching a marker to one bone fragment held by the bone fragment moving means and the three-dimensional measuring device for measuring the three-dimensional position of the marker attached by the bone fragment marker attaching means are provided, and the control is performed. The amount setting means detects an error between the movement locus and movement amount of the marker measured by the three-dimensional measuring device and the movement locus and movement amount of the bone fragment set by the reduction simulation setting means, and this error has a predetermined value. When it exceeds, the correction amount of the bone piece moving means is set.

【0010】請求項6の発明の骨折整復誘導装置では、
前記整復シミュレーション設定手段は、術者の手に装着
されるデータグローブを有し、該術者は前記骨折患部撮
影手段が撮影した撮影画像に基づいて該データグローブ
を操作して骨折断端の接合位置を指定して骨折位置から
該接合位置までの骨片の移動軌跡及び移動量を設定する
ことを特徴としている。
According to a sixth aspect of the bone fracture reduction guide device of the present invention,
The reduction simulation setting means has a data glove that is attached to the operator's hand, and the operator operates the data glove based on the image taken by the fracture affected part imaging means to join the fracture ends. It is characterized in that a position is designated and a movement locus and a movement amount of the bone fragment from the fracture position to the joint position are set.

【0011】請求項7の発明の骨折整復誘導装置では、
前記整復シミュレーション設定手段と前記制御量設定手
段との間でデータを送受信可能なデータ送受信機を設け
たことを特徴としている。
In the fracture reduction guide device of the invention of claim 7,
A data transmitter / receiver capable of transmitting and receiving data between the reduction simulation setting means and the control amount setting means is provided.

【0012】請求項8の発明の骨折整復誘導装置では、
前記制御量設定手段に音声指示装置を接続したことを特
徴としている。
In the bone fracture reduction guide device of the invention of claim 8,
A feature is that a voice instruction device is connected to the control amount setting means.

【0013】請求項9の発明の骨折整復誘導装置では、
前記制御量設定手段と前記音声指示装置との間でデータ
を送受信可能なデータ送受信装置を設けたことを特徴と
している。
In the bone fracture reduction guide device of the invention of claim 9,
A data transmission / reception device capable of transmitting / receiving data between the control amount setting means and the voice instruction device is provided.

【0014】請求項10の発明の骨折整復方法は、骨折
患部を撮影し、該撮影画像に基づいて骨折断端の接合位
置を指定し、骨折位置から該接合位置までの骨片の移動
軌跡及び移動量を設定し、該移動軌跡及び移動量に基づ
いて牽引装置を操作して前記骨折患部を整復することを
特徴とするものである。
According to the method of reducing bone fractures of the tenth aspect of the present invention, the affected part of the fracture is photographed, the joint position of the fracture edge is designated based on the photographed image, and the movement locus of the bone fragment from the fracture position to the joint position and It is characterized in that a movement amount is set, and a traction device is operated based on the movement locus and the movement amount to reduce the fracture affected part.

【0015】請求項11の発明の骨折整復方法では、前
記骨折患部に対して複数箇所の3次元撮影画像を取得
し、該複数箇所の撮影画像を座標変換して合成して述部
全体の3次元画像を作成し、該骨折患部の3次元画像に
基づいて骨片の分離を行い、該骨片の3次元画像に基づ
いて骨折断端の接合位置を指定することを特徴としてい
る。
According to the fracture reduction method of the invention of claim 11, three-dimensional photographed images of a plurality of locations are acquired for the affected part of the fracture, and the photographed images of the plurality of locations are coordinate-converted and combined to generate 3 of the entire predicate. It is characterized in that a three-dimensional image is created, the bone fragments are separated based on the three-dimensional image of the affected part of the fracture, and the joint position of the fracture end is designated based on the three-dimensional image of the bone fragment.

【0016】請求項12の発明の骨折整復方法では、前
記牽引装置が保持した骨片にマーカを付け、該骨片マー
カの3次元位置を常時計測して該骨片マーカの移動軌跡
及び移動量と、前記骨片の移動軌跡及び移動量との誤差
を検出し、この誤差が所定値を越えたときには前記牽引
装置を補正操作することを特徴としている。
In the bone fracture reduction method of the invention of claim 12, a marker is attached to the bone fragment held by the traction device, the three-dimensional position of the bone fragment marker is constantly measured, and the movement locus and movement amount of the bone fragment marker are measured. Then, an error between the movement locus and the movement amount of the bone fragment is detected, and when the error exceeds a predetermined value, the traction device is corrected.

【0017】請求項13の発明の骨折整復方法では、前
記骨折患部に対して複数箇所の撮影画像を取得し、該複
数の撮影画像を座標変換して合成して3次元画像を作成
し、該骨折患部の3次元画像に基づいて骨片の分離を行
って各骨片の3次元画像を作成し、術者は該骨片の3次
元画像を見ながら手に装着したデータグローブを操作し
て骨折断端の接合位置を指定し、骨折位置から該接合位
置までの骨片の移動軌跡及び移動量を設定することを特
徴としている。
In the bone fracture reduction method of the invention of claim 13, a plurality of photographed images of the affected part of the fracture are acquired, the plurality of photographed images are coordinate-converted and combined to create a three-dimensional image. The bone fragments are separated based on the three-dimensional image of the fractured part to create a three-dimensional image of each bone fragment, and the operator operates the data glove attached to the hand while viewing the three-dimensional image of the bone fragment. It is characterized in that the joint position of the fracture end is designated and the movement locus and the movement amount of the bone fragment from the fracture position to the joint position are set.

【0018】[0018]

【発明の実施の形態】以下、図面に基づいて本発明の実
施の形態を詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below with reference to the drawings.

【0019】図1に本発明の第1実施形態に係る骨折整
復誘導装置の概略構成、図2に本実施形態の骨折整復誘
導装置による整復方法を表すフローチャート、図3乃至
図5に本実施形態の骨折整復誘導装置により整復方法を
表す概略を示す。
FIG. 1 is a schematic configuration of a bone fracture reduction guide apparatus according to a first embodiment of the present invention, FIG. 2 is a flowchart showing a reduction method by the bone fracture reduction guide apparatus of the present embodiment, and FIGS. 3 to 5 show the present embodiment. The outline showing the reduction method by the fracture reduction reduction guide device of FIG.

【0020】本実施形態の骨折整復誘導装置は、図1に
示すように、骨折患部を撮影する骨折患部撮影手段とし
ての3次元画像が合成可能なX線透視装置11と、骨折
した骨片に付ける骨片マーカ12aと、X線透視装置1
1に付ける装置マーカ12bと、この骨片マーカ12a
と装置マーカ12bの3次元位置を計測する3次元計測
装置13と、X線透視装置11で合成された骨片の3次
元画像を用いて3次元計測装置13が計測したマーカの
3次元位置から骨片の3次元位置を推定し、整復シミュ
レーション及び整復制御量を出力する整復誘導装置18
と、骨折患部における一方の骨片に保持して移動可能な
骨片移動手段としての牽引装置15とから構成されてい
る。この整復誘導装置18は骨片の3次元画像に基づい
て骨折断端の接合位置を指定して骨折位置から接合位置
までの骨片の移動軌跡及び移動量を設定する整復シミュ
レーション設定装置16と、この整復シミュレーション
設定装置16が設定した骨片の移動軌跡及び移動量に基
づいて牽引装置15の位置・姿勢操作量を設定する制御
量設定装置17とから構成されている。
As shown in FIG. 1, the bone fracture reduction guide device of the present embodiment includes an X-ray fluoroscopic device 11 capable of synthesizing a three-dimensional image as a bone fracture affected part photographing means for photographing a bone fracture affected part, and a broken bone fragment. Bone fragment marker 12a to be attached and X-ray fluoroscope 1
1 is attached to the device marker 12b and this bone fragment marker 12a
From the three-dimensional position of the marker measured by the three-dimensional measuring device 13 using the three-dimensional measuring device 13 that measures the three-dimensional position of the device marker 12b and the three-dimensional image of the bone fragment synthesized by the X-ray fluoroscope 11. Reduction guidance device 18 that estimates the three-dimensional position of the bone fragment and outputs reduction simulation and reduction control amount 18
And a traction device 15 as a bone piece moving means that can be held and moved by one bone piece in the fractured part. The reduction guidance device 18 is a reduction simulation setting device 16 for designating a joint position of a fracture end based on a three-dimensional image of a bone fragment and setting a movement trajectory and a movement amount of the bone fragment from the fracture position to the joint position. The reduction simulation setting device 16 includes a control amount setting device 17 that sets the position / posture operation amount of the traction device 15 based on the movement trajectory and the movement amount of the bone fragment set by the reduction simulation setting device 16.

【0021】X線透視装置11は、例えば、骨折患部と
しての大腿部の外周部に位置してリング形状をなすC字
形アームであって、大腿部の周方向に回動自在であると
共に、長手方向に移動可能であり、骨折患部を複数の位
置や角度からX線撮影可能となっており、3次元画像を
生成する。骨片マーカ12aは、骨折患部にて骨折した
側の骨片に刻設すると共に、皮膚に皮膚マーカを貼着す
るものである。装置マーカ12bは、X線透視装置11
に付設するものである。3次元計測装置13は、この骨
片マーカ12aの3次元位置と装置マーカ12bの3次
元位置を計測するものである。
The X-ray fluoroscope 11 is, for example, a C-shaped arm which is located in the outer peripheral part of the thigh as a fractured part and has a ring shape, and is rotatable in the circumferential direction of the thigh. , Can be moved in the longitudinal direction, and the affected part of the fracture can be radiographed from a plurality of positions and angles to generate a three-dimensional image. The bone fragment marker 12a is engraved on the bone fragment on the fractured side in the fracture affected area, and the skin marker is attached to the skin. The device marker 12b is used for the fluoroscope 11
It is attached to. The three-dimensional measuring device 13 measures the three-dimensional position of the bone fragment marker 12a and the three-dimensional position of the device marker 12b.

【0022】X線透視装置11で骨折患部周辺を、位置
を変えて複数箇所撮影するが、X線透視装置11の位置
は装置マーカ12bを3次元計測装置13で計測されて
画像処理装置14に入力される。この画像処理装置14
は、X線透視装置11からの骨折患部周辺の複数箇所の
3次元画像により手術する骨部全体を合成する。また、
画像処理装置14は、3次元計測装置13が計測した各
マーカの3次元位置(3次元座標)から骨片の3次元位
置を推定する。
The X-ray fluoroscopy device 11 takes a plurality of images around the affected area of the fracture by changing the position. The position of the X-ray fluoroscopy device 11 is measured by the three-dimensional measuring device 13 with the device marker 12b and the image processing device 14 is measured. Is entered. This image processing device 14
Is to synthesize the entire bone part to be operated by using three-dimensional images of a plurality of locations around the fractured part from the X-ray fluoroscope 11. Also,
The image processing device 14 estimates the three-dimensional position of the bone fragment from the three-dimensional position (three-dimensional coordinate) of each marker measured by the three-dimensional measuring device 13.

【0023】整復シミュレーション設定装置16は、X
線透視装置11が撮影した撮影画像に基づいて画像処理
装置14が作成した骨片の3次元画像から骨折断端の接
合位置を指定し、骨片がずれた骨折位置から骨片が適正
に接触する接合位置までの骨片の移動軌跡及び移動量を
設定するものである。この場合、骨片の適正な接合位置
は、骨折していない側の大腿部のX線撮影画像や平均的
な骨の接合形状とのマッチングにより行うことが望まし
い。
The reduction simulation setting device 16 uses X
The joint position of the fracture end is specified from the three-dimensional image of the bone fragment created by the image processing device 14 based on the image captured by the fluoroscopic device 11, and the bone fragment appropriately contacts from the fracture position where the bone fragment is displaced. The movement locus and the movement amount of the bone fragment to the joining position are set. In this case, it is desirable that the proper joining position of the bone fragments is performed by matching with the X-ray image of the thigh on the side where the bone is not fractured and the average bone joining shape.

【0024】制御量設定装置17は、整復シミュレーシ
ョン設定装置16が設定した骨片の移動軌跡及び移動量
に基づいて牽引装置15の位置・姿勢の操作量を演算す
ることで、実際の骨折患部にて牽引装置15が保持した
骨片をずれた骨折位置から適正な接合位置まで移動指示
するものである。この場合、制御量設定装置17は、3
次元計測装置13が計測した各マーカの3次元位置に基
づいて画像処理装置14が推定した骨片の実移動軌跡及
び実移動量と、整復シミュレーション設定装置16が設
定した骨片の移動軌跡及び移動量との誤差を検出し、こ
の誤差が減少するように牽引装置15を補正制御する。
The control amount setting device 17 calculates the operation amount of the position / posture of the traction device 15 on the basis of the movement trajectory and the movement amount of the bone fragment set by the reduction simulation setting device 16, so that the actual fracture affected part is detected. And directs movement of the bone fragments held by the traction device 15 from the displaced fracture position to the proper joining position. In this case, the control amount setting device 17
The actual movement trajectory and actual movement amount of the bone fragment estimated by the image processing device 14 based on the three-dimensional position of each marker measured by the dimension measurement device 13, and the movement trajectory and movement of the bone fragment set by the reduction simulation setting device 16. An error from the quantity is detected, and the traction device 15 is corrected and controlled so as to reduce this error.

【0025】そして、牽引装置15は、ベッドに横にな
った患者の骨折した足に履かせて保持するブーツと、こ
のブーツを6自由度(3次元方向への直線移動、3次元
方向に沿った軸回りの回動)の移動動作を可能とする移
動機構とを有しており、骨片を6自由度の方向に牽引可
能となっている。
The traction device 15 has a boot for holding the broken leg of a patient lying on the bed and holding the boot, and the boot having 6 degrees of freedom (linear movement in the three-dimensional direction, along the three-dimensional direction). And a moving mechanism capable of moving about an axis), and the bone fragments can be pulled in the directions of six degrees of freedom.

【0026】ここで、本実施形態の骨折整復誘導装置に
よる骨折整復方法について、図2に記載したフローチャ
ートと図3乃至図5に記載した骨折患部の概略に基づい
て詳細に説明する。
Here, the bone fracture reduction method using the bone fracture reduction guide device of the present embodiment will be described in detail based on the flow chart shown in FIG. 2 and the outline of the fracture affected part shown in FIGS. 3 to 5.

【0027】図2に示すフローチャートにて、ステップ
S1では、X線透視装置11を用いて大腿部の周方向に
回動すると共に長手方向に移動し、骨折患部を異なる位
置でX線撮影を行い、図3(a)に示すように、複数の3
次元画像A,B,C,Dを取得する。ステップS2で
は、3次元画像A,B,C,Dに対応する装置マーカ1
2bの位置データを用いて、図3(b)に示すように、術
部全体が把握できるように骨折患部周辺の3次元画像を
作成する。そして、ステップS3では、図3(c)に示す
ように、この骨折患部周辺の3次元画像に基づいて、骨
折した各骨片ごとの分離を行って各骨片(骨折の断端)
の3次元画像を作成する。
In the flowchart shown in FIG. 2, in step S1, the X-ray fluoroscope 11 is used to rotate in the circumferential direction of the thigh and move in the longitudinal direction so that the affected area of the bone fracture can be radiographed at different positions. Then, as shown in FIG.
Obtain the three-dimensional images A, B, C, and D. In step S2, the device marker 1 corresponding to the three-dimensional images A, B, C, D
Using the position data of 2b, as shown in FIG. 3B, a three-dimensional image around the fracture affected area is created so that the entire surgical site can be grasped. Then, in step S3, as shown in FIG. 3 (c), based on the three-dimensional image around the fracture affected area, each fractured bone fragment is separated and each bone fragment (a fracture end of the fracture)
3D image is created.

【0028】ステップS4にて、整復シミュレーション
設定装置16は、画像処理装置14が作成した分離骨片
の3次元画像にて、図4(a)に示すように、骨片の適正
な接合位置を指定するが、この場合、予め骨折していな
い側の大腿部のX線撮影画像を取得し、骨折患部の分離
骨片に対応する3次元画像を記憶しておき、骨折してい
ない大腿部の3次元画像に基づいて、骨折した大腿部に
おける骨片の接合位置を指定する。そして、図4(b)に
示すように、3次元画像上で骨片を指定した接合位置ま
でシミュレーション移動することで骨折患部の整復状態
を確認し、移動軌跡及び移動量を設定する。予め骨折し
ていない側の大腿部のX線画像が得られない場合、図4
(c)に示すように、骨折断端に接合位置(a,b,
c)、(a′,b′,c′)を設定し、この接合位置ま
での骨片の移動軌跡及び移動量を設定し、この移動軌跡
及び移動量に基づいて骨片のシミュレーション移動し、
骨片の整復状態を確認することもできる。
In step S4, the reduction simulation setting device 16 determines the proper joining position of the bone fragments in the three-dimensional image of the separated bone fragments created by the image processing device 14 as shown in FIG. 4 (a). In this case, in this case, an X-ray image of the femur on the side without fracture is acquired in advance, and the three-dimensional image corresponding to the separated bone fragment of the fracture affected area is stored in advance, and the femur without fracture is specified. The joint position of the bone fragment in the fractured thigh is specified based on the three-dimensional image of the part. Then, as shown in FIG. 4B, the reduction state of the fracture affected part is confirmed by simulating movement of the bone fragment to the specified joint position on the three-dimensional image, and the movement trajectory and movement amount are set. When the X-ray image of the thigh on the side where the bone has not been fractured is not obtained in advance, FIG.
As shown in (c), the joint position (a, b,
c), (a ′, b ′, c ′) are set, the movement locus and the movement amount of the bone fragment to this joint position are set, and the bone fragment is simulated and moved based on this movement locus and movement amount.
It is also possible to confirm the reduction state of the bone fragments.

【0029】このように整復シミュレーション設定装置
16にて、接合位置までの骨片の移動軌跡及び移動量が
設定されたら、ステップS5にて、制御量設定し油断1
7は、牽引装置15による制御量、即ち、骨片の移動軌
跡及び移動量に対応したブーツにおける6方向の移動順
序、移動量、移動速度等を換算する。そして、ステップ
S6にて、牽引装置15は、図5(a)(b)に示すよう
に、ブーツを設定した移動順序、移動量、移動方向等に
基づいて移動されて骨片をずれた骨折位置から適正な接
合位置まで移動する。なお、牽引装置15は自動で駆動
される必要はなく、手動で操作してもよい。
In this way, when the movement trajectory and the movement amount of the bone piece to the joint position are set by the reduction simulation setting device 16, the control amount is set in step S5, and the failure 1
Reference numeral 7 converts the control amount of the traction device 15, that is, the moving order, the moving amount, the moving speed, etc. of the boot in the six directions corresponding to the moving locus and the moving amount of the bone fragment. Then, in step S6, as shown in FIGS. 5 (a) and 5 (b), the traction device 15 is moved based on the set moving order, moving amount, moving direction, etc. Move from the position to the proper joining position. The towing device 15 does not have to be automatically driven, and may be manually operated.

【0030】この場合、予め骨片マーカaが刻設される
と共に皮膚にマーカが貼着され、ステップS7にて、3
次元計測装置13が各マーカの3次元位置を計測してい
る。そして、ステップS8では、3次元計測装置13が
計測した各マーカの3次元位置に基づいて画像処理装置
14が推定した骨片の実移動軌跡及び実移動量と、整復
シミュレーション設定装置16が設定した骨片の移動軌
跡及び移動量とを比較し、牽引装置15の作動によって
移動する骨片が指定した軌跡上にあるかどうかをリアル
タイムで判定している。
In this case, the bone fragment marker a is engraved in advance and the marker is affixed to the skin.
The dimension measuring device 13 measures the three-dimensional position of each marker. Then, in step S8, the actual movement trajectory and actual movement amount of the bone fragment estimated by the image processing apparatus 14 based on the three-dimensional position of each marker measured by the three-dimensional measurement apparatus 13 and the reduction simulation setting apparatus 16 set. By comparing the movement trajectory and the movement amount of the bone fragment, it is determined in real time whether or not the bone fragment that is moved by the operation of the traction device 15 is on the specified trajectory.

【0031】従って、ステップS8にて、骨片の実移動
軌跡と骨片の設定移動軌跡とを比較し、その誤差が所定
値を越えたときには牽引装置15の作動によって移動す
る骨片が指定した軌跡上にないと判定し、ステップS9
にてこの誤差が減少するように牽引装置15を位置補正
し、ステップS6に戻る。一方、骨片の実移動軌跡と骨
片の設定移動軌跡との誤差が所定値以内であれば、移動
する骨片が指定した軌跡上にあると判定し、ステップS
10に移行する。ここに、ステップS9の位置補正は制
御量設定装置17にて実施される。
Therefore, in step S8, the actual movement trajectory of the bone fragment is compared with the set movement trajectory of the bone fragment, and when the error exceeds a predetermined value, the bone fragment to be moved by the operation of the traction device 15 is designated. It is determined that it is not on the trajectory, and step S9
The position of the traction device 15 is corrected so that this error is reduced, and the process returns to step S6. On the other hand, if the error between the actual movement trajectory of the bone fragment and the set movement trajectory of the bone fragment is within a predetermined value, it is determined that the moving bone fragment is on the designated trajectory, and step S
Go to 10. Here, the position correction in step S9 is performed by the control amount setting device 17.

