JP2003326296A - Porous composite material and production method therefor - Google Patents

Porous composite material and production method therefor

Info

Publication number
JP2003326296A
JP2003326296A JP2002134542A JP2002134542A JP2003326296A JP 2003326296 A JP2003326296 A JP 2003326296A JP 2002134542 A JP2002134542 A JP 2002134542A JP 2002134542 A JP2002134542 A JP 2002134542A JP 2003326296 A JP2003326296 A JP 2003326296A
Authority
JP
Japan
Prior art keywords
composite material
porous composite
porous
thermophilic
material according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002134542A
Other languages
Japanese (ja)
Other versions
JP4348411B2 (en
Inventor
Yoshitake Yoshikawa
芳建 吉川
Hisashi Miyamoto
久 宮本
Hirokuni Miyamoto
浩邦 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HINO SAISEKI KK
NIKKAN KAGAKU KK
SABUROKU KK
Original Assignee
HINO SAISEKI KK
NIKKAN KAGAKU KK
SABUROKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HINO SAISEKI KK, NIKKAN KAGAKU KK, SABUROKU KK filed Critical HINO SAISEKI KK
Priority to JP2002134542A priority Critical patent/JP4348411B2/en
Publication of JP2003326296A publication Critical patent/JP2003326296A/en
Application granted granted Critical
Publication of JP4348411B2 publication Critical patent/JP4348411B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/40Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse

Abstract

<P>PROBLEM TO BE SOLVED: To provide porous composite materials with which water purification, or the like, can effectively and efficiently be performed, and to provide a production method therefor. <P>SOLUTION: A thermophilic seed bacillus PTA-1773 which is mixed bacillis of a thermophilic bacillus C-1 which is a close family of Bacillus brevis, a thermophilic bacillus C-3 which is a close family of Bacillus brevis, thermophilic Bacillus stearothermophilus CH-4, a thermophilic actynomyces MH-1, a thermophilic or heat resistant lactobacillus LM-1, a thermophilic or heat resistant lactobacillus LM-2 and an unknown bacillus and/or actynomyces, and has environmental purification-improvement capacities is incorporated into a porous fired body 2 containing ≥50 wt.% clay, so that the porous composite material 1 is obtained. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、水質浄化・改良
能等を有する多孔質複合資材及びその製造方法に関す
る。
TECHNICAL FIELD The present invention relates to a porous composite material having water purification / improvement ability and a method for producing the same.

【0002】[0002]

【従来の技術】従来の水質浄化技術としては、例えば、
ゼオライトやトルマリン等の天然鉱石を利用したもの
や、微生物を利用したもの等が知られている。
2. Description of the Related Art As conventional water purification technology, for example,
Those using natural ores such as zeolite and tourmaline and those utilizing microorganisms are known.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記の
ような従来の水質浄化技術においては、水質浄化効果が
不十分であったり、水質浄化に時間がかかったりする等
の問題点がある。
However, the above-mentioned conventional water purification techniques have problems that the water purification effect is insufficient and that the water purification takes time.

【0004】この発明は、以上のような事情や問題点に
鑑みてなされたものであり、水質浄化等を効果的にかつ
効率良く行える多孔質複合資材及びその製造方法を提供
することを目的とする。
The present invention has been made in view of the above circumstances and problems, and an object thereof is to provide a porous composite material capable of effectively and efficiently purifying water and the like, and a method for producing the same. To do.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
の請求項1の多孔質複合資材は、粘土を50重量%以上
含む多孔質焼成体に、バチルス・ブレビスの近縁の種で
ある好熱性細菌C−1と、バチルス・ブレビスの近縁の
種である好熱性細菌C−3と、好熱性バチルス・ステア
ロサーモフィラスCH−4と、好熱性放線菌MH−1
と、好熱性又は耐熱性乳酸菌LM−1と、好熱性又は耐
熱性乳酸菌LM−2と、未知の細菌及び/又は放線菌と
の混合菌であって、環境浄化・改良能を有する好熱性種
菌PTA−1773を含有させたものである。
The porous composite material according to claim 1 for achieving the above object is a species closely related to Bacillus brevis in a porous fired body containing 50% by weight or more of clay. Thermophilic bacterium C-1, thermophilic bacterium C-3 which is a closely related species of Bacillus brevis, thermophilic Bacillus stearothermophilus CH-4, and thermophilic actinomycete MH-1
, A thermophilic or thermostable lactic acid bacterium LM-1, a thermophilic or thermostable lactic acid bacterium LM-2, and an unknown bacterium and / or actinomycete, and a thermophilic inoculum having environmental purification / improvement ability It contains PTA-1773.

【0006】請求項2の多孔質複合資材は、前記多孔質
焼成体が、ゼオライト、トルマリン、及びランプストー
ンのうちの少なくとも1種を含むものである。
[0006] In the porous composite material according to claim 2, the porous fired body contains at least one of zeolite, tourmaline, and lampstone.

【0007】請求項3の多孔質複合資材においては、前
記多孔質焼成体が400〜800℃で焼成されたもので
ある。
In the porous composite material of claim 3, the porous fired body is fired at 400 to 800 ° C.

【0008】請求項4の多孔質複合資材においては、前
記多孔質焼成体が、長さが10〜50mmで、幅が長さ
より小さくかつ高さが幅より小さい略タマゴ型形状に形
成されたものである。
In the porous composite material according to claim 4, the porous fired body is formed in a substantially egg shape having a length of 10 to 50 mm, a width smaller than the length and a height smaller than the width. Is.

【0009】請求項5の多孔質複合資材においては、水
質浄化・改良能を有する。
The porous composite material according to claim 5 has the ability to purify and improve water quality.

【0010】請求項6の多孔質複合資材においては、水
中のミクロキスティスの減少化能を有する。
The porous composite material according to claim 6 has the ability to reduce microcystis in water.

【0011】請求項7の多孔質複合資材においては、水
中のアオコの減少化能を有する。
The porous composite material according to claim 7 has the ability to reduce water-bloom in water.

【0012】請求項8の多孔質複合資材においては、土
壌浄化・改良能を有する。
The porous composite material according to claim 8 has soil purification / improvement ability.

【0013】請求項9の多孔質複合資材においては、植
物病原菌の抗菌・溶菌能を有する。
The porous composite material according to claim 9 has an antibacterial / lytic ability against plant pathogens.

【0014】請求項10の多孔質複合資材においては、
堆肥の発酵促進・消臭能を有する。
In the porous composite material according to claim 10,
It has the ability to promote fermentation and deodorize compost.

【0015】請求項11の多孔質複合資材においては、
生ゴミ処理能を有する。
In the porous composite material according to claim 11,
Has the ability to dispose of garbage.

【0016】また、請求項12の製造方法は、請求項1
乃至11のいずれか記載の多孔質複合資材の製造方法で
あって、前記多孔質焼成体に前記好熱性種菌PTA−1
773の懸濁液又は培養液を含浸させることによって、
前記多孔質焼成体に前記好熱性種菌PTA−1773を
含有させるものである。
The manufacturing method of claim 12 is the same as that of claim 1.
12. The method for producing a porous composite material according to any one of 1 to 11, wherein the thermophilic inoculum PTA-1 is added to the porous fired body.
By impregnating a suspension or culture of 773,
The porous fired body contains the thermophilic inoculum PTA-1773.

【0017】請求項13の製造方法は、粘土粉体を50
重量%以上含む原料粉体の含水率を8〜20重量%と
し、この原料粉体を所定形状に成形した後、この成形体
を焼成することによって前記多孔質焼成体を得るもので
ある。
According to the manufacturing method of claim 13, clay powder is added to 50
The raw material powder containing 8 wt% or more by weight is made to have a water content of 8 to 20 wt%, the raw material powder is molded into a predetermined shape, and then the molded body is fired to obtain the porous fired body.

【0018】請求項14の製造方法は、前記原料粉体を
略タマゴ型形状に成形するものである。
In a fourteenth aspect of the present invention, the raw material powder is formed into a substantially egg shape.

【0019】請求項15の製造方法においては、前記成
形が加圧成形である。
In the manufacturing method of the fifteenth aspect, the molding is pressure molding.

【0020】[0020]

【発明の実施の形態】以下、この発明の実施形態を図面
に基づいて説明する。図1〜図3に示すように、この実
施形態に係る多孔質複合資材1は、多孔質焼成体2に好
熱性種菌PTA−1773を含有させたものである。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. As shown in FIGS. 1 to 3, the porous composite material 1 according to this embodiment is a porous fired body 2 containing a thermophilic inoculum PTA-1773.

【0021】多孔質焼成体2は、粘土を50重量%以上
含む多孔質の焼成体である。粘土としては、例えば、木
節粘土・蛙目粘土等の耐火粘土、カオリン、陶石、ベン
トナイト等が挙げられる。粘土以外の成分としては、例
えば、ゼオライト、トルマリン、ランプストーン等の天
然鉱石等が挙げられる。なお、ゼオライトとは、別名を
沸石といい、CaやNaを主成分とする含水アルミノケイ酸
塩鉱物である。トルマリンとは、別名を電気石といい、
三配位のホウ素を有するシクロケイ酸塩鉱物である。ラ
ンプストーンとは、白亜紀における造山活動に伴う動力
熱変成作用により形成された鉱物資源であって、主とし
てシリカ、アルミナ、Na、Caからなり、一般的には珪石
や石英片岩の範疇に入るものである。
The porous fired body 2 is a porous fired body containing 50% by weight or more of clay. Examples of the clay include fire-resistant clay such as kibushi clay and frog eye clay, kaolin, porcelain stone, and bentonite. Examples of components other than clay include natural ores such as zeolite, tourmaline, and lampstone. Zeolite is also called zeolite, which is a hydrous aluminosilicate mineral containing Ca and Na as its main components. Tourmaline is also called tourmaline,
It is a cyclosilicate mineral having tricoordinated boron. Rampstone is a mineral resource formed by dynamic thermal metamorphism associated with orogenic activity in the Cretaceous, and mainly consists of silica, alumina, Na, and Ca, and generally falls within the category of silica stone and quartz schist. Is.

【0022】ここで、多孔質焼成体2が、上記のゼオラ
イト、トルマリン、及びランプストーンのうちの少なく
とも1種を含んでいれば、これら天然鉱石のマイナスイ
オン効果等により水質浄化等に対して格別優れた効果を
発揮するという利点がある。また、多孔質焼成体2が4
00〜800℃、好ましくは500〜680℃の比較的
低温で焼成されたものであれば、多孔質構造を保持した
状態で適度な強度及び硬度を有するので、粉砕し易いと
共に、自然風化もし易く、そのため使用後の多孔質複合
資材1を簡単にリサイクルできるという利点がある。焼
成時間としては、1時間以上であれば上限はないが、製
造コスト等の観点からは10時間以内であることが望ま
しい。なお、焼成温度が400℃よりも低い場合は、焼
成できないか又は焼成が不完全となる。一方、800℃
よりも高い場合は、得られる多孔質焼成体2が縮小して
多孔質部分が少なくなり、表面がガラス化し、硬くなり
過ぎて粉砕しにくくなると共に、自然風化もしにくくな
る。また、ゼオライトやトルマリンを含んでいる場合に
おいて800℃を超える温度で焼成すれば、ゼオライト
やトルマリンの結晶構造が変化し、トルマリンについて
はそのマイナス電位が小さくなる。
Here, if the porous fired body 2 contains at least one of the above-mentioned zeolite, tourmaline and lampstone, it is exceptional for water purification due to the negative ion effect of these natural ores. It has the advantage of exerting excellent effects. In addition, the porous fired body 2 is 4
If it is fired at a relatively low temperature of 00 to 800 ° C., preferably 500 to 680 ° C., it has appropriate strength and hardness while maintaining the porous structure, so that it is easy to pulverize and natural weathering is easy. Therefore, there is an advantage that the used porous composite material 1 can be easily recycled. The firing time has no upper limit as long as it is 1 hour or more, but is preferably 10 hours or less from the viewpoint of manufacturing cost and the like. When the firing temperature is lower than 400 ° C., the firing cannot be performed or the firing is incomplete. On the other hand, 800 ° C
When it is higher than the above, the obtained porous fired body 2 is reduced in size and the porous portion is reduced, the surface is vitrified, and the surface becomes too hard to be crushed and difficult to pulverize, and natural weathering is also difficult to occur. In addition, when zeolite or tourmaline is contained, firing at a temperature higher than 800 ° C. changes the crystal structure of the zeolite or tourmaline, and the negative potential of tourmaline becomes small.

【0023】このような多孔質焼成体2は、粘土粉体を
50重量%以上含む原料粉体の含水率を適宜に調整し、
この原料粉体を所定形状に成形した後、この成形体を所
定温度で焼成等することによって製造できる。粘土粉体
は、例えば、粘土の団塊状の製砂脱水ケーキを乾燥させ
た後、ミックスマーラー等により粉砕、微細化等するこ
とによって製造できる。粘土以外の成分を添加する場合
は、ミックスマーラー等により粘土粉体と混合すればよ
い。原料粉体の粒径としては、10〜500μm、好ま
しくは20〜100μmが適当である。成形体への成形
には、従来公知の各種の成形機や加圧成形機等を使用で
きる。なお、成形体への成形後は、常温〜110℃で2
時間以上養生するのが望ましい。
In such a porous fired body 2, the water content of the raw material powder containing 50% by weight or more of the clay powder is appropriately adjusted,
It can be manufactured by molding the raw material powder into a predetermined shape and then firing the molded body at a predetermined temperature. The clay powder can be produced, for example, by drying a sand-made dewatered cake in the form of agglomerates of clay, and then pulverizing and micronizing with a mix muller or the like. When components other than clay are added, they may be mixed with clay powder using a mix muller or the like. The particle size of the raw material powder is appropriately 10 to 500 μm, preferably 20 to 100 μm. Various conventionally known molding machines, pressure molding machines and the like can be used for molding into a molded body. In addition, after molding into a molded body, the temperature is from room temperature to 110 ° C.
It is desirable to cure for more than an hour.

【0024】ここで、原料粉体の含水率を8〜20重量
%、好ましくは9〜14重量%としておけば、歩留が良
く、生産性が向上するという利点がある。なお、含水率
が20重量%よりも大きい場合は、加圧成形機の加圧ロ
ーラの周面に形成された成形用溝等からの離型性が悪
く、成形体の一部又は全部が成形用溝等に残ることが多
くなる。一方、含水率が8重量%よりも小さい場合は、
成形体の形状に固まりにくくなり、部分的に欠けた状態
となることが多くなる。
Here, if the water content of the raw material powder is 8 to 20% by weight, preferably 9 to 14% by weight, there are advantages that the yield is good and the productivity is improved. If the water content is more than 20% by weight, the mold release from the molding groove formed on the peripheral surface of the pressure roller of the pressure molding machine is poor and a part or all of the molded body is molded. It often remains in the groove for use. On the other hand, when the water content is less than 8% by weight,
It becomes difficult for the shape of the molded body to solidify, and the molded body often becomes partially chipped.

【0025】また、原料粉体を成形機等により略タマゴ
型形状に成形すれば、成形体が成形用溝等からの離型時
及び離型後に崩れにくくなるので、生産性が向上すると
いう利点がある。この場合、原料粉体を加圧成形機等に
より略タマゴ型形状に加圧成形すれば、成形体が更に崩
れにくくなるという利点がある。
Further, when the raw material powder is molded into a substantially egg shape by a molding machine or the like, the molded body is less likely to collapse during and after releasing from the molding groove or the like, which is an advantage of improving productivity. There is. In this case, if the raw material powder is pressure-molded with a pressure molding machine or the like into a substantially egg-shaped shape, there is an advantage that the molded body is more difficult to collapse.

【0026】多孔質焼成体2の形状は特に限定されるも
のではないが、図1〜図3のような略タマゴ型形状であ
って、例えば長さLが10〜50mmで、幅Wが長さL
より小さくかつ高さHが幅Wより小さい形状に形成して
おけば、適度な大きさであるので、取り扱いが容易であ
り、各種の用途に広く利用できると共に、再利用もし易
いという利点がある。なお、多孔質焼成体2の長さLが
50mmよりも大きい場合は、400〜800℃の比較
的低温での焼成が困難となる。一方、長さLが10mm
よりも小さい場合は、小粒になり過ぎ、取り扱いにくく
なる。
The shape of the porous fired body 2 is not particularly limited, but it is a substantially egg-shaped shape as shown in FIGS. 1 to 3, for example, the length L is 10 to 50 mm and the width W is long. L
If it is formed to be smaller and the height H is smaller than the width W, it has an advantage that it has an appropriate size, is easy to handle, can be widely used for various purposes, and can be easily reused. . When the length L of the porous fired body 2 is larger than 50 mm, firing at a relatively low temperature of 400 to 800 ° C becomes difficult. On the other hand, the length L is 10 mm
If it is smaller than this, the particles become too small and it becomes difficult to handle.

【0027】また、多孔質焼成体2の幅Wや長さLは、
幅Wが長さLの0.6〜0.9倍(好ましくは0.75
〜0.86倍)かつ高さHが長さLの0.3〜0.6倍
(好ましくは0.42〜0.55倍)となるようにして
おくのが望ましい。なお、幅Wが長さLの0.9倍より
も大きい場合は、400〜800℃の比較的低温で焼成
したときに内部まで焼成しにくいと共に、800℃を超
える比較的高温で焼成したときに表面と内部との焼成状
態に差が生じて不均一となる。一方、幅Wが長さLの
0.6倍よりも小さい場合は、細長くなり過ぎるので、
破損し易くなる。更に、高さHが長さLの0.6倍より
も大きい場合は、加圧成形機の成形用溝等からの離型性
が悪くなる。一方、高さHが長さLの0.3倍よりも小
さい場合は、薄くなり過ぎるので、製造しにくいと共
に、破損し易くなる。
The width W and the length L of the porous fired body 2 are
The width W is 0.6 to 0.9 times the length L (preferably 0.75)
˜0.86 times) and the height H is preferably 0.3 to 0.6 times (preferably 0.42 to 0.55 times) the length L. When the width W is larger than 0.9 times the length L, it is difficult to fire the inside when firing at a relatively low temperature of 400 to 800 ° C., and when firing at a relatively high temperature exceeding 800 ° C. In addition, a difference occurs in the firing state between the surface and the inside, resulting in non-uniformity. On the other hand, if the width W is smaller than 0.6 times the length L, the width W becomes too long,
It is easily damaged. Further, when the height H is larger than 0.6 times the length L, the releasability from the molding groove of the pressure molding machine is deteriorated. On the other hand, when the height H is smaller than 0.3 times the length L, the height H becomes too thin, which makes it difficult to manufacture and easily damaged.

【0028】好熱性種菌PTA−1773は、バチルス
・ブレビス(Bacillus brevis)の近縁の種である好熱
性細菌C−1(以下、「C−1」という。)と、バチル
ス・ブレビス(Bacillus brevis)の近縁の種である好
熱性細菌C−3(以下、「C−3」という。)と、好熱
性バチルス・ステアロサーモフィラス(Bacillus stear
othermophilus)CH−4(以下、「CH−4」とい
う。)と、好熱性放線菌MH−1(以下、「MH−1」
という。)と、好熱性又は耐熱性乳酸菌LM−1〔バチ
ルス・コアギュランス(Bacillus coagulans)の近縁の
種。以下、「LM−1」という。)と、好熱性又は耐熱
性乳酸菌LM−2〔バチルス・コアギュランス(Bacill
us coagulans)の近縁の種。以下、「LM−2」とい
う。)と、未知の細菌及び/又は放線菌との混合菌であ
って、環境浄化・改良能を有している。なお、環境浄化
・改良能とは、生態系に好影響をもたらす生物を活性化
し、直接的又は間接的に環境を浄化すると共に、環境
(生態系)を整える(改良する)能力(機能)をいう。
The thermophilic inoculum PTA-1773 is a thermophilic bacterium C-1 (hereinafter referred to as "C-1"), which is a closely related species of Bacillus brevis, and Bacillus brevis. ), A thermophilic bacterium C-3 (hereinafter referred to as “C-3”), and a thermophilic Bacillus stearothermophilus (Bacillus stearus).
othermophilus) CH-4 (hereinafter referred to as "CH-4") and thermophilic actinomycete MH-1 (hereinafter referred to as "MH-1")
Say. ) And a thermophilic or thermostable lactic acid bacterium LM-1 [a closely related species of Bacillus coagulans]. Hereinafter, it is referred to as "LM-1". ) And a thermophilic or thermostable lactic acid bacterium LM-2 [Bacillus coagulans (Bacill
a closely related species of us coagulans). Hereinafter, it is referred to as "LM-2". ) And unknown bacteria and / or actinomycetes, and has environmental purification / improvement ability. The environmental purification / improvement ability means the ability (function) to activate (improve) organisms that have a favorable effect on the ecosystem, directly or indirectly purify the environment, and prepare (improve) the environment (ecosystem). Say.

【0029】また、好熱性種菌PTA−1773は、好
気条件下でエビやカニの残渣の分解能、並びに安定性・
持続力等に優れた耐熱性キチナーゼ(例えば耐熱性N−
アセチル−β−D−ヘキソサミニダーゼ等)・耐熱性S
OD(スーパーオキシドジスムターゼ)等の耐熱性酵素
及び分子シャぺロンの生産能を有すると共に、耐熱性酵
素、分子シャぺロン、及び耐熱性SOD・ビタミンE・
セレニウム(Se)・不飽和脂肪酸・各種ミネラル成分等
の抗酸化機能性成分を発現している。
Further, the thermophilic inoculum PTA-1773 is capable of decomposing and maintaining the stability of shrimp and crab residues under aerobic conditions.
Thermostable chitinase with excellent durability (eg, thermostable N-
Acetyl-β-D-hexosaminidase, etc.), heat resistance S
It has the ability to produce heat-resistant enzymes such as OD (superoxide dismutase) and molecular chaperones, as well as heat-resistant enzymes, molecular chaperones, and heat-resistant SOD / vitamin E.
It expresses antioxidant functional components such as selenium (Se), unsaturated fatty acids, and various mineral components.

【0030】前記耐熱性酵素の常温下における活性の持
続力は、常温微生物由来の酵素が1週間以内であるのに
対し、半年〜1年程度と長い。また、この耐熱性酵素
は、エタノール等の有機溶媒や界面活性剤等によっても
失活しない。
The activity-sustaining activity of the thermostable enzyme at room temperature is as long as about half a year to about one year, whereas the enzyme derived from a room temperature microorganism is within one week. Further, this thermostable enzyme is not inactivated even by an organic solvent such as ethanol or a surfactant.

【0031】ここで、分子シャぺロンとは、酵素の構造
を保持等させることによって、酵素が安定な活性を示す
ことができるように手助けをするタンパク質であるが、
常温微生物由来の分子シャぺロンではATP(アデノシ
ン−5’−三リン酸)のエネルギーが必要であるのに対
し、好熱性種菌PTA−1773由来の分子シャぺロン
ではATPのエネルギーがなくても働く性質がある。そ
のため、この好熱性種菌PTA−1773由来の分子シ
ャぺロンは、各種の環境で前記耐熱性酵素や常温微生物
由来の酵素等の変性を防止し、その働きを助けることが
できる。これにより、好熱性種菌PTA−1773は、
各種の環境で生育する、生態系に好影響をもたらす常温
微生物を活性化(安定化)することができる。
Here, the molecular chaperone is a protein that helps the enzyme to exhibit stable activity by retaining the structure of the enzyme, etc.
ATP (adenosine-5'-triphosphate) energy is required for the molecular chaperone derived from normal-temperature microorganisms, whereas the molecular chaperone derived from the thermophilic inoculum PTA-1773 does not require ATP energy. It has the property of working. Therefore, the molecular chaperone derived from the thermophilic inoculum PTA-1773 can prevent denaturation of the thermostable enzyme and the enzyme derived from a room temperature microorganism in various environments and help its function. As a result, the thermophilic inoculum PTA-1773 is
It is possible to activate (stabilize) normal temperature microorganisms that grow in various environments and have a positive effect on the ecosystem.

【0032】この好熱性種菌PTA−1773は、大分
県杵築市三光坊の山中の土壌と別府湾の海底エビとの混
合発酵物から採取、分離された混合菌である。混合菌を
構成する各菌の同定結果等を表1〜表3、図4〜図6に
示すが、その他にも同定不能な未知の細菌及び/又は放
線菌が含まれている。なお、表中の生育温度や耐熱性は
単離菌のものであり、混合菌としての好熱性種菌PTA
−1773の生育は−10〜90℃で確認されている。
ここで、好熱性種菌PTA−1773は、2000年5
月1日付けでATCC(American Type Culture Collec
tion, 10801 University Boulevard Manassas, Virgini
a 20110-2209 U.S.A.)に国際寄託されている(受託番
号:PTA−1773)。
The thermophilic inoculum PTA-1773 is a mixed bacterium collected and separated from a mixed fermented product of soil in the mountains of Sankobo, Kitsuki City, Oita Prefecture, and marine shrimp in Beppu Bay. Tables 1 to 3 and FIGS. 4 to 6 show the identification results of each bacterium constituting the mixed bacterium. In addition, unknown bacteria and / or actinomycetes that cannot be identified are included. The growth temperature and heat resistance in the table are those of the isolated bacteria, and the thermophilic inoculum PTA as a mixed bacteria
The growth of -1773 has been confirmed at -10 to 90 ° C.
Here, the thermophilic inoculum PTA-1773 is 5
ATCC (American Type Culture Collec
tion, 10801 University Boulevard Manassas, Virgini
a 20110-2209 USA) has been internationally deposited (accession number: PTA-1773).

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【表2】 [Table 2]

【0035】MH−1の細胞壁には、メソ−ジアミノピ
メル酸、グルタミン酸又はグルタミン(Glx)、グリシ
ン(Gly)、アラニン(Ala)、グルコサミンが含まれて
いた。MH−1の全菌体には、マンノース、キシロー
ス、リボース、アラビノース、ラムノースが含まれてい
た。MH−1のDNA中のグアニン(G)とシトシン
(C)の合計比率は、54.6%であった。
The cell wall of MH-1 contained meso-diaminopimelic acid, glutamic acid or glutamine (Glx), glycine (Gly), alanine (Ala) and glucosamine. All the MH-1 cells contained mannose, xylose, ribose, arabinose, and rhamnose. The total ratio of guanine (G) and cytosine (C) in the DNA of MH-1 was 54.6%.

【0036】MH−1については、16S rRNA遺
伝子塩基配列(配列の長さ:1020)を調べた。具体
的には、自動DNAシークエンサー(ABI 300)を用
い、操作はLaneらのダイ−ターミネーター法(Lane, D,
J., B. Pace, G. J. Olsen, D. A. Stahl, M. L. Sogi
n, and N. R. Pace. 1985. Rapid determunation of 16
S ribosomal RNA sequences for phylogenetic analysi
s. Proc. Natl. Acad. Sci. USA 82:6855-6959)に従っ
た。DNA解析は「CLUSTAL W(Thompson, J. D., D.
G. Higgins, and T. J. Gibson. 1994. CLUSTAL W:impr
oving the sensitivity of progressive multiple sequ
ence alignment through sequence weighting, positio
n-specific gap penalties and weight matrix choice.
Nucleic Acids Res. 22:4673-4680)」に従い、「Ribo
somal Database Project(http://rdp.life.uiuc.edu
/)」及び「GenBank(http://ww.ucbi.ulm.nih.gov
/)」のデータベースにより照合検索を行った。分離株
と近縁株との近隣結合法による系統樹を図4に示す。
Regarding MH-1, the 16S rRNA gene nucleotide sequence (sequence length: 1020) was examined. Specifically, an automated DNA sequencer (ABI 300) is used, and the operation is performed by Lane et al.'S dye-terminator method (Lane, D,
J., B. Pace, GJ Olsen, DA Stahl, ML Sogi
n, and NR Pace. 1985. Rapid determunation of 16
S ribosomal RNA sequences for phylogenetic analysi
S. Proc. Natl. Acad. Sci. USA 82: 6855-6959). DNA analysis is based on "CLUSTAL W (Thompson, JD, D.
G. Higgins, and TJ Gibson. 1994. CLUSTAL W: impr
oving the sensitivity of progressive multiple sequ
ence alignment through sequence weighting, positio
n-specific gap penalties and weight matrix choice.
Nucleic Acids Res. 22: 4673-4680) "and" Ribo
somal Database Project (http://rdp.life.uiuc.edu
/) ”And“ GenBank (http://ww.ucbi.ulm.nih.gov
/) ”Database was searched. A phylogenetic tree of the isolates and closely related strains by the neighbor-joining method is shown in FIG.

【0037】LM−1及びLM−2の好熱性種菌PTA
−1773からの分離に際しては、1gの検体を無菌的
に分取し、9mLの滅菌蒸留水に添加して10倍希釈水
とした。この希釈水に対しては、80℃、15分間の加
熱処理を行った。このようにして加熱処理した希釈水を
もとに順次希釈操作を繰り返して10〜106倍の希釈
系列を作製した。その後、各希釈検水の0.1mLを乳
酸菌選択(MRS)寒天培地に塗抹し、37℃、48時
間、嫌気条件下で培養したところ、2種類の異なるコロ
ニー(LM−1及びLM−2)が観察された。なお、L
M−1については、MRS培地では芽胞非形成であった
が、一般寒天培地では芽胞形成であった。LM−2につ
いても同様であった。これらLM−1及びLM−2の同
定結果を表3に示す。
Thermophilic inoculum PTA of LM-1 and LM-2
Upon separation from -1773, 1 g of the sample was aseptically collected and added to 9 mL of sterile distilled water to prepare 10-fold diluted water. This diluted water was heat-treated at 80 ° C. for 15 minutes. The dilution operation was repeated sequentially based on the dilution water thus heat-treated to prepare a 10 to 10 6- fold dilution series. After that, 0.1 mL of each diluted test water was smeared on a lactic acid bacterium selection (MRS) agar medium and cultured under anaerobic conditions at 37 ° C. for 48 hours. As a result, two different colonies (LM-1 and LM-2) were obtained. Was observed. Note that L
Regarding M-1, the spores were not formed on the MRS medium, but the spores were formed on the general agar medium. The same was true for LM-2. Table 3 shows the identification results of these LM-1 and LM-2.

【0038】[0038]

【表3】 [Table 3]

【0039】また、LM−1及びLM−2について、そ
れぞれ16S rRNA遺伝子塩基配列を調べた。具体
的には、分離株をMRS培地(OXOID)に植菌し、37
℃での培養物を供試菌体とした。DNA抽出、PCR、
PCR産物の精製、サイクルシークエンスは「MicroSeq
TM 500 16S rDNA Bacterial Sequencing Kit(Applied
Biosystems社製)」を用い、操作はApplied Biosystems
社のプロトコルに従った。DNA解析は「ABI PRISMTM
377 DNA Sequencer(Applied Biosystems社製)」を用
い、MicroSeqTM のデータベースにより照合検索を行っ
た。その結果を配列表(配列番号1及び配列番号2)に
示す。更に、分離株と近縁株との近隣結合法による系統
樹を図5及び図6に示す。
The nucleotide sequences of 16S rRNA genes of LM-1 and LM-2 were examined. Specifically, the isolate was inoculated in MRS medium (OXOID),
The culture at 0 ° C. was used as the test cell. DNA extraction, PCR,
For PCR product purification and cycle sequence, refer to "MicroSeq
TM 500 16S rDNA Bacterial Sequencing Kit (Applied
Biosystems) ”, and the operation is Applied Biosystems
Followed the company's protocol. DNA analysis is based on "ABI PRISM TM
377 DNA Sequencer (manufactured by Applied Biosystems) ”was used to perform a collation search using the MicroSeq database. The results are shown in the sequence listing (SEQ ID NO: 1 and SEQ ID NO: 2). Furthermore, phylogenetic trees by the neighbor-joining method of the isolated strain and the closely related strain are shown in FIGS. 5 and 6.

【0040】ここで、キチン濃度を変えて(0、0.05、
0.1、0.2%)培養したC−1、C−3、及びCH−4に
ついて、p−ニトロフェニル−N−アセチル−β−D−
グルコサミン(p−NP−β−D−GlcNAc)を基質とし
て耐熱性キチナーゼの比活性をそれぞれ測定した。その
結果を表4に示す。測定は、グルコース(Glc)−ペプ
トン培地(Broth)条件及び無細胞(Cell-free)条件で
それぞれ行った。CH−4については、更に酢酸ナトリ
ウム(AcONa)−ペプトン培地(Broth)条件及び無細胞
(Cell-free)条件でも行った。
Here, the chitin concentration was changed (0, 0.05,
0.1, 0.2%) For cultured C-1, C-3, and CH-4, p-nitrophenyl-N-acetyl-β-D-
The specific activity of thermostable chitinase was measured using glucosamine (p-NP-β-D-GlcNAc) as a substrate. The results are shown in Table 4. The measurement was performed under glucose (Glc) -peptone medium (Broth) conditions and cell-free (Cell-free) conditions, respectively. For CH-4, it was further performed under sodium acetate (AcONa) -peptone medium (Broth) conditions and cell-free (Cell-free) conditions.

【0041】[0041]

【表4】 [Table 4]

【0042】また、C−1、C−3、及びCH−4を、
0.2%のコロイダルキチンを含むグルコース−ペプト
ン培地でそれぞれ培養し、キチン分解活性を測定した。
その結果を表5に示す。測定は、グルコース−ペプトン
培地(Broth)条件及び無細胞(Cell-free)条件でそれ
ぞれ行った。CH−4については、更に酢酸ナトリウム
(AcONa)−ペプトン培地(Broth)条件及び無細胞(Ce
ll-free)条件でも行った。活性は、コロイダルキチン
懸濁液を60℃で反応させ、1時間後の濁度低下を蛋白
mg当りで表示した。
Further, C-1, C-3, and CH-4 are
Each was cultured in a glucose-peptone medium containing 0.2% colloidal chitin, and the chitin-degrading activity was measured.
The results are shown in Table 5. The measurement was performed under glucose-peptone medium (Broth) conditions and cell-free (Cell-free) conditions, respectively. For CH-4, sodium acetate (AcONa) -peptone medium (Broth) conditions and cell-free (Ce) were used.
ll-free) conditions. For the activity, the colloidal chitin suspension was reacted at 60 ° C., and the decrease in turbidity after 1 hour was expressed per mg of protein.

【0043】[0043]

【表5】 [Table 5]

【0044】更に、C−1、C−3、及びCH−4につ
いて、p−ニトロフェニル−N−アセチル−β−D−グ
ルコサミン(p−NP−β−D−GlcNAc)を基質とし
た、pH及び温度に対するエキソ(exo)の分解活性を
測定した。その結果を図7及び図8に示す。温度に対す
る分解活性では、CH−4の菌体外酵素(extra)につ
いても測定した。
Further, regarding C-1, C-3, and CH-4, pH was measured using p-nitrophenyl-N-acetyl-β-D-glucosamine (p-NP-β-D-GlcNAc) as a substrate. The decomposition activity of exo with respect to temperature and temperature was measured. The results are shown in FIGS. 7 and 8. Regarding the decomposition activity with respect to temperature, the extracellular enzyme (extra) of CH-4 was also measured.

【0045】また、p−ニトロフェニル−N−アセチル
−β−D−グルコサミン誘導体を用いて分解活性の基質
特異性を調べた。その結果を表6(p−NP−β−D−
GalNAcはp−ニトロフェニル−N−アセチル−β−D−
ガラクトサミン)に示す。
The p-nitrophenyl-N-acetyl-β-D-glucosamine derivative was used to examine the substrate specificity of the degradation activity. The results are shown in Table 6 (p-NP-β-D-
GalNAc is p-nitrophenyl-N-acetyl-β-D-
Galactosamine).

【0046】[0046]

【表6】 [Table 6]

【0047】加えて、MH−1には3種類の耐熱性キチ
ナーゼ(L,M,Sという)が含まれていたので、これ
らを常法により単離した後、p−NP−β−D−diGlcN
Acを基質として耐熱性キチナーゼの比活性をそれぞれ測
定した。その結果を表7に示す。
In addition, since MH-1 contained three types of thermostable chitinase (referred to as L, M and S), these were isolated by a conventional method and then p-NP-β-D- diGlcN
The specific activity of thermostable chitinase was measured using Ac as a substrate. The results are shown in Table 7.

【0048】[0048]

【表7】 [Table 7]

【0049】多孔質複合資材1は、多孔質焼成体2に好
熱性種菌PTA−1773の懸濁液又は培養液を数時間
〜数日間含浸させ、必要に応じて乾燥させることによっ
て簡単に製造できる。好熱性種菌PTA−1773の培
養液は、好熱性種菌PTA−1773を含む培地を水等
に添加し、曝気等による好気条件下かつ5〜70℃で培
養することによって製造できる。この場合、必要に応じ
て遠赤外線を照射すれば、より効率良く培養できる。ま
た、得られた培養液は、適当な倍率に希釈した希釈液と
して使用してもよい。
The porous composite material 1 can be easily produced by impregnating the porous fired body 2 with a suspension or culture solution of the thermophilic inoculum PTA-1773 for several hours to several days, and drying it if necessary. . The culture solution of thermophilic seed bacterium PTA-1773 can be produced by adding a medium containing thermophilic seed bacterium PTA-1773 to water or the like, and culturing at 5 to 70 ° C. under aerobic conditions such as aeration. In this case, irradiation with far infrared rays can be performed more efficiently for culturing. Further, the obtained culture solution may be used as a diluting solution diluted to an appropriate ratio.

【0050】このように、多孔質複合資材1は、多孔質
焼成体2に好熱性種菌PTA−1773を含有させたも
のであるので、多孔質焼成体2が好熱性種菌PTA−1
773の担体となり、好熱性種菌PTA−1773の活
性が高い状態で環境浄化・改良能を発揮できる。そのた
め、この多孔質複合資材1を各種の環境に使用すれば、
水質浄化等の環境浄化を効果的にかつ効率良く行えると
共に、環境(生態系)を整えることもできるという利点
がある。また、このような多孔質複合資材1において
は、好熱性種菌PTA−1773を含有した状態で長期
保存が可能である。
As described above, since the porous composite material 1 is the one in which the thermophilic seed bacterium PTA-1773 is contained in the porous calcinated body 2, the porous calcinated body 2 is the thermophilic seed bacterium PTA-1.
It becomes a carrier of 773 and can exert environmental purification / improvement ability in a state where the thermophilic inoculum PTA-1773 has a high activity. Therefore, if this porous composite material 1 is used in various environments,
There is an advantage that environmental purification such as water purification can be performed effectively and efficiently and the environment (ecosystem) can be prepared. Further, such a porous composite material 1 can be stored for a long period of time in a state in which it contains the thermophilic inoculum PTA-1773.

【0051】なお、多孔質複合資材1は、複数個をその
ままの状態で投入、沈設、設置、埋設、混入等すること
により使用してもよいが、適宜の孔開きバスケット、孔
開きケース(メッシュコンテナ)、袋状ネット、土のう
袋等に複数個をまとめて収納した状態で使用すれば、使
用後の多孔質複合資材1を簡単に回収することができ
る。また、回収された使用済の多孔質複合資材1は、更
に土壌浄化・改良材や植木移植時の根張り活着促進材等
として、そのまま又は適度な大きさに粉砕した状態で再
利用することもできる。
The porous composite material 1 may be used by inserting, immersing, installing, burying, mixing, etc. a plurality of the porous composite materials 1 as they are, but an appropriate perforated basket or perforated case (mesh). If a plurality of containers are used in a state of being collectively stored in a container), a bag net, a sandbag, etc., the used porous composite material 1 can be easily collected. Further, the recovered used porous composite material 1 may be reused as it is or after being crushed to an appropriate size as a soil purification / improvement material, a rooting survival promoting material at the time of transplanting a plant, or the like. it can.

【0052】上記のように構成された多孔質複合資材1
は、水質浄化・改良能、水中のミクロキスティスの減少
化能、水中のアオコの減少化能、土壌浄化・改良能、植
物病原菌の抗菌・溶菌能、堆肥の発酵促進・消臭能、及
び生ゴミ処理能等を有するので、水質浄化・改良材、ミ
クロキスティスの減少化材、アオコの減少化材、土壌浄
化・改良材、生物農薬(植物病原菌の抗菌・溶菌材)、
堆肥の発酵促進・消臭材、及び生ゴミ処理材等として好
適に使用できるという利点がある。なお、ここでいうと
ころのアオコ(青粉)とは、池、沼、湖、河川等の水を
緑色にする浮遊性の藻の総称である。ミクロキスティス
とは、池、沼、湖、河川等に浮遊して生育し、しばしば
大繁殖して水の華を生じさせる藍藻ミクロキスティス
(Microcystis)属の総称である。
Porous composite material 1 constructed as described above
Is water purification / improvement ability, water microcystis reduction ability, water blue water reduction ability, soil purification / improvement ability, antibacterial / lysing ability of plant pathogens, fermentation promotion / deodorant ability of compost, and raw As it has the ability to dispose of waste, it is used as a water purification / improvement material, microcystis reduction material, water-bloom reduction material, soil purification / improvement material, biological pesticide (antibacterial / lysing material for plant pathogens),
There is an advantage that it can be suitably used as a material for promoting fermentation and deodorizing compost, a material for treating garbage, and the like. The term "blue powder" as used herein is a general term for floating algae that make water in ponds, swamps, lakes, rivers, etc. green. Microcystis is a general term for the genus Microcystis, which grows floating in ponds, swamps, lakes, rivers and the like, and often proliferates to generate water flowers.

【0053】既述のように、好熱性種菌PTA−177
3は前記耐熱性酵素や分子シャぺロンの生産能を有する
と共に、これら耐熱性酵素や分子シャぺロン等が既に発
現しているので、汚染水、土壌、堆肥、生ゴミ等に含ま
れる有機物の分解能を有している。また、好熱性種菌P
TA−1773由来の分子シャぺロンによって、前記耐
熱性酵素等や有機物の分解能を有する常温微生物の酵素
等が安定化されるので、常温微生物が活性化される。そ
のため、常温微生物の優先環境が安定化され、常温下に
おいても分解処理が効率良く進行する。
As already mentioned, the thermophilic inoculum PTA-177.
3 has the ability to produce the thermostable enzyme and the molecular chaperone, and since these thermostable enzyme and the molecular chaperone have already been expressed, organic matter contained in contaminated water, soil, compost, garbage, etc. Has a resolution of. Also, thermophilic inoculum P
The molecular chaperone derived from TA-1773 stabilizes the thermostable enzyme and the like and the enzyme of the room temperature microorganism having the ability of decomposing organic substances, so that the room temperature microorganism is activated. Therefore, the priority environment of the room temperature microorganisms is stabilized, and the decomposition treatment proceeds efficiently even at room temperature.

【0054】特に、多孔質複合資材1を水質浄化・改良
材として使用した場合は、水質が浄化される結果、ミク
ロキスティスやアオコを減少化できる。また、水生生物
やプランクトン等の常温生物の水系生物相を変化させ、
水系生態系を活性化・良質化してホタル、カワニナ、タ
ガメ等を増加させることができる。更に、稲作水田にお
いては、多孔質複合資材1を水当て補材として使用する
ことができる。なお、排水溝、下水浄化槽、し尿浄化槽
等に使用した場合でも、同様にして水質が浄化・改良さ
れる。
In particular, when the porous composite material 1 is used as a water purification / improvement material, water quality is purified, and as a result, microcystis and water-bloom can be reduced. In addition, by changing the aquatic biota of aquatic organisms and room temperature organisms such as plankton,
By activating and improving the quality of aquatic ecosystems, it is possible to increase fireflies, river turtles, and sea turtles. Further, in rice paddy fields, the porous composite material 1 can be used as a watering auxiliary material. Even when used in drains, sewage septic tanks, night soil septic tanks, etc., the water quality is similarly purified and improved.

【0055】生物農薬として使用した場合は、植物病原
菌(例えばフザリウム属菌・紋羽病菌等の糸状菌等)に
対して抗菌・溶菌効果を発揮するので、従来のような農
薬が不要であると共に、人体に対して安全な作物を栽培
することができる。
When used as a biological pesticide, since it exerts an antibacterial / bacteriolytic effect against plant pathogenic fungi (for example, filamentous fungi such as Fusarium spp. And Monobia fungus), conventional pesticides are not required. , It is possible to grow crops that are safe for the human body.

【0056】生ゴミ処理材として使用した場合は、生ゴ
ミの堆肥化を促進できると共に、大腸菌O−157・レ
ジオネラ菌・赤痢菌・黄色ブドウ球菌・サルモネラ菌等
の人体に悪影響を与える日和見感染菌・病原菌、植物病
原菌、カビ等を殺菌することもできる。
When it is used as a raw garbage treatment material, it can promote the composting of raw garbage, and at the same time, opportunistic infectious bacteria such as Escherichia coli O-157, Legionella, Shigella, Staphylococcus aureus, Salmonella, etc. It is also possible to sterilize pathogenic bacteria, phytopathogenic bacteria, molds and the like.

【0057】[0057]

【実施例】次に、実施例により更に詳細に説明するが、
この発明は係る実施例に限定されるものではない。
EXAMPLES Next, more detailed description will be given of examples.
The present invention is not limited to such embodiments.

【0058】〔多孔質複合資材の製造〕粘土(島根県仁
多郡産)の製砂脱水ケーキを自然乾燥させた後(乾燥後
の含水率:約10重量%)、ミックスマーラにより粉
砕、微細化したものを粘土粉体(平均粒径:118μ
m)として使用した。ミックスマーラにより、粘土粉体
とトルマリン粉体(中国産,粒径:330μm以下)と
ゼオライト粉体(島根県大田市産,粒径:500μm以
下)とを70:10:20(重量率)の割合で混合して
原料粉体とした後、原料粉体全体に対する含水率が約1
3重量%となるように徐々に水を添加し、引き続きミッ
クスマーラにより混練した。得られた原料粉体の混練物
を加圧成形機(有限会社日野砕石製)により略タマゴ型
形状(長さ:30mm,幅:25mm,高さ:15m
m)に加圧成形(加圧力:5t/cm2)し、成形体と
した。複数個の成形体を乾燥炉内に入れて107℃で2
時間乾燥させた後、3時間かけて600℃まで昇温さ
せ、その状態を1.5時間保持して成形体を焼成した。
焼成後は、乾燥炉内で12時間以上放冷した。
[Production of Porous Composite Material] A sand-made dehydrated cake of clay (produced in Nita-gun, Shimane Prefecture) was naturally dried (water content after drying: about 10% by weight), and then pulverized and pulverized by a mix mara. Clay powder (average particle size: 118μ
used as m). 70:10:20 (weight ratio) of clay powder, tourmaline powder (China, particle size: 330 μm or less) and zeolite powder (Ota City, Shimane prefecture, particle size: 500 μm or less) by Mix Mara. After mixing at a ratio to make the raw material powder, the water content of the whole raw material powder is about 1
Water was gradually added to 3% by weight, and the mixture was subsequently kneaded with Mix Mara. The kneaded material of the obtained raw material powder was formed into a substantially egg shape (length: 30 mm, width: 25 mm, height: 15 m) by a pressure molding machine (manufactured by Hino Crushed Stone Co., Ltd.).
m) was pressure-molded (pressing force: 5 t / cm 2 ) to obtain a molded body. Put a plurality of compacts in a drying oven at 107 ° C for 2
After being dried for 3 hours, the temperature was raised to 600 ° C. over 3 hours, and the state was maintained for 1.5 hours to fire the molded body.
After the firing, it was left to cool in the drying furnace for 12 hours or more.

【0059】得られた多孔質焼成体の複数個を好熱性種
菌PTA−1773の培養液に24時間浸漬した後、自
然乾燥させることによって複数個の多孔質複合資材を製
造した。なお、培養液は、好熱性種菌PTA−1773
を含む粉体状の培地(表8参照)を、市販の高温培養装
置に入れた水に1:100(体積率)の割合で添加し、
空気雰囲気下で30〜70℃に保持して12時間培養す
ることによって製造した。
A plurality of the obtained porous fired bodies were immersed in a culture solution of thermophilic inoculum PTA-1773 for 24 hours and then naturally dried to produce a plurality of porous composite materials. In addition, the culture solution is a thermophilic inoculum PTA-1773.
The powdery medium containing the above (see Table 8) was added to water put in a commercially available high temperature culture device at a ratio of 1: 100 (volume ratio),
It was prepared by culturing in an air atmosphere at 30 to 70 ° C. for 12 hours.

【0060】[0060]

【表8】 [Table 8]

【0061】〔実施例1〕島根県内の公園の池(水量:
約50t)において、多孔質複合資材による水質浄化試
験を行った。なお、試験前においては、池の全面がアオ
コに覆われており、池底が全く見えない状態であった。
また、池底の敷丸石は、アオコが付着して緑色を呈して
いた。
[Example 1] A pond (amount of water:
At about 50 t), a water purification test using a porous composite material was performed. Before the test, the entire surface of the pond was covered with blue-green algae, and the bottom of the pond was completely invisible.
In addition, the floor cobbles on the pond had a green color due to the adhering water-bloom.

【0062】具体的には、上記の池の取水口付近に、多
孔質複合資材50kgを入れた孔開きケース(メッシュ
コンテナ)を沈設した。孔開きケース近傍には水中曝気
装置(消費電力:0.4kW)を設置し、孔開きケース
内の多孔質複合資材を常時曝気した。
Specifically, a perforated case (mesh container) containing 50 kg of the porous composite material was laid near the water intake of the pond. An underwater aerator (power consumption: 0.4 kW) was installed near the perforated case to constantly aerate the porous composite material in the perforated case.

【0063】試験開始から5日後とそれから更に6カ月
経過後における池の排水口付近の水質をそれぞれ検査し
た。その結果を表9に示す。なお、試験開始から約1カ
月後においては、池底の敷丸石に付着していたアオコの
緑色が薄くなり、池内にはメダカ、タニシ、カワニナ等
が大量に発生していた。
The water quality near the drainage port of the pond was inspected 5 days after the start of the test and 6 months after that. The results are shown in Table 9. In addition, about one month after the start of the test, the green color of the water-bloom adhering to the cobblestone at the bottom of the pond became light, and a large amount of medaka, snail, kawana etc. were generated in the pond.

【0064】[0064]

【表9】 [Table 9]

【0065】〔実施例2〕出願人である有限会社日野砕
石内に設置されたし尿浄化槽(22人用合併浄化槽)に
おいて、多孔質複合資材による水質改善試験を行った。
Example 2 A water quality improvement test using a porous composite material was carried out in a human waste septic tank (combined septic tank for 22 people) installed in the Hino Crushed Stone Co., Ltd., which is the applicant.

【0066】具体的には、有限会社日野砕石内に設置さ
れたトイレの7箇所の洗浄水タンク(洗浄水はし尿と共
にし尿浄化槽へ流入)に、約20個の多孔質複合資材を
入れた筒状の孔開きケースをそれぞれ1つずつ沈設し
た。試験開始前と試験開始から1カ月後におけるし尿浄
化槽の水質をそれぞれ検査した。その結果を表10に示
す。
Concretely, a cylinder containing about 20 porous composite materials in 7 wash water tanks (flowing into the human waste septic tank together with wash water and urine) of a toilet installed in Hino Crushed Stone Co., Ltd. One perforated case was sunk. The water quality of the human waste septic tank was examined before the start of the test and one month after the start of the test. The results are shown in Table 10.

【0067】[0067]

【表10】 [Table 10]

【0068】〔実施例3〕出願人である有限会社日野砕
石の島根県内の工場に建設された地下水汲み上げ施設に
おいて、地下水に含まれる鉄分、マンガン、硝酸体窒素
の除去試験を行った。
[Example 3] A removal test of iron, manganese, and nitrate nitrogen contained in groundwater was conducted at a groundwater pumping facility constructed at a factory in Shimane Prefecture of the applicant, Hino Crushed Stone Co., Ltd.

【0069】具体的には、上記の地下水汲み上げ施設で
汲み上げられた地下水を、多孔質複合資材50kgがそ
れぞれ収容されかつ互いに隣接して設置された12個の
孔開きケース(メッシュコンテナ)の上方から散水し、
これら孔開きケース内の複数個の多孔質複合資材を通し
て下方にろ過された状態の地下水を貯水タンク(容量:
1200L)に貯留した。汲み上げたままの原水と貯水
タンク内のろ過水の水質をそれぞれ検査した。その結果
を表11に示す。
Specifically, the groundwater pumped up in the above groundwater pumping facility is fed from above 12 perforated cases (mesh containers) each containing 50 kg of the porous composite material and installed adjacent to each other. Watering,
The ground water in the state of being filtered downward through a plurality of porous composite materials in these perforated cases is a storage tank (capacity:
1200 L). The quality of the raw water as pumped and the quality of the filtered water in the water storage tank were inspected. The results are shown in Table 11.

【0070】[0070]

【表11】 [Table 11]

【0071】[0071]

【発明の効果】以上のように、請求項1の発明によれ
ば、多孔質焼成体に好熱性種菌PTA−1773を含有
させたものであるので、多孔質焼成体が好熱性種菌PT
A−1773の担体となり、好熱性種菌PTA−177
3の活性が高い状態で環境浄化・改良能を発揮できる。
そのため、多孔質複合資材を各種の環境に使用すれば、
水質浄化等の環境浄化を効果的にかつ効率良く行えると
共に、環境(生態系)を整えることもできる。また、好
熱性種菌PTA−1773を含有した状態で長期保存も
可能である。
As described above, according to the first aspect of the present invention, since the porous fired body contains the thermophilic inoculum PTA-1773, the porous fired body is a thermophilic inoculum PT.
A-1773 carrier, thermophilic inoculum PTA-177
3 can demonstrate environmental purification and improvement ability in a high activity state.
Therefore, if you use porous composite materials in various environments,
Not only can environmental purification such as water purification be performed effectively and efficiently, but also the environment (ecosystem) can be prepared. Further, it can be stored for a long period of time while containing the thermophilic inoculum PTA-1773.

【0072】請求項2の発明によれば、多孔質焼成体
が、ゼオライト、トルマリン、及びランプストーンのう
ちの少なくとも1種を含んでいるので、これら天然鉱石
のマイナスイオン効果等により水質浄化等に対して格別
優れた効果を発揮する。
According to the invention of claim 2, since the porous fired body contains at least one of zeolite, tourmaline and lampstone, it is possible to purify water by the negative ion effect of these natural ores. On the other hand, it exerts a particularly excellent effect.

【0073】請求項3の発明によれば、多孔質焼成体が
400〜800℃で焼成されたものであるので、多孔質
構造を保持した状態で適度な強度及び硬度を有する。そ
のため、粉砕し易いと共に、自然風化もし易いので、使
用後の多孔質複合資材を簡単にリサイクルできる。
According to the invention of claim 3, since the porous fired body is fired at 400 to 800 ° C., it has appropriate strength and hardness while maintaining the porous structure. Therefore, since it is easy to pulverize and easily weathered, the used porous composite material can be easily recycled.

【0074】請求項4の発明によれば、多孔質焼成体
が、長さが10〜50mmで、幅が長さより小さくかつ
高さが幅より小さい略タマゴ型形状に形成されたもので
あるので、適度な大きさであり、そのため取り扱いが容
易であり、各種の用途に広く利用できると共に、再利用
もし易い。
According to the invention of claim 4, the porous fired body is formed in a substantially egg shape having a length of 10 to 50 mm, a width smaller than the length and a height smaller than the width. Since the size is appropriate, it is easy to handle, can be widely used for various purposes, and can be easily reused.

【0075】請求項5の発明によれば、水質浄化・改良
能を有するので、水質浄化・改良材として好適に使用で
きる。
According to the invention of claim 5, since it has the ability to purify and improve water quality, it can be suitably used as a water purification and improvement material.

【0076】請求項6の発明によれば、水中のミクロキ
スティスの減少化能を有するので、ミクロキスティスの
減少化材として好適に使用できる。
According to the invention of claim 6, since it has the ability to reduce microcystis in water, it can be suitably used as a material for reducing microcystis.

【0077】請求項7の発明によれば、水中のアオコの
減少化能を有するので、アオコの減少化材として好適に
使用できる。
According to the invention of claim 7, since it has the ability to reduce water-bloom in water, it can be suitably used as a material for reducing water-bloom.

【0078】請求項8の発明によれば、土壌浄化・改良
能を有するので、土壌浄化・改良材として好適に使用で
きる。
According to the eighth aspect of the present invention, since it has soil purification / improvement ability, it can be suitably used as a soil purification / improvement material.

【0079】請求項9の発明によれば、植物病原菌の抗
菌・溶菌能を有するので、生物農薬として好適に使用で
きる。
According to the invention of claim 9, it has an antibacterial / bacteriolytic activity against phytopathogenic bacteria, and thus can be suitably used as a biological pesticide.

【0080】請求項10の発明によれば、堆肥の発酵促
進・消臭能を有するので、堆肥の発酵促進・消臭材とし
て好適に使用できる。
According to the tenth aspect of the present invention, since it has the ability to promote and deodorize fermentation of compost, it can be suitably used as a material for promoting fermentation and deodorization of compost.

【0081】請求項11の発明によれば、生ゴミ処理能
を有するので、生ゴミ処理材として好適に使用できる。
According to the eleventh aspect of the invention, since it has the ability to dispose of garbage, it can be suitably used as a material for treating garbage.

【0082】請求項12の発明によれば、多孔質焼成体
に好熱性種菌PTA−1773の懸濁液又は培養液を含
浸させることによって、多孔質焼成体に好熱性種菌PT
A−1773を含有させるので、多孔質複合資材を簡単
に製造できる。
According to the twelfth aspect of the present invention, the porous fired body is impregnated with a suspension or culture solution of thermophilic inoculum PTA-1773, whereby the porous fired body is heated with the thermophilic inoculum PT.
Since A-1773 is contained, the porous composite material can be easily manufactured.

【0083】請求項13の発明によれば、粘土粉体を5
0重量%以上含む原料粉体の含水率を8〜20重量%と
し、この原料粉体を所定形状に成形した後、この成形体
を焼成することによって多孔質焼成体を得るので、歩留
が良く、生産性が向上する。
According to the thirteenth aspect of the present invention, the amount of the clay powder is 5
Since the raw material powder containing 0% by weight or more has a water content of 8 to 20% by weight, the raw material powder is molded into a predetermined shape, and then the molded body is fired to obtain a porous fired body. Good and productivity is improved.

【0084】請求項14の発明によれば、原料粉体を略
タマゴ型形状に成形するので、成形体が成形用溝等から
の離型時及び離型後に崩れにくくなり、そのため生産性
が向上する。
According to the fourteenth aspect of the present invention, since the raw material powder is molded into a substantially egg-shaped shape, the molded body is less likely to collapse during and after mold release from the molding groove or the like, thus improving productivity. To do.

【0085】請求項15の発明によれば、原料粉体を略
タマゴ型形状に加圧成形するので、成形体が更に崩れに
くくなる。
According to the fifteenth aspect of the present invention, since the raw material powder is pressure-molded into a substantially egg-shaped shape, the molded body is less likely to collapse.

【0086】[0086]

【配列表】[Sequence list]

配列番号:1 配列の長さ:537 配列の型:RNA 鎖の数:一本鎖 トポロジー:直鎖状 生物名:バチルス・コアギュランス(Bacillus coagula
ns)の近縁の種である好熱性又は耐熱性乳酸菌LM−1 配列の種類:16S rRNA 配列: TGGAGAGTTT GATCCTGGCT CAGGACGAAC GCTGGCGGCG TGCCTAATAC ATGCAAGTCG TGCGGACCTT TTAAAAGCTT GCTTTTAAAA GGTTAGCGGC GGACGGGTGA GTAACACGTG GGCAACCTGC CTGTAAGATC GGGATAACGC CGGGAAACCG GGGCTAATAC CGGATAGTTT TTTCCTCCGC ATGGAGGAAA AAGGAAAGAC GGCTTCTGCT GTCACTTACA GATGGGCCCG CGGCGCATTA GCTTGTTGGT GGGGTAACGG CTCACCAAGG CAACGATGCG TAGCCGACCT GAGAGGGTGA TCGGCCACAT TGGGACTGAG ACACGGCCCA AACTCCTACG GGAGGCAGCA GTAGGGAATC TTCCGCAATG GACGAAAGTC TGACGGAGCA ACGCCGCGTG AGTGAAGAAG GCCTTCGGGT CGTAAAACTC TGTTGCCGGG GAAGAACAAG TGCCGTTCGA ACAGGGCGGC GCCTTGACGG TACCCGGCCA GAAAGCCACG GCTAACTACG TGCCAGCAGC CGCGGTA
SEQ ID NO: 1 Sequence length: 537 Sequence type: RNA Number of strands: Single-stranded topology: Linear organism name: Bacillus coagula
Thermophilic or thermostable Lactobacillus LM-1 sequence types are closely related species ns): 16S rRNA sequence: TGGAGAGTTT GATCCTGGCT CAGGACGAAC GCTGGCGGCG TGCCTAATAC ATGCAAGTCG TGCGGACCTT TTAAAAGCTT GCTTTTAAAA GGTTAGCGGC GGACGGGTGA GTAACACGTG GGCAACCTGC CTGTAAGATC GGGATAACGC CGGGAAACCG GGGCTAATAC CGGATAGTTT TTTCCTCCGC ATGGAGGAAA AAGGAAAGAC GGCTTCTGCT GTCACTTACA GATGGGCCCG CGGCGCATTA GCTTGTTGGT GGGGTAACGG CTCACCAAGG CAACGATGCG TAGCCGACCT GAGAGGGTGA TCGGCCACAT TGGGACTGAG ACACGGCCCA AACTCCTACG GGAGGCAGCA GTAGGGAATC TTCCGCAATG GACGAAAGTC TGACGGAGCA ACGCCGCGTG AGTGAAGAAG GCCTTCGGGT CGTAAAACTC TGTTGCCGGG GAAGAACAAG TGCCGTTCGA ACAGGGCGGC GCCTTGACGG TACCCGGCCA GAAAGCCACG GCTAACTACG TGCCAGCAGC CGCGGTA

【0087】 配列番号:2 配列の長さ:537 配列の型:RNA 鎖の数:一本鎖 トポロジー:直鎖状 生物名:バチルス・コアギュランス(Bacillus coagula
ns)の近縁の種である好熱性又は耐熱性乳酸菌LM−2 配列の種類:16S rRNA 配列: TGGAGAGTTT GATCCTGGCT CAGGACGAAC GCTGGCGGCG TGCCTAATAC ATGCAAGTCG TGCGGACCTT TTAAAAGCTT GCTTTTAAAA GGTTAGCGGC GGACGGGTGA GTAACACGTG GGCAACCTGC CTGTAAGATC GGGATAACGC CGGGAAACCG GGGCTAATAC CGGATAGTTT TTTCCTCCGC ATGGAGGAAA AAGGAAAGAC GGCTTCTGCT GTCACTTACA GATGGGCCCG CGGCGCATTA GCTTGTTGGT GGGGTAACGG CTCACCAAGG CAACGATGCG TAGCCGACCT GAGAGGGTGA TCGGCCACAT TGGGACTGAG ACACGGCCCA AACTCCTACG GGAGGCAGCA GTAGGGAATC TTCCGCAATG GACGAAAGTC TGACGGAGCA ACGCCGCGTG AGTGAAGAAG GCCTTCGGGT CGTAAAACTC TGTTGCCGGG GAAGAACAAG TGCCGTTCGA ACAGGGCGGC GCCTTGACGG TACCCGGCCA GAAAGCCACG GCTAACTACG TGCCAGCAGC CGCGGTA
SEQ ID NO: 2 Sequence length: 537 Sequence type: RNA Number of strands: Single-stranded topology: Linear Organism name: Bacillus coagula
Thermophilic or thermostable Lactobacillus LM-2 sequence types are closely related species ns): 16S rRNA sequence: TGGAGAGTTT GATCCTGGCT CAGGACGAAC GCTGGCGGCG TGCCTAATAC ATGCAAGTCG TGCGGACCTT TTAAAAGCTT GCTTTTAAAA GGTTAGCGGC GGACGGGTGA GTAACACGTG GGCAACCTGC CTGTAAGATC GGGATAACGC CGGGAAACCG GGGCTAATAC CGGATAGTTT TTTCCTCCGC ATGGAGGAAA AAGGAAAGAC GGCTTCTGCT GTCACTTACA GATGGGCCCG CGGCGCATTA GCTTGTTGGT GGGGTAACGG CTCACCAAGG CAACGATGCG TAGCCGACCT GAGAGGGTGA TCGGCCACAT TGGGACTGAG ACACGGCCCA AACTCCTACG GGAGGCAGCA GTAGGGAATC TTCCGCAATG GACGAAAGTC TGACGGAGCA ACGCCGCGTG AGTGAAGAAG GCCTTCGGGT CGTAAAACTC TGTTGCCGGG GAAGAACAAG TGCCGTTCGA ACAGGGCGGC GCCTTGACGG TACCCGGCCA GAAAGCCACG GCTAACTACG TGCCAGCAGC CGCGGTA

【図面の簡単な説明】[Brief description of drawings]

【図1】実施形態に係る多孔質複合資材の正面図。FIG. 1 is a front view of a porous composite material according to an embodiment.

【図2】図1の多孔質複合資材の平面図。FIG. 2 is a plan view of the porous composite material of FIG.

【図3】図1の多孔質複合資材の側面図。3 is a side view of the porous composite material of FIG.

【図4】分離株(MH−1)と近縁株との近隣結合法に
よる系統樹。
FIG. 4 is a phylogenetic tree of the isolated strain (MH-1) and a closely related strain by the neighbor-joining method.

【図5】分離株(LM−1)と近縁株との近隣結合法に
よる系統樹。
FIG. 5 is a phylogenetic tree of the isolate (LM-1) and closely related strains by the neighbor-joining method.

【図6】分離株(LM−2)と近縁株との近隣結合法に
よる系統樹。
FIG. 6 is a phylogenetic tree of the isolate (LM-2) and closely related strains by the neighbor-joining method.

【図7】C−1、C−3、及びCH−4の最適pHを示
すグラフ。
FIG. 7 is a graph showing the optimum pH of C-1, C-3, and CH-4.

【図8】C−1、C−3、CH−4、及びCH−4(ex
tra)の最適温度を示すグラフ。
FIG. 8 shows C-1, C-3, CH-4, and CH-4 (ex
tra) graph showing the optimum temperature.

【符号の説明】[Explanation of symbols]

1 多孔質複合資材 2 多孔質焼成体 1 Porous composite material 2 Porous fired body

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B09C 1/10 C02F 3/10 ZNAA 4D040 C02F 3/10 C05F 9/00 4H011 ZNA 11/08 4H026 C05F 9/00 C09K 17/02 H 4H061 11/08 17/32 H C09K 17/02 17/48 H 17/32 C12N 1/00 S 17/48 11/14 C12N 1/00 C09K 101:00 11/14 B09B 3/00 D // C09K 101:00 E (72)発明者 吉川 芳建 島根県出雲市荻野町550番地 (72)発明者 宮本 久 大分県杵築市大字岩谷706番地の27 (72)発明者 宮本 浩邦 千葉県船橋市宮本9−11−1−1207 Fターム(参考) 2B314 MA46 4B033 NA12 NB02 NB22 NB43 NB68 NC04 ND04 ND20 NF06 NG02 NH10 4B065 AA01X AA15X AA18X AC02 BA22 CA55 CA56 4D003 AA01 AA02 AB02 BA07 EA01 EA06 EA14 EA23 EA25 EA38 4D004 AA03 AA41 AB10 CA17 CC07 CC08 4D040 DD03 DD31 4H011 AA01 AA02 AD01 BA01 BB21 BC20 DA03 DA09 DA11 DC10 DD01 DD04 4H026 AA02 AA08 AB04 4H061 AA02 CC55 EE66 GG48 LL02 LL07 Front page continuation (51) Int.Cl. 7 Identification code FI theme code (reference) B09C 1/10 C02F 3/10 ZNAA 4D040 C02F 3/10 C05F 9/00 4H011 ZNA 11/08 4H026 C05F 9/00 C09K 17 / 02 H 4H061 11/08 17/32 H C09K 17/02 17/48 H 17/32 C12N 1/00 S 17/48 11/14 C12N 1/00 C09K 101: 00 11/14 B09B 3/00 D / / C09K 101: 00 E (72) Inventor Yoshiken Yoshikawa 550, Ogino-cho, Izumo City, Shimane Prefecture (72) Inventor Hisa Miyamoto 27, 706, Iwatani, Kitsuki City, Oita Prefecture (72) Inventor, Hirokuni Miyamoto Funabashi City, Chiba Prefecture Miyamoto 9-11-1-1207 F-term (reference) 2B314 MA46 4B033 NA12 NB02 NB22 NB43 NB68 NC04 ND04 ND20 NF06 NG02 NH10 4B065 AA01X AA15X AA18X AC02 BA22 CA55 CA56 4D003 AA01 AA02 AB02 BA07 EA01 EA06 EA14 EA23 EA25 EA38 4D004 AA03 AA41 AB10 CA17 CC07 CC08 4D040 DD03 DD31 4H011 AA01 AA02 AD01 BA01 BB21 BC20 DA03 DA09 DA11 DC10 DD01 DD04 4H026 AA02 AA08 AB04 4H061 AA02 CC55 EE66 GG48 LL02 LL07

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】 粘土を50重量%以上含む多孔質焼成体
に、バチルス・ブレビスの近縁の種である好熱性細菌C
−1と、バチルス・ブレビスの近縁の種である好熱性細
菌C−3と、好熱性バチルス・ステアロサーモフィラス
CH−4と、好熱性放線菌MH−1と、好熱性又は耐熱
性乳酸菌LM−1と、好熱性又は耐熱性乳酸菌LM−2
と、未知の細菌及び/又は放線菌との混合菌であって、
環境浄化・改良能を有する好熱性種菌PTA−1773
を含有させたことを特徴とする多孔質複合資材。
1. A thermophilic bacterium C, which is a closely related species of Bacillus brevis, in a porous fired body containing 50% by weight or more of clay.
-1, thermophilic bacterium C-3 which is a closely related species of Bacillus brevis, thermophilic Bacillus stearothermophilus CH-4, thermophilic actinomycete MH-1, and thermophilic or thermostable Lactic acid bacterium LM-1 and thermophilic or heat-resistant lactic acid bacterium LM-2
And a mixture of unknown bacteria and / or actinomycetes,
Thermophilic inoculum PTA-1773 having environmental purification and improvement ability
A porous composite material characterized by containing.
【請求項2】 前記多孔質焼成体が、ゼオライト、トル
マリン、及びランプストーンのうちの少なくとも1種を
含む請求項1記載の多孔質複合資材。
2. The porous composite material according to claim 1, wherein the porous fired body contains at least one of zeolite, tourmaline, and lampstone.
【請求項3】 前記多孔質焼成体が400〜800℃で
焼成されたものである請求項1又は2記載の多孔質複合
資材。
3. The porous composite material according to claim 1, wherein the porous fired body is fired at 400 to 800 ° C.
【請求項4】 前記多孔質焼成体が、長さが10〜50
mmで、幅が長さより小さくかつ高さが幅より小さい略
タマゴ型形状に形成されたものである請求項1乃至3の
いずれか記載の多孔質複合資材。
4. The porous fired body has a length of 10 to 50.
The porous composite material according to any one of claims 1 to 3, wherein the porous composite material has a width of less than a length and a height of less than a width, and has a substantially egg shape.
【請求項5】 水質浄化・改良能を有する請求項1乃至
4のいずれか記載の多孔質複合資材。
5. The porous composite material according to claim 1, which has the ability to purify and improve water quality.
【請求項6】 水中のミクロキスティスの減少化能を有
する請求項5記載の多孔質複合資材。
6. The porous composite material according to claim 5, which has the ability to reduce microcystis in water.
【請求項7】 水中のアオコの減少化能を有する請求項
5又は6記載の多孔質複合資材。
7. The porous composite material according to claim 5, which has the ability to reduce water-bloom in water.
【請求項8】 土壌浄化・改良能を有する請求項1乃至
4のいずれか記載の多孔質複合資材。
8. The porous composite material according to claim 1, which has soil remediation / improvement ability.
【請求項9】 植物病原菌の抗菌・溶菌能を有する請求
項1乃至4のいずれか記載の多孔質複合資材。
9. The porous composite material according to claim 1, which has an antibacterial / bacteriolytic ability against plant pathogenic bacteria.
【請求項10】 堆肥の発酵促進・消臭能を有する請求
項1乃至4のいずれか記載の多孔質複合資材。
10. The porous composite material according to any one of claims 1 to 4, which has an ability to promote fermentation and deodorize compost.
【請求項11】 生ゴミ処理能を有する請求項1乃至4
のいずれか記載の多孔質複合資材。
11. The method according to claim 1, which has an ability to dispose of garbage.
The porous composite material according to any one of 1.
【請求項12】 請求項1乃至11のいずれか記載の多
孔質複合資材の製造方法であって、 前記多孔質焼成体に前記好熱性種菌PTA−1773の
懸濁液又は培養液を含浸させることによって、前記多孔
質焼成体に前記好熱性種菌PTA−1773を含有させ
ることを特徴とする多孔質複合資材の製造方法。
12. The method for producing a porous composite material according to claim 1, wherein the porous fired body is impregnated with a suspension or a culture solution of the thermophilic inoculum PTA-1773. According to the above, the method for producing a porous composite material, wherein the thermophilic inoculum PTA-1773 is contained in the porous fired body.
【請求項13】 粘土粉体を50重量%以上含む原料粉
体の含水率を8〜20重量%とし、この原料粉体を所定
形状に成形した後、この成形体を焼成することによって
前記多孔質焼成体を得る請求項12記載の多孔質複合資
材の製造方法。
13. A raw material powder containing clay powder in an amount of 50% by weight or more has a water content of 8 to 20% by weight, the raw material powder is molded into a predetermined shape, and then the molded body is fired to obtain the porous material. The method for producing a porous composite material according to claim 12, wherein a porous fired body is obtained.
【請求項14】 前記原料粉体を略タマゴ型形状に成形
する請求項13記載の多孔質複合資材の製造方法。
14. The method for producing a porous composite material according to claim 13, wherein the raw material powder is formed into a substantially egg shape.
【請求項15】 前記成形が加圧成形である請求項14
記載の多孔質複合資材の製造方法。
15. The molding according to claim 14, wherein the molding is pressure molding.
A method for producing the porous composite material described.
JP2002134542A 2002-05-09 2002-05-09 Porous composite material and manufacturing method thereof Expired - Fee Related JP4348411B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002134542A JP4348411B2 (en) 2002-05-09 2002-05-09 Porous composite material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002134542A JP4348411B2 (en) 2002-05-09 2002-05-09 Porous composite material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003326296A true JP2003326296A (en) 2003-11-18
JP4348411B2 JP4348411B2 (en) 2009-10-21

Family

ID=29697153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002134542A Expired - Fee Related JP4348411B2 (en) 2002-05-09 2002-05-09 Porous composite material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4348411B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005100543A1 (en) * 2004-03-31 2005-10-27 Sankyo Lifetech Co., Ltd. Process for producing l-lactic acid
JP2007130002A (en) * 2005-11-08 2007-05-31 Nikkan Kagaku Kk Small apparatus for automatically cultivating high-quality plant, and plant cultivating system reacting to human being, water, light, sound, electric signal, and concentration gradient
JP2007261992A (en) * 2006-03-28 2007-10-11 Eisai Seikaken Kk Soil borne disease inhibitor
JP2011051915A (en) * 2009-08-31 2011-03-17 Pokka Corp Heat-resistant acidophilic bacterium proliferation inhibitor, method for inhibiting heat-resistant acidophilic bacterium proliferation, and packed acidic food or drink production method
JP2011212640A (en) * 2010-04-02 2011-10-27 Ihi Corp Water clarifying method, water clarifying agent and method for producing water clarifying agent
JP2011230083A (en) * 2010-04-28 2011-11-17 Keiichiro Asaoka Decomposition treatment method for organic waste, and microorganism activator used for the same
JP2013165663A (en) * 2012-02-15 2013-08-29 Sankyo Hagata Kogyo:Kk Silica alumina catalyst for treating waste and method for treating waste using the same, and apparatus for treating waste
JP2014068578A (en) * 2012-09-28 2014-04-21 Kanema :Kk Fish tank implement
WO2014108937A1 (en) * 2013-01-11 2014-07-17 株式会社タカギ Novel lactobacillus
CN106670228A (en) * 2016-12-15 2017-05-17 南开大学 Method for remedying polybrominated diphenyl ethers-polluted soil through surface active agent reinforced tourmaline Fenton-like associated microorganisms

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106006822A (en) * 2016-07-13 2016-10-12 袁春华 Preparation method of mineral biomass composite water purifying agent

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005100543A1 (en) * 2004-03-31 2005-10-27 Sankyo Lifetech Co., Ltd. Process for producing l-lactic acid
JPWO2005100543A1 (en) * 2004-03-31 2008-03-06 三菱化学フーズ株式会社 Method for producing L-lactic acid
JP4494399B2 (en) * 2004-03-31 2010-06-30 三菱化学フーズ株式会社 Method for producing L-lactic acid
CN1926231B (en) * 2004-03-31 2011-02-16 三菱化学食品株式会社 Method for preparing L-lactic acid
JP2007130002A (en) * 2005-11-08 2007-05-31 Nikkan Kagaku Kk Small apparatus for automatically cultivating high-quality plant, and plant cultivating system reacting to human being, water, light, sound, electric signal, and concentration gradient
JP2007261992A (en) * 2006-03-28 2007-10-11 Eisai Seikaken Kk Soil borne disease inhibitor
JP2011051915A (en) * 2009-08-31 2011-03-17 Pokka Corp Heat-resistant acidophilic bacterium proliferation inhibitor, method for inhibiting heat-resistant acidophilic bacterium proliferation, and packed acidic food or drink production method
JP2011212640A (en) * 2010-04-02 2011-10-27 Ihi Corp Water clarifying method, water clarifying agent and method for producing water clarifying agent
JP2011230083A (en) * 2010-04-28 2011-11-17 Keiichiro Asaoka Decomposition treatment method for organic waste, and microorganism activator used for the same
JP2013165663A (en) * 2012-02-15 2013-08-29 Sankyo Hagata Kogyo:Kk Silica alumina catalyst for treating waste and method for treating waste using the same, and apparatus for treating waste
JP2014068578A (en) * 2012-09-28 2014-04-21 Kanema :Kk Fish tank implement
WO2014108937A1 (en) * 2013-01-11 2014-07-17 株式会社タカギ Novel lactobacillus
JP5988455B2 (en) * 2013-01-11 2016-09-07 株式会社タカギ New lactic acid bacteria
CN106670228A (en) * 2016-12-15 2017-05-17 南开大学 Method for remedying polybrominated diphenyl ethers-polluted soil through surface active agent reinforced tourmaline Fenton-like associated microorganisms

Also Published As

Publication number Publication date
JP4348411B2 (en) 2009-10-21

Similar Documents

Publication Publication Date Title
Ushiki et al. Isolation of Nitrospira belonging to sublineage II from a wastewater treatment plant
Dhall et al. Biodegradation of sewage wastewater using autochthonous bacteria
Fujitani et al. Isolation of sublineage I N itrospira by a novel cultivation strategy
Sonune et al. Isolation, characterization and identification of extracellular enzyme producer Bacillus licheniformis from municipal wastewater and evaluation of their biodegradability
CN109576187B (en) Cyanide degradation strain and method for degrading cyanide by using same
Somdee et al. Degradation of [] MC-LR by a Microcystin Degrading Bacterium Isolated from Lake Rotoiti, New Zealand
CN105331552B (en) One plant of efficient denitrification acinetobacter calcoaceticus novel species and its application
JP4348411B2 (en) Porous composite material and manufacturing method thereof
JP2019037192A (en) Isolation method of genus raoultella microbe, production method of vegetable waste treatment agent and vegetable waste treatment method
CN114107092B (en) Endophyte Gordonia L191 for degrading phthalate and application thereof
Santhosh et al. Lab-scale degradation of leather industry effluent and its reduction by Chlorella sp. SRD3 and Oscillatoria sp. SRD2: a bioremediation approach
Kobayashi et al. Biodegradation of phenol in seawater using bacteria isolated from the intestinal contents of marine creatures
Liu et al. Isolation, identification of algicidal bacteria and contrastive study on algicidal properties against Microcystis aeruginosa
Merugu et al. Biotechnological applications of purple non sulphur phototrophic bacteria: a minireview
CN113755337A (en) Polycyclic aromatic hydrocarbon degrading fungi GIG-1 and GIG-2 in petroleum-polluted soil, mixed microbial inoculum thereof and application thereof
CN1244502A (en) Water purifying agent and water purifying method
CN108395002B (en) Azo dye degradation decolorizing bacterium and application thereof
CN111471611B (en) Rhodococcus ruber HDRR1 for purifying inorganic nitrogen and phosphorus in tail water of seawater pond culture and application thereof
Wei et al. Decolorization of dye solutions with Ruditapes philippinarum conglutination mud and the isolated bacteria
Roets-Dlamini et al. Development of Bacillus spp. consortium for one-step “Aerobic Nitrification-Denitrification” in a fluidized-bed reactor
CN108408921B (en) Microecological preparation for improving transparency of aquaculture water and preparation method thereof
Poyraz et al. Alkaliphilic bacterial diversity of Lake Van/Turkey
JP2006230332A (en) New microorganism and method for treating organic sludge therewith
JP2002301494A (en) Activated sludge and wastewater disposal method
CN112574918B (en) Ammonia nitrogen degrading bacteria, microbial agent and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090324

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090626

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150731

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees