JP2003337071A - Tactile sensor - Google Patents

Tactile sensor

Info

Publication number
JP2003337071A
JP2003337071A JP2002145401A JP2002145401A JP2003337071A JP 2003337071 A JP2003337071 A JP 2003337071A JP 2002145401 A JP2002145401 A JP 2002145401A JP 2002145401 A JP2002145401 A JP 2002145401A JP 2003337071 A JP2003337071 A JP 2003337071A
Authority
JP
Japan
Prior art keywords
tactile sensor
coil
induction
induction coil
elastic body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002145401A
Other languages
Japanese (ja)
Inventor
Isao Todo
勇雄 藤堂
Nobuyasu Tomokuni
伸保 友國
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama TLO Co Ltd
Original Assignee
Yokohama TLO Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama TLO Co Ltd filed Critical Yokohama TLO Co Ltd
Priority to JP2002145401A priority Critical patent/JP2003337071A/en
Publication of JP2003337071A publication Critical patent/JP2003337071A/en
Pending legal-status Critical Current

Links

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compact, thin tactile sensor that can detect pressure and shearing force operating on the finger part of a manipulator and can be manufactured inexpensively. <P>SOLUTION: The tactile sensor comprises: an excitation coil 3 for enabling a magnetic field 30 to occur; coils 5a, 5b, and 5c arranged in an X direction at intervals; coils 6a, 6b, and 6c arranged in a Y direction at intervals; and an elastic body 4 where compression deformation and shear deformation are enabled corresponding to a change in compressive force and the shearing force operating on the surface of the tactile sensor. In this case, the elastic body is provided between the excitation coil and an induction coil. The compressive force and shearing force operating on the surface of the tactile sensor 1 are detected by the change of the induced voltage value of the induction coil generated due to the compression deformation and/or shear deformation in the elastic body. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、触覚センサに関するも
のであり、より詳細には、被接触物との接触時に接触面
に作用する圧力及び剪断力を検出する触覚センサに関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a tactile sensor, and more particularly to a tactile sensor for detecting pressure and shearing force acting on a contact surface when contacting an object to be contacted.

【0002】[0002]

【従来技術】工業用ロボット等のマニピュレータに配設
される触覚センサとして、ひずみゲージ等を用いた力覚
センサや,感圧導電性ゴム、シリコン・ピエゾ圧力セン
サ、更には、光学的検出手段等を利用した力覚センサが
開発されている。
2. Description of the Related Art As a tactile sensor installed in a manipulator of an industrial robot or the like, a force sensor using a strain gauge or the like, a pressure-sensitive conductive rubber, a silicon / piezo pressure sensor, an optical detecting means, etc. A force sensor utilizing the has been developed.

【0003】一般に、触覚センサは、接触面に作用する
圧力を検出するように構成され、マニピュレータの制御
部は、接触圧の検出値に基づいてマニピュレータの把持
力を制御する。ここに、ロボット等を家庭内の生活支
援、例えば、高齢者の生活支援等の用途に供する社会的
要請が、近年殊に高まっている。この場合、ロボット等
は、マニピュレータの手先部分を器用に作動し、多種多
様な生活物品や食品等の握持、移動、昇降等を円滑に行
わなければならない。このため、マニピュレータの手先
部分に作用する圧力のみならず、剪断力をも触覚センサ
で検出し、高精度の把持力制御等を実行可能にする必要
が生じている。
Generally, the tactile sensor is constructed to detect the pressure acting on the contact surface, and the control unit of the manipulator controls the gripping force of the manipulator based on the detected value of the contact pressure. In recent years, the social demand for providing robots and the like for life support at home, for example, life support for the elderly, has increased in recent years. In this case, the robot or the like needs to dexterously operate the hand part of the manipulator to smoothly grip, move, and ascend and descend a variety of daily goods and foods. For this reason, it is necessary to detect not only the pressure acting on the hand portion of the manipulator but also the shearing force by the tactile sensor so that highly accurate gripping force control and the like can be executed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来構
成の触覚センサをこの種の用途に利用し得たとしても、
触覚センサは、装置構成が大型且つ複雑であったり、高
価格の機器として市場に供給されることから、生活支援
ロボット等に使用するには適していない。このため、小
型で薄く、しかも、安価な装置として市場に供給可能な
触覚センサを開発する必要がある。
However, even if the conventional tactile sensor can be used for this kind of application,
The tactile sensor is not suitable for use in a life support robot or the like because its device configuration is large and complicated, and it is supplied to the market as a high-priced device. Therefore, it is necessary to develop a tactile sensor that can be supplied to the market as a small, thin, and inexpensive device.

【0005】ここに、ひずみゲージ等を用いた従来の触
覚センサは、接触面に作用する剪断力を検出するように
は構成されておらず、しかも、比較的大型の全体形状を
有する高額な機器であり、生活支援ロボット等の手先部
分に配設する触覚センサとしては好適に採用し難い。ま
た、感圧導電性ゴム等を用いた触覚センサの機構を利用
し、剪断力を測定可能な触覚センサを設計した場合、構
造が複雑化することから、その実用化は、困難である。
Here, the conventional tactile sensor using a strain gauge or the like is not configured to detect the shearing force acting on the contact surface, and is an expensive device having a relatively large overall shape. Therefore, it is difficult to suitably employ it as a tactile sensor arranged in the hand part of a life support robot or the like. Further, when a tactile sensor capable of measuring a shearing force is designed by utilizing the mechanism of the tactile sensor using pressure-sensitive conductive rubber or the like, its structure is complicated, and therefore its practical application is difficult.

【0006】圧力及び剪断力の検出を意図した触覚セン
サとして、板状の圧電体及び電極を交互に積層した構造
を有する触覚センサが特開昭60-34293号公報及び特開昭
60-34294号公報に開示されている。この形式の触覚セン
サは、分極処理を施した複数の圧電体を多層に積層した
比較的複雑且つ厚い構造を有し、価格的にも高価であ
る。また、突出部を備えた感圧素子を用いて圧力及び剪
断力を検出するようにした触覚センサが特開昭60-34295
号公報に開示されている。この構造の触覚センサは、突
出部に作用する横方向の力により感圧素子に不均一な圧
力が作用する現象を利用したものであり、突出部を常に
表面から突出させなければならない。
As a tactile sensor intended to detect pressure and shearing force, a tactile sensor having a structure in which plate-shaped piezoelectric bodies and electrodes are alternately laminated is disclosed in JP-A-60-34293 and JP-A-60-34293.
No. 60-34294. This type of tactile sensor has a relatively complicated and thick structure in which a plurality of polarized piezoelectric bodies are laminated in multiple layers, and is expensive in price. A tactile sensor that detects pressure and shearing force using a pressure sensitive element having a protrusion is disclosed in Japanese Patent Laid-Open No. 34295/1985.
It is disclosed in the publication. The tactile sensor having this structure utilizes a phenomenon in which a non-uniform pressure acts on the pressure sensitive element due to a lateral force acting on the protruding portion, and the protruding portion must always be projected from the surface.

【0007】他の構造の触覚センサとして、垂直力に応
じて縦方向に変位し且つ剪断力に応答して横方向に変位
するピンを用いた触覚センサが、特開昭58-192790号公
報に開示されている。この構成の触覚センサは、圧力及
び剪断力に相応して変位する多数のピンを用いた複雑且
つ大型の構造を備えるばかりでなく、ピン機構の最小間
隔に限界があることから、高密度に力の分布を測定する
ように構成することはできない。
As a tactile sensor having another structure, a tactile sensor using a pin that is vertically displaced according to a vertical force and laterally displaced in response to a shearing force is disclosed in Japanese Patent Laid-Open No. 58-192790. It is disclosed. The tactile sensor of this structure not only has a complicated and large structure using a large number of pins that are displaced in response to pressure and shearing force, but also has a limitation on the minimum distance between the pin mechanisms, resulting in a high density of force. Cannot be configured to measure the distribution of.

【0008】かくして、従来の触覚センサにより圧力及
び剪断力の双方を検出しようとした場合、マニピュレー
タの手先部分の構造が大型化又は複雑化したり、或い
は、触覚センサの価格が高額化するなどの問題が生じて
おり、このような問題を解消した新規構造の触覚センサ
を開発する必要が生じている。
Thus, when it is attempted to detect both the pressure and the shearing force with the conventional tactile sensor, the structure of the hand part of the manipulator becomes large or complicated, or the price of the tactile sensor becomes expensive. Therefore, it is necessary to develop a tactile sensor having a new structure that solves such a problem.

【0009】本発明は、このような課題に鑑みてなされ
たものであり、その目的とするところは、マニピュレー
タの手先部分に作用する圧力及び剪断力を検出すること
ができ、小型で薄く、しかも、安価に製造し得る触覚セ
ンサを提供することにある。
The present invention has been made in view of the above problems, and an object of the present invention is to detect the pressure and shearing force acting on the hand portion of the manipulator, which is small, thin, and The object is to provide a tactile sensor that can be manufactured at low cost.

【0010】[0010]

【課題を解決するための手段】本発明は、上記目的を達
成すべく、被接触物に接触し、接触時に接触面に作用す
る圧力及び剪断力を検出する触覚センサにおいて、表面
と直交する圧縮力に応答して弾力的に圧縮変形し且つ表
面と平行に作用する剪断力に応答して弾力的に剪断変形
する板状弾性体と、該弾性体の片面に一体的に取付けら
れた励磁コイルと、該弾性体の他面に一体的に取付けら
れた誘導コイルと、前記励磁コイルに高周波電流を通電
する電流供給手段と、前記誘導コイルに発生した誘導電
圧を検出する電圧検出手段とを備え、前記励磁コイルの
磁場により前記誘導コイルに誘導電圧を誘起し、該誘導
電圧を前記電圧検出手段によって検出し、前記誘導電圧
の変化により、前記接触面に作用する圧力及び剪断力を
検出するようにしたことを特徴とする触覚センサを提供
する。
In order to achieve the above object, the present invention provides a tactile sensor which is in contact with an object to be contacted and which detects a pressure and a shearing force acting on the contact surface at the time of contact. A plate-like elastic body that elastically compressively deforms in response to a force and elastically shears in response to a shearing force that acts in parallel with the surface, and an exciting coil integrally attached to one surface of the elastic body An induction coil integrally attached to the other surface of the elastic body, a current supply means for supplying a high-frequency current to the exciting coil, and a voltage detection means for detecting an induced voltage generated in the induction coil. , An induction voltage is induced in the induction coil by the magnetic field of the excitation coil, the induction voltage is detected by the voltage detection means, and pressure and shearing force acting on the contact surface are detected by a change in the induction voltage. West Providing tactile sensor, characterized in that.

【0011】他の観点より、本発明は、このような触覚
センサを備え、電圧検出手段の検出結果に基づいて被接
触物の把持力を調節する把持力制御手段を備えたことを
特徴とするマニピュレータを提供する。
From another point of view, the present invention is characterized by including such a tactile sensor and a gripping force control means for adjusting the gripping force of the contacted object based on the detection result of the voltage detecting means. Provide a manipulator.

【0012】[0012]

【作用】本発明の上記構成によれば、触覚センサの接触
面に圧力が作用すると、弾性体は、その弾性係数に相応
して圧縮変形し、励磁コイル及び誘導コイルの間隔が変
化する。触覚センサの接触面に剪断力が作用すると、弾
性体の剪断変形により励磁コイル及び誘導コイルの相対
位置が変化する。誘導コイルの誘導電圧値は、励磁コイ
ル及び誘導コイルの間隔及び相対位置の変化に応じて変
化する。電圧検出手段が誘導電圧値を検出するので、比
較的簡単な誘導電圧値の演算により、接触面に作用した
圧力及び剪断力を検出することができる。
According to the above structure of the present invention, when pressure is applied to the contact surface of the tactile sensor, the elastic body is compressed and deformed according to its elastic coefficient, and the distance between the exciting coil and the induction coil changes. When a shearing force acts on the contact surface of the tactile sensor, the relative position of the exciting coil and the induction coil changes due to the shearing deformation of the elastic body. The induction voltage value of the induction coil changes according to changes in the distance and relative position between the excitation coil and the induction coil. Since the voltage detecting means detects the induced voltage value, the pressure and shearing force acting on the contact surface can be detected by a relatively simple calculation of the induced voltage value.

【0013】[0013]

【発明の実施の形態】本発明の好適な実施形態におい
て、上記誘導コイルは、第1誘導コイル及び第2誘導コ
イルを直交方向に配向し且つ積層した複層構造を有す
る。第1誘導コイルの誘導電圧は、第1方向(X方向)
の磁場の移動により変化し、第2誘導コイルの誘導電圧
は、第1方向と直交する第2方向(Y方向)の磁場の移
動により変化する。
BEST MODE FOR CARRYING OUT THE INVENTION In a preferred embodiment of the present invention, the induction coil has a multilayer structure in which a first induction coil and a second induction coil are oriented and laminated in an orthogonal direction. The induction voltage of the first induction coil is in the first direction (X direction).
Changes due to the movement of the magnetic field of 1, and the induced voltage of the second induction coil changes due to the movement of the magnetic field in the second direction (Y direction) orthogonal to the first direction.

【0014】本発明の他の好適な実施形態によれば、上
記誘導コイルは、対称に配列した4つ以上の誘導コイル
部分を単一平面に配置した単層構造を有する。各コイル
部分の誘導電圧は、励磁コイルの磁場の移動により変化
する。
According to another preferred embodiment of the present invention, the induction coil has a single layer structure in which four or more symmetrically arranged induction coil portions are arranged in a single plane. The induced voltage in each coil portion changes due to the movement of the magnetic field of the exciting coil.

【0015】好ましくは、板状弾性体は、5mm以下の厚
さを有し、触覚センサは、7mm以下の厚さを有する。図
1は、本発明の好適な実施形態に係る触覚センサの拡大
縦断面図であり、図2及び図3は、触覚センサの原理を
説明するための斜視図である。また、図4は、誘導コイ
ルのコイル配列を示す平面図である。
Preferably, the plate-like elastic body has a thickness of 5 mm or less, and the tactile sensor has a thickness of 7 mm or less. Figure
1 is an enlarged vertical sectional view of a tactile sensor according to a preferred embodiment of the present invention, and FIGS. 2 and 3 are perspective views for explaining the principle of the tactile sensor. FIG. 4 is a plan view showing the coil arrangement of the induction coil.

【0016】触覚センサ1は、表層被覆2、励磁コイル
3、薄板状弾性体4及び誘導コイル5、6より構成さ
れ、基台7上に取付けられる。基台7は、ロボット等の
マニピュレータの先端部に支持される。
The tactile sensor 1 is composed of a surface layer coating 2, an exciting coil 3, a thin plate elastic body 4 and induction coils 5 and 6, and is mounted on a base 7. The base 7 is supported by the tip of a manipulator such as a robot.

【0017】表層被覆2は、被接触物との接触面を構成
する樹脂フィルム等からなり、励磁コイル3を保護す
る。励磁コイル3は、弾性体4の表面41に接着され、
誘導コイル5、6は、弾性体4の裏面42に接着され
る。励磁コイル3及び誘導コイル5、6は、フォトエッ
チング技術等により薄い樹脂基盤51、61上に導電材
料を一体成形したものであり、弾性体4は、合成ゴム、
エラストマー又は合成樹脂の一体成形品、スポンジ、或
いは、樹脂発泡成形品等からなり、磁場透過率が優れた
素材のものであることが望ましい。弾性体4は、表層被
覆2に作用する被接触物により弾力的に変形可能な弾性
係数、好ましくは、1×10-2〜1×10-1N/mm3の範囲の体
積弾性率を有する。
The surface layer coating 2 is made of a resin film or the like which constitutes a contact surface with an object to be contacted, and protects the exciting coil 3. The exciting coil 3 is adhered to the surface 41 of the elastic body 4,
The induction coils 5 and 6 are bonded to the back surface 42 of the elastic body 4. The exciting coil 3 and the induction coils 5 and 6 are formed by integrally molding a conductive material on thin resin substrates 51 and 61 by a photo etching technique or the like, and the elastic body 4 is a synthetic rubber,
It is desirable that the material is made of an elastomer or synthetic resin integrally molded product, sponge, resin foam molded product, or the like, and has excellent magnetic field transmittance. The elastic body 4 has an elastic coefficient that can be elastically deformed by the contacted object acting on the surface layer coating 2, preferably a volume elastic modulus in the range of 1 × 10 -2 to 1 × 10 -1 N / mm 3. .

【0018】励磁コイル5が形成する磁場30の磁束密
度が、図2に概念的に示されている。図2において、磁
場30が***した部分は、磁束密度が高い部分、即ち、
磁界強度が高い部分を示す。励磁コイル3の全体形状
は、例えば、外形9mm×9mmの四角形の形態に形成され
る。励磁コイル3を構成する導電線31は、7回巻きの
渦巻き形態に巻回され、導電線31の各部は、X方向又
はY方向に延びる。磁界の強度は、低電流値の電流を導
電線31に流した場合(図2(B))に比べて、高電流
値の電流を導電線31に流した場合(図2(A))に全
体的に増大するが、磁場30は、いずれの場合において
も、励磁コイル3の中心部において、高い磁束密度を示
す。
The magnetic flux density of the magnetic field 30 formed by the exciting coil 5 is conceptually shown in FIG. In FIG. 2, the portion where the magnetic field 30 is raised is a portion where the magnetic flux density is high, that is,
Indicates a portion where the magnetic field strength is high. The entire shape of the exciting coil 3 is, for example, formed in a quadrangular shape having an outer shape of 9 mm × 9 mm. The conductive wire 31 forming the exciting coil 3 is wound in a spiral shape with seven turns, and each part of the conductive wire 31 extends in the X direction or the Y direction. The strength of the magnetic field is higher when a current having a high current value is applied to the conductive wire 31 (FIG. 2A) than when a current having a low current value is applied to the conductive wire 31 (FIG. 2B). Although it increases overall, the magnetic field 30 shows a high magnetic flux density in the central part of the exciting coil 3 in any case.

【0019】誘導コイル5は、図4に示す如く、複数列
(本実施形態では3列)のコイル5a、5b、5cから
構成される。各コイル5a、5b、5cの導電線は、Y
方向に延びており、X方向に所定間隔を隔てて整列配置
したセンサアレイが基盤51上に形成される。各コイル
5a、5b、5cは、グランドライン53を介してラン
ド52に接続される。同様に、誘導コイル6も又、複数
列(本実施形態では3列)のコイル6a、6b、6cか
ら構成される。各コイル6a、6b、6cの導電線は、
X方向に延びており、Y方向に所定間隔を隔てて整列配
置したセンサアレイが基盤61上に形成される。各コイ
ル6a、6b、6cは、グランドライン63を介してラ
ンド62に接続される。
As shown in FIG. 4, the induction coil 5 is composed of a plurality of rows (three rows in this embodiment) of coils 5a, 5b and 5c. The conductive wire of each coil 5a, 5b, 5c is Y
A sensor array that extends in the X-direction and is aligned in the X-direction at a predetermined interval is formed on the base 51. Each coil 5a, 5b, 5c is connected to the land 52 via a ground line 53. Similarly, the induction coil 6 is also composed of a plurality of rows (three rows in the present embodiment) of coils 6a, 6b, 6c. The conductive wire of each coil 6a, 6b, 6c is
A sensor array extending in the X direction and aligned in the Y direction at predetermined intervals is formed on the base 61. The coils 6a, 6b, 6c are connected to the land 62 via the ground line 63.

【0020】高周波電流が励磁コイル3に通電される
と、励磁コイル3は、図3に示す如く、誘導コイル5、
6に作用する磁場30を発生させる。磁場30は、好ま
しくは、四角錐形態に分布し、誘導コイル5、6には、
磁場30の電磁誘導作用により誘導電圧が誘起する。各
誘導コイル5、6の誘導電圧値は、励磁コイル3と誘導
コイル5、6との相対的な位置関係により変化する。
When a high-frequency current is applied to the exciting coil 3, the exciting coil 3 moves to the induction coil 5, as shown in FIG.
A magnetic field 30 acting on 6 is generated. The magnetic field 30 is preferably distributed in the form of a quadrangular pyramid and the induction coils 5, 6 have
An induction voltage is induced by the electromagnetic induction effect of the magnetic field 30. The induction voltage value of each induction coil 5 and 6 changes according to the relative positional relationship between the excitation coil 3 and the induction coils 5 and 6.

【0021】図1(B)に示す如く、触覚センサ1の表
面に押圧力Pが作用すると、弾性体4は圧縮変形し、励
磁コイル4と誘導コイル5、6とは互いに接近する。コ
イル間の距離に相応した誘導電圧が誘導コイル5、6に
誘起する。これに対し、触覚センサ1の表面と平行な外
力、即ち、剪断力Sが作用すると、弾性体4は図1
(C)に示す如く剪断変形し、誘導電圧値は変化する。
従って、各誘導コイル5、6の誘導電圧は、押圧力Pの
作用により全体的に増大するとともに、剪断力Sの作用
により相対的に変化する。
As shown in FIG. 1B, when the pressing force P acts on the surface of the tactile sensor 1, the elastic body 4 is compressed and deformed, and the exciting coil 4 and the induction coils 5 and 6 come close to each other. An induction voltage corresponding to the distance between the coils is induced in the induction coils 5 and 6. On the other hand, when an external force parallel to the surface of the tactile sensor 1, that is, a shearing force S is applied, the elastic body 4 moves to the position shown in FIG.
As shown in (C), shear deformation occurs and the induced voltage value changes.
Therefore, the induction voltage of each induction coil 5, 6 increases overall due to the action of the pressing force P, and relatively changes due to the action of the shearing force S.

【0022】剪断力Sa、Sbの作用による典型的な誘
導電圧値の変化が図5に示されている。X方向の剪断力
Saが触覚センサ1の表面に作用すると、励磁コイル2
は、基台7に対して、全体的に剪断力Sa方向に相対変位
し、励磁コイル3が形成する磁場30も又、剪断力Sa
の方向に移動する。変位量の増大に伴って、誘導コイル
5a、5bの誘導電圧値は漸減し、逆に、誘導コイル5
cの誘導電圧値は漸増する。他方、剪断力Saと逆方向
の剪断力Sbが触覚センサ1の表面に作用すると、励磁
コイル2及びその磁場30は、基台7に対して、全体的
に剪断力Sb方向に相対変位する。変位量の増大に伴っ
て、誘導コイル5c、5bの誘導電圧値は漸減し、逆
に、誘導コイル5aの誘導電圧値は漸増する。
A typical change in the induced voltage value due to the action of the shearing forces Sa and Sb is shown in FIG. Shear force in X direction
When Sa acts on the surface of the tactile sensor 1, the exciting coil 2
Is displaced relative to the base 7 in the direction of the shear force Sa as a whole, and the magnetic field 30 formed by the exciting coil 3 is also displaced by the shear force Sa.
Move in the direction of. With the increase of the displacement amount, the induced voltage values of the induction coils 5a and 5b gradually decrease, and conversely, the induction coil 5a
The induced voltage value of c gradually increases. On the other hand, when a shearing force Sb opposite to the shearing force Sa acts on the surface of the tactile sensor 1, the exciting coil 2 and its magnetic field 30 are displaced relative to the base 7 in the shearing force Sb direction as a whole. As the displacement amount increases, the induction voltage values of the induction coils 5c and 5b gradually decrease, and conversely, the induction voltage value of the induction coil 5a gradually increases.

【0023】図6は、触覚センサ1を備えたマニピュレ
ータの構成を例示する概略斜視図である。マニピュレー
タ10は、アーム部11、伸縮ロッド12、リンク部材
13、14及び開閉作動部材15を備え、開閉作動部材
15によって物体W(仮想線で示す)を握持するように
構成される。伸縮ロッド12は、アーム部11の中心部
に配置され、各開閉作動部材15の基端部は、枢着部1
6によってアーム部11の側面に枢動可能に取付られ
る。伸縮ロッド12の伸縮運動は、リンク部材13、1
4によって開閉作動部材15の開閉運動に転換する。各
開閉作動部材15の先端部には、触覚センサ1の基台7
が固定され、3箇所の触覚センサ1は、開閉作動部材1
5の閉作動時に協働して物体Wを把持する。
FIG. 6 is a schematic perspective view illustrating the configuration of a manipulator having the tactile sensor 1. The manipulator 10 includes an arm portion 11, a telescopic rod 12, link members 13 and 14, and an opening / closing operation member 15, and is configured to hold an object W (shown by a virtual line) by the opening / closing operation member 15. The telescopic rod 12 is arranged at the center of the arm portion 11, and the base end portion of each opening / closing operation member 15 is connected to the pivot portion 1.
It is attached to the side surface of the arm portion 11 by 6 so as to be pivotable. The expansion and contraction movement of the expansion and contraction rod 12 is performed by the link members 13, 1
4, the opening / closing operation member 15 is converted into the opening / closing motion. A base 7 of the tactile sensor 1 is attached to the tip of each opening / closing operation member 15.
Is fixed, and the tactile sensors 1 at three locations are the opening / closing operation members 1
The object W is gripped in cooperation with the closing operation of 5.

【0024】マニピュレータ10は更に、開閉作動部材
15の位置及び作動を制御し、物体Wに対するマニピュ
レータ10の把持力を可変制御する制御装置16を備え
る。制御装置16は、触覚センサ1の励磁コイル3に高
周波電流を供給する電流供給部17、誘導コイルに発生
した誘導電圧を計測する誘導電圧検出部18、誘導電圧
値の演算処理により各触覚センサ1の圧力及び剪断力を
演算する演算処理部19等を内蔵する。
The manipulator 10 further includes a control device 16 for controlling the position and operation of the opening / closing operation member 15 and variably controlling the gripping force of the manipulator 10 with respect to the object W. The control device 16 includes a current supply unit 17 that supplies a high-frequency current to the exciting coil 3 of the tactile sensor 1, an induced voltage detection unit 18 that measures an induced voltage generated in the induction coil, and a calculation process of an induced voltage value for each tactile sensor 1. The calculation processing unit 19 and the like for calculating the pressure and the shearing force are included.

【0025】図7は、誘導電圧値を測定するために使用
した試験装置のシステム構成を概略的に示すブロック図
である。試験装置は、信号発生器21及び電流アンプ2
2を備える。信号発生器21の100KHz正弦波信号
が、電流アンプ22を介して励磁コイル3に供給され、
励磁コイル5は、磁場30を形成する。誘導コイル5、
6は、セルクタ23、アンプ24、セレクタ25及び整
流アンプ26を介してオシロスコープ27に接続され
る。セレクタ23、25は、切替信号発生器28の切替
信号により制御され、切替信号発生器28は、コンピュ
ータ28により制御される。
FIG. 7 is a block diagram schematically showing the system configuration of the test apparatus used to measure the induced voltage value. The test apparatus includes a signal generator 21 and a current amplifier 2
2 is provided. The 100 KHz sine wave signal from the signal generator 21 is supplied to the exciting coil 3 via the current amplifier 22,
The excitation coil 5 forms a magnetic field 30. Induction coil 5,
6 is connected to an oscilloscope 27 via a selector 23, an amplifier 24, a selector 25 and a rectifying amplifier 26. The selectors 23 and 25 are controlled by the switching signal of the switching signal generator 28, and the switching signal generator 28 is controlled by the computer 28.

【0026】図8(A)は、誘導コイル5の座標系を示
す平面図であり、図8(B)は、触覚センサ1に剪断力
が作用した際に生じる誘導コイル5の誘導電圧値を示す
線図である。
FIG. 8 (A) is a plan view showing the coordinate system of the induction coil 5, and FIG. 8 (B) shows the induction voltage value of the induction coil 5 generated when a shear force acts on the tactile sensor 1. It is a diagram showing.

【0027】励磁コイル3及び誘導コイル5の間隔dを
1mmに設定し、図7に示す試験装置を用いて誘導コイル
5の誘導電圧を測定したところ、励磁コイル3の+X方
向変位が増大するにつれて、コイル5cの電圧値は増大
し、コイル5aの電圧値は減少した。これに対し、励磁
コイル3を逆方向(−X方向)に相対変位させると、コ
イル5cの電圧値は減少し、コイル5aの電圧値は増大
した。なお、中央のコイル5bの電圧値は、+X方向及
び−X方向の励磁コイル3の変位に関し、変位量の増大
につれて減少した。このような誘導電圧の変化は、図5
(B)に示す理論上の電圧変化特性と実質的に同じ特性
を示すものである。
The distance d between the exciting coil 3 and the induction coil 5 was set to 1 mm, and the induction voltage of the induction coil 5 was measured using the test apparatus shown in FIG. 7. As the displacement of the exciting coil 3 in the + X direction increases, , The voltage value of the coil 5c increased and the voltage value of the coil 5a decreased. On the other hand, when the exciting coil 3 was relatively displaced in the opposite direction (-X direction), the voltage value of the coil 5c decreased and the voltage value of the coil 5a increased. The voltage value of the central coil 5b decreased with the increase in the displacement amount with respect to the displacement of the exciting coil 3 in the + X direction and the −X direction. Such a change in induced voltage is shown in FIG.
It exhibits substantially the same characteristics as the theoretical voltage change characteristics shown in (B).

【0028】図9は、図6に示すマニピュレータ10を
用いて物体Wを握持した状態で測定した誘導電圧値の変
化を示す線図である。誘導コイル5、6のコイル配列か
ら明らかなとおり、誘導コイル5は、X方向の剪断力を
検出するためには使用し得るが、Y方向の剪断力の検出
には使用できず、逆に、誘導コイル6は、Y方向の剪断
力を検出するためには使用し得るが、X方向の剪断力の
検出には使用できない。圧縮力と、X方向の剪断力とが
触覚センサ1に作用する場合、誘導コイル6によって圧
縮力を検出し、誘導コイル5によって剪断力を検出する
ことができる。これに対し、圧縮力と、Y方向の剪断力
とが触覚センサ1に作用する場合、誘導コイル5によっ
て圧縮力を検出し、誘導コイル6によって剪断力を検出
することができる。
FIG. 9 is a diagram showing a change in the induced voltage value measured with the object W held by the manipulator 10 shown in FIG. As is clear from the coil arrangement of the induction coils 5 and 6, the induction coil 5 can be used to detect the shearing force in the X direction, but cannot be used to detect the shearing force in the Y direction, and conversely, The induction coil 6 can be used to detect the shearing force in the Y direction, but cannot be used to detect the shearing force in the X direction. When the compression force and the shearing force in the X direction act on the tactile sensor 1, the induction coil 6 can detect the compression force and the induction coil 5 can detect the shearing force. On the other hand, when the compressive force and the shearing force in the Y direction act on the tactile sensor 1, the compressing force can be detected by the induction coil 5 and the shearing force can be detected by the induction coil 6.

【0029】触覚センサ1の表面を垂直に位置決めした
状態で物体Wを両側面から開閉作動部材15によって把
持し、物体Wの重量を徐々に増大しながら、誘導コイル
5、6の電圧値の変化を測定した結果が、図9に示され
ている。なお、触覚センサ1は、X軸を鉛直方向に配置
し、物体Wの鉛直荷重が触覚センサ1のX方向に作用す
るように配向された。
While the surface of the tactile sensor 1 is vertically positioned, the object W is gripped from both sides by the opening / closing operation member 15, and the voltage value of the induction coils 5 and 6 is changed while gradually increasing the weight of the object W. The result of measurement is shown in FIG. The tactile sensor 1 has the X axis arranged in the vertical direction, and is oriented so that the vertical load of the object W acts in the X direction of the tactile sensor 1.

【0030】物体Wの鉛直荷重は、X方向の剪断力とし
て触覚センサ1に作用し、X方向に剪断変形するが、Y
方向に配向された誘導コイル6の各コイル6a、6b、
6cは、X方向の剪断変形による影響を実質的に受けな
い。従って、誘導コイル6の誘導電圧値は、図9に示す
如く変化するが、この電圧値の変化は、圧縮変形により
生じたものであり、マニピュレータ10の把持力の変化
を示す。これに対し、Y方向に配向された誘導コイル5
の各コイル5a、5b、5cの誘導電圧値の変化は、圧
縮変形及び剪断変形により生じたものであり、図9に示
す電圧値の変化は、マニピュレータ10の把持力及び剪
断力の変化を示す。
The vertical load of the object W acts on the tactile sensor 1 as a shearing force in the X direction and is sheared and deformed in the X direction.
Coils 6a, 6b of the induction coil 6 oriented in the direction
6c is not substantially affected by the shear deformation in the X direction. Therefore, the induced voltage value of the induction coil 6 changes as shown in FIG. 9, but this change in the voltage value is caused by the compressive deformation and indicates the change in the gripping force of the manipulator 10. On the other hand, the induction coil 5 oriented in the Y direction
The change of the induced voltage value of each coil 5a, 5b, 5c is caused by the compression deformation and the shear deformation, and the change of the voltage value shown in FIG. 9 shows the change of the gripping force and the shearing force of manipulator 10. .

【0031】以上説明した如く、触覚センサ1は、磁場
30を生起する励磁コイル3と、X方向に間隔を隔てて
配置されたコイル5a、5b、5cと、Y方向に間隔を
隔てて配置されたコイル6a、6b、6cと、触覚セン
サ1の表面に作用する圧縮力及び剪断力の変化に相応し
て圧縮変形及び剪断変形可能な弾性体4とを備え、弾性
体4を励磁コイル3と誘導コイル5、6との間に介装し
た構成を有する。このような触覚センサ1によれば、触
覚センサ1の表面に作用する圧縮力及び剪断力は、弾性
体4の圧縮変形及び/又は剪断変形により生じる誘導コ
イル5、6の誘導電圧値の変化に基づいて検出すること
ができる。
As described above, the tactile sensor 1 is provided with the exciting coil 3 for generating the magnetic field 30, the coils 5a, 5b and 5c arranged at intervals in the X direction and the coils arranged at intervals in the Y direction. Coil 6a, 6b, 6c, and an elastic body 4 capable of compressive deformation and shear deformation in accordance with changes in compressive force and shearing force acting on the surface of the tactile sensor 1, and the elastic body 4 is used as an exciting coil 3. It has a structure interposed between the induction coils 5 and 6. According to the tactile sensor 1 as described above, the compressive force and the shearing force acting on the surface of the tactile sensor 1 are changed in the induced voltage values of the induction coils 5 and 6 caused by the compressive deformation and / or the shearing deformation of the elastic body 4. It can be detected based on.

【0032】図10は、触覚センサ1の他のコイル配列
を例示する平面図である。図10(A)に示す触覚セン
サ1は、4組の誘導コイル5を備える。各誘導コイル5
は、X方向に間隔を隔てて配置されたコイル5a、5
b、5cを夫々備える。触覚センサ1は又、4組の誘導
コイル6を備え、各誘導コイル6(図示せず)は、Y方
向に間隔を隔てて配置されたコイル6a、6b、6c
(図示せず)を夫々備える。各誘導コイル6のコイル6
a、6b、6cは、Y方向に間隔を隔てて配置される。
FIG. 10 is a plan view illustrating another coil arrangement of the tactile sensor 1. The tactile sensor 1 shown in FIG. 10 (A) includes four sets of induction coils 5. Each induction coil 5
Are coils 5a, 5 which are arranged at intervals in the X direction.
b and 5c are provided respectively. The tactile sensor 1 also includes four sets of induction coils 6, and each induction coil 6 (not shown) has coils 6a, 6b, 6c arranged at intervals in the Y direction.
(Not shown), respectively. Coil 6 of each induction coil 6
The a, 6b, and 6c are arranged at intervals in the Y direction.

【0033】図10(B)に示す触覚センサ1も又、4
組の誘導コイル5を備える。しかしながら、各誘導コイ
ル5は、X方向及びY方向に対称に配置されたコイル5
a、5b、5c、5dを夫々備える。なお、前述の実施
形態の触覚センサ1に関して誘導コイル5、6の誘導電
圧値を測定し、測定結果に基づきキャリブレーション式
を仮定して最小二乗法による同定を行った結果、中央に
位置する誘導コイル5b、6bは、剪断力の測定には大
きく影響しないことが確認された。このため、図10
(B)に示す触覚センサ1の誘導コイル5は、単層構造
を備える。
The tactile sensor 1 shown in FIG.
It comprises a set of induction coils 5. However, each induction coil 5 has a coil 5 arranged symmetrically in the X and Y directions.
a, 5b, 5c, 5d respectively. In addition, as a result of measuring the induced voltage values of the induction coils 5 and 6 with respect to the tactile sensor 1 of the above-described embodiment and performing identification by the least square method assuming a calibration formula based on the measurement result, the induction positioned at the center It was confirmed that the coils 5b and 6b did not significantly affect the measurement of the shear force. Therefore, FIG.
The induction coil 5 of the tactile sensor 1 shown in (B) has a single-layer structure.

【0034】このような構成の触覚センサ1によれば、
コイル5a、5b、5c、5dの誘導電圧値の変化より
磁場30の位置を検出し、磁場30の位置変化に基づ
き、触覚センサ1の剪断変形量を演算し、剪断力を検出
することができる。
According to the tactile sensor 1 having such a configuration,
The position of the magnetic field 30 can be detected from the change in the induced voltage value of the coils 5a, 5b, 5c, 5d, and the shear deformation amount of the tactile sensor 1 can be calculated based on the change in the position of the magnetic field 30 to detect the shear force. .

【0035】以上、本発明の好適な実施形態について詳
細に説明したが、本発明は、上記実施形態に限定される
ものではなく、特許請求の範囲に記載された本発明の範
囲内において種々の変更又は変形が可能であり、かかる
変更又は変形例も又、本発明の範囲内に含まれるもので
あることはいうまでもない。
Although the preferred embodiments of the present invention have been described in detail above, the present invention is not limited to the above embodiments, and various modifications are possible within the scope of the present invention described in the claims. It goes without saying that changes and modifications are possible, and such changes and modifications are also included in the scope of the present invention.

【0036】例えば、励磁コイルの巻回形態は、正方形
又は長方形に限定されるものではなく、円形又は楕円形
等の巻回形態を採用しても良い。また、誘導コイルを構
成する各コイルの形態は、前述の方形形状のみならず、
扇形又は1/4円形態等をコイル形態として採用しても
良い。
For example, the winding form of the exciting coil is not limited to a square or a rectangle, and a winding form such as a circle or an ellipse may be adopted. Further, the form of each coil forming the induction coil is not limited to the above-mentioned rectangular shape,
A fan shape or a quarter circle shape may be adopted as the coil shape.

【0037】更に、励磁コイルに電流を供給する電流供
給手段、触覚センサの誘導電圧を計測する誘導電圧検出
手段や、誘導電圧検出手段の検出結果に基づいてマニピ
ュレータの把持力等を制御するマニピュレータ制御手段
として、任意の公知機器又は公知システムを使用するこ
とができる。
Further, a current supplying means for supplying a current to the exciting coil, an induced voltage detecting means for measuring an induced voltage of the tactile sensor, and a manipulator control for controlling a gripping force of the manipulator based on the detection result of the induced voltage detecting means. Any known device or system can be used as the means.

【0038】[0038]

【発明の効果】以上説明したとおり、本発明の上記構成
によれば、マニピュレータの手先部分に取付けられる触
覚センサ本体は、板状弾性体、励磁コイル及び誘導コイ
ルを積層した簡単な構造のものであり、薄く且つ小型で
あり、安価に製造することができる。また、触覚センサ
の制御部は、誘導コイルの誘導電圧値を検出し、簡易な
演算処理により圧力及び剪断力を検出できるので、制御
部を含む触覚センサ全体の構成も又、比較的簡素且つ安
価である。かくして、本発明によれば、と、マニピュレ
ータの手先部分に作用する圧力及び剪断力を検出するこ
とができ、小型で薄く、しかも、安価に製造し得る触覚
センサが提供される。
As described above, according to the above-mentioned structure of the present invention, the tactile sensor main body attached to the hand of the manipulator has a simple structure in which a plate-like elastic body, an exciting coil and an induction coil are laminated. It is thin, small, and inexpensive to manufacture. Further, since the control unit of the tactile sensor can detect the induced voltage value of the induction coil and can detect the pressure and the shearing force by a simple calculation process, the configuration of the entire tactile sensor including the control unit is also relatively simple and inexpensive. Is. Thus, according to the present invention, there is provided a tactile sensor capable of detecting the pressure and the shearing force acting on the hand portion of the manipulator, which is small, thin, and inexpensive to manufacture.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の好適な実施形態に係る触覚センサの拡
大縦断面図であり、触覚センサの無負荷状態(A)、圧
縮変形状態(B)及び剪断変形状態(C)が夫々示されてい
る。
FIG. 1 is an enlarged vertical cross-sectional view of a tactile sensor according to a preferred embodiment of the present invention, showing a non-loaded state (A), a compression deformation state (B) and a shear deformation state (C) of the tactile sensor, respectively. ing.

【図2】触覚センサの原理を説明するための斜視図であ
り、励磁コイルの磁場が概念的に図示されている。
FIG. 2 is a perspective view for explaining the principle of the tactile sensor, conceptually showing the magnetic field of the exciting coil.

【図3】触覚センサの原理を説明するための斜視図であ
り、励磁コイル及び誘導コイルの相対的な位置関係が示
されている。
FIG. 3 is a perspective view for explaining the principle of the tactile sensor, showing a relative positional relationship between an exciting coil and an induction coil.

【図4】誘導コイルのコイル配列を示す平面図である。FIG. 4 is a plan view showing a coil array of induction coils.

【図5】剪断力が触覚センサに作用した際に生じる典型
的な誘導電圧値の変化を示す断面図及び線図である。
5A and 5B are a cross-sectional view and a diagram showing changes in typical induced voltage values that occur when a shear force acts on a tactile sensor.

【図6】触覚センサを備えたマニピュレータの構成を例
示する概略斜視図である。
FIG. 6 is a schematic perspective view illustrating the configuration of a manipulator including a tactile sensor.

【図7】励磁コイルに電流を供給して誘導コイルの誘導
電圧値を測定するために使用した試験装置のシステム構
成を概略的に示すブロック図である。
FIG. 7 is a block diagram schematically showing a system configuration of a test apparatus used to supply a current to an exciting coil and measure an induced voltage value of the induction coil.

【図8】誘導コイルの座標系を示す平面図と、触覚セン
サに剪断力が作用した状態で測定した誘導コイルの誘導
電圧値を示す線図である。
FIG. 8 is a plan view showing a coordinate system of the induction coil and a diagram showing an induction voltage value of the induction coil measured in a state where a shear force acts on the tactile sensor.

【図9】図6に示すマニピュレータによって被接触物を
握持した状態で測定した誘導電圧値を示す線図である。
9 is a diagram showing an induced voltage value measured with the contacted object being gripped by the manipulator shown in FIG.

【図10】触覚センサの他のコイル配列を例示する平面
図である。
FIG. 10 is a plan view illustrating another coil array of the tactile sensor.

【符号の説明】[Explanation of symbols]

1:触覚センサ 2:表層被覆 3:励磁コイル 4:薄板状弾性体 5:誘導コイル 6:誘導コイル 7:基台 10:マニピュレータ 30:磁場 1: Tactile sensor 2: Surface coating 3: Excitation coil 4: Thin plate elastic body 5: Induction coil 6: Induction coil 7: Base 10: Manipulator 30: magnetic field

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 被接触物に接触し、接触時に接触面に作
用する圧力及び剪断力を検出する触覚センサにおいて、 表面と直交する圧縮力に応答して弾力的に圧縮変形し且
つ表面と平行に作用する剪断力に応答して弾力的に剪断
変形する板状弾性体と、該弾性体の片面に一体的に取付
けられた励磁コイルと、該弾性体の他面に一体的に取付
けられた誘導コイルと、前記励磁コイルに高周波電流を
通電する電流供給手段と、前記誘導コイルに発生した誘
導電圧を検出する電圧検出手段とを備え、 前記励磁コイルの磁場により前記誘導コイルに誘導電圧
を誘起し、該誘導電圧を前記電圧検出手段によって検出
し、前記誘導電圧の変化により、前記接触面に作用する
圧力及び剪断力を検出するようにしたことを特徴とする
触覚センサ。
1. A tactile sensor which is in contact with an object to be contacted and which detects a pressure and a shearing force acting on the contact surface at the time of contact, wherein the tactile sensor is elastically compressed and deformed in response to a compressive force orthogonal to the surface and parallel to the surface A plate-like elastic body that elastically shears and deforms in response to a shearing force acting on the elastic body, an exciting coil integrally attached to one surface of the elastic body, and an exciting coil integrally attached to the other surface of the elastic body. An induction coil, a current supply unit for supplying a high-frequency current to the excitation coil, and a voltage detection unit for detecting an induction voltage generated in the induction coil, and an induction voltage is induced in the induction coil by the magnetic field of the excitation coil. The tactile sensor is characterized in that the induced voltage is detected by the voltage detecting means, and the pressure and shearing force acting on the contact surface are detected by the change of the induced voltage.
【請求項2】 前記誘導コイルは、第1誘導コイル及び
第2誘導コイルを直交方向に配向し且つ積層した複層構
造を有し、前記第1誘導コイルの誘導電圧は、第1方向
の磁場の移動により変化し、前記第2誘導コイルの誘導
電圧は、前記第1方向と直交する第2方向の磁場の移動
により変化することを特徴とする請求項1に記載の触覚
センサ。
2. The induction coil has a multilayer structure in which a first induction coil and a second induction coil are oriented and laminated in an orthogonal direction, and an induction voltage of the first induction coil is a magnetic field in a first direction. 2. The tactile sensor according to claim 1, wherein the induction voltage of the second induction coil changes according to the movement of the magnetic field in the second direction orthogonal to the first direction.
【請求項3】 前記誘導コイルは、対称に配列した4つ
以上の誘導コイル部分を単一平面に配置した単層構造を
有し、各コイル部分の誘導電圧は、前記励磁コイルの磁
場の移動により変化することを特徴とする請求項1に記
載の触覚センサ。
3. The induction coil has a single-layer structure in which four or more induction coil parts symmetrically arranged are arranged in a single plane, and an induction voltage of each coil part is a movement of a magnetic field of the exciting coil. The tactile sensor according to claim 1, wherein the touch sensor changes.
【請求項4】 前記弾性体は、5mm以下の厚さを有し、
前記触覚センサは、7mm以下の厚さを有することを特徴
とする請求項1乃至3のいずれか1項に記載の触覚セン
サ。
4. The elastic body has a thickness of 5 mm or less,
The tactile sensor according to any one of claims 1 to 3, wherein the tactile sensor has a thickness of 7 mm or less.
【請求項5】 前記弾性体は、1×10-2〜1×10-1N/mm3
の範囲の体積弾性率を有することを特徴とする請求項1
乃至4のいずれか1項に記載の触覚センサ。
5. The elastic body is 1 × 10 −2 to 1 × 10 −1 N / mm 3
A bulk elastic modulus in the range of 1.
The tactile sensor according to any one of items 1 to 4.
【請求項6】 請求項1乃至5のいずれか1項に記載の触
覚センサを備え、前記電圧検出手段の検出結果に基づい
て被接触物の把持力を調節する把持力制御手段を備えた
ことを特徴とするマニピュレータ。
6. The tactile sensor according to claim 1, further comprising a gripping force control unit that adjusts a gripping force of a contacted object based on a detection result of the voltage detection unit. Manipulator characterized by.
JP2002145401A 2002-05-20 2002-05-20 Tactile sensor Pending JP2003337071A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002145401A JP2003337071A (en) 2002-05-20 2002-05-20 Tactile sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002145401A JP2003337071A (en) 2002-05-20 2002-05-20 Tactile sensor

Publications (1)

Publication Number Publication Date
JP2003337071A true JP2003337071A (en) 2003-11-28

Family

ID=29704738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002145401A Pending JP2003337071A (en) 2002-05-20 2002-05-20 Tactile sensor

Country Status (1)

Country Link
JP (1) JP2003337071A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006047145A (en) * 2004-08-05 2006-02-16 Hyogo Prefecture Measurement system, measurement method, and grip device control system
WO2008007458A1 (en) * 2006-07-14 2008-01-17 Newcom, Inc. Pressure distribution sensor utilizing electromagnetic coupling
US7513163B2 (en) 2005-08-24 2009-04-07 Central Research Institute Of Electric Power Industry Pressure sensor and device for measuring pressure
US7548489B1 (en) * 2006-07-05 2009-06-16 The United States Of America As Represented By The Secretary Of The Navy Method for designing a resonant acoustic projector
KR100927564B1 (en) * 2006-01-19 2009-11-23 가부시키가이샤 시로쿠 Pressure distribution detector using electromagnetic coupling
US8013598B2 (en) 2006-06-19 2011-09-06 Newcom, Inc. Object detecting device for detecting object using electromagnetic induction
US8330726B2 (en) 2003-05-19 2012-12-11 Xiroku, Inc. Position detection apparatus using area image sensor
US8563880B2 (en) 2006-10-24 2013-10-22 Newcom, Inc. Operating tool with conductor pieces
WO2014068269A1 (en) * 2012-10-31 2014-05-08 University Of Southampton Apparatus for sensing and measuring pressure and/or shear components of a force at an interface between two surfaces
US9836118B2 (en) 2015-06-16 2017-12-05 Wilson Steele Method and system for analyzing a movement of a person
CN114354025A (en) * 2021-11-26 2022-04-15 南方科技大学 Force sensor, force measuring device and end effector
CN114674483A (en) * 2022-04-08 2022-06-28 浙江大学 Three-dimensional force flexible touch sensor with high tangential angle resolution
US12000749B2 (en) 2021-06-10 2024-06-04 Toyota Research Institute, Inc. Flexible tactile sensors for measuring contact surface normal force using inductive coupling

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8330726B2 (en) 2003-05-19 2012-12-11 Xiroku, Inc. Position detection apparatus using area image sensor
JP2006047145A (en) * 2004-08-05 2006-02-16 Hyogo Prefecture Measurement system, measurement method, and grip device control system
US7513163B2 (en) 2005-08-24 2009-04-07 Central Research Institute Of Electric Power Industry Pressure sensor and device for measuring pressure
KR100927564B1 (en) * 2006-01-19 2009-11-23 가부시키가이샤 시로쿠 Pressure distribution detector using electromagnetic coupling
US8013598B2 (en) 2006-06-19 2011-09-06 Newcom, Inc. Object detecting device for detecting object using electromagnetic induction
US7548489B1 (en) * 2006-07-05 2009-06-16 The United States Of America As Represented By The Secretary Of The Navy Method for designing a resonant acoustic projector
JP5023256B2 (en) * 2006-07-14 2012-09-12 株式会社Nc3 Pressure distribution sensor using electromagnetic coupling
KR101076247B1 (en) 2006-07-14 2011-10-26 뉴콤 테크노 가부시키가이샤 Pressure distribution sensor utilizing electromagnetic coupling
US7861605B2 (en) 2006-07-14 2011-01-04 Newcom, Inc. Pressure distribution sensor utilizing electromagnetic coupling
WO2008007458A1 (en) * 2006-07-14 2008-01-17 Newcom, Inc. Pressure distribution sensor utilizing electromagnetic coupling
US8563880B2 (en) 2006-10-24 2013-10-22 Newcom, Inc. Operating tool with conductor pieces
WO2014068269A1 (en) * 2012-10-31 2014-05-08 University Of Southampton Apparatus for sensing and measuring pressure and/or shear components of a force at an interface between two surfaces
GB2521975A (en) * 2012-10-31 2015-07-08 Univ Southampton Apparatus for sensing and measuring pressure and/or shear components of a force at an interface between two surfaces
US9700258B2 (en) 2012-10-31 2017-07-11 University Of Southampton Apparatus for sensing and measuring pressure and shear components of a force at an interface between two surfaces
GB2521975B (en) * 2012-10-31 2018-07-11 Univ Southampton Apparatus for sensing and measuring pressure and shear components of a force at an interface between two surfaces
US9836118B2 (en) 2015-06-16 2017-12-05 Wilson Steele Method and system for analyzing a movement of a person
US12000749B2 (en) 2021-06-10 2024-06-04 Toyota Research Institute, Inc. Flexible tactile sensors for measuring contact surface normal force using inductive coupling
CN114354025A (en) * 2021-11-26 2022-04-15 南方科技大学 Force sensor, force measuring device and end effector
CN114674483A (en) * 2022-04-08 2022-06-28 浙江大学 Three-dimensional force flexible touch sensor with high tangential angle resolution

Similar Documents

Publication Publication Date Title
US10365172B2 (en) Tactile sensor that includes two sheets each having at least either flexibility or elasticity
CA1223936A (en) Tactile sensor array: robotic system and manufacturing method utilizing same
JP2003337071A (en) Tactile sensor
US9851266B2 (en) Stress-detecting element, sensor module, and electronic apparatus
Engel et al. Polymer micromachined multimodal tactile sensors
JP5187856B2 (en) Tactile sensor
US9127999B2 (en) Ultrasonic sensor, tactile sensor, grasping apparatus, and electronic device
US9086740B2 (en) Operation input device and method of controlling same
US9869597B1 (en) Compound strain gage carrier for multi-axis force/torque sensing
US9857245B2 (en) Soft-body deformation and force sensing
JPS58192790A (en) Tactile device
JP4977825B2 (en) Shear force detection device and object gripping system
JP2011085435A (en) Tactile sensor system
WO2006106612A1 (en) Sensor element, sensor device, object movement control device, object judgment device
US20040261544A1 (en) Force sensors
US11460364B1 (en) Multiplexed inductive tactile sensor array
US9250146B2 (en) Multidimensional strain gage
US20130160567A1 (en) Force sensor
Han et al. A highly sensitive dual mode tactile and proximity sensor using carbon microcoils for robotic applications
KR20160125565A (en) Film type tactile sensor possible to detect a proximity
Hasegawa et al. An active tactile sensor for detecting mechanical characteristics of contacted objects
JP2012141255A (en) Ultrasonic sensor, tactile sensor and gripping device
JPH0663892B2 (en) Pressure recognition control device
JP3928053B2 (en) Sensing device
WO2006106611A1 (en) Sensor element, sensor device, object movement control device, object judgment device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070515