【0032】このステップS10では、骨片の実移動軌
跡及び実移動量と、骨片の設定移動軌跡及び設定移動量
とを比較し、牽引装置15の作動によって移動する骨片
が指定した接合位置に移動したかどうかを判定する。こ
のステップS10で、骨片の実移動軌跡及び実移動量
と、骨片の設定移動軌跡及び設定移動量とが一致してい
なければ、骨片がまだ指定した接合位置に移動していな
いものと判定し、ステップS6に戻って処理を繰り返
す。
In step S10, the actual movement locus and the actual movement amount of the bone fragment are compared with the set movement locus and the set movement amount of the bone fragment, and the joint position designated by the bone fragment moved by the operation of the traction device 15 is compared. To see if it has moved to. In this step S10, if the actual movement locus and actual movement amount of the bone fragment do not match the set movement locus and set movement amount of the bone fragment, it is determined that the bone piece has not moved to the specified joining position. The determination is made, and the process returns to step S6 and is repeated.

【0033】一方、骨片の実移動軌跡及び実移動量と設
定移動軌跡及び設定移動量とが一致していれば、骨片が
指定した接合位置に移動したものと判定する。そして、
ステップS11にて、X線透視装置11により骨折患部
を撮影し、ステップS12で、骨片が所定の接合位置に
移動して適正に整復されているかどうかを判定し、骨片
が所定の接合位置に移動せずに適正に整復されていなけ
れば、ステップS4に戻って全ての処理を繰り返す一
方、骨片が所定の接合位置に移動して適正に整復されて
いることが確認されたら整復作業を完了する。そして、
図示しないが、骨折患部の手術やギブスによる固定など
の適切な処置を行う。
On the other hand, if the actual movement trajectory and the actual movement amount of the bone fragment match the set movement trajectory and the set movement amount, it is determined that the bone piece has moved to the designated joining position. And
In step S11, the affected part of the fracture is imaged by the fluoroscope 11, and in step S12, it is determined whether or not the bone fragment is moved to a predetermined joint position and properly reduced, and the bone fragment is in the predetermined joint position. If the bone fragments have not been properly moved and have not been properly reduced, the process returns to step S4 and repeats all the processes, while if it is confirmed that the bone fragments have moved to the predetermined joint position and properly reduced, then the reduction work is performed. Complete. And
Although not shown, appropriate treatment such as surgery of the fractured part or fixation with a cast is performed.

【0034】このように本実施形態の骨折整復誘導装置
にあっては、X線透視装置11により骨折患部を撮影
し、骨片の3次元画像を作成し、画像処理装置14が撮
影した複数の3次元撮影画像を座標変換して手術する骨
全体に合成し、整復シミュレーション設定装置16が作
成した骨片の3次元画像に基づいて骨折断端の接合位置
を指定して骨折位置から接合位置までの骨片の移動軌跡
及び移動量を設定し、制御量設定装置17は骨片の移動
軌跡及び移動量に基づいて牽引装置15の操作量、操作
方向を設定し、これに基づいて牽引装置15を駆動して
骨折患部を整復するようにしている。
As described above, in the bone fracture reduction guide device of the present embodiment, the affected area of the bone fracture is photographed by the X-ray fluoroscopic device 11, a three-dimensional image of the bone fragment is created, and a plurality of images photographed by the image processing device 14 are taken. From the fracture position to the joint position by specifying the joint position of the fracture end based on the three-dimensional image of the bone fragment created by the reduction simulation setting device 16 The movement amount and the movement amount of the bone fragment are set, and the control amount setting device 17 sets the operation amount and the operation direction of the traction device 15 based on the movement trajectory and the movement amount of the bone fragment, and based on this, the traction device 15 Driven to reduce the fractured part.

【0035】従って、骨片を予め設定した移動軌跡及び
移動量に基づいて牽引装置15により接合位置まで移動
して整復するため、骨折した骨片の牽引方向や牽引力は
定量的なものとなり、術者の経験に拘らずほぼ一定な技
量となり、骨折治療の完治期間にずれが生じることはな
く、その結果、骨折整復治療における定量性を確保して
整復作業の作業性及び作業効率を向上できる。
Therefore, since the bone fragments are moved to the joining position and reduced by the traction device 15 based on the preset movement locus and movement amount, the traction direction and traction force of the fractured bone fragments become quantitative, and the surgery is performed. The skill is almost constant regardless of the person's experience, and there is no gap in the healing period of the fracture treatment. As a result, the workability and work efficiency of the reduction work can be improved by ensuring the quantitativeness in the fracture reduction treatment.

【0036】また、骨片マーカ12aが骨片に刻設され
ると共に皮膚にマーカを貼着し、3次元計測装置13が
計測した各マーカの3次元位置に基づいて推定した骨片
の実移動軌跡及び実移動量と、整復シミュレーション設
定装置16が設定した骨片の実移動軌跡及び実移動量と
を比較し、両者の誤差が減少するように牽引装置15を
補正制御しており、骨片の移動を常時監視して早期に修
正することができる。更に、患者及び術者に対してX線
透視装置11の使用回数を減少することで、X線被爆を
防止することができる。
Further, the bone fragment marker 12a is engraved on the bone fragment, the marker is attached to the skin, and the actual movement of the bone fragment estimated based on the three-dimensional position of each marker measured by the three-dimensional measuring device 13 is performed. The trajectory and the actual movement amount are compared with the actual movement trajectory and the actual movement amount of the bone fragment set by the reduction simulation setting device 16, and the traction device 15 is corrected and controlled so that the error between them is reduced. The movement of can be constantly monitored and corrected early. Further, the X-ray exposure can be prevented by reducing the number of times of using the X-ray fluoroscope 11 for the patient and the operator.

【0037】図6乃至図8に本発明の第2〜4実施形態
に係る骨折整復誘導装置の概略構成を示す。なお、前述
した実施形態で説明したものと同様の機能を有する部材
には同一の符号を付して重複する説明は省略する。
6 to 8 show a schematic configuration of a fracture reduction guide device according to second to fourth embodiments of the present invention. It should be noted that members having the same functions as those described in the above-described embodiment are designated by the same reference numerals, and redundant description will be omitted.

【0038】第2実施形態の骨折整復誘導装置におい
て、図6に示すように、整復シミュレーション設定装置
21は、X線透視装置11が撮影した撮影画像に基づい
て画像処理装置14が作成した骨片の3次元画像を映し
出すディスプレイ22と、術者の手に装着されるデータ
グローブ23と、このデータグローブ23の作動を検出
する各種センサ類24と、この各種センサ類24の出力
に基づいて骨片の移動位置を推定する演算装置25とを
有している。なお、この各種センサ類24は磁気センサ
あるいは光学センサであって、データグローブ23の6
自由度(3次元方向への直線移動、3次元方向に沿った
軸回りの回動)の移動動作を検出できるセンサであれば
どれでもよい。
In the bone fracture reduction guide device of the second embodiment, as shown in FIG. 6, the reduction simulation setting device 21 is a bone fragment created by the image processing device 14 based on an image captured by the X-ray fluoroscope 11. A display 22 that displays a three-dimensional image of the data, a data glove 23 worn on the operator's hand, various sensors 24 that detect the operation of the data glove 23, and bone fragments based on the outputs of the various sensors 24 And an arithmetic unit 25 for estimating the moving position of the. The various sensors 24 are magnetic sensors or optical sensors, and are included in the data glove 23.
Any sensor may be used as long as it can detect a movement operation with a degree of freedom (linear movement in the three-dimensional direction, rotation about an axis along the three-dimensional direction).

【0039】従って、この整復シミュレーション設定装
置21では、ディスプレイ22に骨折患部における骨片
の3次元画像が映し出された状態で、術者がデータグロ
ーブ23を操作、つまり、骨片を保持していると仮定し
て骨折断端の接合位置まで移動させると、センサ類24
がこのデータグローブ23の移動軌跡及び移動量を検出
し、演算装置25がこの移動軌跡及び移動量に基づいて
骨片の移動位置を推定し、ディスプレイ22に表示され
る。そして、術者が骨片を骨折位置から適正な接合位置
まで移動させたときの骨片の移動軌跡及び移動量を、骨
折位置から接合位置までの骨片の設定移動軌跡及び設定
移動量として設定する。
Therefore, in the reduction simulation setting device 21, the operator operates the data glove 23, that is, holds the bone fragment while the three-dimensional image of the bone fragment in the fractured part is displayed on the display 22. If it is moved to the joint position of the fracture end assuming that
Detects the movement locus and the movement amount of the data globe 23, and the arithmetic unit 25 estimates the movement position of the bone fragment based on the movement locus and the movement amount and is displayed on the display 22. Then, the movement trajectory and the movement amount of the bone fragment when the operator moves the bone fragment from the fracture position to the proper joint position are set as the set movement trajectory and the set movement amount of the bone fragment from the fracture position to the joint position. To do.

【0040】そして、整復シミュレーション設定装置2
1にて、接合位置までの骨片の移動軌跡及び移動量が設
定されたら、前述の実施形態と同様に、制御量設定装置
17が牽引装置15による操作量、即ち、骨片の移動軌
跡及び移動量に対応した牽引装置15の6方向の移動順
序、移動量、移動方向等を換算し、これに基づいて牽引
装置15を駆動して骨片をずれた骨折位置から適正な接
合位置まで移動する。
The reduction simulation setting device 2
When the movement trajectory and the movement amount of the bone fragment to the joint position are set in 1, the control amount setting device 17 operates the operation amount by the traction device 15, that is, the movement trajectory of the bone fragment and the movement trajectory of the bone fragment, as in the above-described embodiment. The movement order, movement amount, movement direction, etc. of the traction device 15 in six directions corresponding to the movement amount are converted, and the traction device 15 is driven based on this to move the bone fragments from the fractured position to the proper joint position. To do.

【0041】このように本実施形態の骨折整復誘導装置
にあっては、整復シミュレーション設定装置21にて、
術者がデータグローブ23を操作して骨片を骨折位置か
ら適正な接合位置まで移動させて設定移動軌跡及び設定
移動量を設定している。従って、骨片の接合位置を適正
に設定することができ、整復作業の作業性及び作業効率
を向上できる。
As described above, in the fracture reduction guidance device of this embodiment, the reduction simulation setting device 21
The operator operates the data glove 23 to move the bone fragment from the fracture position to an appropriate joint position to set the set movement locus and the set movement amount. Therefore, the joint position of the bone fragments can be set appropriately, and the workability and work efficiency of the reduction work can be improved.

【0042】第3実施形態の骨折整復誘導装置では、図
7に示すように、第2実施形態で説明した演算装置25
と整復誘導装置18とをデータ送受信装置31,32に
接続し、両者間でデータの送受信を可能としている。
In the bone fracture reduction guide device of the third embodiment, as shown in FIG. 7, the arithmetic unit 25 described in the second embodiment is used.
And the reduction guidance device 18 are connected to the data transmission / reception devices 31 and 32 to enable data transmission / reception between them.

【0043】従って、患者がいる病院に熟練の術者が不
在であるときは、X線透視装置11が撮影した撮影画像
に基づいて画像処理装置14が作成した骨片の3次元画
像を熟練の術者がいる病院にデータ送受信装置31,3
2を用いて送信する。熟練の術者は受信したデータをデ
ィスプレイ22に表示しながらデータグローブ23を操
作し、骨片を骨折位置から適正な接合位置まで移動させ
て設定移動軌跡及び設定移動量を設定する。そして、骨
片の設定移動軌跡及び設定移動量を患者がいる病院にデ
ータ送受信装置31,32を用いて送信すると、制御量
設定装置17による操作量、即ち、骨片の移動軌跡及び
移動量に対応した6方向の移動順序、移動量、移動方向
等を換算し、これに基づいて牽引装置15を駆動して骨
片をずれた骨折位置から適正な接合位置まで移動する。
Therefore, when there is no skilled operator in the hospital where the patient is, the three-dimensional image of the bone fragment created by the image processing device 14 based on the image taken by the X-ray fluoroscope 11 is used by the skilled operator. Data transmission / reception device 31, 3 at the hospital where the surgeon is
Send using 2. The skilled operator operates the data glove 23 while displaying the received data on the display 22 to move the bone fragment from the fracture position to the proper joining position to set the set movement locus and the set movement amount. Then, when the set movement locus and the set movement amount of the bone fragment are transmitted to the hospital where the patient is using the data transmission / reception devices 31 and 32, the operation amount by the control amount setting device 17, that is, the movement locus and the movement amount of the bone fragment are displayed. The corresponding 6-direction movement order, movement amount, movement direction, etc. are converted, and based on this, the traction device 15 is driven to move the bone fragment from the displaced fracture position to the proper joining position.

【0044】このように本実施形態の骨折整復誘導装置
にあっては、骨片の3次元画像や骨片の設定移動軌跡及
び設定移動量をデータ送受信装置31,32により送受
信可能とすることで、熟練の術者が不在である遠隔地な
どの病院であっても、骨折患部を適正に修復することが
できる。
As described above, in the fracture reduction guidance device of this embodiment, the data transmitting / receiving devices 31 and 32 can transmit and receive the three-dimensional image of the bone fragment, the set movement trajectory and the set movement amount of the bone fragment. Even in a hospital such as a remote place where a trained operator is absent, the fractured part can be properly repaired.

【0045】第4実施形態の骨折整復誘導装置では、図
8に示すように、第1実施形態で説明した制御量設定装
置17に音声指示装置41を接続している。
In the bone fracture reduction guide device of the fourth embodiment, as shown in FIG. 8, a voice instruction device 41 is connected to the controlled variable setting device 17 described in the first embodiment.

【0046】従って、制御量設定装置17が牽引装置1
5を駆動制御して骨片をずれた骨折位置から適正な接合
位置まで移動しているとき、骨片の実移動軌跡及び実移
動量と設定移動軌跡及び設定移動量とに誤差が発生した
ときには、音声指示装置41から制御量設定装置17に
音声で指示を送ることで、骨片の修正移動を早期に実行
することができ、また、不測の事態には牽引装置15を
緊急停止することができる。なお、第3実施形態で説明
したように、音声指示装置41と整復誘導装置18とを
データ送受信装置31,32に接続し、遠隔地より熟練
の術者が音声で指示する方法も可能である。
Therefore, the control amount setting device 17 is the pulling device 1.
When the bone fragment is moved from the deviated fracture position to the proper joining position by driving control of No. 5 and an error occurs between the actual movement trajectory and the actual movement amount of the bone fragment and the set movement trajectory and the set movement amount. By sending a voice instruction from the voice instruction device 41 to the control amount setting device 17, the correction movement of the bone fragment can be executed early, and the traction device 15 can be emergency stopped in an unexpected situation. it can. As described in the third embodiment, a method is also possible in which the voice instruction device 41 and the reduction guidance device 18 are connected to the data transmission / reception devices 31 and 32, and a trained operator gives a voice instruction from a remote location. .

【0047】[0047]

【発明の効果】以上、実施形態において詳細に説明した
ように請求項1の発明の骨折整復誘導装置によれば、骨
折患部を撮影する骨折患部撮影手段と、撮影した撮影画
像に基づいて骨折断端の接合位置を指定して骨折位置か
ら接合位置までの骨片の移動軌跡及び移動量を設定する
整復シミュレーション設定手段と、骨折患部における一
方の骨片に保持して移動可能な骨片移動手段と、整復シ
ミュレーション設定手段が設定した骨片の移動軌跡及び
移動量に基づいて骨片移動手段の移動順序、移動量、移
動方向を設定する制御量設定手段とを設けたので、骨片
を予め設定した移動軌跡及び移動量に基づいて接合位置
まで移動して整復することとなり、骨折した骨片の移動
方向や移動力は定量的なものとなり、術者の経験に拘ら
ずほぼ一定な技量となり、骨折治療の完治期間にずれが
生じることはなく、その結果、骨折整復治療における定
量性を確保して整復作業の作業性及び作業効率を向上す
ることができる。
As described above in detail in the embodiments, according to the bone fracture reduction guide apparatus of the invention of claim 1, the bone fracture affected part photographing means for photographing the bone fracture affected part, and the fracture fracture based on the photographed image. Reduction simulation setting means for specifying the joint position of the end and setting the movement locus and movement amount of the bone fragment from the fracture position to the joint position, and the bone fragment moving means that can move while holding one bone fragment in the fractured part And the control amount setting means for setting the movement order, movement amount, and movement direction of the bone piece moving means based on the movement trajectory and movement amount of the bone piece set by the reduction simulation setting means. Based on the set movement trajectory and movement amount, it will move to the joint position and reduce it, the movement direction and movement force of the fractured bone fragment will be quantitative, and the skill will be almost constant regardless of the experience of the operator. Will not be deviation occurs in the complete cure period fracture treatment, as a result, it is possible to improve the workability and working efficiency of the reduction work to ensure quantitative properties in fracture reduction treatment.

【0048】請求項2の発明の骨折整復誘導装置によれ
ば、骨折患部撮影手段を3次元の撮影画像を取得するX
線透視装置とし、このX線透視装置にマーカを付けて3
次元位置を計測する3次元計測装置を設け、骨折患部に
対して複数箇所の3次元撮影画像とマーカの3次元位置
・方向座標により整復に必要な範囲の骨全体の画像に作
成する画像処理手段を設けたので、患者の術部全体を把
握することで骨折の様子を適切に認識することができ
る。
According to the fracture reduction guide device of the second aspect of the present invention, the bone fracture affected area photographing means is used to obtain a three-dimensional photographed image.
A fluoroscope is used, and a marker is attached to this X-ray fluoroscope.
An image processing unit that is provided with a three-dimensional measuring device that measures a three-dimensional position, and creates an image of the entire bone within a range necessary for reduction based on three-dimensional imaged images of a plurality of points and a three-dimensional position / direction coordinate of a marker with respect to a fracture affected part Since it is provided, it is possible to appropriately recognize the state of the fracture by grasping the entire surgical site of the patient.

【0049】請求項3の発明の骨折整復誘導装置によれ
ば、画像処理手段は骨折患部の3次元画像に基づいて骨
片の分離を行って各骨片の3次元画像を作成し、整復シ
ミュレーション設定手段は骨片の3次元画像に基づいて
骨折断端の接合位置を指定するので、簡単な制御により
骨片の整合位置を設定することができる。
According to the bone fracture reduction guide apparatus of the third aspect of the present invention, the image processing means separates the bone fragments based on the three-dimensional image of the affected part of the fracture to create a three-dimensional image of each bone fragment, and perform the reduction simulation. Since the setting means specifies the joint position of the fracture end based on the three-dimensional image of the bone fragment, the alignment position of the bone fragment can be set by simple control.

【0050】請求項4の発明の骨折整復誘導装置によれ
ば、整復シミュレーション設定手段は骨折患部撮影手段
が撮影した撮影画像と予め記憶した骨正常位置とを比較
して骨折断端の接合位置を指定するので、簡単な制御に
より骨片の整合位置を適切に設定することができる。
According to the fracture reduction guide device of the invention of claim 4, the reduction simulation setting means compares the photographed image photographed by the fracture affected part photographing means with the previously stored normal bone position to determine the joint position of the fracture end. Since it is designated, the alignment position of the bone fragment can be appropriately set by simple control.

【0051】請求項5の発明の骨折整復誘導装置によれ
ば、骨片移動手段が保持した一方の骨片にマーカを付け
る骨片マーカ付着手段と、骨片マーカ付着手段が付けた
マーカの3次元位置を計測する3次元計測装置とを設
け、制御量設定手段は、3次元計測装置が測定したマー
カの移動軌跡及び移動量と、整復シミュレーション設定
手段が設定した骨片の移動軌跡及び移動量との誤差を検
出し、この誤差が所定値を越えたときには骨片移動手段
の補正量を設定するので、骨片移動手段による骨片移動
ルートの逸脱を早期に検出して適切な骨片の移動制御を
可能とすることができる。
According to the bone fracture reduction guide apparatus of the fifth aspect of the present invention, there are three types of bone fragment marker attaching means for attaching a marker to one bone piece held by the bone piece moving means and marker attached by the bone piece marker attaching means. A three-dimensional measuring device for measuring a three-dimensional position is provided, and the control amount setting means has a marker moving locus and a moving amount measured by the three-dimensional measuring device and a bone fragment moving locus and a moving amount set by the reduction simulation setting means. Error is detected, and when this error exceeds a predetermined value, the correction amount of the bone fragment moving means is set, so that the deviation of the bone fragment moving route by the bone fragment moving means is detected early to detect an appropriate bone fragment. Movement control can be enabled.

【0052】請求項6の発明の骨折整復誘導装置によれ
ば、整復シミュレーション設定手段は術者の手に装着さ
れるデータグローブを有し、術者は骨折患部撮影手段が
撮影した撮影画像に基づいてデータグローブを操作して
骨折断端の接合位置を指定して骨折位置から接合位置ま
での骨片の移動軌跡及び移動量を設定するので、骨片の
接合位置を適正に設定することができ、整復作業の作業
性及び作業効率を向上できる。
According to the bone fracture reduction guide device of the sixth aspect of the invention, the reduction simulation setting means has a data glove to be attached to the hand of the operator, and the operator is based on the image taken by the bone fracture affected area imaging means. Operate the data glove to specify the joint position of the fracture stump and set the movement trajectory and movement amount of the bone fragment from the fracture position to the joint position, so that the joint position of the bone fragment can be set appropriately. The workability and work efficiency of the reduction work can be improved.

【0053】請求項7の発明の骨折整復誘導装置によれ
ば、整復シミュレーション設定手段と制御量設定手段と
の間でデータを送受信可能なデータ送受信機を設けたの
で、熟練の術者が不在である遠隔地などの病院であって
も、骨折患部を適正に修復することができる。
According to the bone fracture reduction guide device of the invention of claim 7, since a data transmitter / receiver capable of transmitting and receiving data between the reduction simulation setting means and the control amount setting means is provided, a skilled operator does not exist. Even in a hospital such as a remote place, it is possible to properly repair a fractured part.

【0054】請求項8の発明の骨折整復誘導装置によれ
ば、制御量設定手段に音声指示装置を接続したので、骨
片移動手段による骨片移動ルートの逸脱に対して早期に
骨片の移動修正を可能とすることができる。
According to the bone fracture reduction guide apparatus of the eighth aspect of the present invention, since the voice instruction device is connected to the control amount setting means, the bone fragments are moved early even if the bone fragment moving means deviates from the bone fragment moving route. Modifications may be possible.

【0055】請求項9の発明の骨折整復誘導装置によれ
ば、制御量設定手段と音声指示装置との間でデータを送
受信可能なデータ送受信装置を設けたので、遠隔地より
熟練の術者が音声で指示することができる。
According to the bone fracture reduction guide apparatus of the ninth aspect of the present invention, since the data transmitting / receiving apparatus capable of transmitting / receiving data between the control amount setting means and the voice instruction apparatus is provided, a skilled operator from a remote place can operate. You can give instructions by voice.

【0056】請求項10の発明の骨折整復方法によれ
ば、骨折患部を撮影し、撮影画像に基づいて骨折断端の
接合位置を指定し、骨折位置から接合位置までの骨片の
移動軌跡及び移動量を設定し、移動軌跡及び移動量に基
づいて牽引装置を作動して骨折患部を整復するようにし
たので、骨折した骨片の移動方向や移動力は定量的なも
のとなり、術者の経験に拘らずほぼ一定な技量となり、
骨折治療の完治期間にずれが生じることはなく、その結
果、骨折整復治療における定量性を確保して整復作業の
作業性及び作業効率を向上することができる。
According to the fracture reduction method of the invention of claim 10, the affected part of the fracture is photographed, the joint position of the fracture end is designated based on the photographed image, and the movement locus of the bone fragment from the fracture position to the joint position and Since the movement amount is set and the traction device is operated based on the movement locus and the movement amount to reduce the fracture affected part, the movement direction and movement force of the fractured bone fragment become quantitative, and the operator's Regardless of experience, it will be almost constant skill,
There is no difference in the healing period of the bone fracture treatment, and as a result, it is possible to improve the workability and work efficiency of the reduction work by ensuring the quantification in the bone fracture reduction treatment.

【0057】請求項11の発明の骨折整復方法によれ
ば、骨折患部に対して複数箇所の撮影画像を取得し、複
数の撮影画像を座標変換して合成して3次元画像を作成
し、骨折患部の3次元画像に基づいて骨片の分離を行っ
て各骨片の3次元画像を作成し、骨片の3次元画像に基
づいて骨折断端の接合位置を指定するようにしたので、
患者の術部全体を把握することで骨折の様子を適切に認
識することができると共に、簡単な制御により骨片の整
合位置を設定することができる。
According to the fracture reduction method of the eleventh aspect of the present invention, photographed images at a plurality of locations are acquired for the affected area of the bone fracture, the photographed images are coordinate-converted and synthesized to create a three-dimensional image, and the fracture is fractured. Since the bone fragments are separated based on the three-dimensional image of the affected part to create a three-dimensional image of each bone fragment, and the joint position of the fracture stump is specified based on the three-dimensional image of the bone fragment,
By grasping the entire surgical site of the patient, the state of the bone fracture can be appropriately recognized, and the alignment position of the bone fragment can be set by simple control.

【0058】請求項12の発明の骨折整復方法によれ
ば、牽引装置が保持した骨片にマーカを付け、骨片マー
カの3次元位置を常時計測して骨片マーカの移動軌跡及
び移動量と、骨片の移動軌跡及び移動量との誤差を検出
し、この誤差が所定値を越えたときには牽引装置を補正
制御するようにしたので、簡単な制御により骨片の整合
位置を適切に設定することができる。
According to the bone fracture reduction method of the twelfth aspect of the present invention, a marker is attached to the bone fragment held by the traction device, the three-dimensional position of the bone fragment marker is constantly measured, and the movement trajectory and movement amount of the bone fragment marker are calculated. An error between the movement trajectory and the movement amount of the bone fragment is detected, and when the error exceeds a predetermined value, the traction device is corrected and controlled, so that the alignment position of the bone fragment is appropriately set by simple control. be able to.

【0059】請求項13の発明の骨折整復方法によれ
ば、骨折患部に対して複数箇所の撮影画像を取得し、複
数の撮影画像を座標変換して合成して3次元画像を作成
し、骨折患部の3次元画像に基づいて骨片の分離を行っ
て各骨片の3次元画像を作成し、術者は骨片の3次元画
像を見ながら手に装着したデータグローブを操作して骨
折断端の接合位置を指定し、骨折位置から接合位置まで
の骨片の移動軌跡及び移動量を設定するようにしたの
で、骨片の接合位置を適正に設定することができ、整復
作業の作業性及び作業効率を向上できる。
According to the bone fracture reduction method of the thirteenth aspect of the present invention, captured images of a plurality of locations are acquired for the affected part of the fracture, and the captured images are coordinate-converted and combined to create a three-dimensional image. The bone fragments are separated based on the three-dimensional image of the affected area to create a three-dimensional image of each bone fragment, and the surgeon operates the data glove worn on the hand while viewing the three-dimensional image of the bone fragment to fracture the bone. The joint position of the end is specified, and the movement locus and movement amount of the bone fragment from the fracture position to the joint position are set, so the joint position of the bone fragment can be set appropriately, and the workability of the reduction work is improved. And work efficiency can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施形態に係る骨折整復誘導装置
の概略構成図である。
FIG. 1 is a schematic configuration diagram of a bone fracture reduction guide device according to a first embodiment of the present invention.

【図2】本実施形態の骨折整復誘導装置による整復方法
を表すフローチャートである。
FIG. 2 is a flow chart showing a reduction method by the fracture reduction guide device of the present embodiment.

【図3】本実施形態の骨折整復誘導装置により整復方法
を表す概略図である。
FIG. 3 is a schematic view showing a reduction method by the fracture reduction guide device of the present embodiment.

【図4】本実施形態の骨折整復誘導装置により整復方法
を表す概略図である。
FIG. 4 is a schematic view showing a reduction method by the fracture reduction guide device of the present embodiment.

【図5】本実施形態の骨折整復誘導装置により整復方法
を表す概略図である。
FIG. 5 is a schematic view showing a reduction method by the fracture reduction guide device of the present embodiment.

【図6】本発明の第2実施形態に係る骨折整復誘導装置
の概略構成図である。
FIG. 6 is a schematic configuration diagram of a bone fracture reduction guide device according to a second embodiment of the present invention.

【図7】本発明の第3実施形態に係る骨折整復誘導装置
の概略構成図である。
FIG. 7 is a schematic configuration diagram of a bone fracture reduction guide device according to a third embodiment of the present invention.

【図8】本発明の第4実施形態に係る骨折整復誘導装置
の概略構成図である。
FIG. 8 is a schematic configuration diagram of a bone fracture reduction guide device according to a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

11 X線透視装置(骨折患部撮影手段) 12 骨片マーカ付着装置 13 3次元計測装置 14 画像処理装置 15 牽引装置(骨片移動手段) 16,21 整復シミュレーション設定手段 17 制御量設定装置 22 ディスプレイ 23 データグローブ 24 演算装置 31,32 データ送受信装置 41 音声指示装置 11 X-ray Fluoroscope (Bone fracture affected area imaging means) 12 Bone fragment marker attachment device 13 Three-dimensional measuring device 14 Image processing device 15 Traction device (bone fragment moving means) 16,21 Reduction simulation setting means 17 Control amount setting device 22 Display 23 Data Grove 24 arithmetic unit 31, 32 data transceiver 41 Voice instruction device

───────────────────────────────────────────────────── フロントページの続き (71)出願人 596116765 田村 進一 兵庫県西宮市上ヶ原十番町1番16号 (72)発明者 鮫島 誠 兵庫県高砂市荒井町新浜二丁目1番1号 三菱重工業株式会社高砂研究所内 (72)発明者 古結 義浩 兵庫県高砂市荒井町新浜二丁目1番1号 三菱重工業株式会社高砂研究所内 (72)発明者 米延 策雄 兵庫県芦屋市西芦屋6番8号 (72)発明者 菅野 伸彦 大阪府吹田市桃山台3丁目33番3号 (72)発明者 田村 進一 兵庫県西宮市上ヶ原十番町1−16 (72)発明者 佐藤 嘉伸 大阪府吹田市千里山西2−1−46 (72)発明者 中島 義和 大阪府茨木市若園町32−1 ソフィア若園 603 Fターム(参考) 4C060 LL13 LL18 MM21 4C093 AA01 AA25 CA22 CA23 FF20 FF42 FG13 4C098 AA03 BB08 BB11 BC21 BC50 BD04 BD11    ─────────────────────────────────────────────────── ─── Continued front page    (71) Applicant 596116765             Shinichi Tamura             16-16 Uegamiharajubancho, Nishinomiya-shi, Hyogo (72) Inventor Makoto Samejima             2-1-1 Niihama, Arai-cho, Takasago City, Hyogo Prefecture             Takasago Laboratory, Mitsubishi Heavy Industries, Ltd. (72) Inventor Yoshihiro Furui             2-1-1 Niihama, Arai-cho, Takasago City, Hyogo Prefecture             Takasago Laboratory, Mitsubishi Heavy Industries, Ltd. (72) Inventor Takuo Yonenobu             6-8 Nishi-Ashiya, Ashiya-shi, Hyogo (72) Inventor Nobuhiko Sugano             3-33-3-3 Momoyamadai, Suita City, Osaka Prefecture (72) Inventor Shinichi Tamura             1-16 Kamigaharajubancho, Nishinomiya-shi, Hyogo (72) Inventor Yoshinobu Sato             2-1-6 Senriyama Nishi, Suita City, Osaka Prefecture (72) Inventor Yoshikazu Nakajima             32-1 Wakaen-cho, Ibaraki-shi, Osaka Sofia Wakaen             603 F-term (reference) 4C060 LL13 LL18 MM21                 4C093 AA01 AA25 CA22 CA23 FF20                       FF42 FG13                 4C098 AA03 BB08 BB11 BC21 BC50                       BD04 BD11

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 骨折患部を撮影する骨折患部撮影手段
と、該骨折患部撮影手段が撮影した撮影画像に基づいて
骨折断端の接合位置を指定して骨折位置から該接合位置
までの骨片の移動軌跡及び移動量を設定する整復シミュ
レーション設定手段と、前記骨折患部における一方の骨
片に保持して移動可能な骨片移動手段と、前記整復シミ
ュレーション設定手段が設定した骨片の移動軌跡及び移
動量に基づいて前記骨片移動手段の移動順序、移動量、
移動方向を設定する制御量設定手段とを具えたことを特
徴とする骨折整復誘導装置。
1. A bone fracture affected part photographing means for photographing a bone fracture affected part, and a joint position of a fracture end point is designated based on a photographed image photographed by the bone fracture affected part photographing means to determine a bone fragment from the bone fracture position to the joint position. Reduction simulation setting means for setting the movement trajectory and movement amount, bone piece moving means that can be held and moved on one bone piece in the fracture affected part, and movement trajectory and movement of the bone piece set by the reduction simulation setting means. The movement order of the bone piece moving means based on the amount, the movement amount,
A fracture reduction guide device comprising: a control amount setting means for setting a moving direction.
【請求項2】 請求項1において、前記骨折患部撮影手
段を3次元の撮影画像を取得するX線透視装置とし、該
X線透視装置にマーカを付けて該マーカの3次元位置を
計測する3次元計測装置を設け、前記骨折患部に対して
複数箇所の3次元撮影画像と前記マーカの3次元位置・
方向座標により整復に必要な範囲の骨全体の画像に作成
する画像処理手段を設けたことを特徴とする骨折整復誘
導装置。
2. The bone fracture affected part imaging means according to claim 1, wherein the device is an X-ray fluoroscope for acquiring a three-dimensional radiographic image, and a marker is attached to the X-ray fluoroscope to measure the three-dimensional position of the marker. A three-dimensional measuring device is provided, and three-dimensional imaged images of a plurality of locations and the three-dimensional position of the marker for the fractured part
An apparatus for reducing bone fracture reduction, comprising image processing means for creating an image of the entire bone within the range required for reduction using directional coordinates.
【請求項3】 請求項2において、前記画像処理手段は
作成した骨折患部の3次元画像に基づいて骨片の分離を
行って各骨片の3次元画像を作成し、前記整復シミュレ
ーション設定手段は、該骨片の3次元画像に基づいて骨
折断端の接合位置を指定することを特徴とする骨折整復
誘導装置。
3. The image processing means according to claim 2, wherein the bone fragments are separated based on the created three-dimensional image of the fracture affected part to create a three-dimensional image of each bone fragment, and the reduction simulation setting means. A fracture reduction guide device characterized by designating a joint position of a fracture edge based on a three-dimensional image of the bone fragment.
【請求項4】 請求項1において、前記整復シミュレー
ション設定手段は、前記骨折患部撮影手段が撮影した撮
影画像と予め記憶した骨正常位置とを比較して前記骨折
断端の接合位置を指定することを特徴とする骨折整復誘
導装置。
4. The reduction simulation setting means according to claim 1, wherein the joint position of the fracture end is designated by comparing a photographed image photographed by the fracture affected part photographing means with a bone normal position stored in advance. A fracture reduction guide device.
【請求項5】 請求項1において、前記骨片移動手段が
保持した一方の骨片にマーカを付ける骨片マーカ付着手
段と、該骨片マーカ付着手段が付けたマーカの3次元位
置を計測する3次元計測装置とを設け、前記制御量設定
手段は、該3次元計測装置が測定したマーカの移動軌跡
及び移動量と、前記整復シミュレーション設定手段が設
定した骨片の移動軌跡及び移動量との誤差を検出し、こ
の誤差が所定値を越えたときには前記骨片移動手段の補
正量を設定することを特徴とする骨折整復誘導装置。
5. The bone piece marker attaching means for attaching a marker to one bone piece held by the bone piece moving means, and the three-dimensional position of the marker attached by the bone piece marker attaching means according to claim 1. A three-dimensional measuring device is provided, and the control amount setting means includes a moving locus and a moving amount of the marker measured by the three-dimensional measuring device and a moving locus and a moving amount of the bone fragment set by the reduction simulation setting means. A bone fracture reduction guide device, which detects an error and sets a correction amount of the bone fragment moving means when the error exceeds a predetermined value.
【請求項6】 請求項1において、前記整復シミュレー
ション設定手段は、術者の手に装着されるデータグロー
ブを有し、該術者は前記骨折患部撮影手段が撮影した撮
影画像に基づいて該データグローブを操作して骨折断端
の接合位置を指定して骨折位置から該接合位置までの骨
片の移動軌跡及び移動量を設定することを特徴とする骨
折整復誘導装置。
6. The reduction simulation setting means according to claim 1, wherein the reduction simulation setting means has a data glove attached to an operator's hand, and the operator uses the data based on an image taken by the fracture affected part imaging means. A bone fracture reduction guide device characterized in that a glove is operated to specify a joint position of a fracture end and a movement locus and a movement amount of a bone fragment from the fracture position to the joint position are set.
【請求項7】 請求項6において、前記整復シミュレー
ション設定手段と前記制御量設定手段との間でデータを
送受信可能なデータ送受信機を設けたことを特徴とする
骨折整復誘導装置。
7. The fracture reduction guide device according to claim 6, further comprising a data transceiver capable of transmitting and receiving data between the reduction simulation setting means and the control amount setting means.
【請求項8】 請求項1において、前記制御量設定手段
に音声指示装置を接続したことを特徴とする骨折整復誘
導装置。
8. The bone fracture reduction guide device according to claim 1, wherein a voice instruction device is connected to the control amount setting means.
【請求項9】 請求項8において、前記制御量設定手段
と前記音声指示装置との間でデータを送受信可能なデー
タ送受信装置を設けたことを特徴とする骨折整復誘導装
置。
9. The bone fracture reduction guide device according to claim 8, further comprising a data transmission / reception device capable of transmitting / receiving data between the control amount setting means and the voice instruction device.
【請求項10】 骨折患部を撮影し、該撮影画像に基づ
いて骨折断端の接合位置を指定し、骨折位置から該接合
位置までの骨片の移動軌跡及び移動量を設定し、該移動
軌跡及び移動量に基づいて牽引装置を操作して前記骨折
患部を整復することを特徴とする骨折整復方法。
10. A bone fracture affected area is imaged, a joint position of a fracture edge is designated based on the photographed image, a movement locus and a movement amount of a bone fragment from the fracture position to the joint position are set, and the movement locus And a method for reducing a fracture by operating a traction device based on the movement amount to reduce the affected part of the fracture.
【請求項11】 請求項10において、前記骨折患部に
対して複数箇所の3次元撮影画像を取得し、該複数箇所
の撮影画像を座標変換して合成して述部全体の3次元画
像を作成し、該骨折患部の3次元画像に基づいて骨片の
分離を行い、該骨片の3次元画像に基づいて骨折断端の
接合位置を指定することを特徴とする骨折整復方法。
11. The three-dimensional image of a predicate as a whole according to claim 10, wherein three-dimensional imaged images of a plurality of locations are acquired with respect to the fracture affected area, and the imaged images of the plurality of locations are coordinate-transformed and combined. Then, a bone fragment is separated based on the three-dimensional image of the affected part of the fracture, and the joint position of the fracture end is designated based on the three-dimensional image of the bone fragment.
【請求項12】 請求項10において、前記牽引装置が
保持した骨片にマーカを付け、該骨片マーカの3次元位
置を常時計測して該骨片マーカの移動軌跡及び移動量
と、前記骨片の移動軌跡及び移動量との誤差を検出し、
この誤差が所定値を越えたときには前記牽引装置を補正
操作することを特徴とする骨折整復方法。
12. The bone fragment held by the traction device according to claim 10, wherein a marker is attached, and the three-dimensional position of the bone fragment marker is constantly measured to measure a movement locus and a movement amount of the bone fragment marker, and the bone. Detects the error between the movement locus and movement amount of one piece,
A method for reducing bone fracture, characterized in that when the error exceeds a predetermined value, the traction device is corrected.
【請求項13】 請求項10において、前記骨折患部に
対して複数箇所の撮影画像を取得し、該複数の撮影画像
を座標変換して合成して3次元画像を作成し、該骨折患
部の3次元画像に基づいて骨片の分離を行って各骨片の
3次元画像を作成し、術者は該骨片の3次元画像を見な
がら手に装着したデータグローブを操作して骨折断端の
接合位置を指定し、骨折位置から該接合位置までの骨片
の移動軌跡及び移動量を設定することを特徴とする骨折
整復方法。
13. The method according to claim 10, wherein a plurality of photographed images of the fractured part are acquired, the coordinates of the plurality of photographed images are coordinate-converted and combined to create a three-dimensional image. The bone fragments are separated based on the three-dimensional image to create a three-dimensional image of each bone fragment, and the operator operates the data glove attached to the hand while observing the three-dimensional image of the bone fragment and A fracture reduction method characterized by specifying a joint position and setting a movement locus and a movement amount of a bone fragment from the fracture position to the joint position.
JP2002147185A 2002-05-22 2002-05-22 Fracture reduction guidance device Expired - Fee Related JP4056791B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002147185A JP4056791B2 (en) 2002-05-22 2002-05-22 Fracture reduction guidance device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002147185A JP4056791B2 (en) 2002-05-22 2002-05-22 Fracture reduction guidance device

Publications (2)

Publication Number Publication Date
JP2003339725A true JP2003339725A (en) 2003-12-02
JP4056791B2 JP4056791B2 (en) 2008-03-05

Family

ID=29766465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002147185A Expired - Fee Related JP4056791B2 (en) 2002-05-22 2002-05-22 Fracture reduction guidance device

Country Status (1)

Country Link
JP (1) JP4056791B2 (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2880791A1 (en) * 2005-01-18 2006-07-21 Perception Raisonnement Action Bone e.g. femur, fracture reduction assistance providing method for surgeon, involves surface matching one image in correspondence with another image at final position, and providing information representing initial and final positions
JP2007518540A (en) * 2004-01-22 2007-07-12 スミス アンド ネフュー インコーポレーテッド Method, system and apparatus for providing a surgical navigation sensor attached to a patient
KR101214849B1 (en) 2011-06-10 2012-12-24 한국과학기술원 Re―registration device in robot arthroplasty, Re―registration method in robot arthroplasty and robot arthroplasty including the re―registration device
JP2013252452A (en) * 2005-06-06 2013-12-19 Intuitive Surgical Inc Laparoscopic ultrasound robotic surgical system
KR101373066B1 (en) 2012-05-02 2014-03-11 조선대학교산학협력단 Robot system for dental implantology and dental implantology procedure using the same
CN103690183A (en) * 2014-01-14 2014-04-02 四川聚能核技术工程有限公司 Limb fracture reduction system
US9101397B2 (en) 1999-04-07 2015-08-11 Intuitive Surgical Operations, Inc. Real-time generation of three-dimensional ultrasound image using a two-dimensional ultrasound transducer in a robotic system
US9138129B2 (en) 2007-06-13 2015-09-22 Intuitive Surgical Operations, Inc. Method and system for moving a plurality of articulated instruments in tandem back towards an entry guide
JP2015530127A (en) * 2012-07-12 2015-10-15 アーオー テクノロジー アクチエンゲゼルシャフト Method for operating a graphical 3D computer model of at least one anatomical structure with selectable preoperative, intraoperative or postoperative status
JP2016503322A (en) * 2012-11-16 2016-02-04 キュンポク ナショナル ユニバーシティ インダストリー−アカデミック コーオペレーション ファウンデーションKyungpook National University Industry−Academic Coorperation Foundation Reduction treatment robot and drive control method thereof
US9333042B2 (en) 2007-06-13 2016-05-10 Intuitive Surgical Operations, Inc. Medical robotic system with coupled control modes
US9345387B2 (en) 2006-06-13 2016-05-24 Intuitive Surgical Operations, Inc. Preventing instrument/tissue collisions
US9469034B2 (en) 2007-06-13 2016-10-18 Intuitive Surgical Operations, Inc. Method and system for switching modes of a robotic system
US9492927B2 (en) 2009-08-15 2016-11-15 Intuitive Surgical Operations, Inc. Application of force feedback on an input device to urge its operator to command an articulated instrument to a preferred pose
US9516996B2 (en) 2008-06-27 2016-12-13 Intuitive Surgical Operations, Inc. Medical robotic system providing computer generated auxiliary views of a camera instrument for controlling the position and orienting of its tip
JP2017056212A (en) * 2013-06-11 2017-03-23 敦 丹治 Surgical operation support system, surgical operation support device, surgical operation support method, surgical operation support program and information processor
US9622826B2 (en) 2010-02-12 2017-04-18 Intuitive Surgical Operations, Inc. Medical robotic system providing sensory feedback indicating a difference between a commanded state and a preferred pose of an articulated instrument
US9717563B2 (en) 2008-06-27 2017-08-01 Intuitive Surgical Operations, Inc. Medical robotic system providing an auxilary view including range of motion limitations for articulatable instruments extending out of a distal end of an entry guide
US9718190B2 (en) 2006-06-29 2017-08-01 Intuitive Surgical Operations, Inc. Tool position and identification indicator displayed in a boundary area of a computer display screen
US9789608B2 (en) 2006-06-29 2017-10-17 Intuitive Surgical Operations, Inc. Synthetic representation of a surgical robot
US9788909B2 (en) 2006-06-29 2017-10-17 Intuitive Surgical Operations, Inc Synthetic representation of a surgical instrument
CN107252364A (en) * 2017-07-06 2017-10-17 武汉市黄陂区人民医院 A kind of humerus model of 3D printing and preparation method thereof
US9795446B2 (en) 2005-06-06 2017-10-24 Intuitive Surgical Operations, Inc. Systems and methods for interactive user interfaces for robotic minimally invasive surgical systems
JP2017205499A (en) * 2016-05-11 2017-11-24 東芝メディカルシステムズ株式会社 Medical image processor, medical image diagnostic apparatus and image processing method
US9956044B2 (en) 2009-08-15 2018-05-01 Intuitive Surgical Operations, Inc. Controller assisted reconfiguration of an articulated instrument during movement into and out of an entry guide
US10008017B2 (en) 2006-06-29 2018-06-26 Intuitive Surgical Operations, Inc. Rendering tool information as graphic overlays on displayed images of tools
KR20190007693A (en) * 2017-07-13 2019-01-23 재단법인대구경북과학기술원 Navigation apparatus and method for fracture correction
US10258425B2 (en) 2008-06-27 2019-04-16 Intuitive Surgical Operations, Inc. Medical robotic system providing an auxiliary view of articulatable instruments extending out of a distal end of an entry guide
US10507066B2 (en) 2013-02-15 2019-12-17 Intuitive Surgical Operations, Inc. Providing information of tools by filtering image areas adjacent to or on displayed images of the tools
CN110809451A (en) * 2017-06-30 2020-02-18 皇家飞利浦有限公司 Transform determination for anatomically aligning fragments of fractured bones
CN111329571A (en) * 2020-03-10 2020-06-26 河北医科大学第三医院 Lower limb fracture reduction method
KR102304595B1 (en) * 2020-11-26 2021-09-23 유진상 Implant treatment Implant UV sterilization method
US11259870B2 (en) 2005-06-06 2022-03-01 Intuitive Surgical Operations, Inc. Interactive user interfaces for minimally invasive telesurgical systems

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0670924A (en) * 1992-08-27 1994-03-15 Toshiba Corp X-ray tv device
JPH06339475A (en) * 1993-05-31 1994-12-13 Shimadzu Corp Medical image display device
JPH11197159A (en) * 1998-01-13 1999-07-27 Hitachi Ltd Operation supporting system
WO2000015134A1 (en) * 1998-09-14 2000-03-23 Integrated Surgical Systems System and method for performing image directed robotic orthopedic procedures without a fiducial reference system
WO2000057767A2 (en) * 1999-03-31 2000-10-05 Ultraguide Ltd. Apparatus and methods for medical diagnostic and for medical guided interventions and therapy
JP2002017740A (en) * 2000-07-05 2002-01-22 Takahiro Ochi Bone restoring therapeutic device
JP2002509750A (en) * 1998-04-01 2002-04-02 メデイカル ロボテイクス イー ストツクホルム アーベー Method and apparatus for setting a drilling position

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0670924A (en) * 1992-08-27 1994-03-15 Toshiba Corp X-ray tv device
JPH06339475A (en) * 1993-05-31 1994-12-13 Shimadzu Corp Medical image display device
JPH11197159A (en) * 1998-01-13 1999-07-27 Hitachi Ltd Operation supporting system
JP2002509750A (en) * 1998-04-01 2002-04-02 メデイカル ロボテイクス イー ストツクホルム アーベー Method and apparatus for setting a drilling position
WO2000015134A1 (en) * 1998-09-14 2000-03-23 Integrated Surgical Systems System and method for performing image directed robotic orthopedic procedures without a fiducial reference system
WO2000057767A2 (en) * 1999-03-31 2000-10-05 Ultraguide Ltd. Apparatus and methods for medical diagnostic and for medical guided interventions and therapy
JP2002017740A (en) * 2000-07-05 2002-01-22 Takahiro Ochi Bone restoring therapeutic device

Cited By (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9101397B2 (en) 1999-04-07 2015-08-11 Intuitive Surgical Operations, Inc. Real-time generation of three-dimensional ultrasound image using a two-dimensional ultrasound transducer in a robotic system
US10271909B2 (en) 1999-04-07 2019-04-30 Intuitive Surgical Operations, Inc. Display of computer generated image of an out-of-view portion of a medical device adjacent a real-time image of an in-view portion of the medical device
US10433919B2 (en) 1999-04-07 2019-10-08 Intuitive Surgical Operations, Inc. Non-force reflecting method for providing tool force information to a user of a telesurgical system
US9232984B2 (en) 1999-04-07 2016-01-12 Intuitive Surgical Operations, Inc. Real-time generation of three-dimensional ultrasound image using a two-dimensional ultrasound transducer in a robotic system
JP2007518540A (en) * 2004-01-22 2007-07-12 スミス アンド ネフュー インコーポレーテッド Method, system and apparatus for providing a surgical navigation sensor attached to a patient
US7618419B2 (en) 2005-01-18 2009-11-17 Universite Joseph Fourier Method and system of computer assistance for the reduction of a fracture
FR2880791A1 (en) * 2005-01-18 2006-07-21 Perception Raisonnement Action Bone e.g. femur, fracture reduction assistance providing method for surgeon, involves surface matching one image in correspondence with another image at final position, and providing information representing initial and final positions
US11717365B2 (en) 2005-06-06 2023-08-08 Intuitive Surgical Operations, Inc. Laparoscopic ultrasound robotic surgical system
US10603127B2 (en) 2005-06-06 2020-03-31 Intuitive Surgical Operations, Inc. Laparoscopic ultrasound robotic surgical system
US10646293B2 (en) 2005-06-06 2020-05-12 Intuitive Surgical Operations, Inc. Laparoscopic ultrasound robotic surgical system
US11399909B2 (en) 2005-06-06 2022-08-02 Intuitive Surgical Operations, Inc. Laparoscopic ultrasound robotic surgical system
US9795446B2 (en) 2005-06-06 2017-10-24 Intuitive Surgical Operations, Inc. Systems and methods for interactive user interfaces for robotic minimally invasive surgical systems
JP2013252452A (en) * 2005-06-06 2013-12-19 Intuitive Surgical Inc Laparoscopic ultrasound robotic surgical system
US11259870B2 (en) 2005-06-06 2022-03-01 Intuitive Surgical Operations, Inc. Interactive user interfaces for minimally invasive telesurgical systems
US9345387B2 (en) 2006-06-13 2016-05-24 Intuitive Surgical Operations, Inc. Preventing instrument/tissue collisions
US10773388B2 (en) 2006-06-29 2020-09-15 Intuitive Surgical Operations, Inc. Tool position and identification indicator displayed in a boundary area of a computer display screen
US9801690B2 (en) 2006-06-29 2017-10-31 Intuitive Surgical Operations, Inc. Synthetic representation of a surgical instrument
US11865729B2 (en) 2006-06-29 2024-01-09 Intuitive Surgical Operations, Inc. Tool position and identification indicator displayed in a boundary area of a computer display screen
US10137575B2 (en) 2006-06-29 2018-11-27 Intuitive Surgical Operations, Inc. Synthetic representation of a surgical robot
US11638999B2 (en) 2006-06-29 2023-05-02 Intuitive Surgical Operations, Inc. Synthetic representation of a surgical robot
US10008017B2 (en) 2006-06-29 2018-06-26 Intuitive Surgical Operations, Inc. Rendering tool information as graphic overlays on displayed images of tools
US9718190B2 (en) 2006-06-29 2017-08-01 Intuitive Surgical Operations, Inc. Tool position and identification indicator displayed in a boundary area of a computer display screen
US9789608B2 (en) 2006-06-29 2017-10-17 Intuitive Surgical Operations, Inc. Synthetic representation of a surgical robot
US9788909B2 (en) 2006-06-29 2017-10-17 Intuitive Surgical Operations, Inc Synthetic representation of a surgical instrument
US10737394B2 (en) 2006-06-29 2020-08-11 Intuitive Surgical Operations, Inc. Synthetic representation of a surgical robot
US10730187B2 (en) 2006-06-29 2020-08-04 Intuitive Surgical Operations, Inc. Tool position and identification indicator displayed in a boundary area of a computer display screen
US11399908B2 (en) 2007-06-13 2022-08-02 Intuitive Surgical Operations, Inc. Medical robotic system with coupled control modes
US11432888B2 (en) 2007-06-13 2022-09-06 Intuitive Surgical Operations, Inc. Method and system for moving a plurality of articulated instruments in tandem back towards an entry guide
US9901408B2 (en) 2007-06-13 2018-02-27 Intuitive Surgical Operations, Inc. Preventing instrument/tissue collisions
US10695136B2 (en) 2007-06-13 2020-06-30 Intuitive Surgical Operations, Inc. Preventing instrument/tissue collisions
US9333042B2 (en) 2007-06-13 2016-05-10 Intuitive Surgical Operations, Inc. Medical robotic system with coupled control modes
US9629520B2 (en) 2007-06-13 2017-04-25 Intuitive Surgical Operations, Inc. Method and system for moving an articulated instrument back towards an entry guide while automatically reconfiguring the articulated instrument for retraction into the entry guide
US9138129B2 (en) 2007-06-13 2015-09-22 Intuitive Surgical Operations, Inc. Method and system for moving a plurality of articulated instruments in tandem back towards an entry guide
US10271912B2 (en) 2007-06-13 2019-04-30 Intuitive Surgical Operations, Inc. Method and system for moving a plurality of articulated instruments in tandem back towards an entry guide
US11751955B2 (en) 2007-06-13 2023-09-12 Intuitive Surgical Operations, Inc. Method and system for retracting an instrument into an entry guide
US10188472B2 (en) 2007-06-13 2019-01-29 Intuitive Surgical Operations, Inc. Medical robotic system with coupled control modes
US9469034B2 (en) 2007-06-13 2016-10-18 Intuitive Surgical Operations, Inc. Method and system for switching modes of a robotic system
US9717563B2 (en) 2008-06-27 2017-08-01 Intuitive Surgical Operations, Inc. Medical robotic system providing an auxilary view including range of motion limitations for articulatable instruments extending out of a distal end of an entry guide
US11638622B2 (en) 2008-06-27 2023-05-02 Intuitive Surgical Operations, Inc. Medical robotic system providing an auxiliary view of articulatable instruments extending out of a distal end of an entry guide
US10368952B2 (en) 2008-06-27 2019-08-06 Intuitive Surgical Operations, Inc. Medical robotic system providing an auxiliary view including range of motion limitations for articulatable instruments extending out of a distal end of an entry guide
US10258425B2 (en) 2008-06-27 2019-04-16 Intuitive Surgical Operations, Inc. Medical robotic system providing an auxiliary view of articulatable instruments extending out of a distal end of an entry guide
US9516996B2 (en) 2008-06-27 2016-12-13 Intuitive Surgical Operations, Inc. Medical robotic system providing computer generated auxiliary views of a camera instrument for controlling the position and orienting of its tip
US11382702B2 (en) 2008-06-27 2022-07-12 Intuitive Surgical Operations, Inc. Medical robotic system providing an auxiliary view including range of motion limitations for articulatable instruments extending out of a distal end of an entry guide
US10984567B2 (en) 2009-03-31 2021-04-20 Intuitive Surgical Operations, Inc. Rendering tool information as graphic overlays on displayed images of tools
US11941734B2 (en) 2009-03-31 2024-03-26 Intuitive Surgical Operations, Inc. Rendering tool information as graphic overlays on displayed images of tools
US10282881B2 (en) 2009-03-31 2019-05-07 Intuitive Surgical Operations, Inc. Rendering tool information as graphic overlays on displayed images of tools
US11596490B2 (en) 2009-08-15 2023-03-07 Intuitive Surgical Operations, Inc. Application of force feedback on an input device to urge its operator to command an articulated instrument to a preferred pose
US10772689B2 (en) 2009-08-15 2020-09-15 Intuitive Surgical Operations, Inc. Controller assisted reconfiguration of an articulated instrument during movement into and out of an entry guide
US9492927B2 (en) 2009-08-15 2016-11-15 Intuitive Surgical Operations, Inc. Application of force feedback on an input device to urge its operator to command an articulated instrument to a preferred pose
US10271915B2 (en) 2009-08-15 2019-04-30 Intuitive Surgical Operations, Inc. Application of force feedback on an input device to urge its operator to command an articulated instrument to a preferred pose
US9956044B2 (en) 2009-08-15 2018-05-01 Intuitive Surgical Operations, Inc. Controller assisted reconfiguration of an articulated instrument during movement into and out of an entry guide
US10959798B2 (en) 2009-08-15 2021-03-30 Intuitive Surgical Operations, Inc. Application of force feedback on an input device to urge its operator to command an articulated instrument to a preferred pose
US10537994B2 (en) 2010-02-12 2020-01-21 Intuitive Surgical Operations, Inc. Medical robotic system providing sensory feedback indicating a difference between a commanded state and a preferred pose of an articulated instrument
US10828774B2 (en) 2010-02-12 2020-11-10 Intuitive Surgical Operations, Inc. Medical robotic system providing sensory feedback indicating a difference between a commanded state and a preferred pose of an articulated instrument
US9622826B2 (en) 2010-02-12 2017-04-18 Intuitive Surgical Operations, Inc. Medical robotic system providing sensory feedback indicating a difference between a commanded state and a preferred pose of an articulated instrument
KR101214849B1 (en) 2011-06-10 2012-12-24 한국과학기술원 Re―registration device in robot arthroplasty, Re―registration method in robot arthroplasty and robot arthroplasty including the re―registration device
KR101373066B1 (en) 2012-05-02 2014-03-11 조선대학교산학협력단 Robot system for dental implantology and dental implantology procedure using the same
JP2015530127A (en) * 2012-07-12 2015-10-15 アーオー テクノロジー アクチエンゲゼルシャフト Method for operating a graphical 3D computer model of at least one anatomical structure with selectable preoperative, intraoperative or postoperative status
JP2016503322A (en) * 2012-11-16 2016-02-04 キュンポク ナショナル ユニバーシティ インダストリー−アカデミック コーオペレーション ファウンデーションKyungpook National University Industry−Academic Coorperation Foundation Reduction treatment robot and drive control method thereof
US10015470B2 (en) 2012-11-16 2018-07-03 Kyungpook National University Industry-Academic Cooperation Foundation Robot for repositioning procedure, and method for controlling operation thereof
US11806102B2 (en) 2013-02-15 2023-11-07 Intuitive Surgical Operations, Inc. Providing information of tools by filtering image areas adjacent to or on displayed images of the tools
US10507066B2 (en) 2013-02-15 2019-12-17 Intuitive Surgical Operations, Inc. Providing information of tools by filtering image areas adjacent to or on displayed images of the tools
US11389255B2 (en) 2013-02-15 2022-07-19 Intuitive Surgical Operations, Inc. Providing information of tools by filtering image areas adjacent to or on displayed images of the tools
JP2017056212A (en) * 2013-06-11 2017-03-23 敦 丹治 Surgical operation support system, surgical operation support device, surgical operation support method, surgical operation support program and information processor
US10070929B2 (en) 2013-06-11 2018-09-11 Atsushi Tanji Surgical operation support system, surgical operation support apparatus, surgical operation support method, surgical operation support program, and information processing apparatus
CN103690183A (en) * 2014-01-14 2014-04-02 四川聚能核技术工程有限公司 Limb fracture reduction system
JP2017205499A (en) * 2016-05-11 2017-11-24 東芝メディカルシステムズ株式会社 Medical image processor, medical image diagnostic apparatus and image processing method
JP2020525141A (en) * 2017-06-30 2020-08-27 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Determining transformations for anatomically aligning fractured bone fragments
CN110809451A (en) * 2017-06-30 2020-02-18 皇家飞利浦有限公司 Transform determination for anatomically aligning fragments of fractured bones
CN110809451B (en) * 2017-06-30 2023-06-13 皇家飞利浦有限公司 Transform determination for anatomically aligning fragments of fractured bone
JP7076481B2 (en) 2017-06-30 2022-05-27 コーニンクレッカ フィリップス エヌ ヴェ Determination of transformations for anatomically aligning broken bone fragments
CN107252364B (en) * 2017-07-06 2023-09-12 武汉市黄陂区人民医院 3D printed humerus model and preparation method thereof
CN107252364A (en) * 2017-07-06 2017-10-17 武汉市黄陂区人民医院 A kind of humerus model of 3D printing and preparation method thereof
KR20190007693A (en) * 2017-07-13 2019-01-23 재단법인대구경북과학기술원 Navigation apparatus and method for fracture correction
KR101961682B1 (en) 2017-07-13 2019-07-17 재단법인대구경북과학기술원 Navigation apparatus and method for fracture correction
CN111329571B (en) * 2020-03-10 2021-08-31 河北医科大学第三医院 Lower limb fracture reduction system
CN111329571A (en) * 2020-03-10 2020-06-26 河北医科大学第三医院 Lower limb fracture reduction method
KR102304595B1 (en) * 2020-11-26 2021-09-23 유진상 Implant treatment Implant UV sterilization method

Also Published As

Publication number Publication date
JP4056791B2 (en) 2008-03-05

Similar Documents

Publication Publication Date Title
JP2003339725A (en) Fracture reintegration induction apparatus and method
CN109998687B (en) Robot system and method for fracture reduction surgery
US20200225299A1 (en) Simulated bone or tissue manipulation
US7194295B2 (en) Medical navigation and/or pre-operative treatment planning with the assistance of generic patient data
EP3797714A1 (en) Surgical robot with passive end effector
JP4488678B2 (en) Establishing a three-dimensional display of bone X-ray images
US5546942A (en) Orthopedic robot and method for reduction of long-bone fractures
EP3797715B1 (en) Surgical robot with passive end effector
KR20140112208A (en) Surgical robot and method for controlling the same
JP7399982B2 (en) 3D visualization during surgery
JP2004523295A (en) Surgical medical instrument control device and control method
JP2003527880A (en) Apparatus and method for medical diagnostics and medical guided interventions and treatments
JP7263300B2 (en) Surgical robot with passive end effector
KR20190078853A (en) Laser projection apparatus and control method thereof, laser guidance system including the apparatus
US20210093333A1 (en) Systems and methods for fixating a navigation array
US11844532B2 (en) Rotary motion passive end effector for surgical robots in orthopedic surgeries
JP7216764B2 (en) Alignment of Surgical Instruments with Reference Arrays Tracked by Cameras in Augmented Reality Headsets for Intraoperative Assisted Navigation
CN110946600B (en) Method for recording image data and medical imaging system
EP3892209A1 (en) Systems for navigating a pin guide driver
Lee et al. 3d image-guided robotic system for bone fracture reduction
EP3977949A1 (en) Systems and methods for fixating a navigation array
JP2021508549A (en) Methods and systems for calibrating X-ray imaging systems
EP4272650A1 (en) Optical fiber based 3d positioning and tracking of patient body part during x-ray
US20220257263A1 (en) Systems and methods for navigating a pin guide driver
Binder et al. Image guided positioning for an interactive C-arm fluoroscope

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050519

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071212

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131221

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees