JP2003336933A - Flooded-double tube evaporator and ammonia absorption refrigerating machine - Google Patents

Flooded-double tube evaporator and ammonia absorption refrigerating machine

Info

Publication number
JP2003336933A
JP2003336933A JP2002142761A JP2002142761A JP2003336933A JP 2003336933 A JP2003336933 A JP 2003336933A JP 2002142761 A JP2002142761 A JP 2002142761A JP 2002142761 A JP2002142761 A JP 2002142761A JP 2003336933 A JP2003336933 A JP 2003336933A
Authority
JP
Japan
Prior art keywords
refrigerant
solution
liquid
cylinder
axis direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002142761A
Other languages
Japanese (ja)
Other versions
JP3995525B2 (en
Inventor
Sadakazu Yamada
定和 山田
Norihiko Sugimoto
憲彦 杉本
Toshihiko Tanaka
俊彦 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma Co Ltd
Original Assignee
Takuma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma Co Ltd filed Critical Takuma Co Ltd
Priority to JP2002142761A priority Critical patent/JP3995525B2/en
Publication of JP2003336933A publication Critical patent/JP2003336933A/en
Application granted granted Critical
Publication of JP3995525B2 publication Critical patent/JP3995525B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/02Details of evaporators
    • F25B2339/024Evaporators with refrigerant in a vessel in which is situated a heat exchanger
    • F25B2339/0242Evaporators with refrigerant in a vessel in which is situated a heat exchanger having tubular elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flooded-double tube evaporator capable of suppressing the rise of moisture density in refrigerant solution by efficiently taking out the refrigerant solution with a high moisture density from the inside of a refrigerant liquid chamber 16 while preventing a convection mixing on the axial inside front and rear sides of the tubular refrigerant liquid chamber 16. <P>SOLUTION: The refrigerant liquid in refrigerant vapor evaporated from the refrigerant solution in the refrigerant liquid chamber 6 is releasably collected in a vapor-liquid separator 21 and returned to the inside of the refrigerant liquid chamber 16 through a refrigerant liquid feed pipe 18. A refrigerant solution feed port 19 is provided at the axial one end part of the outer tube 14, and a refrigerant vapor outlet 24 for discharging the refrigerant vapor and a refrigerant solution outlet 20 for taking out the refrigerant solution are provided the end part of the vapor-liquid separator 21 on the same side as the axial other end of the outer tube. The refrigerant solution and refrigerant vapor are allowed to flow in the refrigerant liquid chamber 16 and the vapor-liquid separator 21 along the axial direction of the tube. A partition body 15 for axially partitioning at least an upper side portion in the refrigerant liquid chamber 16 into front and rear parts and a dam-like member 26 for axially partitioning the bottom side portion of the vapor-liquid separator 21 into front and rear parts are installed. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、外筒と内筒とから
なり筒軸方向を水平横向きにした内外二重筒において、
外筒と内筒との間を冷媒溶液が流れる冷媒液室に、内筒
の内部を被冷却媒体が流れる冷却媒体室に夫々形成した
満液二重管式の蒸発器、及び、この満液二重管式の蒸発
器を備えたアンモニア吸収式冷凍機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inner-outer double cylinder having an outer cylinder and an inner cylinder, the cylinder axis direction of which is horizontal.
A liquid-filled double-tube evaporator formed in a refrigerant liquid chamber in which a refrigerant solution flows between an outer cylinder and an inner cylinder, and in a cooling medium chamber in which a medium to be cooled flows in an inner cylinder, and the full liquid The present invention relates to an ammonia absorption refrigerator having a double-tube evaporator.

【0002】[0002]

【従来の技術】先ず、上記アンモニア吸収式冷凍機は、
アンモニア水溶液を動作媒体とする吸収式冷凍機であ
り、その一般的な冷凍サイクルについて、図9を参照し
ながら説明する。蒸発圧力Pe(例えば、0.29MP
a at −10℃)下で蒸発器1内において蒸発した
アンモニア蒸気は、吸収器2で蒸発圧力Peに維持する
ようにアンモニア水溶液に吸収される。その際発生する
吸収熱は外部へ冷却水等により放出する。アンモニア蒸
気を吸収して生じた濃溶液(アンモニアを吸収してアン
モニア濃度が高まった溶液)は、溶液ポンプ9によって
圧力が高められ、溶液熱交換器8を経て熱回収した後、
精留器4に送られる。そして、発生器3に流下した濃溶
液は、凝縮圧力Pc(例えば、1.55MPaG at
40℃)下で外部の熱源蒸気等によって加熱されてア
ンモニア蒸気を発生させる。ただし、アンモニアと水と
の沸点差があまり大きくないので、発生器3からは水分
を含んだアンモニア蒸気が発生する。このアンモニア蒸
気は精留器4並びに分縮器5に入り、凝縮器6で発生し
た冷媒溶液の一部をリフラックスポンプ10により分縮
器5に還流して、自己蒸発によって蒸気を過冷却し水分
を分縮させて蒸気中の水分を除去する。そして、図2に
示すような高濃度(高純度)のアンモニア蒸気(例え
ば、99.8%以上)に精製して凝縮器6に送り、凝縮
器6において冷却水等により冷却液化させてアンモニア
溶液(冷媒溶液)にする。
2. Description of the Related Art First, the above-mentioned ammonia absorption refrigerator is
This is an absorption refrigerator using an aqueous ammonia solution as a working medium, and a general refrigeration cycle thereof will be described with reference to FIG. 9. Evaporation pressure Pe (eg 0.29MP
Ammonia vapor evaporated in the evaporator 1 under aat-10 ° C) is absorbed in the aqueous ammonia solution in the absorber 2 so as to be maintained at the evaporation pressure Pe. Absorption heat generated at that time is released to outside by cooling water or the like. The concentrated solution generated by absorbing the ammonia vapor (solution in which the ammonia concentration is increased by absorbing ammonia) is increased in pressure by the solution pump 9, and after heat recovery via the solution heat exchanger 8,
It is sent to the rectifier 4. Then, the concentrated solution flowing down to the generator 3 has a condensation pressure Pc (for example, 1.55 MPaG at).
It is heated by an external heat source vapor or the like at 40 ° C.) to generate ammonia vapor. However, since the boiling point difference between ammonia and water is not so large, the generator 3 produces ammonia vapor containing water. This ammonia vapor enters the rectifier 4 and the partial condenser 5, and a part of the refrigerant solution generated in the condenser 6 is returned to the partial condenser 5 by the reflux pump 10 to supercool the vapor by self-evaporation. The water is condensed to remove the water in the steam. Then, it is purified to a high-concentration (high-purity) ammonia vapor (for example, 99.8% or more) as shown in FIG. 2 and sent to the condenser 6, where it is liquefied by cooling with cooling water or the like to form an ammonia solution. (Refrigerant solution).

【0003】上記冷媒溶液は膨張弁7を経て冷媒溶液供
給口19から蒸発器1に入り、ブライン入口22から流
入した被冷却媒体(例えばブライン)から熱を奪うこと
により蒸発したのち、蒸発したアンモニア蒸気は吸収器
2内でスプレーされる稀溶液(発生器3で部分的にアン
モニアを蒸発してアンモニア濃度が低くなった溶液)に
吸収される。このとき、冷媒溶液中に含まれている水分
はアンモニアに比べて蒸発し難いので、蒸発器1内の冷
媒溶液中の水分濃度が高まり、図3に示すように沸点
(蒸発温度)の上昇を生じる。図3には、蒸発圧力を変
えて冷媒の蒸発温度を変化させた各条件での蒸発温度の
上昇を示す。尚、上記冷媒溶液は、蒸発器1に入る前
に、蒸発器1から出るアンモニア蒸気の冷熱を回収する
ための過冷却器11、及び、ブリード熱交換器12Bに
通されて冷却される。
The refrigerant solution passes through the expansion valve 7 and enters the evaporator 1 through the refrigerant solution supply port 19 and evaporates by removing heat from the medium to be cooled (for example, brine) flowing from the brine inlet 22 and then evaporated ammonia. The vapor is absorbed in a rare solution sprayed in the absorber 2 (a solution in which ammonia is partially evaporated in the generator 3 to reduce the ammonia concentration). At this time, since the water contained in the refrigerant solution is less likely to evaporate than the ammonia, the water concentration in the refrigerant solution in the evaporator 1 is increased and the boiling point (evaporation temperature) is increased as shown in FIG. Occurs. FIG. 3 shows the rise of the evaporation temperature under each condition in which the evaporation temperature of the refrigerant is changed by changing the evaporation pressure. Before entering the evaporator 1, the refrigerant solution is passed through the subcooler 11 for recovering the cold heat of the ammonia vapor discharged from the evaporator 1 and the bleed heat exchanger 12B to be cooled.

【0004】上記冷媒溶液の沸点上昇が生じると、被冷
却媒体(ブライン)の温度と冷媒の蒸発温度の差が小さ
くなり、蒸発器1の熱交換量が低下して、ブライン出口
23で所定のブライン出口温度が得られなくなる。その
ため、蒸発器1内の冷媒溶液のアンモニア濃度を、凝縮
器6からの冷媒溶液のアンモニア濃度(例えば、99.
8%)に対して沸点上昇分1℃程度に抑えることができ
る値、具体的には、96〜97%に維持する必要がある
(図3参照)。すなわち、凝縮器6から送られてくる冷
媒溶液中の水分と同じ量の水分を取り除く必要がある。
ただし、水分だけを取り除くことは不可能であるので、
水分を含んだ冷媒溶液(アンモニア濃度96〜97%)
をブリードとして、冷媒循環量(凝縮器6から送られて
くる冷媒溶液の量)の4〜5%を蒸発器1から取り出す
ようにしている。
When the boiling point of the refrigerant solution rises, the difference between the temperature of the medium to be cooled (brine) and the evaporation temperature of the refrigerant decreases, the heat exchange amount of the evaporator 1 decreases, and a predetermined amount is set at the brine outlet 23. The brine outlet temperature cannot be obtained. Therefore, the ammonia concentration of the refrigerant solution in the evaporator 1 is changed to the ammonia concentration of the refrigerant solution from the condenser 6 (for example, 99.
8%), the boiling point increase can be suppressed to about 1 ° C., specifically, 96 to 97% (see FIG. 3). That is, it is necessary to remove the same amount of water as the water in the refrigerant solution sent from the condenser 6.
However, it is impossible to remove only water, so
Refrigerant solution containing water (ammonia concentration 96-97%)
Is used as a bleed, and 4 to 5% of the refrigerant circulation amount (the amount of the refrigerant solution sent from the condenser 6) is taken out from the evaporator 1.

【0005】冷媒溶液中の水分を効率よく取り除くため
には、冷媒溶液中の水分濃度が一番高い位置の冷媒溶液
を取り出すことが必要である。そこで、ブライン入口2
2付近ではブラインと冷媒溶液との温度差が大きく、す
なわちヒートフラックが大きく蒸発が盛んな部分であ
り、冷媒溶液中の水分濃度が最も高くなる傾向になり、
また、冷媒液室内での冷媒溶液の流れを一方方向にする
ことにより、冷媒溶液が流れるに従って水分濃度が次第
に高くなることから、冷媒溶液及びブラインの流れ方向
を筒軸方向に沿って反対向きにして、ブライン出口23
側に冷媒溶液の供給口19を配置するとともに、ブライ
ン入口22側にブリード取出し口20Bを設けている。
なお、このブリード取出し口20Bで取り出した高水分
濃度の冷媒溶液は、ブリード熱交換器12Bで蒸発器1
に入る前の冷媒溶液に冷熱回収されたのち、吸収器2に
送られる。
In order to efficiently remove the water content in the refrigerant solution, it is necessary to take out the refrigerant solution at the position where the water content in the refrigerant solution is the highest. Therefore, brine entrance 2
In the vicinity of 2, the temperature difference between the brine and the refrigerant solution is large, that is, the heat flakes are large and the evaporation is active, and the water concentration in the refrigerant solution tends to be the highest.
Further, by making the flow of the refrigerant solution in the refrigerant liquid chamber in one direction, the water concentration gradually increases as the refrigerant solution flows, so that the flow directions of the refrigerant solution and the brine are opposite to each other along the cylinder axis direction. The brine exit 23
The coolant solution supply port 19 is disposed on the side, and the bleed outlet 20B is provided on the side of the brine inlet 22.
The high-moisture-concentration refrigerant solution taken out through the bleed outlet 20B is transferred to the evaporator 1 through the bleed heat exchanger 12B.
After being cooled and recovered by the refrigerant solution before entering, it is sent to the absorber 2.

【0006】なお、アンモニア吸収式冷凍機ではない
が、アンモニア圧縮式冷凍機の分野において、蒸発器か
らの冷媒の蒸発時に未蒸発の冷媒溶液がキャリーオーバ
ーすることを防止するために、蒸発器の上部側にアキュ
ームレータ(気液分離器)を接続して、冷媒蒸気の流れ
の中から冷媒液を分離回収して蒸発器の冷媒液室に戻す
ような技術が知られている。
Although not an ammonia absorption refrigerator, in the field of ammonia compression refrigerator, in order to prevent carry-over of an unevaporated refrigerant solution at the time of evaporation of the refrigerant from the evaporator, A technique is known in which an accumulator (gas-liquid separator) is connected to the upper side to separate and collect the refrigerant liquid from the flow of the refrigerant vapor and return it to the refrigerant liquid chamber of the evaporator.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、従来の
満液二重管式蒸発器では、冷媒溶液が冷媒液室内を筒軸
方向に沿って流れて、冷媒の蒸発によって水分濃度が次
第に高くなるときに、冷媒の蒸発で発生する冷媒蒸気の
気泡により筒軸方向に沿う流れの前後で冷媒溶液の対流
混合が生じて、水分濃度が高くなった筒軸方向下流側の
冷媒溶液が筒軸方向上流側の冷媒溶液と筒軸方向の前後
で混ざって均一化する傾向があった。その結果、水分濃
度の高い冷媒溶液を筒軸方向下流側から効率よく取り出
すことができないという不具合があった。
However, in the conventional liquid-filled double-tube evaporator, when the refrigerant solution flows in the refrigerant liquid chamber along the cylinder axis direction, and the water concentration gradually increases due to the evaporation of the refrigerant. In addition, due to the convective mixing of the refrigerant solution before and after the flow along the cylinder axis direction due to the bubbles of the refrigerant vapor generated by the evaporation of the refrigerant, the refrigerant solution on the downstream side in the cylinder axis direction where the water concentration becomes high The refrigerant solution on the side tended to be mixed and uniform before and after in the cylinder axis direction. As a result, there is a problem that the refrigerant solution having a high water content cannot be efficiently taken out from the downstream side in the cylinder axis direction.

【0008】本発明は、上記実情に鑑みてなされたもの
であり、その第1の目的は、冷媒液室内から水分濃度の
高い冷媒溶液を効率よく取り出して、冷媒溶液中の水分
濃度の上昇を抑制することが可能となる満液二重管式の
蒸発器、及び、未蒸発の冷媒溶液のキャリーオーバーを
抑制しながら、上記目的を実現する満液二重管式の蒸発
器を提供することである。また、第2の目的は、上記満
液二重管式の蒸発器を備えて、良好な冷凍能力を維持す
ることが可能となるアンモニア吸収式冷凍機を提供する
ことである。
The present invention has been made in view of the above circumstances, and a first object thereof is to efficiently take out a refrigerant solution having a high water content from the refrigerant liquid chamber to increase the water content in the refrigerant solution. To provide a full-filling double-tube evaporator that can be suppressed, and a full-filling double-tube evaporator that achieves the above object while suppressing carryover of an unevaporated refrigerant solution. Is. A second object of the present invention is to provide an ammonia absorption refrigerator that is equipped with the above-mentioned liquid-filled double-tube evaporator and can maintain a good refrigerating capacity.

【0009】[0009]

【課題を解決するための手段】上記第1の目的を達成す
るための本発明に係る満液二重管式の蒸発器の第一の特
徴構成は、請求項1に記載した如く、前記外筒の筒軸方
向一端部に前記冷媒液室に対する冷媒溶液供給口を設
け、前記外筒の筒軸方向他端部に、前記冷媒液室内の冷
媒溶液から蒸発した冷媒蒸気を前記冷媒液室外に排出す
る冷媒蒸気出口、及び、前記冷媒液室内の冷媒溶液を前
記冷媒液室外に取り出す冷媒溶液取出口を設けて、前記
冷媒液室内において冷媒溶液及び冷媒蒸気を筒軸方向に
沿って流すとともに、前記冷媒液室内の少なくとも上部
側部分を筒軸方向に沿って前後に仕切る仕切体を設けて
いる点にある。
A first characteristic constitution of a full-filled double-tube type evaporator according to the present invention for achieving the above first object is, as described in claim 1, A refrigerant solution supply port for the refrigerant liquid chamber is provided at one end of the cylinder in the cylinder axis direction, and the other end of the outer cylinder in the cylinder axis direction is a refrigerant vapor evaporated from a refrigerant solution in the refrigerant liquid chamber outside the refrigerant liquid chamber. A refrigerant vapor outlet to be discharged, and a refrigerant solution outlet for taking out the refrigerant solution in the refrigerant liquid chamber to the outside of the refrigerant liquid chamber, while flowing the refrigerant solution and the refrigerant vapor in the refrigerant liquid chamber along the cylinder axis direction, A partition body is provided to partition at least the upper side portion of the refrigerant liquid chamber into front and rear along the cylinder axis direction.

【0010】同第二の特徴構成は、請求項2に記載した
如く、前記冷媒液室内の冷媒溶液から蒸発した冷媒蒸気
中の冷媒液を分離して回収する気液分離器を前記外筒の
上部に配置するとともに、前記気液分離器内の底部の冷
媒液排出口から排出する前記回収した冷媒液を前記冷媒
液室内に戻す冷媒液移送管を設け、前記外筒の筒軸方向
一端部に前記冷媒液室に対する冷媒溶液供給口を設け、
前記外筒の筒軸方向他端部と同じ側の前記気液分離器の
端部に、前記気液分離器内の冷媒蒸気を前記気液分離器
外に排出する冷媒蒸気出口、及び、前記気液分離器内の
冷媒溶液を前記気液分離器外に取り出す冷媒溶液取出口
を設けて、前記冷媒液室内及び前記気液分離器内におい
て冷媒溶液及び冷媒蒸気を筒軸方向に沿って流すととも
に、前記冷媒液室内の少なくとも上部側部分を筒軸方向
に沿って前後に仕切る仕切体を設け、前記気液分離器の
底部側部分を筒軸方向に沿って前後に仕切る堰状部材
を、前記冷媒液排出口と前記冷媒溶液取出口の間の前記
気液分離器の底部に設けている点にある。
In the second characteristic construction, as described in claim 2, a gas-liquid separator for separating and recovering the refrigerant liquid in the refrigerant vapor evaporated from the refrigerant solution in the refrigerant liquid chamber is provided in the outer cylinder. A refrigerant liquid transfer pipe that is arranged at the upper portion and that returns the recovered refrigerant liquid discharged from the refrigerant liquid discharge port at the bottom of the gas-liquid separator to the refrigerant liquid chamber is provided, and one end portion in the cylinder axis direction of the outer cylinder A refrigerant solution supply port for the refrigerant liquid chamber,
At the end of the gas-liquid separator on the same side as the other end in the cylinder axis direction of the outer cylinder, a refrigerant vapor outlet for discharging the refrigerant vapor in the gas-liquid separator to the outside of the gas-liquid separator, and A refrigerant solution outlet for extracting the refrigerant solution in the gas-liquid separator to the outside of the gas-liquid separator is provided, and the refrigerant solution and the refrigerant vapor flow along the cylinder axis direction in the refrigerant liquid chamber and the gas-liquid separator. Together with a partition body that partitions at least the upper side portion of the refrigerant liquid chamber back and forth along the cylinder axis direction, a weir-like member that partitions the bottom side portion of the gas-liquid separator back and forth along the cylinder axis direction, It is located at the bottom of the gas-liquid separator between the refrigerant liquid outlet and the refrigerant solution outlet.

【0011】同第三の特徴構成は、請求項3に記載した
如く、上記第二の特徴構成に加えて、前記冷媒溶液供給
口に流入する前の冷媒溶液を通流させて前記気液分離器
内の冷媒溶液と熱交換させる熱交換器を、前記気液分離
器内の前記冷媒溶液取出口の近傍に設けている点にあ
る。
The third characteristic configuration is, in addition to the second characteristic configuration, as described in claim 3, in which the refrigerant solution before flowing into the refrigerant solution supply port is caused to flow to separate the gas-liquid. A heat exchanger for exchanging heat with the refrigerant solution in the container is provided near the refrigerant solution outlet in the gas-liquid separator.

【0012】同第四の特徴構成は、請求項4に記載した
如く、上記第一から第三のいずれかの特徴構成に加え
て、前記冷媒溶液と前記被冷却媒体を筒軸方向に沿って
反対向きに流すとともに、前記冷媒溶液供給口を前記冷
却媒体室からの被冷却媒体の出口が設置されている筒軸
方向端部に配置し、前記冷媒溶液取出口を前記冷却媒体
室に対する被冷却媒体の入口が設置されている筒軸方向
端部に配置している点にある。
As described in claim 4, the fourth characteristic construction is characterized in that, in addition to any one of the first to third characteristic constructions, the refrigerant solution and the cooling medium are arranged along the cylinder axis direction. While flowing in the opposite direction, the refrigerant solution supply port is arranged at the end portion in the cylinder axis direction where the outlet of the medium to be cooled from the cooling medium chamber is installed, and the refrigerant solution outlet is cooled to the cooling medium chamber. It is located at the end in the cylinder axial direction where the medium inlet is installed.

【0013】上記第2の目的を達成するための本発明に
係るアンモニア吸収式冷凍機の特徴構成は、請求項4に
記載した如く、上記第一から第三のいずれかの特徴構成
の満液二重管式の蒸発器を備えた点にある。
As for the characteristic constitution of the ammonia absorption refrigerator according to the present invention for achieving the above second object, as described in claim 4, the full liquid of any one of the above first to third characteristic constitution It is equipped with a double-tube evaporator.

【0014】以下に作用並びに効果を説明する。本発明
に係る満液二重管式の蒸発器の第一の特徴構成によれ
ば、筒軸方向を水平横向きにした内外二重筒において、
外筒の筒軸方向一端部に設けた冷媒溶液供給口から外筒
と内筒との間に形成した冷媒液室に供給された冷媒溶液
が、冷媒液室内を筒軸方向に沿って外筒の筒軸方向他端
部に設けた冷媒溶液取出口に向けて流れるときに、内筒
の内部に形成した冷却媒体室を流れる被冷却媒体から熱
を奪って冷媒液室内の冷媒溶液から冷媒蒸気が蒸発し、
冷媒溶液中の水分濃度が高くなるとともに、発生した冷
媒蒸気が上昇して冷媒液室内の上部側部分を筒軸方向に
沿って外筒の筒軸方向他端部に設けた冷媒蒸気出口に向
けて流れるが、冷媒液室内の少なくとも上部側部分を筒
軸方向に沿って前後に仕切る仕切体によって、上記冷媒
蒸気の筒軸方向に沿う流れの前後での移動が阻止され
る。そして、外筒の筒軸方向他端部において、冷媒蒸気
が上記冷媒蒸気出口から冷媒液室外に排出するととも
に、水分濃度が高くなった冷媒溶液が上記冷媒溶液取出
口から冷媒液室外に取り出される。
The operation and effect will be described below. According to the first characteristic configuration of the liquid-filled double-tube evaporator according to the present invention, in the inner and outer double cylinders in which the cylinder axis direction is horizontally horizontal,
The refrigerant solution supplied to the refrigerant liquid chamber formed between the outer cylinder and the inner cylinder from the refrigerant solution supply port provided at one end in the cylinder axis direction of the outer cylinder is the outer cylinder along the cylinder axis direction in the refrigerant liquid chamber. When flowing toward the refrigerant solution outlet provided at the other end in the cylinder axis direction of the, the heat is taken from the cooling medium flowing through the cooling medium chamber formed inside the inner cylinder to remove the refrigerant vapor from the refrigerant solution in the refrigerant liquid chamber. Evaporates,
As the water concentration in the refrigerant solution increases, the generated refrigerant vapor rises and the upper part of the refrigerant liquid chamber is directed along the cylinder axis direction to the refrigerant vapor outlet provided at the other end of the outer cylinder in the cylinder axis direction. However, the partition body partitioning at least the upper portion of the refrigerant liquid chamber in the cylinder axial direction to prevent the refrigerant vapor from moving in the cylinder axial direction. Then, at the other end of the outer cylinder in the cylinder axis direction, the refrigerant vapor is discharged from the refrigerant vapor outlet to the outside of the refrigerant liquid chamber, and the refrigerant solution having a high water content is taken out of the refrigerant liquid chamber from the refrigerant solution outlet. .

【0015】すなわち、冷媒液室内の少なくとも上部側
部分を仕切る仕切体によって冷媒蒸気の筒軸方向に沿う
前後での移動を阻止できるので、冷媒蒸気の移動に伴う
筒軸方向前後での水分濃度が高い冷媒溶液と水分濃度が
低い冷媒溶液との対流混合が抑制され、筒軸方向他端部
側の冷媒溶液の水分濃度が高い状態が維持され、筒軸方
向他端部に設けた冷媒溶液取出口から水分濃度の高い冷
媒溶液を効率良く取り出すことが可能となる。従って、
冷媒溶液の筒軸方向の前後における対流混合を防止し
て、冷媒液室内から水分濃度の高い冷媒溶液を効率よく
取り出し、冷媒溶液中の水分濃度の上昇を抑制すること
が可能となる満液二重管式の蒸発器が提供される。
That is, since the partition body partitioning at least the upper portion of the refrigerant liquid chamber can prevent the refrigerant vapor from moving in the cylinder axis direction before and after, the water concentration in the cylinder axis direction before and after the refrigerant vapor moves. Convective mixing of a high-refrigerant solution and a low-water-concentration refrigerant solution is suppressed, the high-water-concentration state of the refrigerant solution on the other end side in the cylinder axis direction is maintained, and the refrigerant solution collection provided on the other end in the cylinder axis direction It is possible to efficiently take out the refrigerant solution having a high water concentration from the outlet. Therefore,
It is possible to prevent convective mixing of the refrigerant solution before and after in the cylinder axis direction, to efficiently take out the refrigerant solution having a high water content from the refrigerant liquid chamber, and to suppress the increase of the water concentration in the refrigerant solution. A heavy-tube evaporator is provided.

【0016】同第二の特徴構成によれば、筒軸方向を水
平横向きにした内外二重筒において、外筒の筒軸方向一
端部に設けた冷媒溶液供給口から外筒と内筒との間に形
成した冷媒液室に供給された冷媒溶液が、冷媒液室内を
筒軸方向に沿って外筒の筒軸方向他端部と同じ側の上記
冷媒液室の上部に配置した気液分離器の端部に設けた冷
媒溶液取出口に向けて流れるときに、内筒の内部に形成
した冷却媒体室を流れる被冷却媒体から熱を奪って冷媒
液室内の冷媒溶液から冷媒蒸気が蒸発し、冷媒溶液中の
水分濃度が高くなるとともに、発生した冷媒蒸気が上昇
して冷媒液室内の上部側部分及び冷媒液室の上部の気液
分離器内を筒軸方向に沿って上記冷媒蒸気出口に向けて
流れ、気液分離器内では、冷媒液室内の冷媒溶液から蒸
発した冷媒蒸気中の冷媒液が分離して回収され、気液分
離器の底部の冷媒液排出口から排出する回収冷媒液が冷
媒液移送管によって冷媒液室内に戻される。さらに、冷
媒液室内の少なくとも上部側部分を筒軸方向に沿って前
後に仕切る仕切体によって、冷媒液室内の上部側部分を
流れる冷媒蒸気の筒軸方向に沿う前後での移動が阻止さ
れ、また、気液分離器の底部の冷媒液排出口と気液分離
器の端部の冷媒溶液取出口の間に設けた堰状部材によっ
て、気液分離器の底部側部分を流れる回収冷媒液の冷媒
溶液取出口への移動が阻止される。そして、気液分離器
の外筒の筒軸方向他端部と同じ側の端部において、冷媒
蒸気が冷媒蒸気出口から気液分離器外に排出するととも
に、水分濃度が高くなった冷媒溶液が冷媒溶液取出口か
ら気液分離器外に取り出される。
According to the second characteristic configuration, in the inner-outer double cylinder having the cylinder axis direction in the horizontal lateral direction, the outer cylinder and the inner cylinder are connected from the refrigerant solution supply port provided at one end of the outer cylinder in the cylinder axis direction. The refrigerant solution supplied to the refrigerant liquid chamber formed between the gas and liquid is disposed in the refrigerant liquid chamber along the cylinder axis direction on the upper side of the refrigerant liquid chamber on the same side as the other end in the cylinder axis direction of the outer cylinder. When flowing toward the refrigerant solution outlet provided at the end of the container, heat is taken from the cooling medium flowing through the cooling medium chamber formed inside the inner cylinder to evaporate the refrigerant vapor from the refrigerant solution in the refrigerant liquid chamber. , The concentration of water in the refrigerant solution increases, the generated refrigerant vapor rises, and the refrigerant vapor outlet along the axial direction in the upper part of the refrigerant liquid chamber and the gas-liquid separator in the upper part of the refrigerant liquid chamber. Flow toward the inside of the refrigerant vapor inside the refrigerant liquid chamber in the vapor-liquid separator. Refrigerant liquid is separated and recovered, recovered refrigerant liquid discharged from the refrigerant liquid outlet of the bottom of the gas-liquid separator is returned to the refrigerant liquid chamber by the refrigerant liquid flow pipe. Further, by a partition body that partitions at least the upper side portion of the refrigerant liquid chamber back and forth along the cylinder axis direction, movement of the refrigerant vapor flowing through the upper side portion of the refrigerant liquid chamber in the front and rear direction along the cylinder axis direction is prevented, and , The refrigerant of the recovered refrigerant liquid flowing through the bottom side portion of the gas-liquid separator by the weir-shaped member provided between the refrigerant liquid outlet at the bottom of the gas-liquid separator and the refrigerant solution outlet at the end of the gas-liquid separator Movement to the solution outlet is blocked. Then, at the end on the same side as the other end in the cylinder axis direction of the outer cylinder of the gas-liquid separator, while the refrigerant vapor is discharged from the refrigerant vapor outlet to the outside of the gas-liquid separator, the refrigerant solution having a high water content is It is taken out of the gas-liquid separator from the refrigerant solution outlet.

【0017】すなわち、気液分離器及び冷媒液移送管に
よって、冷媒液室内の冷媒溶液から蒸発した冷媒蒸気中
の冷媒液を分離回収して冷媒液室内に戻すことで、冷媒
溶液のキャリーオーバーが抑制される。同時に、冷媒液
室内の少なくとも上部側部分を仕切る仕切体によって冷
媒蒸気の筒軸方向に沿う前後での移動が阻止され、且
つ、気液分離器の底部に設けた堰状部材によって気液分
離器の底部側部分を流れる回収冷媒液の冷媒溶液取出口
への移動が阻止されるので、冷媒液室内及び気液分離器
内での筒軸方向前後での水分濃度が高い冷媒溶液と水分
濃度が低い冷媒溶液との対流混合が抑制されて、筒軸方
向他端部と同じ端部側の気液分離器内の冷媒溶液の水分
濃度が高い状態が維持され、気液分離器の端部に設けた
冷媒溶液取出口から水分濃度の高い冷媒溶液を効率良く
取り出すことが可能となる。従って、未蒸発の冷媒溶液
のキャリーオーバーを抑制しながら、冷媒溶液及び冷媒
蒸気の筒軸方向の前後における対流混合を防止して、冷
媒液室内から水分濃度の高い冷媒溶液を効率よく取り出
し、冷媒溶液中の水分濃度の上昇を抑制することが可能
となる満液二重管式の蒸発器が提供される。
That is, the gas-liquid separator and the refrigerant liquid transfer pipe separate and collect the refrigerant liquid in the refrigerant vapor evaporated from the refrigerant solution in the refrigerant liquid chamber and return it to the refrigerant liquid chamber, so that the carry-over of the refrigerant solution is achieved. Suppressed. At the same time, the partition body that partitions at least the upper side portion of the refrigerant liquid chamber prevents the refrigerant vapor from moving in the front-rear direction along the cylinder axis direction, and the weir-shaped member provided at the bottom of the gas-liquid separator separates the gas-liquid separator. Since the movement of the recovered refrigerant liquid flowing through the bottom side portion of the to the refrigerant solution outlet is blocked, the refrigerant solution and the water concentration in the refrigerant liquid chamber and in the gas-liquid separator are high before and after the cylinder axis direction. Convective mixing with a low refrigerant solution is suppressed, and the state in which the moisture concentration of the refrigerant solution in the gas-liquid separator on the same end side as the other end in the cylinder axis direction is high is maintained, and at the end of the gas-liquid separator. It is possible to efficiently take out the refrigerant solution having a high water concentration from the provided refrigerant solution outlet. Therefore, while suppressing carryover of the unevaporated refrigerant solution, preventing convective mixing of the refrigerant solution and the refrigerant vapor before and after in the cylinder axis direction, efficiently takes out the refrigerant solution having a high water concentration from the refrigerant liquid chamber, Provided is a liquid-filled double-tube evaporator capable of suppressing an increase in water concentration in a solution.

【0018】同第三の特徴構成によれば、前記冷媒溶液
供給口に流入する前の冷媒溶液が、前記気液分離器内の
前記冷媒溶液取出口の近傍に設けた熱交換器に通流し
て、前記気液分離器内の冷媒溶液と熱交換する。すなわ
ち、冷媒溶液供給口に流入する前の冷媒溶液を気液分離
器内の冷媒溶液の冷熱によって充分に冷却することで、
フラッシング等を抑制しつつ、冷媒液室の出入口間のエ
ンタルピー差を大きくして蒸発器の冷却能力を高めるこ
とができる一方、冷媒溶液供給口に流入する前の冷媒溶
液が保有している熱によって気液分離器内の冷媒溶液中
の冷媒を蒸発させることができ、しかも、熱交換器を気
液分離器内に組み込んでいるので、気液分離器外に熱交
換器を設ける場合に比べ、装置がコンパクト化される。
従って、装置構成の複雑化を回避しながら、熱の利用効
率を高めることが可能となる満液二重管式の蒸発器が提
供される。
According to the third characteristic configuration, the refrigerant solution before flowing into the refrigerant solution supply port flows into the heat exchanger provided in the gas-liquid separator near the refrigerant solution outlet. And exchanges heat with the refrigerant solution in the gas-liquid separator. That is, by sufficiently cooling the refrigerant solution before flowing into the refrigerant solution supply port by the cold heat of the refrigerant solution in the gas-liquid separator,
While suppressing flashing, etc., the cooling capacity of the evaporator can be increased by increasing the enthalpy difference between the inlet and outlet of the refrigerant liquid chamber, while the heat held by the refrigerant solution before flowing into the refrigerant solution supply port The refrigerant in the refrigerant solution in the gas-liquid separator can be evaporated, and since the heat exchanger is incorporated in the gas-liquid separator, compared to the case where a heat exchanger is provided outside the gas-liquid separator, The device is made compact.
Therefore, it is possible to provide a liquid-filled double-tube evaporator capable of increasing the heat utilization efficiency while avoiding the complication of the device configuration.

【0019】同第四の特徴構成によれば、前記冷却媒体
室からの被冷却媒体の出口が配置されている筒軸方向端
部に配置した冷媒溶液供給口から前記冷媒液室に供給さ
れた冷媒溶液が、筒軸方向に沿って流れて前記冷却媒体
室に対する被冷却媒体の入口が配置されている筒軸方向
端部に配置した前記冷媒溶液取出口から冷媒液室外に取
り出され、一方、上記被冷却媒体の入口から前記冷却媒
体室に流入した被冷却媒体が、筒軸方向に沿って上記冷
媒液室内での冷媒溶液の流れとは反対向きに流れて上記
被冷却媒体の出口から流出する。すなわち、冷媒溶液は
冷媒液室内を筒軸方向に沿って流れるときに、冷却媒体
室内の被冷却媒体から奪った熱で冷媒が蒸発して冷媒溶
液取出口に近いほど水分濃度が高くなるので、冷媒溶液
取出口から水分濃度が高くなった冷媒液体を効率良く取
り出すことができ、一方、水分濃度が増加すると冷媒溶
液の蒸発温度が上昇することから、冷媒溶液の蒸発温度
は冷媒溶液供給口に近いほど低くなるので、冷媒溶液供
給口と同じ筒軸方向端部に位置する被冷却媒体の出口か
ら良好に冷却された被冷却媒体が流出される。従って、
冷媒溶液中の水分濃度の上昇を抑制しつつ、被冷却媒体
に対する冷却効果を高めることが可能となる満液二重管
式の蒸発器が提供される。
According to the fourth characteristic configuration, the medium to be cooled from the cooling medium chamber is supplied to the refrigerant liquid chamber from the refrigerant solution supply port arranged at the end portion in the cylinder axis direction where the outlet is arranged. Refrigerant solution flows out along the cylinder axis direction and is taken out of the refrigerant liquid chamber from the refrigerant solution outlet arranged at the cylinder axis direction end where the inlet of the cooled medium to the cooling medium chamber is arranged, while, The cooled medium that has flowed into the cooling medium chamber from the inlet of the cooled medium flows in the direction opposite to the flow of the refrigerant solution in the refrigerant liquid chamber along the cylinder axis direction and flows out from the outlet of the cooled medium. To do. That is, when the refrigerant solution flows in the refrigerant liquid chamber along the cylinder axis direction, the refrigerant is evaporated by the heat taken from the cooled medium in the cooling medium chamber and the moisture concentration becomes higher as it approaches the refrigerant solution outlet, It is possible to efficiently take out the refrigerant liquid having a high water concentration from the refrigerant solution outlet, while the evaporation temperature of the refrigerant solution rises as the water concentration increases. Since the lower the temperature is, the lower the temperature is, the better the cooled cooling medium flows out from the outlet of the cooling medium located at the same end in the cylinder axis direction as the refrigerant solution supply port. Therefore,
Provided is a liquid-filled double-tube evaporator capable of enhancing a cooling effect on a medium to be cooled while suppressing an increase in water concentration in a refrigerant solution.

【0020】本発明に係るアンモニア吸収式冷凍機の特
徴構成によれば、上記第一から第四のいずれかの特徴構
成の満液二重管式の蒸発器を、水分を含んだアンモニア
液を蒸発させて被冷却媒体を冷却する蒸発器として用い
る。すなわち、アンモニアと水分は沸点差が小さく、蒸
発器に供給される冷媒溶液としてのアンモニア液は水分
を含んでいるが、上記第一から第四のいずれかのの特徴
構成の満液二重管式の蒸発器を用いることで、冷媒液室
内から水分濃度の高い冷媒溶液を効率よく取り出し、冷
媒溶液中の水分濃度の上昇を抑制することができ、さら
に、上記第二から第四のいずれかのの特徴構成の満液二
重管式の蒸発器を用いることで、アンモニア蒸気による
未蒸発のアンモニア液のキャリーオーバーを抑制するこ
とができ、さらに、上記第三又は第四の特徴構成の満液
二重管式の蒸発器を用いることで、装置構成の複雑化を
回避しつつ熱の利用効率を高めることができ、さらに、
上記第四の特徴構成の満液二重管式の蒸発器を用いるこ
とで、アンモニアの蒸発による被冷却媒体に対する冷却
効果を高めることができる。従って、アンモニア液中で
の水分濃度の上昇を抑制し、未蒸発のアンモニア液のキ
ャリーオーバーを抑制し、装置構成の複雑化を回避しつ
つ熱の利用効率を高め、さらに、被冷却媒体に対する冷
却効果を高めることが可能となる満液二重管式の蒸発器
を用いて、良好な冷凍能力を維持することが可能となる
アンモニア吸収式冷凍機が提供される。
According to the characteristic constitution of the ammonia absorption refrigerator according to the present invention, the liquid-filled double-tube type evaporator of any one of the above-mentioned first to fourth characteristic constitutions is used for the ammonia liquid containing water. It is used as an evaporator that evaporates to cool the medium to be cooled. That is, the boiling point difference between ammonia and water is small, and the ammonia liquid as a refrigerant solution supplied to the evaporator contains water. However, the liquid-filled double pipe of any one of the first to fourth features described above. By using the evaporator of the formula, it is possible to efficiently take out a refrigerant solution having a high water concentration from the refrigerant liquid chamber and suppress an increase in the water concentration in the refrigerant solution. By using the liquid-filled double-tube evaporator having the characteristic configuration described in (3) above, it is possible to suppress carryover of the non-evaporated ammonia solution due to ammonia vapor, and further, to achieve the third or fourth characteristic configuration described above. By using the liquid double tube evaporator, it is possible to improve the heat utilization efficiency while avoiding the complication of the device configuration.
By using the liquid-filled double-tube evaporator having the fourth characteristic configuration, it is possible to enhance the cooling effect on the medium to be cooled due to the evaporation of ammonia. Therefore, the increase of the water concentration in the ammonia solution is suppressed, the carryover of the non-evaporated ammonia solution is suppressed, the efficiency of heat utilization is improved while avoiding the complication of the device configuration, and the cooling of the medium to be cooled is further suppressed. Provided is an ammonia absorption refrigerator that can maintain a good refrigerating capacity by using a liquid-filled double-tube evaporator that can enhance the effect.

【0021】[0021]

【発明の実施の形態】本発明に係る満液二重管式の蒸発
器の第1〜第2実施形態について、アンモニア吸収式冷
凍機に備えた場合を例にして説明する。なお、アンモニ
ア吸収式冷凍機の基本構成については、既に、図9、図
2及び図3を参照しながら説明しているので、以下、重
複する説明は省略する。
BEST MODE FOR CARRYING OUT THE INVENTION First to second embodiments of a liquid-filled double-tube type evaporator according to the present invention will be described with reference to a case where an ammonia absorption refrigerator is equipped. The basic configuration of the ammonia absorption refrigerator has already been described with reference to FIGS. 9, 2 and 3, and thus redundant description will be omitted below.

【0022】〔第1実施形態〕図1、図4及び図5に示
すように、第1実施形態では、満液二重管式の蒸発器1
は、外筒13と内筒14とからなり筒軸方向を水平横向
きにした内外二重筒において、外筒13と内筒14との
間を冷媒溶液としてのアンモニア水溶液が流れる冷媒液
室16に、内筒13の内部を被冷却媒体としてのブライ
ンが流れる冷却媒体室17に夫々形成している。なお、
上記外筒13及び内筒14は円筒に形成している。さら
に、前記冷媒液室16内の冷媒溶液から蒸発した冷媒蒸
気中の冷媒液を分離して回収する気液分離器としてのア
キュームレータ21を外筒13の上部に配置するととも
に、アキュームレータ21内の底部の冷媒液排出口25
から排出する前記回収した冷媒液を冷媒液室16内に戻
す冷媒液移送管18を設けている。なお、冷媒液室16
の上部側とアキュームレータ21は筒軸方向に沿って間
隔を隔てて配置した3本の連通管21Aによって連通接
続されている。
[First Embodiment] As shown in FIGS. 1, 4 and 5, in the first embodiment, a liquid-filled double-tube evaporator 1 is used.
Is an inner-outer double cylinder composed of an outer cylinder 13 and an inner cylinder 14 and having a cylinder axis direction that is horizontally horizontal. In the refrigerant liquid chamber 16 in which an aqueous ammonia solution as a refrigerant solution flows between the outer cylinder 13 and the inner cylinder 14. The inside of the inner cylinder 13 is formed in a cooling medium chamber 17 in which brine as a medium to be cooled flows. In addition,
The outer cylinder 13 and the inner cylinder 14 are formed into a cylinder. Further, an accumulator 21 as a gas-liquid separator that separates and collects the refrigerant liquid in the refrigerant vapor that has evaporated from the refrigerant solution in the refrigerant liquid chamber 16 is arranged in the upper part of the outer cylinder 13, and the bottom part in the accumulator 21 is arranged. Refrigerant liquid discharge port 25
A refrigerant liquid transfer pipe 18 for returning the recovered refrigerant liquid discharged from the inside of the refrigerant liquid chamber 16 is provided. The refrigerant liquid chamber 16
The upper side of the accumulator 21 and the accumulator 21 are communicatively connected by three communicating pipes 21A arranged at intervals along the cylinder axis direction.

【0023】前記外筒13の筒軸方向一端部に前記冷媒
液室16に対する冷媒溶液供給口19を設け、前記外筒
13の筒軸方向他端部と同じ側の前記アキュームレータ
21の端部に、アキュームレータ21内の冷媒蒸気をア
キュームレータ21外に排出する冷媒蒸気出口24、及
び、アキュームレータ21内の冷媒溶液をアキュームレ
ータ21外に取り出す冷媒溶液取出口20を設けて、前
記冷媒液室16内及び前記アキュームレータ21内にお
いて冷媒溶液(アンモニア溶液)及び冷媒蒸気(アンモ
ニア蒸気)を筒軸方向に沿って流すとともに、冷媒液室
16内の少なくとも上部側部分を筒軸方向に沿って前後
に仕切る仕切体15を設け、アキュームレータ21の底
部側部分を筒軸方向に沿って前後に仕切る堰状部材26
を、前記冷媒液排出口25と前記冷媒溶液取出口20の
間のアキュームレータ21の底部に設けている。なお、
上記仕切体15は、断面がドーナツ形状の冷媒液室16
の上部側部分のみならず、冷媒液室16の中央部分を覆
うように立設した板体で構成されている。
A refrigerant solution supply port 19 for the refrigerant liquid chamber 16 is provided at one end of the outer cylinder 13 in the cylinder axis direction, and at the end of the accumulator 21 on the same side as the other end of the outer cylinder 13 in the cylinder axis direction. , A refrigerant vapor outlet 24 for discharging the refrigerant vapor in the accumulator 21 to the outside of the accumulator 21, and a refrigerant solution outlet 20 for taking out the refrigerant solution in the accumulator 21 to the outside of the accumulator 21 are provided in the refrigerant liquid chamber 16 and the inside. In the accumulator 21, a refrigerant solution (ammonia solution) and a refrigerant vapor (ammonia vapor) are caused to flow along the cylinder axis direction, and at least an upper part of the refrigerant liquid chamber 16 is partitioned into front and rear along the cylinder axis direction. And a weir-like member 26 for partitioning the bottom side portion of the accumulator 21 back and forth along the cylinder axis direction.
Is provided at the bottom of the accumulator 21 between the refrigerant liquid outlet 25 and the refrigerant solution outlet 20. In addition,
The partition body 15 has a doughnut-shaped refrigerant liquid chamber 16 in cross section.
The plate body is erected so as to cover not only the upper portion of the refrigerant liquid chamber 16 but also the central portion of the refrigerant liquid chamber 16.

【0024】上記構成により、冷媒液室16内の冷媒溶
液が冷却媒体室17内のブラインの熱を奪って蒸発して
発生した冷媒蒸気が、上昇して冷媒液室16内の上部側
部分を流れるときに仕切体15によって筒軸方向に沿う
前後での移動が阻止され、冷媒溶液の対流混合が抑制さ
れる。そして、冷媒蒸気が冷媒液室の上部に位置するア
キュームレータ21に流入する一方、冷媒液室16内の
下部側部分では、冷媒蒸気が蒸発して水分濃度が高くな
った冷媒溶液が筒軸方向に沿って流れる。
With the above arrangement, the refrigerant vapor generated by the refrigerant solution in the refrigerant liquid chamber 16 absorbing the heat of the brine in the cooling medium chamber 17 and evaporating rises to the upper side portion in the refrigerant liquid chamber 16. When flowing, the partition body 15 prevents movement in the front-rear direction along the cylinder axis direction, and suppresses convective mixing of the refrigerant solution. Then, while the refrigerant vapor flows into the accumulator 21 located in the upper portion of the refrigerant liquid chamber, in the lower side portion of the refrigerant liquid chamber 16, the refrigerant solution in which the refrigerant vapor has evaporated and the water concentration has increased becomes in the cylinder axis direction. Flowing along.

【0025】アキュームレータ21に流入した冷媒蒸気
は筒軸方向に沿って流れるときに、蒸気中の冷媒液が分
離回収されてアキュームレータ21の底部に流下して、
アキュームレータ21の底部側部分を筒軸方向に沿って
流れるが、このとき、分離回収された冷媒液が前記堰状
部材26でせき止められて前記冷媒液排出口25から排
出され、堰状部材26よりも後側に位置する前記冷媒溶
液取出口20に流れることが阻止される。その結果、前
記冷媒液室16内の下部側部分を流れて、水分濃度が高
くなった冷媒溶液がアキュームレータ21の上記冷媒溶
液取出口20の位置に上昇してくるので、この冷媒溶液
取出口20から水分濃度の高くなった冷媒溶液を効率良
く取出すことができる。
When the refrigerant vapor flowing into the accumulator 21 flows along the cylinder axis direction, the refrigerant liquid in the vapor is separated and recovered and flows down to the bottom of the accumulator 21,
The bottom side portion of the accumulator 21 flows along the cylinder axis direction. At this time, the separated and collected refrigerant liquid is dammed by the dam member 26 and discharged from the refrigerant liquid discharge port 25. Is also prevented from flowing to the refrigerant solution outlet 20 located on the rear side. As a result, the refrigerant solution having a high water content that flows through the lower portion of the refrigerant liquid chamber 16 rises to the position of the refrigerant solution outlet 20 of the accumulator 21. Thus, the refrigerant solution having a high water concentration can be efficiently taken out.

【0026】さらに、前記冷媒液室16内の冷媒溶液
(アンモニア溶液)及び前記冷却媒体室17内の被冷却
媒体(ブライン)を筒軸方向に沿って反対向きに流すと
ともに、前記冷媒溶液供給口19を前記冷却媒体室17
からの被冷却媒体の出口23が設置されている筒軸方向
端部に配置し、前記冷媒溶液取出口20を前記冷却媒体
室17に対する被冷却媒体の入口22が設置されている
筒軸方向端部に配置している。冷媒液室16内での冷媒
溶液(アンモニア溶液)と、前記冷却媒体室17内での
被冷却媒体(ブライン)が、反対向き(対向流)に流れ
る本実施形態の場合と、同じ向き(平行流)に流れる比
較例の場合での各液の温度分布を図6に示すが、この図
6に基づいて、被冷却媒体(ブライン)に対する冷却効
果について説明する。図6(イ)の対向流の場合には、
被冷却媒体(ブライン)の出口温度が冷媒溶液(アンモ
ニア溶液)の供給口温度から冷却温度差(ピッチポイン
ト)分だけ高い温度になり、図6(ロ)の平行流の場合
には、被冷却媒体(ブライン)の出口温度が冷媒溶液
(アンモニア溶液)の取出口温度から冷却温度差(ピッ
チポイント)分だけ高い温度になるが、前記のように、
冷媒溶液(アンモニア溶液)の取出口温度は供給口温度
に比べて水分濃度の上昇に伴って高くなるので、対向流
の場合の方が被冷却媒体(ブライン)の出口温度は低く
なり、被冷却媒体(ブライン)に対する冷却効果が高い
ことが判る。
Further, the refrigerant solution (ammonia solution) in the refrigerant liquid chamber 16 and the medium to be cooled (brine) in the cooling medium chamber 17 flow in opposite directions along the cylinder axis direction, and the refrigerant solution supply port 19 is the cooling medium chamber 17
Is arranged at the end in the cylinder axis direction where the outlet 23 for the medium to be cooled is installed, and the refrigerant solution outlet 20 is arranged at the end in the cylinder axis where the inlet 22 for the medium to be cooled to the cooling medium chamber 17 is installed. It is located in the section. The refrigerant solution (ammonia solution) in the refrigerant liquid chamber 16 and the cooled medium (brine) in the cooling medium chamber 17 flow in the opposite direction (counterflow) in the same direction (parallel). FIG. 6 shows the temperature distribution of each liquid in the case of the comparative example flowing in a flow). The cooling effect on the medium to be cooled (brine) will be described based on FIG. In the case of the counter flow shown in FIG.
The outlet temperature of the medium to be cooled (brine) becomes higher than the temperature of the inlet port of the refrigerant solution (ammonia solution) by the cooling temperature difference (pitch point), and in the case of the parallel flow in FIG. The outlet temperature of the medium (brine) is higher than the outlet temperature of the refrigerant solution (ammonia solution) by the cooling temperature difference (pitch point), but as described above,
Since the outlet temperature of the refrigerant solution (ammonia solution) becomes higher as the water concentration rises compared to the supply port temperature, the outlet temperature of the medium to be cooled (brine) becomes lower in the case of the counter flow, and the cooled target becomes cooler. It can be seen that the cooling effect on the medium (brine) is high.

【0027】さらに、前記冷媒溶液供給口19に流入す
る前の冷媒溶液を通流させて前記アキュームレータ21
内の冷媒溶液と熱交換させる熱交換器(以下、ブリード
熱交換器という)12を、前記アキュームレータ21内
の前記冷媒溶液取出口20の近傍に設けている。すなわ
ち、このブリード熱交換器12はアキュームレータ21
に内蔵され、装置がコンパクトに構成されている。
Further, the refrigerant solution before flowing into the refrigerant solution supply port 19 is caused to flow therethrough, and the accumulator 21.
A heat exchanger (hereinafter, referred to as a bleed heat exchanger) 12 for exchanging heat with the refrigerant solution therein is provided in the accumulator 21 near the refrigerant solution outlet 20. In other words, this bleed heat exchanger 12 has the accumulator 21.
Built in, the device is compactly constructed.

【0028】ただし、上記ブリード熱交換器をアキュー
ムレータ21に内蔵させずに、図7に示すように、アキ
ュームレータ21の外に独立のブリード熱交換器12A
として設けるようにしてもよい。
However, as shown in FIG. 7, an independent bleed heat exchanger 12A is provided outside the accumulator 21 without incorporating the bleed heat exchanger into the accumulator 21.
May be provided as.

【0029】〔第2実施形態〕この第2実施形態では、
満液二重管式の蒸発器1が、前記気液分離器(アキュー
ムレータ)21と冷媒液移送管18を備えていない点を
除いて、第1実施形態と同様に構成されている。以下、
相違点について説明する。図8に示すように、前記外筒
13の筒軸方向一端部に前記冷媒液室16に対する冷媒
溶液供給口19を設け、前記外筒13の筒軸方向他端部
に、冷媒液室16内の冷媒溶液から蒸発した冷媒蒸気を
冷媒液室16外に排出する冷媒蒸気出口24A、及び、
冷媒液室16内の冷媒溶液を冷媒液室16外に取り出す
冷媒溶液取出口20Aを設けて、前記冷媒液室16内に
おいて冷媒溶液(アンモニア溶液)及び冷媒蒸気(アン
モニア蒸気)を筒軸方向に沿って流すとともに、冷媒液
室16内の少なくとも上部側部分(図では、上部側部分
と中央部分)を筒軸方向に沿って前後に仕切る仕切体1
5Aを設けている。尚、冷媒液室16の仕切体15Aよ
りも上部には、筒軸方向に沿って連通した蒸気通路27
が形成されている。
[Second Embodiment] In the second embodiment,
The liquid-filled double-tube evaporator 1 has the same configuration as that of the first embodiment, except that the vapor-liquid separator (accumulator) 21 and the refrigerant liquid transfer pipe 18 are not provided. Less than,
The difference will be described. As shown in FIG. 8, a refrigerant solution supply port 19 for the refrigerant liquid chamber 16 is provided at one end of the outer cylinder 13 in the cylinder axis direction, and the inside of the refrigerant liquid chamber 16 is provided at the other end of the outer cylinder 13 in the cylinder axis direction. Refrigerant vapor outlet 24A for discharging the refrigerant vapor evaporated from the refrigerant solution to the outside of the refrigerant liquid chamber 16, and
A coolant solution outlet 20A for extracting the coolant solution in the coolant liquid chamber 16 to the outside of the coolant liquid chamber 16 is provided, and the coolant solution (ammonia solution) and the coolant vapor (ammonia vapor) in the coolant liquid chamber 16 in the cylinder axis direction. A partition body 1 that flows along the above-described structure and partitions at least an upper side portion (in the figure, an upper side portion and a central portion) in the refrigerant liquid chamber 16 into front and rear along the cylinder axis direction.
5A is provided. In addition, above the partition body 15A of the refrigerant liquid chamber 16, a vapor passage 27 communicating with the cylinder axis direction is provided.
Are formed.

【0030】上記構成により、冷媒液室16内の冷媒溶
液が冷却媒体室17内のブラインの熱を奪って蒸発して
発生した冷媒蒸気が、上昇して冷媒液室16内の上部側
部分を流れるときに仕切体15によって筒軸方向に沿う
前後での移動が阻止され、冷媒溶液の対流混合が抑制さ
れる。そして、冷媒蒸気は冷媒液室の上部に形成した蒸
気通路27を通て冷媒蒸気出口24Aに流れる。一方、
冷媒液室16内の下部側部分では、冷媒蒸気が蒸発して
水分濃度が高くなった冷媒溶液が筒軸方向に沿って流
れ、上記冷媒溶液取出口20Aから水分濃度の高くなっ
た冷媒溶液を効率良く取出すことができる。なお、図示
はしていないが、前記冷媒蒸気出口24Aから排出され
る冷媒蒸気、並びに、冷媒溶液取出口20Aから取出さ
れる冷媒溶液は、図7に示す経路と同じように、過冷却
器11とブリード熱交換器12Aを経由して吸収器2に
送られる。
With the above structure, the refrigerant solution generated in the refrigerant liquid chamber 16 takes away the heat of the brine in the cooling medium chamber 17 to evaporate, and the generated refrigerant vapor rises to the upper portion of the refrigerant liquid chamber 16. When flowing, the partition body 15 prevents movement in the front-rear direction along the cylinder axis direction, and suppresses convective mixing of the refrigerant solution. Then, the refrigerant vapor flows through the vapor passage 27 formed in the upper portion of the refrigerant liquid chamber to the refrigerant vapor outlet 24A. on the other hand,
In the lower portion of the refrigerant liquid chamber 16, the refrigerant solution in which the refrigerant vapor is evaporated and the water concentration is increased flows along the cylinder axis direction, and the refrigerant solution in which the water concentration is increased is discharged from the refrigerant solution outlet 20A. It can be taken out efficiently. Although not shown, the refrigerant vapor discharged from the refrigerant vapor outlet 24A and the refrigerant solution taken out from the refrigerant solution outlet 20A are similar to the path shown in FIG. To the absorber 2 via the bleed heat exchanger 12A.

【0031】〔別実施形態〕次に、本発明に係る満液二
重管式の蒸発器の別実施形態について説明する。上記第
1及び第2実施形態では、内外二重筒を構成する外筒1
3と内筒14を円筒に形成したが、外筒13及び内筒1
4は円筒以外の各種筒形状に形成することができる。
[Other Embodiment] Next, another embodiment of the liquid-filled double-tube evaporator according to the present invention will be described. In the first and second embodiments described above, the outer cylinder 1 forming the inner and outer double cylinders.
3 and the inner cylinder 14 are formed into a cylinder, the outer cylinder 13 and the inner cylinder 1
4 can be formed in various tubular shapes other than a cylinder.

【0032】上記第1及び第2実施形態では、冷媒液室
16内に設ける仕切体15,15Aを1個だけ設けた
が、筒軸方向に沿って間隔を隔てて複数個配置するよう
にしてもよい。
In the first and second embodiments, only one partition body 15, 15A provided in the refrigerant liquid chamber 16 is provided. However, a plurality of partition bodies 15 and 15A are arranged at intervals along the cylinder axis direction. Good.

【0033】なお、本発明に係る満液二重管式の蒸発器
は、上記実施形態で説明したアンモニア水溶液を動作媒
体とするアンモニア吸収式冷凍機以外の吸収式冷凍機の
蒸発器として使用してもよい。
The liquid-filled double-tube evaporator according to the present invention is used as an evaporator of an absorption refrigerating machine other than the ammonia absorption refrigerating machine using the aqueous ammonia solution described in the above embodiment as a working medium. May be.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1実施形態に係るアンモニア吸収式冷凍機の
冷凍サイクルを説明するための図
FIG. 1 is a diagram for explaining a refrigeration cycle of an ammonia absorption refrigerator according to a first embodiment.

【図2】精留温度とアンモニア濃度の関係を示すグラフFIG. 2 is a graph showing the relationship between rectification temperature and ammonia concentration.

【図3】アンモニア液中の水分濃度と蒸発温度の上昇と
の関係を示すグラフ
FIG. 3 is a graph showing the relationship between the water concentration in the ammonia solution and the rise in evaporation temperature.

【図4】第1実施形態に係る満液二重管式の蒸発器の構
造を示す正面図
FIG. 4 is a front view showing the structure of a liquid-filled double-tube evaporator according to the first embodiment.

【図5】第1実施形態に係る満液二重管式の蒸発器の構
造を示す側面断面図
FIG. 5 is a side sectional view showing the structure of a liquid-filled double-tube evaporator according to the first embodiment.

【図6】満液二重管式の蒸発器における液の流れと液の
温度分布を示す図
FIG. 6 is a view showing a liquid flow and a liquid temperature distribution in a full-fill double-tube evaporator.

【図7】第1実施形態に係る満液二重管式の蒸発器の変
形例を示す正面図
FIG. 7 is a front view showing a modified example of the liquid-filled double-tube evaporator according to the first embodiment.

【図8】第2実施形態に係る満液二重管式の蒸発器の構
造を示す正面図と側面断面図
FIG. 8 is a front view and a side cross-sectional view showing the structure of a liquid-filled double-tube evaporator according to a second embodiment.

【図9】従来のアンモニア吸収式冷凍機の冷凍サイクル
を説明するための図
FIG. 9 is a diagram for explaining a refrigeration cycle of a conventional ammonia absorption refrigerator.

【符号の説明】[Explanation of symbols]

12 熱交換器 13 外筒 14 内筒 15 仕切体 15A 仕切体 16 冷媒液室 17 冷却媒体室 19 冷媒溶液供給口 18 冷媒液移送管 20 冷媒溶液取出口 20A 冷媒溶液取出口 21 気液分離器 22 被冷却媒体の入口 23 被冷却媒体の出口 24 冷媒蒸気出口 24A 冷媒蒸気出口 25 冷媒液排出口 26 堰状部材 12 heat exchanger 13 outer cylinder 14 Inner cylinder 15 partitions 15A partition 16 Refrigerant liquid chamber 17 Coolant chamber 19 Refrigerant solution supply port 18 Refrigerant liquid transfer pipe 20 Refrigerant solution outlet 20A refrigerant solution outlet 21 gas-liquid separator 22 Coolant inlet 23 Coolant outlet 24 Refrigerant vapor outlet 24A refrigerant vapor outlet 25 Refrigerant liquid outlet 26 Weir member

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 俊彦 京都府京都市南区久世殿城町600番地の1 株式会社タクマ京都工場内 Fターム(参考) 3L093 BB01 LL05 MM02 3L103 AA37 BB33 CC18 DD08 DD38   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Toshihiko Tanaka             1 of 600 Kuse-Denjo-cho, Minami-ku, Kyoto-shi, Kyoto Prefecture               Takuma Kyoto Factory F-term (reference) 3L093 BB01 LL05 MM02                 3L103 AA37 BB33 CC18 DD08 DD38

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 外筒と内筒とからなり筒軸方向を水平横
向きにした内外二重筒において、外筒と内筒との間を冷
媒溶液が流れる冷媒液室に、内筒の内部を被冷却媒体が
流れる冷却媒体室に夫々形成した満液二重管式の蒸発器
であって、 前記外筒の筒軸方向一端部に前記冷媒液室に対する冷媒
溶液供給口を設け、前記外筒の筒軸方向他端部に、前記
冷媒液室内の冷媒溶液から蒸発した冷媒蒸気を前記冷媒
液室外に排出する冷媒蒸気出口、及び、前記冷媒液室内
の冷媒溶液を前記冷媒液室外に取り出す冷媒溶液取出口
を設けて、前記冷媒液室内において冷媒溶液及び冷媒蒸
気を筒軸方向に沿って流すとともに、前記冷媒液室内の
少なくとも上部側部分を筒軸方向に沿って前後に仕切る
仕切体を設けている満液二重管式の蒸発器。
1. In an inner-outer double cylinder composed of an outer cylinder and an inner cylinder, the cylinder axis direction of which is horizontally horizontal, a refrigerant liquid chamber in which a refrigerant solution flows between the outer cylinder and the inner cylinder, and the inside of the inner cylinder A full-liquid double-tube evaporator formed in each of the cooling medium chambers through which the medium to be cooled flows, wherein a refrigerant solution supply port for the refrigerant liquid chamber is provided at one end of the outer cylinder in the cylinder axis direction, At the other end in the cylinder axis direction, a refrigerant vapor outlet for discharging the refrigerant vapor evaporated from the refrigerant solution in the refrigerant liquid chamber to the outside of the refrigerant liquid chamber, and a refrigerant for taking out the refrigerant solution in the refrigerant liquid chamber to the outside of the refrigerant liquid chamber. A solution outlet is provided to allow a refrigerant solution and a refrigerant vapor to flow in the refrigerant liquid chamber along the cylinder axis direction, and a partition body for partitioning at least the upper side portion of the refrigerant liquid chamber back and forth along the cylinder axis direction is provided. Full-filled double-tube evaporator.
【請求項2】 外筒と内筒とからなり筒軸方向を水平横
向きにした内外二重筒において、外筒と内筒との間を冷
媒溶液が流れる冷媒液室に、内筒の内部を被冷却媒体が
流れる冷却媒体室に夫々形成した満液二重管式の蒸発器
であって、 前記冷媒液室内の冷媒溶液から蒸発した冷媒蒸気中の冷
媒液を分離して回収する気液分離器を前記外筒の上部に
配置するとともに、前記気液分離器内の底部の冷媒液排
出口から排出する前記回収した冷媒液を前記冷媒液室内
に戻す冷媒液移送管を設け、 前記外筒の筒軸方向一端部に前記冷媒液室に対する冷媒
溶液供給口を設け、前記外筒の筒軸方向他端部と同じ側
の前記気液分離器の端部に、前記気液分離器内の冷媒蒸
気を前記気液分離器外に排出する冷媒蒸気出口、及び、
前記気液分離器内の冷媒溶液を前記気液分離器外に取り
出す冷媒溶液取出口を設けて、前記冷媒液室内及び前記
気液分離器内において冷媒溶液及び冷媒蒸気を筒軸方向
に沿って流すとともに、前記冷媒液室内の少なくとも上
部側部分を筒軸方向に沿って前後に仕切る仕切体を設
け、前記気液分離器の底部側部分を筒軸方向に沿って前
後に仕切る堰状部材を、前記冷媒液排出口と前記冷媒溶
液取出口の間の前記気液分離器の底部に設けている満液
二重管式の蒸発器。
2. In an inner-outer double cylinder composed of an outer cylinder and an inner cylinder whose cylinder axis direction is horizontally horizontal, a refrigerant liquid chamber in which a refrigerant solution flows between the outer cylinder and the inner cylinder, and the inside of the inner cylinder are A full-liquid double-tube evaporator formed in each of the cooling medium chambers through which the medium to be cooled flows, and a gas-liquid separator that separates and collects the refrigerant liquid in the refrigerant vapor evaporated from the refrigerant solution in the refrigerant liquid chamber. And a refrigerant liquid transfer pipe for returning the recovered refrigerant liquid discharged from the refrigerant liquid discharge port at the bottom of the gas-liquid separator to the refrigerant liquid chamber, while the container is disposed on the upper portion of the outer cylinder, the outer cylinder The one end portion of the gas-liquid separator on the same side as the other end portion of the outer cylinder in the cylinder axis direction is provided with a refrigerant solution supply port for the refrigerant liquid chamber at one end portion in the cylinder liquid direction of the inside of the gas-liquid separator. A refrigerant vapor outlet for discharging refrigerant vapor to the outside of the gas-liquid separator, and
Providing a refrigerant solution outlet for taking out the refrigerant solution in the gas-liquid separator to the outside of the gas-liquid separator, the refrigerant solution and the refrigerant vapor in the refrigerant liquid chamber and in the gas-liquid separator along the cylinder axis direction. While flowing, a partitioning body that partitions at least the upper side portion of the refrigerant liquid chamber back and forth along the cylinder axis direction is provided, and a weir-like member that partitions the bottom side portion of the gas-liquid separator forward and backward along the cylinder axis direction. A full-liquid double-tube evaporator provided at the bottom of the gas-liquid separator between the refrigerant liquid outlet and the refrigerant solution outlet.
【請求項3】 前記冷媒溶液供給口に流入する前の冷媒
溶液を通流させて前記気液分離器内の冷媒溶液と熱交換
させる熱交換器を、前記気液分離器内の前記冷媒溶液取
出口の近傍に設けている請求項2記載の満液二重管式の
蒸発器。
3. A heat exchanger that allows the refrigerant solution before flowing into the refrigerant solution supply port to flow therethrough to exchange heat with the refrigerant solution in the gas-liquid separator is used as the refrigerant solution in the gas-liquid separator. The liquid-filled double-tube evaporator according to claim 2, which is provided in the vicinity of the outlet.
【請求項4】 前記冷媒溶液と前記被冷却媒体を筒軸方
向に沿って反対向きに流すとともに、前記冷媒溶液供給
口を前記冷却媒体室からの被冷却媒体の出口が設置され
ている筒軸方向端部に配置し、前記冷媒溶液取出口を前
記冷却媒体室に対する被冷却媒体の入口が設置されてい
る筒軸方向端部に配置している請求項1〜3のいずれか
に記載の満液二重管式の蒸発器。
4. A cylinder shaft in which the refrigerant solution and the medium to be cooled are caused to flow in opposite directions along a cylinder axis direction, and the refrigerant solution supply port is provided with an outlet for the medium to be cooled from the cooling medium chamber. It is arranged at the end portion in the direction of the cylinder, and the refrigerant solution outlet is arranged at the end portion in the cylinder axis direction where the inlet of the medium to be cooled to the cooling medium chamber is arranged. Liquid double-tube evaporator.
【請求項5】 請求項1〜4のいずれかに記載の満液二
重管式の蒸発器を備えたアンモニア吸収式冷凍機。
5. An ammonia absorption refrigerator comprising the liquid-filled double-tube evaporator according to any one of claims 1 to 4.
JP2002142761A 2002-05-17 2002-05-17 Full liquid double tube evaporator and ammonia absorption refrigerator Expired - Fee Related JP3995525B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002142761A JP3995525B2 (en) 2002-05-17 2002-05-17 Full liquid double tube evaporator and ammonia absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002142761A JP3995525B2 (en) 2002-05-17 2002-05-17 Full liquid double tube evaporator and ammonia absorption refrigerator

Publications (2)

Publication Number Publication Date
JP2003336933A true JP2003336933A (en) 2003-11-28
JP3995525B2 JP3995525B2 (en) 2007-10-24

Family

ID=29702951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002142761A Expired - Fee Related JP3995525B2 (en) 2002-05-17 2002-05-17 Full liquid double tube evaporator and ammonia absorption refrigerator

Country Status (1)

Country Link
JP (1) JP3995525B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006114826A1 (en) * 2005-04-06 2008-12-11 株式会社前川製作所 Full liquid evaporator
US20130153172A1 (en) * 2011-12-20 2013-06-20 Conocophillips Company Method and apparatus for reducing the impact of motion in a core-in-shell heat exchanger
CN103673677A (en) * 2013-11-30 2014-03-26 无锡金玺换热器有限公司 Heat exchanger for automobile
CN105066520A (en) * 2015-09-01 2015-11-18 南京冷德节能科技有限公司 Forced recirculation-type evaporator
CN108302849A (en) * 2018-02-13 2018-07-20 大连冷星企业有限公司 The ammonia refrigeration high-pressure side subsidiary engine of multi-functional unification
CN110345670A (en) * 2019-07-29 2019-10-18 天津商业大学 A kind of gravity force liquid-supply formula evaporator
CN111664610A (en) * 2020-05-26 2020-09-15 张坤坤 Liquid type evaporator for air conditioner
CN112902505A (en) * 2019-12-03 2021-06-04 开利公司 Immersion evaporator
KR102408641B1 (en) * 2021-11-01 2022-06-14 (주)대호냉각기 Heat exchange efficiency improvement device of cooling water tank

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006114826A1 (en) * 2005-04-06 2008-12-11 株式会社前川製作所 Full liquid evaporator
JP4518510B2 (en) * 2005-04-06 2010-08-04 株式会社前川製作所 Full liquid evaporator
US20130153172A1 (en) * 2011-12-20 2013-06-20 Conocophillips Company Method and apparatus for reducing the impact of motion in a core-in-shell heat exchanger
CN103673677A (en) * 2013-11-30 2014-03-26 无锡金玺换热器有限公司 Heat exchanger for automobile
CN105066520A (en) * 2015-09-01 2015-11-18 南京冷德节能科技有限公司 Forced recirculation-type evaporator
CN108302849A (en) * 2018-02-13 2018-07-20 大连冷星企业有限公司 The ammonia refrigeration high-pressure side subsidiary engine of multi-functional unification
CN108302849B (en) * 2018-02-13 2023-06-02 洪星 Multifunctional integrated ammonia refrigeration high-pressure side auxiliary machine
CN110345670A (en) * 2019-07-29 2019-10-18 天津商业大学 A kind of gravity force liquid-supply formula evaporator
CN110345670B (en) * 2019-07-29 2024-03-26 天津商业大学 Gravity liquid supply type evaporator
CN112902505A (en) * 2019-12-03 2021-06-04 开利公司 Immersion evaporator
CN111664610A (en) * 2020-05-26 2020-09-15 张坤坤 Liquid type evaporator for air conditioner
KR102408641B1 (en) * 2021-11-01 2022-06-14 (주)대호냉각기 Heat exchange efficiency improvement device of cooling water tank

Also Published As

Publication number Publication date
JP3995525B2 (en) 2007-10-24

Similar Documents

Publication Publication Date Title
US9541314B2 (en) Heat exchanger
JP3193720B2 (en) Triple effect absorption heat exchanger combining a second cycle generator and a first cycle absorber
US6694772B2 (en) Absorption chiller-heater and generator for use in such absorption chiller-heater
JP2007309604A (en) Evaporator for refrigeration system, and refrigeration system
JPH1062039A (en) Oil separator of cooler and refrigeration system
JP2016180583A (en) Absorption type refrigerator
JP2003336933A (en) Flooded-double tube evaporator and ammonia absorption refrigerating machine
JP3445941B2 (en) Multi-stage evaporative absorption type absorption chiller / heater and large temperature difference air conditioning system equipped with the same
JP2007278572A (en) Absorption type refrigerating device
CN117287872B (en) Composite condensation evaporator and application thereof
JPH08105669A (en) Regenerator for absorption refrigerator
JP3957558B2 (en) Full liquid double tube evaporator and ammonia absorption refrigerator
JP2007248024A (en) Absorption-type refrigerating device
JP2007327658A (en) Single effect absorption-type cold generating/outputting device
CN106705470A (en) Flooded refrigerating unit
JP7144005B2 (en) Heat exchanger
JP6805473B2 (en) Absorption chiller
JP2005042944A (en) Multi-stage absorption refrigerating machine
JP2006200851A (en) Absorption type refrigerator
JP2783876B2 (en) Absorption refrigerator
JP7411423B2 (en) Shell and tube heat exchanger and refrigeration cycle equipment
JP2002243309A (en) Absorptive freezer
KR20030072494A (en) Receiver drier - integrated condenser
JP2007271165A (en) Absorption-type refrigerating device
JP3485495B2 (en) Evaporator of ammonia absorption refrigeration system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070731

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees