JP2003335547A - Glass substrate for flat panel display equipment - Google Patents

Glass substrate for flat panel display equipment

Info

Publication number
JP2003335547A
JP2003335547A JP2002144603A JP2002144603A JP2003335547A JP 2003335547 A JP2003335547 A JP 2003335547A JP 2002144603 A JP2002144603 A JP 2002144603A JP 2002144603 A JP2002144603 A JP 2002144603A JP 2003335547 A JP2003335547 A JP 2003335547A
Authority
JP
Japan
Prior art keywords
glass
glass substrate
cao
modulus
mgo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002144603A
Other languages
Japanese (ja)
Inventor
Ken Choju
研 長壽
Hiroki Yamazaki
博樹 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2002144603A priority Critical patent/JP2003335547A/en
Publication of JP2003335547A publication Critical patent/JP2003335547A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/078Glass compositions containing silica with 40% to 90% silica, by weight containing an oxide of a divalent metal, e.g. an oxide of zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass

Abstract

<P>PROBLEM TO BE SOLVED: To provide such a glass substrate for flat panel display equipment that has a large specific Young's modulus, an excellent thermal shock resistance, and no problems with heat distortion and heat shrinkage even when heat-treated at a temperature of 570-600°C and besides has the characteristic of a volume electric resistivity (log ρ) at 150°C of 10.5 Ω-cm or more. <P>SOLUTION: The glass substrate for flat panel display equipment comprises the composition: on the basis of % by mass, 59-74% of SiO<SB>2</SB>, 0-less than 10% of Al<SB>2</SB>O<SB>3</SB>, 1-15% of MgO, 0.1-8% of CaO, 1-15% of SrO, 0-7% of BaO, 12-27% of MgO+CaO+SrO+BaO, 0-8% of Na<SB>2</SB>O, 2-12% of K<SB>2</SB>O, 6-14% of Na<SB>2</SB>O+K<SB>2</SB>O and 0-7% of ZrO<SB>2</SB>, with a value of MgO/CaO being 2 or more, and has a heat expansion coefficient of 65-75×10<SP>-7</SP>/°C. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、フラットパネルディス
プレイ装置、特にプラズマディスプレイ装置に適したガ
ラス基板に関するものである。 【0002】 【従来の技術】プラズマディスプレイ装置は、一般にI
TO膜、ネサ膜等からなる透明電極が形成された前面ガ
ラス基板表面に誘電体材料を塗布し、Al、Ag、Ni
からなる電極が形成された背面ガラス基板表面にリブペ
ーストを塗布してから500〜600℃程度の温度で焼
成することにより回路を形成し、その後、前面ガラス基
板と背面ガラス基板を対向させ、周囲を500〜600
℃程度の温度でフリットシールすることにより作製され
る。従来、ガラス基板としては、建築用または自動車用
として広く用いられているソーダ石灰ガラス(熱膨張係
数 約84×10 -7/℃)が一般的に用いられてきた。 【0003】ところが、ソーダ石灰ガラスは歪点が50
0℃程度と低く、580℃程度の温度で熱処理する際、
熱変形や熱収縮により、寸法が著しく変化する。このた
め、前面ガラス基板と背面ガラス基板を対向させる際、
電極の位置合わせを精度よく実現することが難しく、特
に、大型高精細のプラズマディスプレイ装置を作製する
上で困難を生じていた。 【0004】また、ソーダ石灰ガラスは、150℃での
体積電気抵抗率(log ρ)が8.4Ω・cmと低
く、ガラス中のアルカリ成分の移動度が大きい。従っ
て、ガラス中のアルカリ成分がITO膜やネサ膜等の薄
膜電極と反応し、電極材料の電気抵抗値を変化させる問
題も有している。 【0005】これらの事情から、現在では、ガラス基板
の熱変形、熱収縮及び体積電気抵抗率の問題を解決する
ために、歪点及び体積電気抵抗率の高いプラズマディス
プレイ装置用ガラス基板が広く使用されている。 【0006】 【発明が解決しようとする課題】しかしながら、近年、
プラズマディスプレイは大型化、薄型化の傾向にあり、
前記した従来の高歪点、高体積電気抵抗率のガラスをプ
ラズマディスプレイ用ガラス基板に用いると、ガラス基
板の搬送工程において、ガラス基板が大きくたわみ、装
置に接触して破損するといった問題が発生している。従
って、ガラス基板のたわみを小さくする必要がある。ガ
ラスの比ヤング率(ヤング率/密度)が大きくなると、
ガラス基板のたわみ量が小さくなることから、比ヤング
率の大きいガラス基板が望まれている。 【0007】また、従来のプラズマディスプレイ装置用
ガラス基板は、耐熱衝撃性が低く、570〜600℃の
温度で熱処理したあと、急冷すると熱応力に起因する割
れが生じる。そのため、熱工程の冷却速度が制限され、
工程の所要時間が長くなり、生産性を低下させていた。
従って、熱応力に起因する割れを抑えることができるガ
ラス基板も望まれている。 【0008】本発明の目的は、比ヤング率が大きく、耐
熱衝撃性に優れ、570〜600℃の温度で熱処理して
も熱変形や熱収縮が問題とならず、しかも、150℃に
おける体積電気抵抗率(log ρ)が10.5Ω・c
m以上の特性を有するフラットパネルディスプレイ装置
用ガラス基板を提供することである。 【0009】 【課題を解決するための手段】本発明のフラットパネル
ディスプレイ装置用ガラス基板は、質量百分率で、Si
2 59〜74%、Al23 0〜10%未満、Mg
O 1〜15%、CaO 0.1〜8%、SrO 1〜
15%、BaO 0〜7%、MgO+CaO+SrO+
BaO 12〜27%、Na2O 0〜8%、K2O 2
〜12%、Na 2O+K2O 6〜14%、ZrO2
〜7%の組成を有し、MgO/CaOの値が2以上であ
り、且つ、熱膨張係数が65〜75×10-7/℃である
ことを特徴とする。 【0010】 【作用】ガラスの比ヤング率を大きくするには、ガラス
のヤング率を大きくしたり、ガラスの密度を低下させる
ことが効果的である。 【0011】そこで本発明のフラットパネルディスプレ
イ装置用ガラス基板は、ガラス組成中にヤング率を高め
る成分であるMgOとCaOを必須成分として含有させ
て、ヤング率を大きくしている。 【0012】また、CaOよりも分子量の小さいMgO
を多く含有させることがガラスの低密度化には有効であ
る。そこで本発明では、MgO/CaOの値を2以上に
して、低密度化を達成している。 【0013】このように、本発明では、高ヤング率化と
低密度化を同時に行っているため、ガラスの比ヤング率
を大きくすることができる。 【0014】また、熱膨張係数を65〜75×10-7
℃に設定しているため、熱応力に起因する割れを抑え、
しかも、周辺材料の熱膨張係数との整合性を取ることが
できる。尚、熱膨張係数を65〜75×10-7/℃にす
るには、SiO2やAl23の含有量を増やしたり、N
2O、K2Oを減らすことで調整することができる。 【0015】本発明のガラス基板において、各成分の割
合を上記のように限定した理由を以下に述べる。 【0016】SiO2は、ガラスのネットワークフォー
マーである。SiO2の含有量が59%より少なくなる
と、ガラスの歪点が低下して熱変形や熱収縮が大きくな
ったり、熱膨張係数が大きくなりすぎるため問題とな
る。一方、74%より多くなると、熔融性が悪化した
り、熱膨張係数が小さくなりすぎるため好ましくない。
好ましい範囲は59〜70%であり、より好ましくは5
9〜69%である。 【0017】Al23は、ガラスの歪点を高めたり、熱
膨張係数を調整する成分である。Al23の含有量が1
0%以上なると、熱膨張係数が小さくなりすぎたり、高
温粘度が高くなりガラスの成形が困難となるため好まし
くない。好ましい範囲は3〜10%未満であり、より好
ましくは5〜10%未満である。 【0018】MgOは、ガラスの密度を上昇させずに、
ヤング率だけを著しく上昇させたり、ガラスの高温粘度
を低下させてガラスの成形性や熔融性を高める成分であ
る。MgOの含有量が1%より少なくなると前記効果が
得られない。一方、15%より多くなるとガラスが著し
く失透するため好ましくない。好ましい範囲は2〜13
%であり、より好ましくは3〜12%である。 【0019】CaOは、ガラスのヤング率を上昇させた
り、ガラスの高温粘度を低下させてガラスの成形性や熔
融性を高める成分である。CaOの含有量が0.1%よ
り少なくなると前記効果が得られない。一方、8%より
多くなるとガラスが失透したり、ガラスにクラックが入
り易くなりガラス基板が割れる可能性があるため好まし
くない。好ましい範囲は1〜6%であり、より好ましく
は1〜4%である。 【0020】尚、ヤング率をより大きくするには、Mg
OとCaOを合量で4%以上含有させることが望まし
い。 【0021】また、低密度のガラスを得るために本発明
ではMgO/CaOの値を2以上に限定している。Mg
O/CaOの値が2より小さくなると、分子量の小さい
MgOの含有量が相対的に減少し、密度が大きくなる結
果、比ヤング率が小さくなるため好ましくない。好まし
い範囲は3以上であり、より好ましくは3.3以上であ
る。 【0022】SrOは、ガラスの高温粘度を低下させて
ガラスの成形性や熔融性を高めたり、体積電気抵抗率を
高める成分である。SrOの含有量が1%より少なくな
ると前記効果が得られない。一方、15%より多くなる
とガラスの密度が大きくなり、比ヤング率が低下するた
め好ましくない。好ましい範囲は2%〜14%であり、
より好ましくは3〜12%である。 【0023】BaOは、ガラスの高温粘度を低下させて
ガラスの成形性や熔融性を高めたり、体積電気抵抗率を
高める成分である。BaOの含有量が7%より多くなる
と、ガラスの密度が著しく大きくなり、比ヤング率が低
下するため好ましくない。好ましい範囲は5%以下であ
り、より好ましくは3%以下である。 【0024】また、ROはガラスの熔融性を向上させる
成分であるが、12%より少なくなると前記効果が得ら
れない。一方、27%より多くなるとガラスの密度が大
きくなり、比ヤング率が低下するため好ましくない。好
ましい範囲は15〜26%であり、より好ましくは16
〜26%である。 【0025】Na2Oは、ガラスの熱膨張係数を制御し
たり、ガラスの熔融性を高める成分である。Na2Oの
含有量が8%より多くなると、ガラスの歪点が低下した
り、熱膨張係数が大きくなりすぎるため好ましくない。
好ましい範囲は7%以下であり、より好ましくは5%以
下である。 【0026】K2Oは、Na2Oと同様、ガラスの熱膨張
係数を制御したり、ガラスの熔融性を高める成分であ
る。K2Oの含有量が2%より少なくなると、熱膨張係
数が小さくなりすぎたり、熔融性が悪化するため好まし
くない。一方、12%より多くなると、ガラスの歪点が
低下したり、熱膨張係数が大きくなりすぎるため好まし
くない。好ましい範囲は4〜11%であり、より好まし
くは5〜11%である。 【0027】Na2O及びK2Oの合量が、6%より少な
くなると熔融性が低下したり、熱膨張係数が小さくなり
すぎるため好ましくない。一方、14%より多くなると
歪点が低下したり、熱膨張係数が大きくなりすぎるため
好ましくない。これらの成分の合量は6〜13%の範囲
にあることが好ましく、より好ましくは6〜12%であ
る。 【0028】ZrO2は、ガラスの歪点を高める成分で
あるが、7%より多くなるとガラスの密度が大きくな
り、比ヤング率が低下するため好ましくない。好ましい
範囲は0〜6%であり、より好ましくは0〜5%であ
る。 【0029】尚、歪点をより高く設定したい場合、上記
の組成範囲の中でも、Al23を5%以上含有させ、し
かも、K2O/Na2Oの値を2.5以上にすることが望
ましい。 【0030】また、本発明においては、上記成分以外に
も種々の成分を添加することができる。例えば紫外線に
よる着色を防止するためにTiO2を3%まで、更に、
As23、Sb23、SO3、Cl等の清澄剤成分を合
量で1%まで、Fe23、CoO、NiO、Cr23
CeO3等の着色剤成分を各1%まで添加することが可
能である。 【0031】また、本発明において、B23は歪点を著
しく低下させるため、含有量は2%未満に抑えるべきで
あり、好ましくは含有しないことが望ましい。 【0032】P25についても、ガラスが乳白して著し
く透過率を低下させるため、含有量は0.5%未満に抑
えるべきであり、好ましくは含有しないことが望まし
い。 【0033】上記組成を有する本発明のガラス基板は、
板ガラスの成形方法として知られているスロットダウン
ドロー法、オーバーフローダウンドロー法、フロート
法、ロールアウト法等の方法によって製造できる。 【0034】 【実施例】以下、本発明を実施例に基づいて説明する。 【0035】表1は本発明の実施例(試料No.1〜
6)を、表2は比較例(試料No.7、8)をそれぞれ
示している。尚、試料No.7は、ソーダ石灰ガラスで
ある。 【0036】 【表1】 【0037】 【表2】【0038】表中の各試料は、次のようにして作製し
た。 【0039】まず、表の組成となるようにガラス原料を
調合し、白金ポットを用いて1450〜1600℃で4
時間熔融した。その後、熔融ガラスをカーボン板の上に
流し出して板状に成形し、徐冷後、板厚が2.8mmに
なるように両面研磨して、得られた板ガラスを200m
m角の大きさに切断加工することで試料ガラスを作製し
た。 【0040】このようして得られた各試料について、密
度、ヤング率、比ヤング率、熱膨張係数、歪点、体積電
気抵抗率を測定し、表に示した。 【0041】密度については、周知のアルキメデス法
で、ヤング率については、曲げ共振法により測定した。
また、比ヤング率については、密度とヤング率の測定値
から計算で求めた。 【0042】熱膨張係数については、ディラトメーター
で30〜380℃における平均熱膨張係数を測定した。
また、歪点については、ASTM C336−71に基
づいて測定した。 【0043】体積電気抵抗率については、ASTM C
657−78に基づいて150℃における値を測定し
た。 【0044】表から明らかなように、実施例である試料
No.1〜6の各試料は、密度が2.68g/cm3
下と低く、ヤング率は79GPa以上と高いため、比ヤ
ング率も29.7GPa/g・cm-3以上と大きかっ
た。また、熱膨張係数は65〜75×10-7/℃の範囲
であるため、周辺材料と良好に整合することができ、し
かも、熱応力に起因する割れを抑えることができる。さ
らに、歪点は620℃以上であり、熱処理工程における
ガラス基板の熱変形や熱収縮を抑えることができる。ま
た、体積電気抵抗率(log ρ)は12.0Ω・cm
以上であった。 【0045】これに対して、比較例である試料No.7
は、ソーダ石灰ガラスであるため、歪点が510℃と低
く、また、体積電気抵抗率(log ρ)も8.4Ω・
cmと低かった。また、試料No.8は、密度が2.8
0g/cm3と大きいため、非ヤング率は26.8GP
a/g・cm-3と小さかった。 【0046】 【発明の効果】以上のように本発明のガラス基板は、比
ヤング率が高く、耐熱衝撃性に優れ、しかも、歪点及び
体積電気抵抗率も高いため、プラズマディスプレイ装置
のガラス基板として好適であるが、その他のフラットパ
ネルディスプレイ装置、例えば、有機或いは無機のエレ
クトロルミネッセンスやフィールドエミッションディス
プレイ等のガラス基板として使用することも可能であ
る。
DETAILED DESCRIPTION OF THE INVENTION [0001] BACKGROUND OF THE INVENTION The present invention relates to a flat panel display.
Gaps suitable for play devices, especially plasma display devices
It relates to a lath substrate. [0002] 2. Description of the Related Art In general, a plasma display device has an I
A front panel on which a transparent electrode made of a TO film, a Nesa film or the like is formed.
A dielectric material is applied to the surface of a glass substrate, and Al, Ag, Ni
Ribs on the surface of the rear glass substrate on which the electrodes consisting of
After applying the paste, bake at a temperature of about 500 to 600 ° C.
To form a circuit, and then
The plate and the back glass substrate face each other, and the surrounding area is 500 to 600
Manufactured by frit sealing at a temperature of about ℃
You. Conventionally, glass substrates are used for architectural or automotive
Lime glass widely used as
Number about 84 × 10 -7/ ° C) has been commonly used. [0003] However, soda-lime glass has a strain point of 50%.
When performing heat treatment at a temperature of about 580 ° C, which is as low as about 0 ° C,
The dimensions change significantly due to thermal deformation or thermal shrinkage. others
Therefore, when facing the front glass substrate and the back glass substrate,
It is difficult to achieve accurate electrode positioning.
A large, high-definition plasma display device
Had difficulty on. [0004] Soda-lime glass is used at 150 ° C.
Low volume resistivity (log ρ) of 8.4Ω · cm
And the mobility of the alkali component in the glass is large. Follow
The alkali component in the glass is thin, such as ITO film and Nesa film.
Reacts with the membrane electrode to change the electrical resistance of the electrode material.
It also has a title. [0005] From these circumstances, at present, the glass substrate
Solves the problem of thermal deformation, heat shrinkage and volume electrical resistivity of
Therefore, a plasma display with a high strain point and high volume resistivity
Glass substrates for play devices are widely used. [0006] However, in recent years,
Plasma displays are becoming larger and thinner,
The above-mentioned conventional high strain point, high volume resistivity glass is used.
When used for glass substrates for plasma displays,
In the process of transporting the plate, the glass substrate may
There is a problem that it is damaged by contact with the device. Subordinate
Therefore, it is necessary to reduce the deflection of the glass substrate. Moth
When the specific Young's modulus (Young's modulus / density) of the lath increases,
Since the amount of deflection of the glass substrate becomes smaller,
A glass substrate with a high rate is desired. Further, a conventional plasma display device
Glass substrate has low thermal shock resistance,
After quenching after heat treatment at
This occurs. Therefore, the cooling rate of the heating process is limited,
The time required for the process is increased, and the productivity is reduced.
Therefore, cracks caused by thermal stress can be suppressed.
A lath substrate is also desired. An object of the present invention is to provide a resin having a large specific Young's modulus,
Excellent thermal shock resistance, heat treated at 570-600 ° C
Heat deformation and heat shrinkage are not a problem.
Volume resistivity (log ρ) is 10.5Ω · c
flat panel display device having characteristics of at least m
It is to provide a glass substrate for use. [0009] A flat panel according to the present invention.
The glass substrate for the display device is expressed by mass percentage of Si
OTwo  59-74%, AlTwoOThree  0 to less than 10%, Mg
O 1-15%, CaO 0.1-8%, SrO 1
15%, BaO 0-7%, MgO + CaO + SrO +
BaO 12-27%, NaTwoO 0-8%, KTwoO 2
~ 12%, Na TwoO + KTwoO 6-14%, ZrOTwo  0
~ 7% composition and the value of MgO / CaO is 2 or more
And the coefficient of thermal expansion is 65 to 75 × 10-7/ ° C
It is characterized by the following. [0010] [Function] To increase the specific Young's modulus of glass,
Increase the Young's modulus or reduce the density of the glass
It is effective. Therefore, the flat panel display of the present invention
Glass substrates for equipment increase the Young's modulus during glass composition
Containing MgO and CaO as essential components
To increase the Young's modulus. Also, MgO having a smaller molecular weight than CaO
Is effective in reducing the density of glass.
You. Therefore, in the present invention, the value of MgO / CaO is set to 2 or more.
As a result, low density is achieved. As described above, according to the present invention, a high Young's modulus
Since the density is reduced at the same time, the specific Young's modulus of the glass
Can be increased. The thermal expansion coefficient is 65 to 75 × 10-7/
° C, suppresses cracking caused by thermal stress,
Moreover, it is necessary to ensure consistency with the coefficient of thermal expansion of surrounding materials.
it can. The coefficient of thermal expansion is 65 to 75 × 10-7/ ℃
To useTwoAnd AlTwoOThreeIncrease the content of
aTwoO, KTwoIt can be adjusted by reducing O. In the glass substrate of the present invention, the ratio of each component is
The reason for limiting the case as described above will be described below. [0016] SiOTwoIs a glass network
Is a ma. SiOTwoContent is less than 59%
Temperature, the strain point of the glass decreases and thermal deformation and thermal shrinkage increase.
Or the coefficient of thermal expansion becomes too large.
You. On the other hand, if it exceeds 74%, the meltability deteriorates.
This is not preferable because the coefficient of thermal expansion becomes too small.
A preferred range is 59-70%, more preferably 5%.
9-69%. AlTwoOThreeCan increase the strain point of the glass or
This is a component for adjusting the expansion coefficient. AlTwoOThreeContent of 1
At 0% or more, the coefficient of thermal expansion becomes too small or high.
High temperature viscosity makes glass forming difficult
I don't. The preferred range is less than 3 to 10%, more preferably
Preferably, it is less than 5 to 10%. MgO, without increasing the density of the glass,
Only the Young's modulus can be significantly increased,
Is a component that lowers the
You. When the content of MgO is less than 1%, the above-described effect is obtained.
I can't get it. On the other hand, if it exceeds 15%, the glass
It is not preferable because of devitrification. The preferred range is 2 to 13.
%, More preferably 3 to 12%. CaO increased the Young's modulus of the glass
Lowers the high-temperature viscosity of the glass,
It is a component that enhances fusibility. The content of CaO is 0.1%
If less, the above effect cannot be obtained. On the other hand, from 8%
As the amount increases, the glass may devitrify or crack the glass.
Glass substrate is likely to break
I don't. The preferred range is 1 to 6%, more preferably
Is 1 to 4%. In order to further increase the Young's modulus, Mg
It is desirable to contain O and CaO in a total amount of 4% or more.
No. In order to obtain a low-density glass, the present invention
Limits the value of MgO / CaO to two or more. Mg
When the value of O / CaO is smaller than 2, the molecular weight is small.
The content of MgO decreases relatively and the density increases.
As a result, the specific Young's modulus becomes small, which is not preferable. Preferred
Is 3 or more, more preferably 3.3 or more.
You. SrO reduces the high temperature viscosity of glass
Enhance the formability and melting properties of glass and increase the volume resistivity
It is a component that enhances. SrO content is less than 1%
If so, the above effect cannot be obtained. On the other hand, more than 15%
And the density of the glass increases, and the specific Young's modulus decreases.
Not preferred. The preferred range is 2% to 14%,
More preferably, it is 3 to 12%. BaO reduces the high temperature viscosity of glass
Enhance the formability and melting properties of glass and increase the volume resistivity
It is a component that enhances. BaO content is greater than 7%
And the density of the glass is significantly increased, and the specific Young's modulus is low.
It is not preferable because it lowers. The preferred range is 5% or less.
And more preferably 3% or less. RO improves the melting property of glass.
As an ingredient, if less than 12%, the above effect is not obtained.
Not. On the other hand, if it exceeds 27%, the density of the glass increases.
This is not preferable because the specific Young's modulus decreases. Good
The preferred range is 15-26%, more preferably 16%.
~ 26%. NaTwoO controls the coefficient of thermal expansion of the glass
Or a component that enhances the meltability of glass. NaTwoO's
When the content was more than 8%, the strain point of the glass was lowered.
This is not preferred because the coefficient of thermal expansion becomes too large.
A preferred range is 7% or less, more preferably 5% or less.
Below. KTwoO is NaTwoThermal expansion of glass like O
A component that controls the coefficient and enhances the meltability of glass.
You. KTwoWhen the O content is less than 2%, the thermal expansion
It is preferable because the number becomes too small or the meltability deteriorates.
I don't. On the other hand, if it exceeds 12%, the strain point of the glass becomes
Lowering or thermal expansion coefficient becomes too large
I don't. The preferred range is 4-11%, more preferred
Or 5 to 11%. NaTwoO and KTwoThe total amount of O is less than 6%
The meltability decreases and the coefficient of thermal expansion decreases.
It is not preferable because it is too much. On the other hand, when it exceeds 14%
Because the strain point decreases and the coefficient of thermal expansion becomes too large
Not preferred. The total amount of these components is in the range of 6 to 13%.
And more preferably 6 to 12%.
You. ZrOTwoIs a component that increases the strain point of glass
However, if it exceeds 7%, the density of the glass increases.
This is not preferable because the specific Young's modulus is lowered. preferable
The range is 0-6%, more preferably 0-5%.
You. When it is desired to set the strain point higher,
In the composition range ofTwoOThreeContains at least 5%
Kamo, KTwoO / NaTwoIt is desirable to increase the value of O to 2.5 or more.
Good. In the present invention, in addition to the above components,
Also, various components can be added. For example, to ultraviolet light
TiO2 to prevent coloringTwoUp to 3%,
AsTwoOThree, SbTwoOThree, SOThreeAnd clarifier components such as Cl
Fe up to 1%TwoOThree, CoO, NiO, CrTwoOThree,
CeOThreeColorant components up to 1% each
Noh. In the present invention, BTwoOThreeAuthors strain point
Content should be kept below 2%
And preferably not contained. PTwoOFiveAbout, the glass is milky
Content to less than 0.5% to reduce transmittance.
Should be included, and preferably not contained.
No. The glass substrate of the present invention having the above composition is
Slot down known as a sheet glass forming method
Draw method, overflow down draw method, float
It can be manufactured by a method such as a rollout method. [0034] DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on embodiments. Table 1 shows examples of the present invention (samples No. 1 to No. 1).
6), and Table 2 shows the comparative examples (Sample Nos. 7 and 8).
Is shown. In addition, sample No. 7 is soda lime glass
is there. [0036] [Table 1] [0037] [Table 2]Each sample in the table was prepared as follows.
Was. First, a glass raw material was prepared so as to have the composition shown in the table.
Mix and use a platinum pot at 1450-1600 ° C for 4
Melted for hours. Then, put the molten glass on the carbon plate
Pour out and form into a plate shape, after slow cooling, the plate thickness becomes 2.8 mm
Polished on both sides so that the obtained plate glass is 200 m
The sample glass is manufactured by cutting to the size of m square.
Was. Each sample obtained in this way was
Degree, Young's modulus, specific Young's modulus, coefficient of thermal expansion, strain point, volume
The air resistivity was measured and shown in the table. For the density, the well-known Archimedes method is used.
The Young's modulus was measured by the bending resonance method.
For the specific Young's modulus, measured values of density and Young's modulus
From the calculation. Regarding the coefficient of thermal expansion, a dilatometer
The average coefficient of thermal expansion at 30 to 380 ° C was measured.
The strain point is based on ASTM C336-71.
Was measured. For volume resistivity, ASTM C
Measure the value at 150 ° C based on 657-78
Was. As is clear from the table, the sample of the embodiment
No. Each of the samples 1 to 6 has a density of 2.68 g / cm.ThreeLess than
The lower Young's modulus is as high as 79 GPa or more.
Rate is also 29.7 GPa / g · cm-3Above and big
Was. The coefficient of thermal expansion is 65 to 75 × 10-7/ ℃ range
So that it can be well matched to surrounding materials,
Also, cracks caused by thermal stress can be suppressed. Sa
Furthermore, the strain point is 620 ° C. or higher,
Thermal deformation and thermal shrinkage of the glass substrate can be suppressed. Ma
The volume resistivity (log ρ) is 12.0 Ω · cm
That was all. On the other hand, the sample No. 7
Is a soda-lime glass, so the strain point is as low as 510 ° C.
And the volume electrical resistivity (log ρ) is 8.4Ω ·
cm. In addition, the sample No. 8 has a density of 2.8
0 g / cmThreeNon-Young's modulus is 26.8 GP
a / g · cm-3Was small. [0046] As described above, the glass substrate of the present invention has
High Young's modulus, excellent thermal shock resistance, and strain point and
Plasma display device due to high volume resistivity
Glass substrate, but other flat substrates
Display devices, such as organic or inorganic elements
Chromoluminescence and field emission disc
It can also be used as a glass substrate for play, etc.
You.

フロントページの続き Fターム(参考) 4G062 AA01 BB01 DA06 DA07 DB01 DB02 DB03 DC01 DD01 DE01 DF01 EA01 EB01 EB02 EB03 EC03 EC04 ED03 ED04 EE02 EE03 EF03 EF04 EG01 EG02 EG03 FA01 FA10 FB01 FB02 FB03 FC01 FC02 FC03 FD01 FE01 FF01 FG01 FH01 FJ01 FK01 FL01 FL02 GA01 GA10 GB01 GB02 GC01 GD01 GE01 HH01 HH03 HH05 HH07 HH09 HH11 HH12 HH13 HH15 HH17 HH20 JJ01 JJ03 JJ04 JJ05 JJ06 JJ07 JJ10 KK01 KK03 KK05 KK07 KK10 MM27 NN29 NN32 NN33 NN40 5C040 FA10 GA09 KA07 KB28 MA09Continuation of front page    F term (reference) 4G062 AA01 BB01 DA06 DA07 DB01                       DB02 DB03 DC01 DD01 DE01                       DF01 EA01 EB01 EB02 EB03                       EC03 EC04 ED03 ED04 EE02                       EE03 EF03 EF04 EG01 EG02                       EG03 FA01 FA10 FB01 FB02                       FB03 FC01 FC02 FC03 FD01                       FE01 FF01 FG01 FH01 FJ01                       FK01 FL01 FL02 GA01 GA10                       GB01 GB02 GC01 GD01 GE01                       HH01 HH03 HH05 HH07 HH09                       HH11 HH12 HH13 HH15 HH17                       HH20 JJ01 JJ03 JJ04 JJ05                       JJ06 JJ07 JJ10 KK01 KK03                       KK05 KK07 KK10 MM27 NN29                       NN32 NN33 NN40                 5C040 FA10 GA09 KA07 KB28 MA09

Claims (1)

【特許請求の範囲】 【請求項1】 質量百分率で、SiO2 59〜74
%、Al23 0〜10%未満、MgO 1〜15%、
CaO 0.1〜8%、SrO 1〜15%、BaO
0〜7%、MgO+CaO+SrO+BaO 12〜2
7%、Na2O0〜8%、K2O 2〜12%、Na2
+K2O 6〜14%、ZrO2 0〜7%の組成を有
し、MgO/CaOの値が2以上であり、且つ、30〜
380℃における平均熱膨張係数が65〜75×10-7
/℃であることを特徴とするフラットパネルディスプレ
イ装置用ガラス基板。
Claims: 1. An SiO 2 59-74 by mass percentage.
%, Al 2 O 3 0 to less than 10%, MgO 1 to 15%,
CaO 0.1-8%, SrO 1-15%, BaO
0-7%, MgO + CaO + SrO + BaO 12-2
7%, Na 2 O0~8%, K 2 O 2~12%, Na 2 O
+ K 2 O having 6 to 14%, has a composition of ZrO 2 0 to 7%, and the value of MgO / CaO is 2 or more and 30
Average coefficient of thermal expansion at 380 ° C. is 65 to 75 × 10 −7
/ ° C, a glass substrate for a flat panel display device.
JP2002144603A 2002-05-20 2002-05-20 Glass substrate for flat panel display equipment Pending JP2003335547A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002144603A JP2003335547A (en) 2002-05-20 2002-05-20 Glass substrate for flat panel display equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002144603A JP2003335547A (en) 2002-05-20 2002-05-20 Glass substrate for flat panel display equipment

Publications (1)

Publication Number Publication Date
JP2003335547A true JP2003335547A (en) 2003-11-25

Family

ID=29704235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002144603A Pending JP2003335547A (en) 2002-05-20 2002-05-20 Glass substrate for flat panel display equipment

Country Status (1)

Country Link
JP (1) JP2003335547A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006137683A1 (en) 2005-06-22 2006-12-28 Kcc Corporation High strain-point glass composition for substrate
JP2007091522A (en) * 2005-09-28 2007-04-12 Central Glass Co Ltd Substrate glass for display device
WO2007069729A1 (en) * 2005-12-16 2007-06-21 Central Glass Company, Limited Front glass substrate for plasma display and plasma display apparatus
FR2905694A1 (en) * 2006-09-13 2008-03-14 Saint Gobain DISPLAY SCREEN
US7465958B2 (en) 2004-03-12 2008-12-16 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor, semiconductor device, and method for manufacturing the same
WO2009054419A1 (en) * 2007-10-25 2009-04-30 Asahi Glass Company, Limited Glass composition for substrate and method for producing the same
WO2009060871A1 (en) * 2007-11-06 2009-05-14 Asahi Glass Company, Limited Glass plate for substrate
CN102351418A (en) * 2006-07-07 2012-02-15 旭硝子株式会社 Glass substrate for flat panel glass
CN102414136A (en) * 2009-04-28 2012-04-11 旭硝子株式会社 Glass plate for substrate

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1045423A (en) * 1996-08-01 1998-02-17 Nippon Electric Glass Co Ltd Plasma display device
JPH11233033A (en) * 1997-11-17 1999-08-27 Nippon Electric Glass Co Ltd Substrate glass for plasma display
JPH11240735A (en) * 1998-02-27 1999-09-07 Asahi Glass Co Ltd Glass composition for use as substrate
JP2000044278A (en) * 1998-05-20 2000-02-15 Nippon Electric Glass Co Ltd Glass substrate for display
JP2001226138A (en) * 1999-12-06 2001-08-21 Nippon Electric Glass Co Ltd Glass substrate for flat panel display device
JP2001247332A (en) * 2000-03-06 2001-09-11 Nippon Electric Glass Co Ltd Glass plate for flat panel displaying unit
JP2002025760A (en) * 2000-07-04 2002-01-25 Nippon Electric Glass Co Ltd Back-face base board for inorganic el display

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1045423A (en) * 1996-08-01 1998-02-17 Nippon Electric Glass Co Ltd Plasma display device
JPH11233033A (en) * 1997-11-17 1999-08-27 Nippon Electric Glass Co Ltd Substrate glass for plasma display
JPH11240735A (en) * 1998-02-27 1999-09-07 Asahi Glass Co Ltd Glass composition for use as substrate
JP2000044278A (en) * 1998-05-20 2000-02-15 Nippon Electric Glass Co Ltd Glass substrate for display
JP2001226138A (en) * 1999-12-06 2001-08-21 Nippon Electric Glass Co Ltd Glass substrate for flat panel display device
JP2001247332A (en) * 2000-03-06 2001-09-11 Nippon Electric Glass Co Ltd Glass plate for flat panel displaying unit
JP2002025760A (en) * 2000-07-04 2002-01-25 Nippon Electric Glass Co Ltd Back-face base board for inorganic el display

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7465958B2 (en) 2004-03-12 2008-12-16 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor, semiconductor device, and method for manufacturing the same
US8884300B2 (en) 2004-03-12 2014-11-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising a transistor including an even number of channel formation regions
WO2006137683A1 (en) 2005-06-22 2006-12-28 Kcc Corporation High strain-point glass composition for substrate
EP1893540A4 (en) * 2005-06-22 2008-09-10 Kcc Corp High strain-point glass composition for substrate
JP2007091522A (en) * 2005-09-28 2007-04-12 Central Glass Co Ltd Substrate glass for display device
WO2007069729A1 (en) * 2005-12-16 2007-06-21 Central Glass Company, Limited Front glass substrate for plasma display and plasma display apparatus
CN102351418A (en) * 2006-07-07 2012-02-15 旭硝子株式会社 Glass substrate for flat panel glass
FR2905694A1 (en) * 2006-09-13 2008-03-14 Saint Gobain DISPLAY SCREEN
WO2008031997A3 (en) * 2006-09-13 2008-05-02 Saint Gobain Display screen
WO2008031997A2 (en) * 2006-09-13 2008-03-20 Saint-Gobain Glass France Display screen
WO2009054419A1 (en) * 2007-10-25 2009-04-30 Asahi Glass Company, Limited Glass composition for substrate and method for producing the same
US8377834B2 (en) 2007-10-25 2013-02-19 Asahi Glass Company, Limited Glass composition for substrates and process for its production
WO2009060871A1 (en) * 2007-11-06 2009-05-14 Asahi Glass Company, Limited Glass plate for substrate
US7951734B2 (en) 2007-11-06 2011-05-31 Asahi Glass Company, Limited Glass plate for substrate
CN102414136A (en) * 2009-04-28 2012-04-11 旭硝子株式会社 Glass plate for substrate

Similar Documents

Publication Publication Date Title
EP2639205B1 (en) Alkali-free glass
JP2002025762A (en) Glass board for inorganic el display
JP3666054B2 (en) Substrate glass
TW201136847A (en) Glass plate manufacturing method and glass plate manufacturing apparatus
JP4853817B2 (en) Glass substrate for flat panel display
JP4962898B2 (en) Glass substrate for flat panel display
JP4686858B2 (en) Glass substrate for flat panel display
JP3804115B2 (en) Glass substrate
JP2002053341A (en) Glass substrate of inorganic el display
JP2001226138A (en) Glass substrate for flat panel display device
JP2005089286A (en) Glass base plate for flat panel display device
KR101090783B1 (en) Glass substrate for flat panel display device
JP2003335547A (en) Glass substrate for flat panel display equipment
JP2004002062A (en) Glass substrate for flat panel display unit
JP2002053340A (en) Glass substrate of inorganic el display
JPH08290939A (en) Glass for substrate
JP3804159B2 (en) Glass substrate and glass substrate for PDP
JP3867817B2 (en) Substrate glass
JP4389257B2 (en) Glass substrate for flat panel display
JP3867816B2 (en) Substrate glass
JP2004244257A (en) Glass substrate for flat panel display device
JP2005255521A (en) Glass composition for substrate
JPH1025129A (en) Glass for substrate
JP4288657B2 (en) Glass substrate for flat panel display
JP4265157B2 (en) Glass substrate for flat panel display

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100611