JP2003326988A - Cooler, and intake cooler for engine - Google Patents

Cooler, and intake cooler for engine

Info

Publication number
JP2003326988A
JP2003326988A JP2002139701A JP2002139701A JP2003326988A JP 2003326988 A JP2003326988 A JP 2003326988A JP 2002139701 A JP2002139701 A JP 2002139701A JP 2002139701 A JP2002139701 A JP 2002139701A JP 2003326988 A JP2003326988 A JP 2003326988A
Authority
JP
Japan
Prior art keywords
air
passage
cooling
collecting chamber
distribution chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002139701A
Other languages
Japanese (ja)
Inventor
Masahiro Maekawa
正宏 前川
Ippei Kori
逸平 郡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Fuso Truck and Bus Corp
Original Assignee
Mitsubishi Fuso Truck and Bus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Fuso Truck and Bus Corp filed Critical Mitsubishi Fuso Truck and Bus Corp
Priority to JP2002139701A priority Critical patent/JP2003326988A/en
Publication of JP2003326988A publication Critical patent/JP2003326988A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0265Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using guiding means or impingement means inside the header box
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce flow resistance in a portion of a heat-exchanger on an intake passage to reduce a pressure loss in the intake passage. <P>SOLUTION: This cooler is provided with a case main body 18 having a heat-exchanging part 17 for cooling air, and formed into a flat shape orthogonal to a passing direction of the cooling air w, an air distribution chamber 11 for distributing the air flowing into one side of the case main body 18, an inlet duct 15 extended along a passing area of the cooling air w, and folded from the passing area to be connected to the air distribution chamber 11, an air collecting chamber 12 for collecting the cooled air in the other side opposed to the one side of the case main body 18, and an exit duct 16 connected to the air collecting chamber 12 to be extended foldedly from the air collecting chamber to a passing side of the cooling air w. A cross-section a1 of the inlet duct 15 is formed into a flat shape to be connected to a connection part 152, and a width h1 of the connection part 152 has one-half or more of longitudinal- directional width H1 of the air distribution chamber 11. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、冷却風で内燃機関
の吸気を冷却する熱交換部を備えた冷却装置、特に、熱
交換部が空気分配室と空気集合室を介し吸気路側のダク
トに接続されている冷却装置及びエンジンの吸気冷却装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling device provided with a heat exchange section for cooling intake air of an internal combustion engine with cooling air, and more particularly, the heat exchange section is provided in a duct on an intake passage side via an air distribution chamber and an air collecting chamber. The present invention relates to a connected cooling device and an intake air cooling device for an engine.

【0002】[0002]

【従来の技術】内燃機関は吸気密度が大きいほど出力向
上を図れることより、たとえば、過給機通過で昇温した
吸気を熱交換部を成すインタークーラにより走行風で冷
却することが行われている。通常、インタークーラは走
行風を受け易い場所に配備する必要があり、同位置は水
冷エンジンのラジエータの配置位置と重なり易く、イン
タークーラとラジエータを前後に直列的に並べ、走行風
を共に受け易いように配置することが多い。このため、
インタークーラの取り付けに際してはラジエータやエン
ジンルーム内の他の干渉物によりレイアウト的な規制を
受け易い傾向にある。
2. Description of the Related Art In an internal combustion engine, the output can be improved as the intake density increases, so that, for example, the intake air heated by passing through a supercharger is cooled by running air by an intercooler that forms a heat exchange section. There is. Normally, the intercooler must be placed in a place where it is easy to receive the running wind, and the same position is likely to overlap with the position of the radiator of the water-cooled engine, and the intercooler and the radiator are arranged in series in front and back so that it is easy to receive the running wind together. It is often arranged like this. For this reason,
When installing the intercooler, it tends to be subject to layout restrictions due to radiators and other interfering substances in the engine room.

【0003】例えば、図8に示すように、ラジエータ1
60と抱き合わせ状態で配設されたインタークーラ10
0はコア110の左右側端に空気分配室120と空気集
合室130を配し、空気分配室120や空気集合室13
0を覆う各タンク壁はコア110の幅方向Yと直交する
前後方向Xに向けて分配ガイド170と集合ガイド18
0とを延出形成している。分配ガイド170と集合ガイ
ド180はそれぞれの連結端部に入口ダクト140や出
口ダクト150を連結し、図示しないエンジン本体の吸
気系に連通している。
For example, as shown in FIG. 8, a radiator 1
60 and the intercooler 10 arranged in a tying state
0 has an air distribution chamber 120 and an air collecting chamber 130 at the left and right ends of the core 110.
Each tank wall covering 0 is distributed in the front-rear direction X orthogonal to the width direction Y of the core 110 in the distribution guide 170 and the assembly guide 18.
0 and 0 are formed to extend. The distribution guide 170 and the assembly guide 180 are connected to the inlet duct 140 and the outlet duct 150 at their respective connection ends, and communicate with an intake system of the engine body (not shown).

【0004】ここで分配ガイド170や集合ガイド18
0は流入、流出部が円筒状をなし、同部より延出部が除
々に偏平化されて延び、その先端の結合部が偏平縦筒化
され、空気分配室120や空気集合室130の各タンク
壁と一体結合されている。なお、分配ガイド170や集
合ガイド180の形状としては、図9に示すように、流
入部170a、流出部(図示せず)より結合部gに向う
延出部eの上下端縁の稜線Lu及び底線Ldが共に降下
する湾曲線で形成され、縦幅h1の結合部gが形成され
たものがある。
Here, the distribution guide 170 and the assembly guide 18
In 0, the inflow and outflow portions have a cylindrical shape, and the extending portion gradually extends from the same portion to be flattened and extends, and the joint portion at the tip thereof is made into a flat vertical cylinder, and each of the air distribution chamber 120 and the air collecting chamber 130 is It is integrated with the tank wall. As for the shapes of the distribution guide 170 and the assembly guide 180, as shown in FIG. 9, the ridge lines Lu of the upper and lower edges of the extending part e extending from the inflow part 170a and the outflow part (not shown) toward the connecting part g and There is one in which the bottom line Ld is formed by a curved line that descends together, and a joint portion g having a vertical width h1 is formed.

【0005】[0005]

【発明が解決しようとする課題】ところで、図8に示す
コア110は図示しない基枠に支持される横方向に長い
冷却パイプ(図示せず)を並列状に多数備え、これら冷
却パイプを通して空気分配室120より空気集合室13
0に吸気が流動する。このようなインタークーラ100
の内部での気流の流動特性を図7(b)に示した。ここ
でコア(符号c域)の表示部位に同コアを構成する水平
方向に長く並列状に配設される各冷却パイプ内の管内流
速の分布特性を棒グラフとして示した。これより明らか
なように、縦幅h1の分配ガイド(符号a域)からの吸
気は同領域と対向する部位の冷却パイプに流入すること
よりここでの流速が特に高くなり、それ以外の部位の流
速は低く、流速偏差δ1が比較的大きくなる。
The core 110 shown in FIG. 8 is provided with a large number of laterally long cooling pipes (not shown) supported in parallel by a base frame (not shown) in parallel, and air distribution is performed through these cooling pipes. Air collection room 13 from room 120
The intake air flows to 0. Such an intercooler 100
The flow characteristics of the air flow inside the container are shown in FIG. 7 (b). Here, the distribution characteristic of the in-pipe flow velocity in each of the cooling pipes that are long and arranged in parallel in the horizontal direction constituting the core at the display portion of the core (region c) is shown as a bar graph. As is clear from this, since the intake air from the distribution guide (reference numeral a region) having the vertical width h1 flows into the cooling pipe in the region facing the same region, the flow velocity here becomes particularly high, and The flow velocity is low, and the flow velocity deviation δ1 is relatively large.

【0006】しかも、分配ガイド(符号a域)より気流
が流入する空気分配室(符号b域)の長手方向(上下方
向)での中央寄り部位に、渦流速度ベクトルが比較的大
きく(中程度)生じる部位e1や、特に大きく(大程
度)生じる部位e2が発生し、流動抵抗が比較的大きく
なる。同じく、コア(符号c域)側の各冷却パイプの出
口端部から空気集合室(符号d域)に流出した吸気は縦
幅h2の集合ガイド(符号e域)に直接対向する部位で
は良いが、対向しない部位の気流は流線を屈曲して集合
ガイド(符号e域)側に流出することより、空気集合室
(符号d域)の長手方向での中央寄り部位に、渦流速度
ベクトルが比較的大きく(中程度)生じる部位e1や、
特に大きく(大程度)生じる部位e2が発生し、流動抵
抗が比較的大きくなる。
Moreover, the swirl velocity vector is relatively large (medium) in the central portion in the longitudinal direction (vertical direction) of the air distribution chamber (reference numeral b area) into which the air flow enters from the distribution guide (reference numeral a area). The generated portion e1 and the particularly large (largely) generated portion e2 are generated, and the flow resistance becomes relatively large. Similarly, the intake air flowing out from the outlet end of each cooling pipe on the core (reference numeral c area) side into the air collecting chamber (reference numeral d area) may directly face the collecting guide (reference numeral e area) having the vertical width h2. , The air currents in the areas not facing each other bend the streamlines and flow out to the side of the assembly guide (region e), so that the vortex velocity vectors are compared to the region in the center of the air collecting chamber (region d) in the longitudinal direction. The site e1 that is relatively large (medium),
Particularly large (largely) part e2 is generated, and the flow resistance becomes relatively large.

【0007】このように、図8に示すようなインターク
ーラ100では、分配ガイド170より空気分配室12
0を経てコア110側に向う吸気流路や、コア110側
より空気集合室130を経て集合ガイド180に流入す
る吸気流路は流線が大きく屈曲する。このため、従来の
インタークーラ100は吸気路における圧力損失が比較
的大きくなり、これがエンジンの燃費や出力や排気ガス
の劣化等を招く要因の一つとなっており、改善が望まれ
ている。本発明は、以上のような課題に基づき、吸気路
上の熱交換器の部位における流動抵抗を低減させ、吸気
路の圧力損失を低減できる冷却装置を提供することを目
的とする。
As described above, in the intercooler 100 as shown in FIG. 8, the air distribution chamber 12 is guided by the distribution guide 170.
The flow line of the intake flow passage that goes from 0 toward the core 110 side or the intake flow passage that flows from the core 110 side through the air collecting chamber 130 into the collecting guide 180 is greatly bent. Therefore, in the conventional intercooler 100, the pressure loss in the intake passage becomes relatively large, which is one of the factors that cause deterioration of the engine fuel consumption, output, exhaust gas, and the like, and improvement is desired. An object of the present invention is to provide a cooling device capable of reducing the flow resistance in the heat exchanger portion on the intake passage and reducing the pressure loss in the intake passage based on the above problems.

【0008】[0008]

【課題を解決するための手段】請求項1の発明は、冷却
風の通過によって空気を冷却する熱交換部を有し冷却風
の通過方向と直交する偏平形状に形成されたケース本体
と、前記ケース本体の一側に流入する空気を分配する空
気分配室と、前記冷却風の通過域に沿って延び且つ該通
過域から略直角に折れ曲がり前記空気分配室に接続され
る入口ダクトと、前記ケース本体の前記一側と対向する
他側の冷却された空気を集める空気集合室と、前記空気
集合室に接続され前記空気集合室から前記冷却風の通過
域側に折れ曲がり延びる出口ダクトとを備える冷却装置
において、前記入口ダクトの通路断面は前記空気分配室
の長手方向両端部に指向して拡大した偏平形状を成して
接続部に接続され、同接続部の幅が前記空気分配室の長
手方向の幅の1/2以上を有することを特徴とする。こ
のように、入口ダクトの通路断面は前記空気分配室の長
手方向両端部に指向して拡大した偏平形状を成して接続
部に接続され、同接続部の幅が前記空気分配室の長手方
向の幅の1/2以上を有することより、入口ダクトと空
気分配室とで空気が長手方向に十分に拡散され、流入す
る空気の流速が均一化するので、渦流の発生が低減し、
圧損が低減され、熱交換部における流速もほぼ等しくな
るため冷却効率が増大する。好ましくは、前記出口ダク
トが、前記ケース本体の前記一側と前記他側とに二分す
る仮想中央面に対して、前記入口ダクトの形状と対称に
形成されても良い。この場合、入口ダクトと同じ出口ダ
クトを用い熱交換部に空気を流入及び流出し、その際の
渦流の発生を低減し、圧損を低減することができる。
According to a first aspect of the present invention, there is provided a case main body having a heat exchange portion for cooling air by passage of cooling air and having a flat shape orthogonal to a passage direction of the cooling air. An air distribution chamber for distributing the air flowing into one side of the case body, an inlet duct extending along the passage of the cooling air, bent at a substantially right angle from the passage, and connected to the air distribution chamber; Cooling provided with an air collecting chamber for collecting cooled air on the other side facing the one side of the main body, and an outlet duct connected to the air collecting chamber and extending from the air collecting chamber to the passage side of the cooling air to bend. In the device, the passage cross section of the inlet duct is connected to the connecting portion with a flattened shape directed toward both ends of the air distributing chamber in the longitudinal direction, and the width of the connecting portion is the longitudinal direction of the air distributing chamber. 1 / width of It characterized by having a higher. As described above, the passage cross section of the inlet duct is connected to the connecting portion by forming a flattened shape which is oriented toward both ends in the longitudinal direction of the air distributing chamber and is connected to the connecting portion, and the width of the connecting portion is the longitudinal direction of the air distributing chamber. Since it has a width of 1/2 or more, the air is sufficiently diffused in the longitudinal direction in the inlet duct and the air distribution chamber, and the flow velocity of the inflowing air is made uniform, so that the generation of vortex is reduced,
The pressure loss is reduced and the flow velocities in the heat exchange section are almost equal, so that the cooling efficiency is increased. Preferably, the outlet duct may be formed symmetrical to the shape of the inlet duct with respect to a virtual center plane that divides the case body into one side and the other side. In this case, the same outlet duct as the inlet duct is used to allow air to flow in and out of the heat exchange section, reduce the occurrence of swirling at that time, and reduce the pressure loss.

【0009】請求項2の発明は、請求項1に記載の冷却
装置において、前記入口ダクトの通路断面の長手方向両
端における空気流動方向の通路内壁面を夫々通路中央側
に凸に湾曲して形成したことを特徴とする。このよう
に、入口ダクトの通路断面の長手方向両端における空気
流動方向の通路内壁面である峰線と底線を通路断面中央
側に凸に湾曲するので、入口ダクトに流入した吸気流を
通路断面の上下端側に全域にスムーズに渦流の発生なく
分散させて空気分配室の長手方向全域に分配することが
できる。
According to a second aspect of the present invention, in the cooling device according to the first aspect, the passage inner wall surfaces in the air flow direction at both longitudinal ends of the passage cross section of the inlet duct are formed so as to be convexly curved toward the passage center side. It is characterized by having done. In this way, the peak line and the bottom line, which are the inner wall surfaces of the passage in the air flow direction at both ends in the longitudinal direction of the passage cross section of the inlet duct, are convexly curved toward the center of the passage cross section. It is possible to smoothly disperse all over the upper and lower ends without generating a vortex, and distribute the air in the entire longitudinal direction of the air distribution chamber.

【0010】請求項3の発明は、請求項1に記載の冷却
装置において、前記入口ダクトが前記空気分配室の長手
方向の中央部に指向して斜め方向から接続されることを
特徴とする。このように、入口ダクトが空気分配室の中
央部に指向して斜め方向から接続されることによって、
空気分配室の長手方向全域に流入空気を分配することが
容易となり、熱交換部に均一に分配して供給できる。
According to a third aspect of the present invention, in the cooling device according to the first aspect, the inlet duct is oriented obliquely toward the central portion of the air distribution chamber in the longitudinal direction. In this way, the inlet duct is directed toward the center of the air distribution chamber and is connected obliquely,
It becomes easy to distribute the inflow air over the entire length of the air distribution chamber, and the heat can be evenly distributed and supplied to the heat exchange section.

【0011】請求項4の発明は、冷却風の通過によって
空気を冷却する熱交換部を有し冷却風の通過方向と直交
する偏平形状に形成されたケース本体と、前記ケース本
体の一側に流入する空気を分配する空気分配室と、前記
冷却風の通過域に沿って延びた上で折れ曲がり前記空気
分配室に接続される入口ダクトと、前記ケース本体の前
記一側と対向する他側の冷却された空気を集める空気集
合室と、前記空気集合室に接続され前記空気集合室から
前記冷却風の通過域側に折れ曲がり延びる出口ダクトと
を備える冷却装置において、前記出口ダクトの通路断面
は前記空気集合室の長手方向両端部に指向して拡大した
偏平形状を成して接続部に接続され、同接続部の幅が前
記空気集合室の長手方向の幅の1/2以上を有すること
を特徴とする。この場合、出口ダクトの通路断面は前記
空気集合室の長手方向両端部に指向して拡大した偏平形
状を成して接続部に接続され、同接続部の幅が前記空気
集合室の長手方向の幅の1/2以上を有することより、
長手方向に分散していた空気がスムーズに渦流の発生な
く集合されて流出されるので、圧損が低減され、冷却効
率が増大する。
According to a fourth aspect of the present invention, there is provided a case main body having a heat exchange portion for cooling the air by passage of the cooling air and having a flat shape orthogonal to the passage direction of the cooling air, and one side of the case main body. An air distribution chamber that distributes the inflowing air, an inlet duct that extends along the passage of the cooling air and is bent and connected to the air distribution chamber, and an other side of the case body opposite to the one side. In a cooling device including an air collecting chamber that collects cooled air, and an outlet duct that is connected to the air collecting chamber and bends and extends from the air collecting chamber to the passage area side of the cooling air, the passage cross section of the outlet duct is It is connected to the connecting portion in a flattened shape that is expanded toward both ends in the longitudinal direction of the air collecting chamber, and the width of the connecting portion is ½ or more of the longitudinal width of the air collecting chamber. Characterize. In this case, the passage cross-section of the outlet duct is connected to the connecting portion with a flattened shape that is oriented toward both ends in the longitudinal direction of the air collecting chamber and is connected to the connecting portion, and the width of the connecting portion is in the longitudinal direction of the air collecting chamber. By having more than 1/2 of the width,
The air dispersed in the longitudinal direction is smoothly aggregated and discharged without the generation of a vortex, so that the pressure loss is reduced and the cooling efficiency is increased.

【0012】好ましくは、前記入口ダクトが、前記ケー
ス本体の前記一側と前記他側とに二分する仮想中央面に
対して、前記出口ダクトの形状と対称に形成されても良
い。この場合、出口ダクトと同じ入口ダクトを用い熱交
換部に空気を流入及び流出し、その際の渦流の発生を低
減し、圧損を低減することができる。
Preferably, the inlet duct may be formed symmetrically with the shape of the outlet duct with respect to a virtual center plane that divides the case body into one side and the other side. In this case, the same inlet duct as the outlet duct is used to allow air to flow in and out of the heat exchange section, reduce the occurrence of swirl at that time, and reduce the pressure loss.

【0013】請求項5の発明は、請求項4に記載の冷却
装置において、前記出口ダクトの通路断面の長手方向両
端における空気流動方向の通路内壁面を夫々通路中央側
に凸に湾曲して形成したことを特徴とする。このよう
に、通路断面の長手方向両端における空気流動方向の通
路内壁面である峰線と底線を通路断面中央側に凸に湾曲
するので、長手方向に分散していた空気がスムーズに渦
流の発生なく集合されて流出されるので、流動抵抗を低
減することができる。
According to a fifth aspect of the present invention, in the cooling device according to the fourth aspect, the passage inner wall surfaces in the air flow direction at both longitudinal ends of the passage cross section of the outlet duct are formed so as to be convexly curved toward the center of the passage. It is characterized by having done. In this way, since the peak line and the bottom line, which are the inner wall surfaces of the passage in the air flow direction at both ends in the longitudinal direction of the passage cross section, are convexly curved toward the center side of the passage cross section, the air dispersed in the longitudinal direction smoothly generates an eddy current. The flow resistance can be reduced because they are gathered together and discharged.

【0014】請求項6の発明は、請求項4に記載の冷却
装置において、前記出口ダクトが前記空気集合室の長手
方向の中央部に指向して斜め方向から接続されることを
特徴とする。このように、出口ダクトが空気集合室の中
央部に指向して斜め方向から接続されることによって、
空気集合室の長手方向全域の流出空気を流動抵抗を低減
させて集合し、流出させることが容易となる。
According to a sixth aspect of the present invention, in the cooling device according to the fourth aspect, the outlet duct is directed obliquely toward the central portion of the air collecting chamber in the longitudinal direction. In this way, the outlet duct is directed obliquely toward the center of the air collecting chamber,
It becomes easy to collect the outflowing air in the entire longitudinal direction of the air collecting chamber while reducing the flow resistance and to let it out.

【0015】請求項7の発明は、内燃機関を搭載した車
両内の前方部分に車幅方向に延びて配設され冷却風の通
過によって空気を冷却する熱交換部を有する偏平なケー
ス本体と、前記ケース本体の一側に長手方向に延びて設
けられ流入する空気を分配する空気分配室と、前記冷却
風の通過域に沿って延びてから略直角に折れ曲がり前記
空気分配室に接続される入口ダクトと、前記ケース本体
の前記一側と対向する他側に長手方向に延びて設けられ
冷却された空気を集める空気集合室と、前記空気集合室
に接続され前記空気集合室から前記冷却風の通過域側に
略直角に折れ曲がり延びる出口ダクトとからなるインタ
ークーラを備え、前記入口ダクトから流入した空気が前
記空気分配室から前記熱交換部を介して前記空気集合室
に至り前記出口ダクトから排出されるエンジンの吸気冷
却装置において、前記インタークーラに対し車両進行方
向後方に配設され前記エンジンの冷却水の熱交換を行う
ラジエータを備え、前記入口ダクトの通路断面は前記空
気分配室の長手方向両端部に指向して拡大した偏平形状
を成して前記ラジエータの後方から接続部に接続され、
同接続部の縦幅が前記空気分配室の縦幅の1/2以上を
有し、前記出口ダクトの通路断面は前記空気集合室の長
手方向両端部に指向して拡大した偏平形状を成して前記
ラジエータの後方から接続部に接続され、同接続部の縦
幅が前記空気集合室の縦幅の1/2以上を有することを
特徴とする。
According to a seventh aspect of the present invention, there is provided a flat case main body having a heat exchange portion which is disposed in a front portion of a vehicle equipped with an internal combustion engine so as to extend in the vehicle width direction and cools air by passage of cooling air. An air distribution chamber that is provided on one side of the case body and extends in the longitudinal direction to distribute the inflowing air, and an inlet that extends along the passage of the cooling air and then bends at a substantially right angle to connect to the air distribution chamber. A duct, an air collecting chamber that extends in the longitudinal direction on the other side of the case body that faces the one side, and collects cooled air, and is connected to the air collecting chamber to collect the cooling air from the air collecting chamber. An intercooler comprising an outlet duct bent substantially at a right angle to the passage area side is provided, and the air flowing from the inlet duct reaches the air collecting chamber from the air distribution chamber via the heat exchange section to reach the outlet duct. In an intake air cooling device for an engine exhausted from an engine, a radiator is provided behind the intercooler in a vehicle traveling direction to perform heat exchange of cooling water of the engine, and a cross section of a passage of the inlet duct is the air distribution chamber. Is connected to the connection portion from the rear of the radiator, forming a flattened shape that is expanded toward both ends in the longitudinal direction of
The connecting portion has a vertical width of ½ or more of the vertical width of the air distribution chamber, and the passage cross section of the outlet duct has a flattened shape that is expanded toward both ends in the longitudinal direction of the air collecting chamber. Is connected to the connecting portion from the rear of the radiator, and the vertical width of the connecting portion is 1/2 or more of the vertical width of the air collecting chamber.

【0016】このように、入口ダクト及び出口ダクトの
各通路断面は前記空気分配室及び空気集合室の各長手方
向両端部に指向して拡大した偏平形状を成して前記ラジ
エータの後方から接続部にそれぞれ接続され、各接続部
の縦幅が前記空気分配室の縦幅の1/2以上を有するこ
とより、入口ダクトと空気分配室とで空気が長手方向に
十分に拡散され、流入する空気の流速が均一化し、更
に、空気集合室と出口ダクトにより、長手方向に分散し
ていた空気がスムーズに渦流の発生なく集合されて流出
されるので、渦流の発生が低減し、圧損が低減され、熱
交換部における流速もほぼ等しくなるため冷却効率が増
大し、圧損が低減され、冷却効率が増大する。
Thus, the cross-sections of the passages of the inlet duct and the outlet duct have a flattened shape that is enlarged toward both ends of the air distribution chamber and the air collecting chamber in the longitudinal direction, and the connecting portion from the rear of the radiator. Since the vertical width of each connecting portion is 1/2 or more of the vertical width of the air distribution chamber, the air is sufficiently diffused in the longitudinal direction in the inlet duct and the air distribution chamber, and the inflowing air is introduced. The flow velocity of the air is made uniform, and furthermore, the air that has been dispersed in the longitudinal direction is smoothly aggregated and discharged without the generation of swirl by the air collecting chamber and the outlet duct, so that the generation of swirl is reduced and the pressure loss is reduced. Since the flow velocities in the heat exchange section are almost equal, the cooling efficiency is increased, the pressure loss is reduced, and the cooling efficiency is increased.

【0017】[0017]

【発明の実施の形態】図1には本発明の実施形態として
のエンジンの吸気冷却装置Mを装備するエンジン1を示
す。このエンジン1は図示しない車両のエンジンルーム
2に装着され、水冷却装置Cを用いてエンジン本体10
1を水冷している。このエンジン1は図示しない複数の
シリンダに吸気を導く吸気路Iを備え、その途中に吸気
冷却装置Mを備える。ここで水冷却装置Cはエンジン本
体101内の図示しないウォータジャケットの高温の冷
却水をラジエータ3に導き、走行時には前部(図1で左
側)からの走行風wを受け或いは、図示しないクーリン
グファンの冷却風を受けるラジエータ3で冷却水を冷却
し、エンジンの過度の昇温を防止している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an engine 1 equipped with an intake air cooling system M for an engine as an embodiment of the present invention. This engine 1 is mounted in an engine room 2 of a vehicle (not shown), and a water cooling device C is used for the engine main body 10.
1 is water cooled. The engine 1 includes an intake passage I that guides intake air to a plurality of cylinders (not shown), and an intake air cooling device M in the middle thereof. Here, the water cooling device C guides high-temperature cooling water of a water jacket (not shown) in the engine body 101 to the radiator 3, receives traveling wind w from the front part (left side in FIG. 1) during traveling, or a cooling fan (not shown). The cooling water is cooled by the radiator 3 that receives the cooling air of (3) to prevent excessive temperature rise of the engine.

【0018】エンジンの吸気冷却装置Mはエンジン1の
吸気路Iの途中に配設される。吸気路Iは図示しないエ
アクリーナで濾過された吸気を過給機4で加圧して流入
ダクト5を介しインタークーラ6に導き、走行風w或い
は冷却風を受けるインタークーラ6で冷却された吸気が
流出ダクト7及びエンジン本体101側の吸気多岐管8
を介して図示しない燃焼室に供給されている。エンジン
の吸気冷却装置Mはインタークーラ6と同インタークー
ラに過給機4側からの吸気を導く流入ダクト5と、イン
タークーラ6からの吸気を流出させる流出ダクト7とを
備える。
The intake air cooling system M for the engine is disposed in the intake passage I of the engine 1. In the intake passage I, the intake air filtered by an air cleaner (not shown) is pressurized by the supercharger 4 and guided to the intercooler 6 through the inflow duct 5, and the intake air cooled by the intercooler 6 that receives the traveling wind w or the cooling air flows out. Intake manifold 8 on the side of the duct 7 and the engine body 101
Is supplied to a combustion chamber not shown via. The engine intake air cooling device M includes an intercooler 6, an inflow duct 5 that guides intake air from the supercharger 4 side to the intercooler, and an outflow duct 7 that allows intake air from the intercooler 6 to flow out.

【0019】インタークーラ6はエンジンルーム2内の
前後方向Xでの前方部分(図1で左側)に配設される。
図1、図2(a),(b)に示すように、インタークー
ラ6はラジエータ3の前部に所定間隔を介して重ねて配
備されるケース本体9と、ケース本体9の車幅方向Yに
おける両側で上下方向に連続して設けられた空気分配室
11及び空気集合室12の各タンク壁部13、14と、
空気分配室11に接続される入口ダクト15と、空気集
合室12に接続される出口ダクト16とを備える。な
お、インタークーラ6は入口ダクト15と出口ダクト1
6とで走行風w或いは冷却風の通過域側に位置するラジ
エータ3を抱き込む状態で配設される。
The intercooler 6 is arranged in a front portion (left side in FIG. 1) in the front-rear direction X in the engine room 2.
As shown in FIG. 1, FIG. 2A, and FIG. 2B, the intercooler 6 is provided on the front portion of the radiator 3 so as to be superposed on each other at a predetermined interval, and the case body 9 in the vehicle width direction Y. Each of the tank wall portions 13 and 14 of the air distribution chamber 11 and the air collecting chamber 12 that are continuously provided on both sides in the vertical direction,
An inlet duct 15 connected to the air distribution chamber 11 and an outlet duct 16 connected to the air collecting chamber 12 are provided. The intercooler 6 has an inlet duct 15 and an outlet duct 1.
6, the radiator 3 located on the side of the passage area of the traveling wind w or the cooling wind is arranged so as to be held.

【0020】インタークーラ6のケース本体9は、図2
(a),(b)に示すように、車幅方向Yに延びて配設
され冷却風wの通過によって吸気を冷却する熱交換部
(コア)17と、これを支持する矩形枠18とを有す
る。ここで、熱交換部17は車幅方向Yに延びる断面偏
平な冷却パイプ19を上下に配列させ、各冷却パイプ1
9の左右の開口端191を左右のパイプ支持板21に貫
通状態で一体結合している。左右のパイプ支持板21は
矩形枠18の一部を成しその上下端が上下枠部181に
一体結合され、これにより上下に配列された複数の冷却
パイプ19からなる熱交換部17の保形性を確保してい
る。
The case body 9 of the intercooler 6 is shown in FIG.
As shown in (a) and (b), a heat exchange portion (core) 17 that extends in the vehicle width direction Y and cools intake air by passage of cooling air w, and a rectangular frame 18 that supports the heat exchange portion (core) 17 are provided. Have. Here, in the heat exchange section 17, cooling pipes 19 having a flat cross section extending in the vehicle width direction Y are arranged vertically, and each cooling pipe 1
The left and right open ends 191 of 9 are integrally connected to the left and right pipe support plates 21 in a penetrating state. The left and right pipe support plates 21 form a part of the rectangular frame 18, and the upper and lower ends thereof are integrally coupled to the upper and lower frame parts 181, so that the shape of the heat exchange part 17 including a plurality of cooling pipes 19 arranged vertically is maintained. It secures sex.

【0021】なお、図2(b)に示すように、上下に隣
り合う各冷却パイプ19間の走行風w或いは冷却風の通
路rには、冷却パイプ19の横断面幅に近い幅のベルト
状金属板を繰返して屈曲変形して形成した放熱フィン2
2が固着状態で介装される。これにより、放熱フィン2
2が結合されている各冷却パイプ19の放熱面積を増大
させ、同冷却パイプ19の冷却効率を向上させている。
図1、図2(a)、図4に示すように、空気分配室11
はパイプ支持板21とタンク壁部13とで閉鎖される。
タンク壁部13の車幅方向Yで外側端部には入口ダクト
15の接続部が一体結合される。
As shown in FIG. 2 (b), the running air w between the vertically adjacent cooling pipes 19 or the passage r of the cooling air has a belt-like shape having a width close to the cross-sectional width of the cooling pipe 19. Radiating fin 2 formed by repeatedly bending and deforming a metal plate
2 is fixedly interposed. Thereby, the radiation fin 2
The heat radiation area of each cooling pipe 19 to which 2 is connected is increased, and the cooling efficiency of the cooling pipe 19 is improved.
As shown in FIGS. 1, 2A, and 4, the air distribution chamber 11
Is closed by the pipe support plate 21 and the tank wall 13.
A connection portion of the inlet duct 15 is integrally connected to an outer end portion of the tank wall portion 13 in the vehicle width direction Y.

【0022】入口ダクト15は冷却風である走行風wの
通過域側に位置するラジエータ3と対向する略扇形の主
部151と同主部151から略直角に折れ曲がり延びて
空気分配室11に接続される接続部としての接続フラン
ジ152とを一体的に形成している。主部151は流入
ダクト5に嵌着する筒部151aと、筒部151aより
空気分配室11の中央部に指向して斜め上方向から接続
されるよう偏平して延出する偏平部151bと、偏平部
151bより空気分配室11と接続される接続フランジ
152に達する曲折部151cとを備える。
The inlet duct 15 is connected to the air distribution chamber 11 by bending a substantially fan-shaped main portion 151 facing the radiator 3 located on the side of the passage of the traveling wind w, which is cooling air, from the main portion 151 at a substantially right angle. The connecting flange 152 as a connecting portion is formed integrally. The main portion 151 has a tubular portion 151a fitted to the inflow duct 5, and a flat portion 151b that extends flatly from the tubular portion 151a toward the center of the air distribution chamber 11 so as to be connected obliquely from above. A bent portion 151c reaching the connection flange 152 connected to the air distribution chamber 11 from the flat portion 151b is provided.

【0023】主部151の通路断面a1は筒部151a
において断面円形状を成す。偏平部151bの通路断面
a1は上下に長い矩形状を成し、その矩形断面は曲折部
151cに向うほど上下に長く偏平され、その上で平面
視(図1参照)で略直角に折れ曲げられ、空気分配室1
1と接続される接続フランジ152に達する位置では空
気分配室11の長手方向(上下方向)の両端部に向かっ
て夫々拡張し、長手方向に沿うような偏平形状として形
成される。このため偏平部151bでの通路断面a1の
上下端(長手方向両端)における空気流動方向の縁線
(通路内壁面)である峰線d1と底線d2(図6参照)
は通路中央側(通路中心線を符号L1で示す)に向けて
夫々凸に湾曲して形成されている。
The passage section a1 of the main portion 151 has a cylindrical portion 151a.
The cross section has a circular shape. The passage section a1 of the flat portion 151b has a vertically long rectangular shape, and the rectangular cross section is flattened vertically toward the bent portion 151c, and is bent at a substantially right angle in plan view (see FIG. 1). , Air distribution chamber 1
At the position reaching the connection flange 152 connected to 1, the air distribution chamber 11 is expanded toward both ends in the longitudinal direction (vertical direction) and is formed in a flat shape along the longitudinal direction. Therefore, the peak line d1 and the bottom line d2, which are the edge lines (inner wall surface of the passage) in the air flow direction at the upper and lower ends (both ends in the longitudinal direction) of the passage cross section a1 in the flat portion 151b, are shown in FIG.
Are formed so as to be convexly curved toward the center side of the passage (the passage center line is indicated by L1).

【0024】ここで、図6に示すように、偏平部151
bの通路断面a1の中心線L1は空気分配室11の中央
部に指向して斜め上方向から接続されている。このた
め、流入ダクト5はその筒部151aに流入した吸気を
空気分配室11の長手方向(上下方向)全域に均一に分
配することが容易となる。なお、図3、図4に示すよう
に、空気分配室11と対向する曲折部151cの縦幅h
aは空気分配室11の縦幅Haより小さく、縦幅Haの
半分(=1/2・Ha)よりは大きく形成されている。
Here, as shown in FIG. 6, the flat portion 151
The center line L1 of the passage cross-section a1 of b is directed toward the center of the air distribution chamber 11 and is connected obliquely from above. Therefore, it becomes easy for the inflow duct 5 to uniformly distribute the intake air that has flowed into the tubular portion 151a over the entire longitudinal direction (vertical direction) of the air distribution chamber 11. As shown in FIGS. 3 and 4, the vertical width h of the bent portion 151c facing the air distribution chamber 11 is h.
a is formed to be smaller than the vertical width Ha of the air distribution chamber 11 and larger than half (= 1/2 · Ha) of the vertical width Ha.

【0025】このように、通路断面a1の峰線d1と底
線d2が通路断面a1の中央側に凸に湾曲するので、筒
部151aに流入した吸気流は通路断面a1の上下端側
の縁線である峰線と底線の間の全域にスムーズに渦流の
発生なく分散して流動でき、しかも、空気分配室11の
長手方向(上下方向)全域に十分に拡散され、この際、
空気分配室11に流入する空気の流速が均一化するの
で、渦流の発生が低減し、流動抵抗を低減することがで
きる。
As described above, the peak line d1 and the bottom line d2 of the passage cross section a1 are convexly curved toward the center of the passage cross section a1, so that the intake flow flowing into the tubular portion 151a is edge lines on the upper and lower ends of the passage cross section a1. It is possible to smoothly disperse and flow in the entire area between the peak line and the bottom line without generating eddy current, and further, it is sufficiently diffused in the entire longitudinal direction (vertical direction) of the air distribution chamber 11. At this time,
Since the flow velocity of the air flowing into the air distribution chamber 11 is made uniform, the generation of swirl flow is reduced, and the flow resistance can be reduced.

【0026】なお、曲折部151cの縦幅h1が空気分
配室11の縦幅H1の1/2よりも大きく形成され、且
つ曲折部151cと冷却パイプ19との間に空気分配室
11の空間が存在することによって、峰線d1と底線d
2の延長線を矩形枠18の端部に位置する冷却パイプ1
9に到達させることができる。この結果、各冷却パイプ
19を通過する熱交換部17の入口ダクト15と反対側
に配置される出口ダクト16は、ケース本体18を左右
に二分する仮想中央面(図2(a)において紙面垂直な
符号fで示す面)に対して、入口ダクト15の形状と左
右対称に形成される。このように入口ダクト15と同様
に出口ダクト16も形成されるので、熱交換部17から
の吸気を集合させて流出ダクト7に流出させるにあた
り、渦流の発生を低減し、圧損を低減して集合させるこ
とができる。
The vertical width h1 of the bent portion 151c is formed to be larger than half the vertical width H1 of the air distribution chamber 11, and the space of the air distribution chamber 11 is formed between the bent portion 151c and the cooling pipe 19. The existence of the peak line d1 and the bottom line d
The cooling pipe 1 whose extension line is located at the end of the rectangular frame 18
You can reach 9. As a result, the outlet duct 16 disposed on the opposite side of the inlet duct 15 of the heat exchange section 17 passing through each cooling pipe 19 divides the case main body 18 into left and right imaginary center planes (perpendicular to the paper surface in FIG. 2A). (A surface indicated by reference numeral f) is formed symmetrically with the shape of the inlet duct 15. Since the outlet duct 16 is formed in the same manner as the inlet duct 15 in this way, when collecting the intake air from the heat exchange section 17 and flowing it out to the outflow duct 7, the generation of eddy currents is reduced and the pressure loss is reduced to collect. Can be made.

【0027】即ち、図1、図2(a)、図5に示すよう
に、空気集合室12はパイプ支持板21とタンク壁部1
4とで閉鎖される。タンク壁部14の車幅方向Yで外側
端部には出口ダクト16の接続部162が一体結合され
る。出口ダクト16は走行風w或いは冷却風の通過域側
に位置するラジエータ3と対向する略扇形の主部161
と同主部161から略直角に折れ曲がり延びて空気分配
室11に接続される接続部としての接続フランジ152
とを一体的に形成している。主部161は流出ダクト7
に嵌着する筒部161aと、筒部161aより空気集合
室12の中央部に指向して斜め上方向から接続されるよ
う偏平して延出する偏平部161bと、偏平部161b
より空気集合室12と接続される接続フランジ162に
達する曲折部161cとを備える。
That is, as shown in FIGS. 1, 2A, and 5, the air collecting chamber 12 includes a pipe support plate 21 and a tank wall portion 1.
Closed with 4. A connecting portion 162 of the outlet duct 16 is integrally connected to an outer end portion of the tank wall portion 14 in the vehicle width direction Y. The outlet duct 16 is a substantially fan-shaped main portion 161 facing the radiator 3 located on the side of the passage area of the traveling wind w or the cooling wind.
And a connecting flange 152 as a connecting portion which is bent and extended from the main portion 161 at a substantially right angle and is connected to the air distribution chamber 11.
And are integrally formed. The main part 161 is the outflow duct 7
A cylindrical portion 161a which is fitted in the flat portion 161a, a flat portion 161b which extends from the cylindrical portion 161a toward the center of the air collecting chamber 12 so as to be connected obliquely from above, and a flat portion 161b.
The bent portion 161c further reaches the connection flange 162 connected to the air collecting chamber 12.

【0028】主部161通路断面b1は通路断面a1と
同様に筒部151aで断面円形状に、偏平部151bで
上下に長く偏平され、曲折部151cで空気集合室12
の長手方向(上下方向)の両端部に向かって夫々拡張
し、長手方向に沿うような偏平形状を成す。なお、偏平
部161bでの通路断面b1の上下端(長手方向両端)
における峰線d1と底線d2(図示せず)は偏平部15
1bの場合と同様に中心線L1側に凸に形成されてい
る。偏平部161bの通路断面b1の中心線L1も偏平
部151bの通路断面a1の中心線L1と同様に形成さ
れる。ここでも曲折部161cは曲折部151cと同様
に、縦幅h1が空気集合室12の縦幅H1の半分(=1
/2・H)よりは大きく形成されている。
Similar to the passage section a1, the main section 161 has a cylindrical section 151a having a circular cross section, and a flat section 151b vertically long flats, and a bent section 151c has a bent section 151c.
To the both ends in the longitudinal direction (vertical direction), and form a flat shape along the longitudinal direction. In addition, the upper and lower ends (both ends in the longitudinal direction) of the passage cross section b1 at the flat portion 161b.
The peak line d1 and the bottom line d2 (not shown) in FIG.
Similar to the case of 1b, it is formed to be convex toward the center line L1. The center line L1 of the passage section b1 of the flat portion 161b is also formed similarly to the center line L1 of the passage section a1 of the flat portion 151b. Also here, the bent portion 161c has a vertical width h1 that is half the vertical width H1 of the air collecting chamber 12 (= 1), as in the bent portion 151c.
/ 2 · H).

【0029】これにより、空気集合室12の長手方向全
域に分散していた各冷却パイプ19の出口192からの
吸気がスムーズに渦流の発生なく筒部151a側に向け
て集合され、流出ダクト7に流出されるので、流動抵抗
を低減することができ、この点でも圧損が低減され、冷
却効率が増大する。ここで、図7(a)には本実施形態
のインタークーラ6の内部での気流の流動特性を示し
た。即ち、気流は入口ダクト15(符号a’域)より空
気分配室11(符号b’域)に達し、熱交換部17(符
号c’域)の各冷却パイプ19内に分散して流動し、空
気集合室12(符号d’域)に達した気流が出口ダクト
16(符号e’域)に集合して流入する。
As a result, the intake air from the outlets 192 of the cooling pipes 19 dispersed in the entire length of the air collecting chamber 12 is smoothly gathered toward the cylindrical portion 151a side without the generation of eddy currents, and flows into the outflow duct 7. Since it flows out, the flow resistance can be reduced, and also in this respect, the pressure loss is reduced and the cooling efficiency is increased. Here, FIG. 7A shows the flow characteristics of the airflow inside the intercooler 6 of the present embodiment. That is, the airflow reaches the air distribution chamber 11 (reference numeral b ′ area) from the inlet duct 15 (reference numeral a ′ area), disperses and flows in each cooling pipe 19 of the heat exchange section 17 (reference numeral c ′ area), The airflow reaching the air collecting chamber 12 (reference numeral d ′ area) gathers and flows into the outlet duct 16 (reference numeral e ′ area).

【0030】ここで熱交換部(符号c’域)の表示部位
に同部を構成する水平方向に長く並列状に配設される各
冷却パイプ19内の管内流速の分布特性を棒グラフとし
て示した。これより明らかなように、分配ガイド(符号
a’域)は空気分配室(符号b’域)と対向する開口部
の長手方向の縦幅haが比較的大きいため、気流が長手
方向にスムーズに分散して空気分配室(符号b’域)に
流入でき、長手方向に分散する各冷却パイプ19にスム
ーズに分散して流入するので、流速が一様に高くなり、
長手方向における流速の偏差δ2が比較的小さくなって
いる。しかも、分配ガイド(符号a’域)より気流が流
入する空気分配室(符号b’域)の長手方向(上下方
向)での中央寄り部位において渦流速度ベクトルが多少
大きく(中程度)生じる部位e1が存在するが、図7
(b)に示す従来の空気分配室(符号b’域)のように
特に大きく(大程度)生じる部位e2は無く、流動抵抗
は比較的小さい。
Here, the distribution characteristics of the in-pipe flow velocities in the respective cooling pipes 19 which are long and arranged in parallel in the horizontal direction constituting the same portion at the display portion of the heat exchange portion (reference numeral c'region) are shown as a bar graph. . As is clear from this, the distribution guide (reference numeral a'region) has a relatively large longitudinal width ha in the longitudinal direction of the opening facing the air distribution chamber (reference numeral b'region), so that the air flow smoothly in the longitudinal direction. Since it can be dispersed and flown into the air distribution chamber (reference numeral b'region) and smoothly dispersed and flowed into the cooling pipes 19 dispersed in the longitudinal direction, the flow velocity is uniformly increased,
The deviation δ2 of the flow velocity in the longitudinal direction is relatively small. Moreover, a portion e1 in which a vortex velocity vector is slightly larger (medium) at a portion closer to the center in the longitudinal direction (vertical direction) of the air distribution chamber (reference numeral b'area) into which the airflow flows from the distribution guide (reference numeral a'area). Exists, but Fig. 7
Unlike the conventional air distribution chamber (reference numeral b'region) shown in (b), there is no particularly large (largely) part e2, and the flow resistance is relatively small.

【0031】同じく、集合ガイド(符号e域)の開口部
の長手方向の縦幅hbが比較的大きいため、熱交換部
(符号c’域)の長手方向に分散する各冷却パイプ19
から空気集合室(符号d’域)に流出した吸気は、集合
ガイド(符号e’域)側にスムーズに湾曲して流出する
ので、図7(b)に示す従来の空気集合室(符号d’
域)のように特に大きく(大程度)生じる部位e2は無
く、流動抵抗は比較的小さい。なお、表1には、図1の
インタークーラ6及びこれと同一容量で図7(b)及び
図9に示す形状の従来のインタークーラとの圧力損失比
較値を示した。ここで明らかなように、空気分配室(符
号b、b’域)でも空気集合室(符号d、d’域)でも
従来のインタークーラ(図9)より本願のインタークー
ラ6の圧力損失が十分に低減していることが明らかであ
り、インタークーラ全体の圧力損失値比較でも本願のイ
ンタークーラ6は従来より約2割の圧力損失低減効果が
得られていることが明らかである。
Similarly, since the longitudinal width hb in the longitudinal direction of the opening of the assembly guide (reference numeral e area) is relatively large, each cooling pipe 19 dispersed in the longitudinal direction of the heat exchange portion (reference numeral c'area).
Since the intake air flowing out of the air collecting chamber (reference numeral d'region) smoothly curves toward the collecting guide (reference numeral e'region) side and flows out, the conventional air collecting chamber (reference numeral d) shown in FIG. '
There is no particularly large (largely) part e2 such as a region, and the flow resistance is relatively small. Table 1 shows the pressure loss comparison values of the intercooler 6 of FIG. 1 and the conventional intercooler having the same capacity as the intercooler of the shapes shown in FIGS. 7B and 9. As is apparent here, the pressure loss of the intercooler 6 of the present application is more sufficient than that of the conventional intercooler (FIG. 9) in both the air distribution chamber (reference numerals b and b ′ regions) and the air collecting chamber (reference symbols d and d ′ regions). It is clear that the intercooler 6 of the present application has a pressure loss reduction effect of about 20% compared with the conventional one even in comparison of the pressure loss values of the whole intercooler.

【0032】[0032]

【表1】 [Table 1]

【0033】このように、図1のエンジンの吸気冷却装
置Mは、入口ダクト6の接続部152の縦幅haが空気
分配室11の縦幅Haの1/2以上を有することより、
この入口ダクト6と空気分配室11とで吸気が長手方向
(上下方向)全域に十分に拡散され、熱交換部17に流
入する空気の流速が均一化するので、渦流の発生が低減
し、圧損が低減され、冷却効率が増大する。図1のエン
ジンの吸気冷却装置Mは入口ダクト15が空気分配室1
1の中央部に指向して斜め上方向から接続されるので、
空気分配室11の長手方向全域に流入空気を分配するこ
とが容易となり、熱交換部に均一に分配して供給できた
が、場合により空気分配室11の中央部より上下に多少
ずれた位置に向けて流入させてもほぼ同様の作用効果が
得られる。
As described above, in the intake air cooling system M for the engine of FIG. 1, since the vertical width ha of the connecting portion 152 of the inlet duct 6 is 1/2 or more of the vertical width Ha of the air distribution chamber 11,
The intake duct 6 and the air distribution chamber 11 sufficiently diffuse the intake air in the entire longitudinal direction (vertical direction) and make the flow velocity of the air flowing into the heat exchange section 17 uniform, so that the generation of vortex flow is reduced and the pressure loss is reduced. Is reduced and cooling efficiency is increased. In the intake air cooling device M of the engine of FIG. 1, the inlet duct 15 has an air distribution chamber 1
Since it is connected to the center of 1 from diagonally above,
It was easy to distribute the inflow air over the entire length of the air distribution chamber 11 and could be evenly distributed and supplied to the heat exchange section, but in some cases, it may be slightly displaced vertically from the center of the air distribution chamber 11. Even if it is made to flow in toward, the same effect can be obtained.

【0034】図1のエンジンの吸気冷却装置Mは出口ダ
クト16の通路断面b1が空気集合室12の長手方向両
端部に指向して拡大した偏平形状を成して接続部162
に接続され、同接続部162の縦幅hb(図2参照)が
空気集合室12の縦幅Ha(空気分配室11と同じ)の
1/2以上を有することより、長手方向に分散していた
空気がスムーズに渦流の発生なく集合されて流出される
ので、圧損が低減され、冷却効率が増大する。
In the intake air cooling system M of the engine shown in FIG. 1, the passage section b1 of the outlet duct 16 has a flattened shape which is oriented toward both ends in the longitudinal direction of the air collecting chamber 12 and has an enlarged flat shape.
, And the vertical width hb (see FIG. 2) of the connecting portion 162 is 1/2 or more of the vertical width Ha of the air collecting chamber 12 (the same as the air distributing chamber 11), so that they are dispersed in the longitudinal direction. Since the collected air smoothly flows out without generating a vortex, the pressure loss is reduced and the cooling efficiency is increased.

【0035】図1のエンジンの吸気冷却装置Mは入口ダ
クト15及び出口ダクト16の各通路断面a1,b1は
空気分配室11及び空気集合室12の各長手方向(上下
方向)両端部に指向して拡大した偏平形状を成してラジ
エータ3の後方から接続部151c、161cにそれぞ
れ接続され、各接続部の縦幅h1が空気分配室11及び
空気集合室12の縦幅H1の1/2以上を有するように
構成されていた。このことより、入口ダクト15と空気
分配室11とで空気が長手方向に十分に拡散され、流入
する空気の流速が均一化し、更に、空気集合室12と出
口ダクト16により空気集合室12の長手方向(上下方
向)両端部に分散していた吸気がスムーズに渦流の発生
なく集合されて流出されるので、渦流の発生が低減し、
圧損が低減され、熱交換部17における流速もほぼ等し
くなるため冷却効率が増大し、圧損が低減され、冷却効
率を増大させることができる。
In the intake air cooling system M of the engine shown in FIG. 1, the passage cross sections a1 and b1 of the inlet duct 15 and the outlet duct 16 are directed to both longitudinal (vertical) ends of the air distribution chamber 11 and the air collecting chamber 12. The enlarged flat shape is connected to the connecting portions 151c and 161c from the rear of the radiator 3, and the vertical width h1 of each connecting portion is 1/2 or more of the vertical width H1 of the air distribution chamber 11 and the air collecting chamber 12. Was configured to have. As a result, the air is sufficiently diffused in the longitudinal direction in the inlet duct 15 and the air distribution chamber 11, the flow velocity of the inflowing air is made uniform, and the air collecting chamber 12 and the outlet duct 16 further lengthen the air collecting chamber 12. Since the intake air that has been dispersed at both ends in the vertical direction (up and down direction) is smoothly aggregated and discharged without the generation of swirl flow, the generation of swirl flow is reduced,
Since the pressure loss is reduced and the flow velocities in the heat exchange section 17 are substantially equal, the cooling efficiency is increased, the pressure loss is reduced, and the cooling efficiency can be increased.

【0036】上述のところにおいて、エンジンの吸気冷
却装置Mは入口ダクト15及び出口ダクト16が左右対
称の形状を採っていたが、非対称に形成されても良く、
要は、同接続部の縦幅が空気集合室の縦幅の1/2以上
を有し、長手方向に分散していた空気がスムーズに渦流
の発生なく集合されて流出される構成を採れるものであ
ればよく、これらの場合も、図1のエンジンの吸気冷却
装置Mと同様の作用効果が得られる。
In the above description, although the inlet duct 15 and the outlet duct 16 of the intake air cooling device M of the engine have a symmetrical shape, they may be formed asymmetrically.
The point is that the vertical width of the connecting portion is 1/2 or more of the vertical width of the air collecting chamber, and the air dispersed in the longitudinal direction can be smoothly collected and discharged without generating a vortex. It suffices if the above conditions are satisfied, and in these cases as well, the same operational effects as the intake air cooling device M for the engine of FIG.

【0037】上述のところにおいて、エンジンの吸気冷
却装置Mを車両用として説明したが、定置式エンジン、
或いは電動機用の冷却装置にも同様に適用でき、これら
の場合、冷却風は走行風に代えてファンが生じる空気流
となり、これらの場合も、図1のエンジンの吸気冷却装
置と同様の作用効果が得られる。
In the above description, the intake air cooling device M for the engine has been described for a vehicle.
Alternatively, it can be similarly applied to a cooling device for an electric motor. In these cases, the cooling wind becomes an air flow generated by a fan instead of the running wind, and in these cases, the same action and effect as the intake air cooling device of the engine of FIG. Is obtained.

【0038】[0038]

【発明の効果】以上のように、請求項1の発明は、入口
ダクトの通路断面は前記空気分配室の長手方向両端部に
指向して拡大した偏平形状を成して接続部に接続され、
同接続部の幅が前記空気分配室の長手方向の幅の1/2
以上を有することより、入口ダクトと空気分配室とで空
気が長手方向に十分に拡散され、流入する空気の流速が
均一化するので、渦流の発生が低減し、圧損が低減さ
れ、熱交換部における流速もほぼ等しくなるため冷却効
率が増大する。
As described above, according to the first aspect of the present invention, the passage cross section of the inlet duct is connected to the connecting portion with a flattened shape which is enlarged toward both ends in the longitudinal direction of the air distribution chamber,
The width of the connecting portion is 1/2 of the width of the air distribution chamber in the longitudinal direction.
By having the above, since the air is sufficiently diffused in the longitudinal direction in the inlet duct and the air distribution chamber and the flow velocity of the inflowing air is made uniform, the generation of vortex flow is reduced, the pressure loss is reduced, and the heat exchange section is reduced. The cooling efficiencies increase because the flow velocities at are almost equal.

【0039】請求項2の発明は、入口ダクトの通路断面
の長手方向両端における空気流動方向の通路内壁面であ
る峰線と底線を通路断面中央側に凸に湾曲するので、入
口ダクトに流入した吸気流を通路断面の上下端側に全域
にスムーズに渦流の発生なく分散させて空気分配室の長
手方向全域に分配することができる。
According to the second aspect of the present invention, since the peak line and the bottom line, which are the inner wall surfaces of the passage in the air flow direction at both longitudinal ends of the passage cross section of the inlet duct, are convexly curved toward the center of the passage cross section, they flow into the inlet duct. It is possible to smoothly distribute the intake air flow over the entire upper and lower ends of the passage section without generating a swirl flow and distribute the intake air flow over the entire area in the longitudinal direction of the air distribution chamber.

【0040】請求項3の発明は、入口ダクトが空気分配
室の中央部に指向して斜め方向から接続されることによ
って、空気分配室の長手方向全域に流入空気を分配する
ことが容易となり、熱交換部に均一に分配して供給でき
る。
According to the third aspect of the present invention, the inlet duct is directed obliquely toward the central portion of the air distribution chamber and is connected obliquely, whereby it becomes easy to distribute the inflow air over the entire longitudinal direction of the air distribution chamber. It can be evenly distributed and supplied to the heat exchange section.

【0041】請求項4の発明は、出口ダクトの通路断面
は前記空気集合室の長手方向両端部に指向して拡大した
偏平形状を成して接続部に接続され、同接続部の幅が前
記空気集合室の長手方向の幅の1/2以上を有すること
より、長手方向に分散していた空気がスムーズに渦流の
発生なく集合されて流出されるので、圧損が低減され、
冷却効率が増大する。
According to a fourth aspect of the present invention, the passage cross section of the outlet duct has a flattened shape that is enlarged toward both ends in the longitudinal direction of the air collecting chamber and is connected to the connecting portion, and the width of the connecting portion is the same. Since the air gathering chamber has a width of ½ or more in the longitudinal direction, the air dispersed in the longitudinal direction can be smoothly aggregated and discharged without generation of a vortex, so that the pressure loss can be reduced.
Cooling efficiency is increased.

【0042】請求項5の発明は、通路断面の長手方向両
端における空気流動方向の通路内壁面である峰線と底線
を通路断面中央側に凸に湾曲するので、長手方向に分散
していた空気がスムーズに渦流の発生なく集合されて流
出されるので、流動抵抗を低減することができる。
According to the fifth aspect of the present invention, the peak line and the bottom line, which are the inner wall surfaces of the passage in the air flow direction at both ends in the longitudinal direction of the passage cross section, are convexly curved toward the center side of the passage cross section. Since they are smoothly aggregated and discharged without the generation of a vortex, the flow resistance can be reduced.

【0043】請求項6の発明は、出口ダクトが空気集合
室の中央部に指向して斜め方向から接続されることによ
って、空気集合室の長手方向全域の流出空気を流動抵抗
を低減させて集合し、流出させることが容易となる。
According to the sixth aspect of the invention, the outlet duct is directed obliquely toward the center of the air collecting chamber and is connected obliquely so that the flow resistance of the outflowing air in the entire longitudinal direction of the air collecting chamber is reduced. However, it becomes easy to make it flow out.

【0044】請求項7の発明は、入口ダクト及び出口ダ
クトの各通路断面は前記空気分配室及び空気集合室の各
長手方向両端部に指向して拡大した偏平形状を成して前
記ラジエータの後方から接続部にそれぞれ接続され、各
接続部の縦幅が前記空気分配室の縦幅の1/2以上を有
することより、入口ダクトと空気分配室とで空気が長手
方向に十分に拡散され、流入する空気の流速が均一化
し、更に、空気集合室と出口ダクトにより、長手方向に
分散していた空気がスムーズに渦流の発生なく集合され
て流出されるので、渦流の発生が低減し、圧損が低減さ
れ、熱交換部における流速もほぼ等しくなるため冷却効
率が増大し、圧損が低減され、冷却効率が増大する。
According to a seventh aspect of the invention, the cross-sections of the passages of the inlet duct and the outlet duct have a flattened shape that is enlarged toward both ends of the air distribution chamber and the air collecting chamber in the longitudinal direction. From each of which the vertical width of each connecting portion is ½ or more of the vertical width of the air distribution chamber, air is sufficiently diffused in the longitudinal direction in the inlet duct and the air distribution chamber, The flow velocity of the inflowing air is uniform, and the air that has been dispersed in the longitudinal direction is smoothly aggregated and discharged without the generation of vortices by the air collecting chamber and the outlet duct, so the generation of vortices is reduced and the pressure loss is reduced. Is reduced, and the flow velocities in the heat exchange section are substantially equal, so that the cooling efficiency is increased, the pressure loss is reduced, and the cooling efficiency is increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態としてのエンジンの吸気冷
却装置の概略構成図である。
FIG. 1 is a schematic configuration diagram of an intake air cooling apparatus for an engine as an embodiment of the present invention.

【図2】図1の吸気冷却装置で用いるインタークーラで
あり、(a)は正面図、(b)は要部拡大切欠断面図で
ある。
2 is an intercooler used in the intake air cooling device of FIG. 1, where (a) is a front view and (b) is an enlarged cutaway sectional view of essential parts.

【図3】図1の吸気冷却装置で用いるインタークーラの
側面図である。
FIG. 3 is a side view of an intercooler used in the intake air cooling device of FIG.

【図4】図1の吸気冷却装置で用いるインタークーラの
後面視における右側部分の拡大切欠断面である。
FIG. 4 is an enlarged cutaway cross section of a right portion of the intercooler used in the intake air cooling device of FIG. 1 when viewed from the rear.

【図5】図1の吸気冷却装置で用いるインタークーラの
後面視における左側部分の拡大切欠断面である。
5 is an enlarged cutaway cross section of a left side portion of the intercooler used in the intake air cooling device of FIG. 1 in a rear view.

【図6】図1の吸気冷却装置で用いるインタークーラの
側面の部分拡大切欠断面図である。
FIG. 6 is a partially enlarged cutaway sectional view of a side surface of an intercooler used in the intake air cooling device of FIG.

【図7】本発明の効果として空気分配室及び空気集合室
内の渦流速度ベクトルと冷却パイプを通過する吸気の流
速の説明図であり、(a)は本発明の一実施形態のイン
タクーラ、(b)は従来例のインタクーラを示す。
FIG. 7 is an explanatory view of a swirl velocity vector in an air distribution chamber and an air collecting chamber and a flow velocity of intake air passing through a cooling pipe as an effect of the present invention, FIG. 7A is an intercooler of one embodiment of the present invention, and FIG. ) Indicates the conventional intercooler.

【図8】従来のインタークーラとラジエータの配置を説
明する平面図である。
FIG. 8 is a plan view illustrating an arrangement of a conventional intercooler and a radiator.

【図9】従来のインタークーラの側面図である。FIG. 9 is a side view of a conventional intercooler.

【符号の説明】[Explanation of symbols]

11 空気分配室 12 空気集合室 15 入口ダクト 152 接続部 16 出口ダクト 17 熱交換部 18 ケース本体 a1 通路断面 h1 縦幅 w 冷却風 M エンジンの吸気冷却装置 H1 縦幅 11 air distribution chamber 12 air meeting room 15 entrance duct 152 connection 16 Exit duct 17 Heat exchange section 18 Case body a1 passage cross section h1 vertical width w Cooling wind M engine intake cooling system H1 height

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】冷却風の通過によって空気を冷却する熱交
換部を有し冷却風の通過方向と直交する偏平形状に形成
されたケース本体と、前記ケース本体の一側に流入する
空気を分配する空気分配室と、前記冷却風の通過域に沿
って延び且つ該通過域から折れ曲がり前記空気分配室に
接続される入口ダクトと、前記ケース本体の前記一側と
対向する他側の冷却された空気を集める空気集合室と、
前記空気集合室に接続され前記空気集合室から前記冷却
風の通過域側に折れ曲がり延びる出口ダクトとを備える
冷却装置において、 前記入口ダクトの通路断面は前記空気分配室の長手方向
両端部に指向して拡大した偏平形状を成して接続部に接
続され、同接続部の幅が前記空気分配室の長手方向の幅
の1/2以上を有することを特徴とする冷却装置。
1. A case main body having a heat exchange portion for cooling air by passage of cooling air and having a flat shape orthogonal to the passage direction of cooling air; and air flowing into one side of the case body. An air distribution chamber, an inlet duct extending along the cooling air passage and bent from the cooling air passage and connected to the air distribution chamber, and the other side of the case body opposite the one side cooled. An air collection room that collects air,
In a cooling device comprising an outlet duct connected to the air collecting chamber and bent and extending from the air collecting chamber to a passage area side of the cooling air, a passage cross section of the inlet duct is directed to both longitudinal end portions of the air distribution chamber. A cooling device having a flattened shape that is enlarged and connected to a connection portion, and the width of the connection portion is ½ or more of the longitudinal width of the air distribution chamber.
【請求項2】前記入口ダクトの通路断面の長手方向両端
における空気流動方向の通路内壁面を夫々通路中央側に
凸に湾曲して形成したことを特徴とする請求項1に記載
の冷却装置。
2. The cooling device according to claim 1, wherein the passage inner wall surfaces in the air flow direction at both longitudinal ends of the passage cross section of the inlet duct are formed so as to be convexly curved toward the center of the passage.
【請求項3】前記入口ダクトが前記空気分配室の長手方
向の中央部に指向して斜め方向から接続されることを特
徴とする請求項1に記載の冷却装置。
3. The cooling device according to claim 1, wherein the inlet duct is connected to the center of the air distribution chamber in the longitudinal direction and is connected obliquely.
【請求項4】冷却風の通過によって空気を冷却する熱交
換部を有し冷却風の通過方向と直交する偏平形状に形成
されたケース本体と、前記ケース本体の一側に流入する
空気を分配する空気分配室と、前記冷却風の通過域に沿
って延び且つ該通過域から折れ曲がり前記空気分配室に
接続される入口ダクトと、前記ケース本体の前記一側と
対向する他側の冷却された空気を集める空気集合室と、
前記空気集合室に接続され前記空気集合室から前記冷却
風の通過域側に折れ曲がり延びる出口ダクトとを備える
冷却装置において、 前記出口ダクトの通路断面は前記空気集合室の長手方向
両端部に指向して拡大した偏平形状を成して接続部に接
続され、同接続部の幅が前記空気集合室の長手方向の幅
の1/2以上を有することを特徴とする冷却装置。
4. A case main body having a heat exchange portion for cooling the air by passing the cooling air and having a flat shape orthogonal to the passage direction of the cooling air, and an air flowing into one side of the case main body. An air distribution chamber, an inlet duct extending along the cooling air passage and bent from the cooling air passage and connected to the air distribution chamber, and the other side of the case body opposite the one side cooled. An air collection room that collects air,
In a cooling device comprising an outlet duct connected to the air collecting chamber and bent and extending from the air collecting chamber to a passage area side of the cooling air, a passage cross section of the outlet duct is directed to both longitudinal end portions of the air collecting chamber. A cooling device having a flattened shape and being connected to a connection portion, and the width of the connection portion is ½ or more of the longitudinal width of the air collecting chamber.
【請求項5】前記出口ダクトの通路断面の長手方向両端
における空気流動方向の通路内壁面を夫々通路中央側に
凸に湾曲して形成したことを特徴とする請求項4に記載
の冷却装置。
5. The cooling device according to claim 4, wherein the passage inner wall surfaces in the air flow direction at both ends in the longitudinal direction of the passage cross section of the outlet duct are formed so as to be convexly curved toward the center of the passage.
【請求項6】前記出口ダクトが前記空気集合室の長手方
向の中央部に指向して斜め方向から接続されることを特
徴とする請求項4に記載の冷却装置。
6. The cooling device according to claim 4, wherein the outlet duct is connected to the center of the air collecting chamber in the longitudinal direction and is connected obliquely.
【請求項7】内燃機関を搭載した車両内の前方部分に車
幅方向に延びて配設され冷却風の通過によって空気を冷
却する熱交換部を有する偏平なケース本体と、前記ケー
ス本体の一側に長手方向に延びて設けられ流入する空気
を分配する空気分配室と、前記冷却風の通過域に沿って
延びてから略直角に折れ曲がり前記空気分配室に接続さ
れる入口ダクトと、前記ケース本体の前記一側と対向す
る他側に長手方向に延びて設けられ冷却された空気を集
める空気集合室と、前記空気集合室に接続され前記空気
集合室から前記冷却風の通過側に略直角に折れ曲がり延
びる出口ダクトとからなるインタークーラを備え、前記
入口ダクトから流入した空気が前記空気分配室から前記
熱交換部を介して前記空気集合室に至り前記出口ダクト
から排出されるエンジンの吸気冷却装置において、 前記インタークーラに対し車両進行方向後方に配設され
前記エンジンの冷却水の熱交換を行うラジエータを備
え、 前記入口ダクトの通路断面は前記空気分配室の長手方向
両端部に指向して拡大した偏平形状を成して前記ラジエ
ータの後方から接続部に接続され、同接続部の縦幅が前
記空気分配室の縦幅の1/2以上を有し、 前記出口ダクトの通路断面は前記空気集合室の長手方向
両端部に指向して拡大した偏平形状を成して前記ラジエ
ータの後方から接続部に接続され、同接続部の縦幅が前
記空気集合室の縦幅の1/2以上を有することを特徴と
するエンジンの吸気冷却装置。
7. A flat case main body having a heat exchange portion which is disposed in a front portion of a vehicle equipped with an internal combustion engine so as to extend in the vehicle width direction and cools air by passage of cooling air, and one of the case main body. An air distribution chamber extending in the longitudinal direction to distribute the inflowing air, an inlet duct extending along the passage of the cooling air and bent at a substantially right angle, and connected to the air distribution chamber, and the case An air collecting chamber that is provided on the other side of the main body opposite to the one side and extends in the longitudinal direction to collect the cooled air, and a right angle from the air collecting chamber to the passage side of the cooling air from the air collecting chamber. An intercooler consisting of an outlet duct that bends and extends, and the air that has flowed in from the inlet duct reaches the air collecting chamber from the air distribution chamber via the heat exchange section and is discharged from the outlet duct. In the intake air cooling device for gin, a radiator disposed behind the intercooler in the vehicle traveling direction for exchanging heat of the cooling water of the engine is provided, and the passage cross section of the inlet duct has both ends in the longitudinal direction of the air distribution chamber. Is connected to the connecting portion from the rear of the radiator in a flattened shape that is expanded toward the vertical direction of the radiator, and the vertical width of the connecting portion is ½ or more of the vertical width of the air distribution chamber. The passage cross section has a flattened shape that extends toward both ends in the longitudinal direction of the air collecting chamber and is connected to the connecting portion from the rear of the radiator, and the vertical width of the connecting portion is the vertical width of the air collecting chamber. An intake air cooling system for an engine, characterized by having at least ½.
JP2002139701A 2002-05-15 2002-05-15 Cooler, and intake cooler for engine Pending JP2003326988A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002139701A JP2003326988A (en) 2002-05-15 2002-05-15 Cooler, and intake cooler for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002139701A JP2003326988A (en) 2002-05-15 2002-05-15 Cooler, and intake cooler for engine

Publications (1)

Publication Number Publication Date
JP2003326988A true JP2003326988A (en) 2003-11-19

Family

ID=29700766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002139701A Pending JP2003326988A (en) 2002-05-15 2002-05-15 Cooler, and intake cooler for engine

Country Status (1)

Country Link
JP (1) JP2003326988A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012241627A (en) * 2011-05-19 2012-12-10 Isuzu Motors Ltd Intercooler
WO2014014023A1 (en) * 2012-07-19 2014-01-23 いすゞ自動車株式会社 Intercooler for vehicle
WO2015152374A1 (en) * 2014-04-04 2015-10-08 スズキ株式会社 Intake device for supercharger-equipped internal combustion engine
JP2016023816A (en) * 2014-07-16 2016-02-08 いすゞ自動車株式会社 Corrugated fin heat exchanger

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012241627A (en) * 2011-05-19 2012-12-10 Isuzu Motors Ltd Intercooler
WO2014014023A1 (en) * 2012-07-19 2014-01-23 いすゞ自動車株式会社 Intercooler for vehicle
JP2014019322A (en) * 2012-07-19 2014-02-03 Isuzu Motors Ltd Vehicular intercooler
CN104428154A (en) * 2012-07-19 2015-03-18 五十铃自动车株式会社 Intercooler for vehicle
WO2015152374A1 (en) * 2014-04-04 2015-10-08 スズキ株式会社 Intake device for supercharger-equipped internal combustion engine
JP2015200184A (en) * 2014-04-04 2015-11-12 スズキ株式会社 Intake device of internal combustion engine with supercharger
CN105765208A (en) * 2014-04-04 2016-07-13 铃木株式会社 Intake device for supercharger-equipped internal combustion engine
JP2016023816A (en) * 2014-07-16 2016-02-08 いすゞ自動車株式会社 Corrugated fin heat exchanger

Similar Documents

Publication Publication Date Title
US8037685B2 (en) Method for cooling an internal combustion engine having exhaust gas recirculation and charge air cooling
CN207622589U (en) Heat exchanger
US9593647B2 (en) Gas-to-liquid heat exchanger
JP4543083B2 (en) Focusing tube heat exchanger, especially for supercharged internal combustion engines
JP5193310B2 (en) Recirculation exhaust gas cooler for internal combustion engines
JP6455940B2 (en) Fin support structure for charge air cooler
EP2216527A2 (en) Charge air cooler
CN101072976A (en) Air-cooled exhaust gas heat exchanger, in particular exhaust gas cooler for motor vehicles
JPS6189926A (en) Contruction of air cooling type intercooler
JP5906250B2 (en) Heat exchanger and associated method of forming a flow perturbant
JP2003279293A (en) Exhaust heat exchanger
JP5866798B2 (en) Intercooler
JP2003326988A (en) Cooler, and intake cooler for engine
JP2004092921A (en) Heat exchanger
JP2003314990A (en) Cooling device
EP0041557A1 (en) Heat exchanger core with end covers
JP2013174128A (en) Intercooler
KR101172065B1 (en) Intercooler
JP2014132163A (en) Intercooler
CN216205601U (en) Heat exchange fin and heat exchange device
JP6464598B2 (en) Internal combustion engine cooling system
CN220959699U (en) Air quantity adjusting device of direct air-cooling condenser
JPH10288034A (en) Cooling device for construction machinery
JP2502626Y2 (en) Engine intake system
JPH0213717Y2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040922

A131 Notification of reasons for refusal

Effective date: 20070109

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070309

A02 Decision of refusal

Effective date: 20070925

Free format text: JAPANESE INTERMEDIATE CODE: A02