JP2003321225A - Method for producing lanthanum ruthenate - Google Patents

Method for producing lanthanum ruthenate

Info

Publication number
JP2003321225A
JP2003321225A JP2002126911A JP2002126911A JP2003321225A JP 2003321225 A JP2003321225 A JP 2003321225A JP 2002126911 A JP2002126911 A JP 2002126911A JP 2002126911 A JP2002126911 A JP 2002126911A JP 2003321225 A JP2003321225 A JP 2003321225A
Authority
JP
Japan
Prior art keywords
catalyst
ruthenate
carrier
aqueous solution
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002126911A
Other languages
Japanese (ja)
Other versions
JP3882075B2 (en
Inventor
Labhsetwar Nitin
ラブセトワール・ニチン
Akio Watanabe
明男 渡辺
Takefumi Mihashi
武文 三橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2002126911A priority Critical patent/JP3882075B2/en
Publication of JP2003321225A publication Critical patent/JP2003321225A/en
Application granted granted Critical
Publication of JP3882075B2 publication Critical patent/JP3882075B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a ruthenate having high purity, high crystallinity, a large specific surface area, and high heat resistance, and to obtain a ruthenate catalyst obtained by the method. <P>SOLUTION: In the method for producing a perovskite-type lanthanum ruthenate crystal expressed by the formula: La<SB>3.5</SB>Ru<SB>4</SB>O<SB>13</SB>(La is 12-O-coordinated lanthanum; Ru is 6-O-coordinated ruthenium; O is oxygen), lanthanum hydroxide and ruthenium hydroxide are produced by reacting an aqueous solution containing La ions and an aqueous solution containing Ru ions with a precipitation forming liquid in a reactor, and the resultant precipitate is heated and crystallized. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高純度・高結晶質
で、比表面積が大きく、耐熱性が高いルテニウム酸塩の
製造方法およびこの方法で得られたルテニウム酸塩触媒
に関する。
TECHNICAL FIELD The present invention relates to a method for producing ruthenate, which is highly pure and highly crystalline, has a large specific surface area and high heat resistance, and a ruthenate catalyst obtained by this method.

【0002】[0002]

【従来の技術】ルテニウム酸塩系化合物の中で、La
3.5Ru413の合成法として下記の固相反応合成法が報
告されている。 2La23+4RuO2>La3.5Ru413(反応条
件、真空中、900℃で48時間加熱:J.Solid
State Chem.32,151,1980)
2. Description of the Related Art Among ruthenate compounds, La
The following solid-phase reaction synthetic method has been reported as a synthetic method of 3.5 Ru 4 O 13 . 2La 2 O 3 + 4RuO 2 > La 3.5 Ru 4 O 13 (reaction condition, heating in vacuum at 900 ° C. for 48 hours: J. Solid
State Chem. 32, 151, 1980)

【0003】上記の固相反応プロセスでは、真空加熱処
理を必要とするため、高価な製造装置と煩雑な操作を必
要とし、また、大きな比表面積を得ることが困難であ
る。なお、本物質の製造法に関する特許(海外を含む)
はこれまで報告されていない。
Since the above solid-phase reaction process requires vacuum heat treatment, it requires an expensive manufacturing apparatus and complicated operations, and it is difficult to obtain a large specific surface area. Patents related to the manufacturing method of this substance (including overseas)
Has never been reported.

【0004】[0004]

【発明が解決しようとする課題】従来のルテニウム酸ラ
ンタンLa3.5Ru413の合成法は以下の課題を有して
いる。 1.真空を要する製造プロセスで、高コストである。 2.得られた生成物は比表面積が小さい。 3.触媒担体またはその他の担体上に直接合成する手法
が開発されていない。 4.触媒担体またはその他の担体上に一様で、かつ細密
に分散させる手法が開発されていない。 5.触媒機能の評価がなされていない。また、類似の触
媒特性を持つLaRuO3は900℃以上の高温下での
長時間熱安定性が不十分であり、ガソリンおよびディー
ゼルエンジン等への利用が耐久性において制限されてい
る。
The conventional method for synthesizing lanthanum ruthenate La 3.5 Ru 4 O 13 has the following problems. 1. It is a manufacturing process that requires a vacuum and is expensive. 2. The obtained product has a small specific surface area. 3. Direct synthesis on catalyst supports or other supports has not been developed. 4. No method has been developed for uniform and fine dispersion on a catalyst carrier or other carrier. 5. The catalytic function has not been evaluated. Further, LaRuO 3 having similar catalytic properties has an insufficient long-term thermal stability at a high temperature of 900 ° C. or higher, and its use in gasoline and diesel engines is limited in durability.

【0005】[0005]

【課題を解決するための手段】本発明者は、上記の従来
技術の課題を解決したルテニウムペロブスカイトの新規
な合成法を開発し、この方法により優れた触媒特性を持
つLa3.5Ru413が得られることを見いだした。すな
わち、本発明は、化学式La3.5Ru413(Laは酸素
12配位ランタニウム、Ruは酸素6配位ルテニウム、
Oは酸素)で示されるルテニウム酸ランタンの製造方法
であって、反応容器内でLaの金属イオンを含む水溶液
とRuの金属イオンを含む水溶液を沈殿形成液と反応さ
せてLaおよびRuの水酸化物の沈殿体を作成し、加熱
して結晶化することを特徴とするルテニウム酸塩の製造
方法である。
The present inventor has developed a novel method for synthesizing ruthenium perovskite which has solved the above-mentioned problems of the prior art, and by this method, La 3.5 Ru 4 O 13 having excellent catalytic properties can be obtained. I found what I could get. That is, the present invention provides the chemical formula La 3.5 Ru 4 O 13 (La is oxygen 12-coordinated lanthanum, Ru is oxygen 6-coordinated ruthenium,
O is oxygen), which is a method for producing lanthanum ruthenate, wherein an aqueous solution containing metal ions of La and an aqueous solution containing metal ions of Ru are reacted with a precipitation forming liquid in a reaction vessel to oxidize La and Ru. A method for producing a ruthenate is characterized in that a precipitate of the product is prepared and heated to crystallize.

【0006】また、本発明は、上記沈殿体を触媒担体ま
たはその他の担体(粉末および成形体など)上に沈積、
接着、または塗布した後加熱して結晶化することにより
La 3.5Ru413の被膜を担体上形成することを特徴と
する上記のルテニウム酸塩の製造方法である。また、本
発明は、上記触媒担体またはその他の担体はアルカリ土
類酸化物または希土類金属酸化物を被覆したものである
ことを特徴とする上記のルテニウム酸塩の製造方法であ
る。
In the present invention, the above precipitate is used as a catalyst carrier.
Or on other carriers such as powders and compacts,
By gluing or applying and then heating to crystallize
La 3.5RuFourO13Is formed on the carrier.
The method for producing a ruthenate described above. Also books
According to the invention, the above catalyst carrier or other carrier is alkaline earth.
Coated with oxides or rare earth metal oxides
A method for producing a ruthenate described above, which is characterized in that
It

【0007】また、本発明は、化学式La3.5Ru413
(Laは酸素12配位ランタニウム、Ruは酸素6配位
ルテニウム、Oは酸素)で示されるルテニウム酸ランタ
ンの製造方法であって、反応容器内でLaの金属イオン
を含む水溶液とRuの金属イオンを含む水溶液を混合し
た混合水溶液を直接加熱し、蒸発乾固した後、加熱して
結晶化することを特徴とするルテニウム酸塩の製造方法
である。
The present invention also provides a chemical formula of La 3.5 Ru 4 O 13
(La is oxygen 12-coordinated lanthanum, Ru is oxygen 6-coordinated ruthenium, O is oxygen), which is a method for producing lanthanum ruthenate, wherein an aqueous solution containing metal ions of La and metal ions of Ru Is a method for producing a ruthenate, which is characterized in that a mixed aqueous solution obtained by mixing an aqueous solution containing is directly heated, evaporated to dryness, and then heated to be crystallized.

【0008】また、本発明は、上記の製造方法で得られ
たルテニウム酸塩からなり、メタンの燃焼に対する触
媒、ディーゼル排出粒状物質フィルターの再生に有効な
炭素及びディーゼル排出粒状物質(すす)の酸化に対す
る触媒、ディーゼル排出粒状物質のオンライン酸化に対
する触媒、ディーゼル車排出汚染物質(ディーゼル排出
粒状物質(すす)とNOx)の除去に対する触媒、一酸
化炭素の酸化反応に対する触媒、有意な一酸化炭素の発
生を伴わない炭化水素の酸化反応に対する触媒、揮発性
有機物質の酸化に対する触媒、または一酸化炭素または
炭化水素によるNOxの還元反応に対する触媒として用
いられることを特徴とするルテニウム酸塩触媒である。
本発明の触媒は、900℃以上の高温(900〜105
0℃)下で、長時間安定である。
The present invention further comprises a ruthenate obtained by the above-mentioned production method, which is a catalyst for combustion of methane, carbon effective for regeneration of diesel exhaust particulate matter filter, and oxidation of diesel exhaust particulate matter (soot). , Catalyst for on-line oxidation of diesel exhaust particulate matter, catalyst for removal of diesel vehicle exhaust pollutants (diesel exhaust particulate matter (soot) and NOx), catalyst for carbon monoxide oxidation reaction, significant carbon monoxide generation A ruthenate catalyst, which is used as a catalyst for an oxidation reaction of a hydrocarbon which does not accompany, a catalyst for an oxidation of a volatile organic substance, or a catalyst for a reduction reaction of NOx by carbon monoxide or a hydrocarbon.
The catalyst of the present invention has a high temperature (900 to 105) of 900 ° C. or higher.
It is stable at 0 ° C for a long time.

【0009】本発明の製造方法は、概ね以下の反応式基
づいてルテニウムペロブスカイトを製造するものであ
る。 共沈法 La3++Ru3++A+L+H2O→La・Ru・O・H
・A・R(共沈操作) La・Ru・O・H・A・R→La・Ru・O・A・H
2O(蒸発乾固) La・Ru・O・A・H2O→La3.5Ru413(加
熱、結晶化、粒径制御)
The production method of the present invention generally produces ruthenium perovskite based on the following reaction formula. Coprecipitation method La 3+ + Ru 3+ + A + L + H 2 O → La ・ Ru ・ O ・ H
・ A ・ R (coprecipitation operation) La ・ Ru ・ O ・ H ・ A ・ R → La ・ Ru ・ O ・ A ・ H
2 O (evaporation to dryness) La ・ Ru ・ O ・ A ・ H 2 O → La 3.5 Ru 4 O 13 (heating, crystallization, particle size control)

【0010】直接加熱法 La3++Ru3++A+H2O→La・Ru・O・A・H2
O(蒸発乾固) La・Ru・O・A・H2O→La3.5Ru413(加
熱、結晶化、粒径制御) A:ランタンまたはルテニウムの水溶性原料の陰イオン
成分、L:アンモニアや尿素等の沈殿形成剤、R:沈殿
形成剤の残留成分
Direct heating method La 3+ + Ru 3+ + A + H 2 O → La.Ru.O.A.H 2
O (evaporation to dryness) La.Ru.O.A.H 2 O → La 3.5 Ru 4 O 13 (heating, crystallization, particle size control) A: Anion component of water-soluble raw material of lanthanum or ruthenium, L: Precipitating agent such as ammonia or urea, R: Residual component of precipitating agent

【0011】本発明のルテニウム酸塩の合成法は従来法
と比較して以下の特徴を有している。 1.低コストである。 2.触媒等への利用に必要な大きな比表面積を持ちかつ
高純度な結晶が得られる。 3.触媒担体またはその他の担体上に直接合成すること
ができる。 4.触媒担体またはその他の担体上に一様で、かつ細密
に分散した材料を合成できる。 5.大気または排ガス中のCOまたはHCの酸化触媒反
応、排ガス中のHCまたはCOによるNOxの還元触媒
反応に対する優れた触媒特性を持ち、かつ高温耐熱性
(1050℃程度)を有するLa3.5Ru413を合成で
きる。
The method for synthesizing the ruthenate of the present invention has the following features as compared with the conventional method. 1. Low cost. 2. Crystals having a large specific surface area and high purity required for use as a catalyst can be obtained. 3. It can be synthesized directly on the catalyst support or other support. 4. A uniform and finely dispersed material can be synthesized on a catalyst support or other support. 5. La 3.5 Ru 4 O 13 which has excellent catalytic properties for the oxidation catalytic reaction of CO or HC in the air or exhaust gas and the reduction catalytic reaction of NOx by HC or CO in exhaust gas, and has high temperature heat resistance (about 1050 ° C.) Can be synthesized.

【0012】本発明の製造方法で得られたルテニウム酸
塩は、例えば、下記の用途に好適である。 1.環境に過度の影響を与えないメタンの燃焼によるエ
ネルギー製造。 2.LaRuO3ペロブスカイトが利用できないような
高温域の触媒利用。 3.ディーゼル排出粒子フィルターの再生用触媒、ディ
ーゼル排出ガス中のオンラインすす酸化処理、および、
NOx−すすの同時除去。 4.すす等に含まれる蒸発性有機物の効率的酸化処理。 5.酸化条件下におけるCOの効率的酸化処理およびC
Oの生成を伴わないHCの効率的酸化処理、および化学
量論条件下におけるCO+NOxおよびHC+NOxの
酸化還元同時処理。 6.化学量論条件下におけるHC+CO+NOxの酸化
還元同時処理。 7.厚膜レジスターやプリント回路技術における利用。
The ruthenate obtained by the production method of the present invention is suitable for the following uses, for example. 1. Energy production by combustion of methane that does not excessively affect the environment. 2. Use of catalyst in high temperature range where LaRuO 3 perovskite cannot be used. 3. Regeneration catalyst for diesel exhaust particle filter, online soot oxidation treatment in diesel exhaust gas, and
NOx-simultaneous removal of soot. 4. Efficient oxidation treatment of evaporative organic substances contained in soot. 5. Efficient oxidation of CO under oxidizing conditions and C
Efficient oxidation treatment of HC without generation of O, and simultaneous redox treatment of CO + NOx and HC + NOx under stoichiometric conditions. 6. Simultaneous redox treatment of HC + CO + NOx under stoichiometric conditions. 7. Use in thick film resistors and printed circuit technology.

【0013】[0013]

【発明の実施の形態】本発明のLa3.5Ru413の製造
方法の工程を以下に説明する。塩化物等のLa3+とRu
3+の水溶性化合物(前駆体)を水に溶解し、混合する。
混合溶液を定速度で撹拌しながら沈殿形成液(アンモニ
ア、尿素等)を滴下して、共沈させる。沈殿が落ち着い
てから濾過・洗浄を行う。沈殿体をオーブンで60〜1
50℃程度に加熱乾燥してから、窒素雰囲気ないし大気
中で、400℃、2〜8時間の条件で予備加熱する。得
られた乾燥体を粉砕し、950〜1000℃、2〜8時
間の条件で再加熱して結晶化する。このように二段階で
加熱するのは、粒子の異常結晶成長を抑制し、結晶の均
一化を図るために必要とされる。得られた生成物の比表
面積はBET法により2.0〜6.0m2/gの値を示
す。上記法に代えて、混合溶液を蒸発乾固した後、加熱
して結晶化してもよい。
The steps of the method for producing La 3.5 Ru 4 O 13 of the present invention will be described below. La 3+ and Ru such as chloride
A 3+ water-soluble compound (precursor) is dissolved in water and mixed.
While stirring the mixed solution at a constant speed, a precipitation-forming liquid (ammonia, urea, etc.) is dropped to coprecipitate. After the precipitate has settled down, filtration and washing are performed. Precipitate in the oven 60-1
After heating and drying at about 50 ° C., preheating is performed in a nitrogen atmosphere or air at 400 ° C. for 2 to 8 hours. The obtained dried body is pulverized and re-heated under the conditions of 950 to 1000 ° C. for 2 to 8 hours to crystallize. Such heating in two stages is necessary to suppress abnormal crystal growth of particles and to make crystals uniform. The specific surface area of the obtained product shows a value of 2.0 to 6.0 m 2 / g by the BET method. Instead of the above method, the mixed solution may be evaporated to dryness and then heated to crystallize.

【0014】コーディエライト担体またはアルミナ粉末
担体に沈殿体を被覆する工程を以下に説明する。La3+
とRu3+の前駆体を水に溶解し、混合する。混合溶液に
コーディエライト担体またはアルミナ粉末担体(これら
はアルカリ土類酸化物あるいは希土類酸化物を事前に被
覆しておくことが望ましい)を浸して、次に、窒素雰囲
気あるいは大気中で乾燥する。これらのプロセスを繰り
返し、所定の装填量になったら大気中、300〜400
℃、1〜8時間の条件で予備加熱する。次に、600〜
1050℃、1〜12時間の条件で再加熱して結晶化す
る。この方法によって、担体上に分散し、固着したLa
3.5Ru413を得ることができる。得られた生成物の比
表面積はBET法により13〜64m2/gの値を示
す。
The process of coating the cordierite carrier or the alumina powder carrier with the precipitate will be described below. La 3+
And Ru 3+ precursor are dissolved in water and mixed. A cordierite carrier or an alumina powder carrier (which is preferably coated with an alkaline earth oxide or a rare earth oxide in advance) is dipped in the mixed solution, and then dried in a nitrogen atmosphere or the atmosphere. Repeat these processes until the specified load is reached, and then 300-400
Preliminary heating is performed under the conditions of ℃ and 1 to 8 hours. Next, 600-
Recrystallization is carried out under the conditions of 1050 ° C. and 1 to 12 hours. By this method, the La dispersed and fixed on the carrier is
3.5 Ru 4 O 13 can be obtained. The specific surface area of the obtained product shows a value of 13 to 64 m 2 / g by the BET method.

【0015】上記の方法の代わりに、共沈法で沈殿体を
得る前のスラリーにコーディエライト担体またはアルミ
ナ粉末担体(これらはアルカリ土類酸化物あるいは希土
類酸化物を事前に被覆しておくことが望ましい)を浸漬
し、次に、窒素雰囲気あるいは大気中で乾燥してもよ
い。
Instead of the above-mentioned method, the slurry before obtaining the precipitate by the coprecipitation method is a cordierite carrier or an alumina powder carrier (these should be coated with an alkaline earth oxide or a rare earth oxide in advance). Is desirable) and then dried in a nitrogen atmosphere or in the atmosphere.

【0016】[0016]

【実施例】実施例1 4.4257gのLaを含む3塩化ランタン溶液200
mlと3.68098gのRuを含む3塩化ルテニウム
溶液200mlおよび脱イオン水100mlを混合して
溶液500mlを作製した。混合溶液を毎分100回転
の定速度で撹拝しながら沈殿形成液として2規定のアン
モニア水800mlを毎分100mlの割合で滴下し
て、共沈により沈殿させた(毎分100回転の定速度で
撹拝しているアンモニア水に混合溶液を毎分100ml
の割合で滴下することによっても共沈体を得ることがで
きた)。
EXAMPLE 1 Lanthanum trichloride solution 200 containing 4.4257 g of La
200 ml of a ruthenium trichloride solution containing 3.68098 g of Ru and 100 ml of deionized water were mixed to prepare 500 ml of a solution. While stirring the mixed solution at a constant speed of 100 rpm, 800 ml of 2N aqueous ammonia was added dropwise at a rate of 100 ml per minute as a precipitate-forming liquid to precipitate by coprecipitation (constant speed of 100 rpm). 100 ml / min of mixed solution in ammonia water stirred at
A coprecipitate could also be obtained by dropping at a ratio of.

【0017】沈殿体を2時間静置し、脱イオン水でろ
過、洗浄した。次に、70℃で5時間乾燥した後、40
0℃で4時間窒素雰囲気で予備加熱した。得られた乾燥
物を90%が6μ以下の粒径になるように粉砕し、95
0〜1000℃で4時間、大気中で再加熱して結晶化
し、最終生成物を作成した。上記の方法で得られた生成
物をXRD、BET、TG−DTAで分析した。図1
は、得られた生成物の粉末X繰回折データのグラフであ
る。図1に示すように、La3.5Ru413固有の粉末X
繰回折図形を示した。また、比較的大きな比表面積4.
0m2/gを持ち、1050℃の高温下でも長時間安定
であった。
The precipitate was allowed to stand for 2 hours, filtered with deionized water and washed. Then, after drying at 70 ° C. for 5 hours, 40
It was preheated at 0 ° C. for 4 hours in a nitrogen atmosphere. The dried product obtained is pulverized so that 90% has a particle size of 6μ or less, and 95
The final product was prepared by reheating in air at 0 to 1000 ° C. for 4 hours for crystallization. The product obtained by the above method was analyzed by XRD, BET and TG-DTA. Figure 1
[Fig. 4] is a graph of powder X diffraction data of the obtained product. As shown in FIG. 1, powder X specific to La 3.5 Ru 4 O 13
The repeated diffraction pattern is shown. In addition, a relatively large specific surface area 4.
It had 0 m 2 / g and was stable for a long time even at a high temperature of 1050 ° C.

【0018】得られた生成物について、流通式触媒反応
装置を用いて触媒実験をした。反応系と生成系のガスは
ガスクロマトグラフィーによって分析した。図2は、得
られたLa3.5Ru413上のメタンの酸化による転化
率、図3は、同じく、一酸化炭素および炭化水素の酸化
による転化率(いずれも酸化雰囲気条件)、図4は、同
じく、一酸化炭素および炭化水素の酸化とNOの還元に
よる転化率(いずれも化学量論条件)、図5は、同じ
く、炭化水素または一酸化炭素によるNOの還元による
転化率、図6は、同じく、炭素(すす)の酸化による転
化率、である。
A catalyst experiment was conducted on the obtained product using a flow-type catalytic reactor. The gas of the reaction system and the gas of the production system were analyzed by gas chromatography. FIG. 2 is a conversion rate of the obtained La 3.5 Ru 4 O 13 by oxidation of methane, FIG. 3 is a conversion rate of carbon monoxide and hydrocarbons by oxidation (both in oxidizing atmosphere conditions), and FIG. Similarly, conversion rates by oxidation of carbon monoxide and hydrocarbons and reduction of NO (both stoichiometric conditions), FIG. 5 shows conversion rates of NO by reduction of hydrocarbons or carbon monoxide, and FIG. Similarly, the conversion rate due to the oxidation of carbon (soot).

【0019】得られた生成物は、図2に示すように、メ
タンの酸化に対して優れた触媒特性を示した。図3およ
び図4に示すように、酸化雰囲気条件と化学量論条件の
両方の条件下において、炭化水素およびCOの酸化反応
に対して優れた触媒特性を示した。また、この物質は、
図5に示すように、NOの還元反応、および、炭化水素
および一酸化炭素によるNOの還元反応に対して優れた
触媒特性を示した。更に、図6に示すように、NOの共
存の有無にかかわらず、ディーゼルエンジン排出炭素
(すす)の酸化に対して優れた触媒特性を示した。
The resulting product exhibited excellent catalytic properties for the oxidation of methane, as shown in FIG. As shown in FIG. 3 and FIG. 4, under both conditions of the oxidizing atmosphere and the stoichiometric condition, excellent catalyst characteristics were exhibited for the oxidation reaction of hydrocarbon and CO. Also, this substance
As shown in FIG. 5, excellent catalytic properties were shown for the NO reduction reaction and the NO reduction reaction by hydrocarbons and carbon monoxide. Furthermore, as shown in FIG. 6, regardless of the presence or absence of NO, excellent catalytic characteristics were exhibited against the oxidation of carbon (soot) emitted from diesel engines.

【0020】実施例2 実施例1と同じ混合溶液を60℃の加熱によって蒸発乾
固して、得られた固体を窒素雰囲気中、500℃、3時
間の条件で予備加熱した。得られた固体を90%以上が
6μ以下の大きさになるまで粉砕し、950〜1000
℃、12時間の条件で再加熱して結晶化した。この方法
によって、実施例1と同じく、比表面積が大きく、優れ
た触媒特性を持つ生成物を得た。
Example 2 The same mixed solution as in Example 1 was evaporated to dryness by heating at 60 ° C., and the obtained solid was preheated in a nitrogen atmosphere at 500 ° C. for 3 hours. The obtained solid is crushed until 90% or more reaches a size of 6 μ or less, and 950 to 1000
Crystallization was carried out by reheating under conditions of 12 ° C. and 12 hours. By this method, as in Example 1, a product having a large specific surface area and excellent catalytic properties was obtained.

【0021】実施例3 実施例1と同じ沈殿体を作成し、25%以上が固形分に
なるように水を加えて250mlのスラリーを作製し
た。チャンネル密度200cpsiのコーディエライト
製ハニカム(約25重量%のランタン酸化物を事前に被
覆したもので55gの重量)をスラリーに浸した後、チ
ャンネル内の過剰なスラリーを圧縮空気で除去した。
Example 3 The same precipitate as in Example 1 was prepared, and water was added so that 25% or more of the solid content was obtained to prepare 250 ml of a slurry. After immersing the cordierite honeycomb with a channel density of 200 cpsi (pre-coated with about 25 wt% lanthanum oxide to a weight of 55 g) into the slurry, excess slurry in the channels was removed with compressed air.

【0022】得られた生成物を大気中70℃で2時間加
熱して乾燥した。スラリーへの浸漬・乾燥操作を5ない
し10回繰り返すことによって、ハニカムに対して25
重量%の乾燥沈殿体の装填量を得た。次に、大気中、9
50〜1000℃、12時間の条件で加熱して結晶化し
た。この方法によって、担体上に均一に分散、固着し、
2.4m2/gの比表面積を持つLa3.5Ru413を得
た。
The product obtained was heated at 70 ° C. in the atmosphere for 2 hours and dried. By repeating the dipping / drying operation in the slurry 5 to 10 times, 25
A dry precipitate loading of wt% was obtained. Next, in the atmosphere, 9
Crystallization was performed by heating at 50 to 1000 ° C. for 12 hours. By this method, uniformly dispersed and fixed on the carrier,
La 3.5 Ru 4 O 13 having a specific surface area of 2.4 m 2 / g was obtained.

【0023】実施例4 実施例1と同じスラリーに50gのアルミナ粉末担体
(アルミナ粉末の約25重量%のランタン酸化物を事前
に被覆したもの)を浸漬し、大気中70℃、ないしは真
空乾燥した。浸漬・乾燥操作を5〜10回繰り返すこと
によって、アルミナ担体に対して25重量%の乾燥沈殿
体の装填量を得た。
Example 4 50 g of an alumina powder carrier (previously coated with about 25% by weight of alumina powder of lanthanum oxide) was immersed in the same slurry as in Example 1 and dried in air at 70 ° C. or vacuum drying. . By repeating the dipping / drying operation 5 to 10 times, a loading of the dry precipitate of 25% by weight with respect to the alumina carrier was obtained.

【0024】得られた生成物を次に、大気中、950〜
1000℃、12時間の条件で加熱して結晶化した。こ
の方法によって、担体上に均一に分散、固着し、61m
2/gの比表面積を持つLa3.5Ru413を得た。
The product obtained is then placed in the atmosphere at 950-
Crystallization was performed by heating at 1000 ° C. for 12 hours. By this method, it is uniformly dispersed and fixed on the carrier,
La 3.5 Ru 4 O 13 having a specific surface area of 2 / g was obtained.

【0025】実施例5 実施例1と同じ混合溶液を500mlの純水で希釈し
た。この溶液を200gのアルミナ粉末担体(アルミナ
粉末の約25重量%のランタン酸化物を事前に被覆した
もの)に染み込ませ、大気中70℃、ないしは真空乾燥
した。染み込み・乾燥操作を10回繰り返した。この操
作によって、乾燥沈殿体のアルミナ粉末担体への被覆量
が混合溶液前駆体の15重量%になった。
Example 5 The same mixed solution as in Example 1 was diluted with 500 ml of pure water. This solution was impregnated with 200 g of an alumina powder carrier (previously coated with about 25% by weight of alumina powder of lanthanum oxide) and dried in air at 70 ° C. or vacuum. The impregnation / drying operation was repeated 10 times. By this operation, the coating amount of the dried precipitate on the alumina powder carrier became 15% by weight of the mixed solution precursor.

【0026】得られた生成物を窒素雰囲気中、500
℃、4時間の条件で予備加熱した。さらに、950〜1
000℃、12時間の条件で再加熱して結晶化した。こ
の方法によって、担体上に緻密に分散、固着し、64m
2/gの比表面積を持つLa3.5Ru413を得た。
The product obtained was treated in a nitrogen atmosphere at 500
Preheating was performed under the conditions of 4 ° C. and 4 hours. Furthermore, 950-1
Crystallization was performed by reheating under conditions of 000 ° C and 12 hours. By this method, 64 m
La 3.5 Ru 4 O 13 having a specific surface area of 2 / g was obtained.

【0027】実施例6 実施例5におけるアルミナ粉末担体の代わりに、アルミ
ナで洗滌被覆(wash coat)した体積400c
c、チャンネル密度400cpsiのコーデライトハニ
カム(アルミナ被覆量は20重量%で、その上にセリア
またはランタン酸化物を20重量%ほど被覆したもの)
を用いて、実施例5と同じ操作をした。この方法によっ
て、担体上に緻密に分散、固着し、13m2/gの比表
面積を持つLa3.5Ru413を得た。
Example 6 Instead of the alumina powder carrier used in Example 5, a wash-coated volume of 400 c with alumina was used.
c, corderite honeycomb with a channel density of 400 cpsi (alumina coating amount is 20% by weight, and ceria or lanthanum oxide is coated on it by about 20% by weight)
Was performed in the same manner as in Example 5. By this method, La 3.5 Ru 4 O 13 having a specific surface area of 13 m 2 / g was densely dispersed and fixed on the carrier to obtain La 3.5 Ru 4 O 13 .

【0028】実施例7 0.4426gのLaを含む3塩化ランタン溶液100
mlと0.3681gのRuを含む3塩化ルテニウム溶
液100mlを混合した。25重量%のランタン酸化物
で被覆した10gのアルミナ粉末を混合溶液に分散させ
た後、15gの尿素を加え、90℃まで徐々に加熱し、
毎分50回転で、3時間撹拌した。LaとRuの水和物
が徐々にアルミナ上に沈積した。溶液を除去した後、脱
イオン水で洗浄し、150℃で3時間乾燥した。次に、
大気中、960〜1000℃で10時間加熱して結晶化
た。この方法によって、担体上に緻密に分散、固着し、
65m2/gの比表面積を持つLa3.5Ru413を得
た。この際、XRDからは不純物の生成も若干認められ
た。なお、アルミナの代わりに、ランタン酸化物を被覆
したコーディエライトおよびアルミナを洗浄被覆したコ
ーディエライトを用いても同様な結果が得られた。
Example 7 100% lanthanum trichloride solution containing 0.4426 g of La
ml and 100 ml of a ruthenium trichloride solution containing 0.3681 g of Ru were mixed. After dispersing 10 g of alumina powder coated with 25% by weight of lanthanum oxide in the mixed solution, 15 g of urea was added and gradually heated to 90 ° C.,
The mixture was stirred at 50 rpm for 3 hours. The La and Ru hydrate gradually deposited on the alumina. After removing the solution, it was washed with deionized water and dried at 150 ° C. for 3 hours. next,
Crystallization was performed by heating in air at 960 to 1000 ° C. for 10 hours. By this method, it is finely dispersed and fixed on the carrier,
La 3.5 Ru 4 O 13 having a specific surface area of 65 m 2 / g was obtained. At this time, some generation of impurities was observed from XRD. Similar results were obtained when cordierite coated with lanthanum oxide and cordierite washed with alumina were used instead of alumina.

【0029】[0029]

【発明の効果】本発明によれば、環境汚染物質として対
策が急がれているNOx、一酸化炭素、または炭化水素
の比較的低温での高効率除去、ディーゼル排出炭素(す
す)とNOxの同時除去および蒸発性有機物の高効率酸
化除去が可能な触媒、低公害エネルギー製造につながる
メタンの燃焼触媒を提供することが出来る。また、本発
明のルテニウム酸塩は厚膜レジスターやプリント回路技
術に利用することが出来る。
According to the present invention, high-efficiency removal of NOx, carbon monoxide, or hydrocarbons at relatively low temperatures, diesel exhaust carbon (soot), and NOx, which are urgently required as countermeasures as environmental pollutants, are achieved. It is possible to provide a catalyst capable of simultaneous removal and highly efficient oxidative removal of evaporative organic matter, and a methane combustion catalyst leading to low-pollution energy production. Further, the ruthenate of the present invention can be used in thick film resistors and printed circuit technology.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、実施例1で合成したLa3.5Ru413
の粉末X線回折データのグラフである。
FIG. 1 is a schematic diagram of La 3.5 Ru 4 O 13 synthesized in Example 1.
2 is a graph of powder X-ray diffraction data of

【図2】図2は、実施例1で合成したLa3.5Ru413
による、メタンの酸化による転化率を示すグラフであ
る。
FIG. 2 shows La 3.5 Ru 4 O 13 synthesized in Example 1.
2 is a graph showing the conversion rate of methane due to oxidation.

【図3】図3は、実施例1で合成したLa3.5Ru413
による、すすの酸化(NO共存無し及び共存)による転
化率を示すグラフである。
FIG. 3 shows La 3.5 Ru 4 O 13 synthesized in Example 1.
5 is a graph showing the conversion rate of soot due to oxidation (without and with NO).

【図4】図4は、実施例1で合成したLa3.5Ru413
による、酸化条件下での一酸化炭素の酸化および炭化水
素の酸化による転化率を示すグラフである。
FIG. 4 is a graph showing La 3.5 Ru 4 O 13 synthesized in Example 1.
2 is a graph showing the conversion rate by oxidation of carbon monoxide and oxidation of hydrocarbons under oxidizing conditions according to FIG.

【図5】図5は、実施例1で合成したLa3.5Ru413
による、化学量論条件下での一酸化炭素―炭化水素―N
Oの酸化還元による転化率を示すグラフである。
FIG. 5 shows La 3.5 Ru 4 O 13 synthesized in Example 1.
, Carbon monoxide-hydrocarbons-N under stoichiometric conditions
It is a graph which shows the conversion rate by redox of O.

【図6】図6は、実施例1で合成したLa3.5Ru413
による、化学量論条件下での一酸化炭素−NO、および
炭化水素−NOの酸化還元による転化率を示すグラフで
ある。
FIG. 6 shows La 3.5 Ru 4 O 13 synthesized in Example 1.
3 is a graph showing conversion rates of carbon monoxide-NO and hydrocarbon-NO by redox under stoichiometric conditions according to FIG.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D048 AA06 AA13 AA14 AA18 AB01 AB05 BA03X BA10X BA15Y BA18X BA32X BA41X BA42X BB01 BB02 4G048 AA03 AB02 AB06 AC08 AD08 AE05 4G069 AA03 AA08 BA01A BA01B BA13B BB06A BB06B BC08A BC38A BC42A BC42B BC43A BC43B BC70A BC70B CA02 CA03 CA07 CA08 CA13 CA14 CA15 CA18 CD01 EA19 EC02Y EC23 FA01 FB05 FB09 FB30 FB33    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 4D048 AA06 AA13 AA14 AA18 AB01                       AB05 BA03X BA10X BA15Y                       BA18X BA32X BA41X BA42X                       BB01 BB02                 4G048 AA03 AB02 AB06 AC08 AD08                       AE05                 4G069 AA03 AA08 BA01A BA01B                       BA13B BB06A BB06B BC08A                       BC38A BC42A BC42B BC43A                       BC43B BC70A BC70B CA02                       CA03 CA07 CA08 CA13 CA14                       CA15 CA18 CD01 EA19 EC02Y                       EC23 FA01 FB05 FB09 FB30                       FB33

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 化学式La3.5Ru413(Laは、酸素
12配位ランタン、Ruは、酸素6配位ルテニウム、O
は酸素)で示されるぺロブスカイト型のルテニウム酸ラ
ンタン結晶の製造方法であって、反応容器内でLaの金
属イオンを含む水溶液とRuの金属イオンを含む水溶液
を沈殿形成液と反応させてLaおよびRuの水酸化物を
作成し、この沈殿体を加熱して結晶化することを特徴と
するルテニウム酸塩の製造方法。
1. A chemical formula of La 3.5 Ru 4 O 13 (La is oxygen 12-coordinated lanthanum, Ru is oxygen 6-coordinated ruthenium, O
Is a perovskite-type lanthanum ruthenate crystal represented by oxygen), wherein an aqueous solution containing a metal ion of La and an aqueous solution containing a metal ion of Ru are reacted with a precipitation forming liquid in a reaction vessel. A method for producing a ruthenate, comprising forming a hydroxide of Ru and heating the precipitate to crystallize it.
【請求項2】 上記沈殿体を触媒担体またはその他の担
体に沈積、接着または塗布した後加熱して結晶化するこ
とによりLa3.5Ru413の被膜を担体上に形成するこ
とを特徴とする請求項1記載のルテニウム酸塩の製造方
法。
2. A La 3.5 Ru 4 O 13 coating film is formed on a carrier by depositing, adhering or coating the above precipitate on a catalyst carrier or another carrier and then heating and crystallizing the same. The method for producing a ruthenate according to claim 1.
【請求項3】 化学式La3.5Ru413(Laは、酸素
12配位ランタン、Ruは、酸素6配位ルテニウム、O
は酸素)で示されるぺロブスカイト型のルテニウム酸ラ
ンタン結晶の製造方法であって、反応容器内でLaの金
属イオンを含む水溶液とRuの金属イオンを含む水溶液
を混合した混合水溶液を直接加熱し、蒸発乾固した後、
加熱して結晶化することを特徴とするルテニウム酸塩の
製造方法。
3. The chemical formula La 3.5 Ru 4 O 13 (La is oxygen 12-coordinated lanthanum, Ru is oxygen 6-coordinated ruthenium, O
Is a perovskite type lanthanum ruthenate crystal represented by oxygen), wherein a mixed aqueous solution obtained by mixing an aqueous solution containing La metal ions and an aqueous solution containing Ru metal ions is directly heated in a reaction vessel, After evaporating to dryness,
A method for producing a ruthenate, comprising heating and crystallization.
【請求項4】 上記混合水溶液を触媒担体およびその他
の担体に含浸させ、加熱して結晶化することによりLa
3.5Ru413の被膜を担体上に形成することを特徴とす
る請求項3記載のルテニウム酸塩の製造方法。
4. The La is prepared by impregnating the above-mentioned mixed aqueous solution into a catalyst carrier and other carriers and heating to crystallize it.
The method for producing ruthenate according to claim 3, wherein a film of 3.5 Ru 4 O 13 is formed on the carrier.
【請求項5】 上記触媒担体またはその他の担体は、ア
ルカリ土類酸化物あるいは希土類金属酸化物を被覆した
ものであることを特徴とする請求項2または4記載のル
テニウム酸塩の製造方法。
5. The method for producing ruthenate according to claim 2 or 4, wherein the catalyst carrier or other carrier is coated with an alkaline earth oxide or a rare earth metal oxide.
【請求項6】 請求項1ないし5のいずれかに記載され
た製造方法で得られたルテニウム酸塩からなり、メタン
の燃焼に対する触媒、ディーゼル排出粒状物質フィルタ
ーの再生に有効な炭素及びディーゼル排出粒状物質(す
す)の酸化に対する触媒、ディーゼル排出粒状物質のオ
ンライン酸化に対する触媒、ディーゼル車排出汚染物質
(ディーゼル排出粒状物質(すす)とNOx)の除去に
対する触媒、一酸化炭素(CO)の酸化反応に対する触
媒、有意な一酸化炭素の発生を伴わない炭化水素(H
C)の酸化反応に対する触媒、揮発性有機物質の酸化に
対する触媒、または一酸化炭素または炭化水素によるN
Oxの還元反応に対する触媒として用いられることを特
徴とするルテニウム酸塩触媒。
6. A catalyst for the combustion of methane, which comprises the ruthenate obtained by the production method according to any one of claims 1 to 5, carbon effective for regeneration of a diesel exhaust particulate matter filter, and diesel exhaust particulate matter. Catalyst for the oxidation of substances (soot), catalyst for on-line oxidation of diesel exhaust particulates, catalyst for the removal of diesel vehicle exhaust pollutants (diesel exhaust particulates (soot) and NOx), for the oxidation reaction of carbon monoxide (CO) Catalysts, hydrocarbons (H
C) a catalyst for the oxidation reaction, a catalyst for the oxidation of volatile organic substances, or N by carbon monoxide or hydrocarbons.
A ruthenate catalyst, which is used as a catalyst for a reduction reaction of Ox.
JP2002126911A 2002-04-26 2002-04-26 Method for producing lanthanum ruthenate Expired - Lifetime JP3882075B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002126911A JP3882075B2 (en) 2002-04-26 2002-04-26 Method for producing lanthanum ruthenate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002126911A JP3882075B2 (en) 2002-04-26 2002-04-26 Method for producing lanthanum ruthenate

Publications (2)

Publication Number Publication Date
JP2003321225A true JP2003321225A (en) 2003-11-11
JP3882075B2 JP3882075B2 (en) 2007-02-14

Family

ID=29541187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002126911A Expired - Lifetime JP3882075B2 (en) 2002-04-26 2002-04-26 Method for producing lanthanum ruthenate

Country Status (1)

Country Link
JP (1) JP3882075B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017124390A (en) * 2016-01-13 2017-07-20 コリア インスティテュート オブ エナジー リサーチKorea Institute Of Energy Research Method for forming metal oxide coating layer on catalyst supporter surface and catalyst supporter and catalyst device containing metal oxide coating layer
CN107362791A (en) * 2017-07-31 2017-11-21 福州大学 A kind of methane catalytic combustion catalyst and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017124390A (en) * 2016-01-13 2017-07-20 コリア インスティテュート オブ エナジー リサーチKorea Institute Of Energy Research Method for forming metal oxide coating layer on catalyst supporter surface and catalyst supporter and catalyst device containing metal oxide coating layer
CN107362791A (en) * 2017-07-31 2017-11-21 福州大学 A kind of methane catalytic combustion catalyst and preparation method thereof
CN107362791B (en) * 2017-07-31 2019-07-09 福州大学 A kind of methane catalytic combustion catalyst and preparation method thereof

Also Published As

Publication number Publication date
JP3882075B2 (en) 2007-02-14

Similar Documents

Publication Publication Date Title
JP2893648B2 (en) Catalyst support material
KR101286799B1 (en) Composition including a lanthanum perovskite on an alumina or aluminium oxyhydroxide substrate, preparation method and use in catalysis
JP3623517B2 (en) Composition based on cerium oxide and zirconium oxide and having high specific surface area and high oxygen storage capacity, and method for producing the same
JP2947449B2 (en) Mixed oxides of cerium and zirconium, their production and use
US6165934A (en) Material and system for catalytic reduction of nitrogen oxide in an exhaust stream of a combustion process
EP1946834B1 (en) Catalyst carrier particle, exhaust gas purifying catalyst, and methods for producing those
JP3657620B2 (en) Method for treating exhaust gas from an internal combustion engine operated by a fuel containing sulfur
US11383224B2 (en) Ceria-containing mixed oxides for oxygen storage
JPH10512191A (en) Composition based on zirconium oxide and cerium oxide, its production method and use
JPH04228422A (en) Composition based on alumina used as catalyst, its manufacture, catalyst and manufacture of catalyst
JP2003277059A (en) Ceria-zirconia compound oxide
JP2011045840A (en) Catalyst composition
JP2002537111A (en) Stabilization of transition alumina
US6656872B2 (en) Methods of producing ruthenium perovskite
JP2006256912A (en) Surface-modified ceria-zirconia-based hydrous oxide, oxide thereof, their preparation methods and use
JP3882075B2 (en) Method for producing lanthanum ruthenate
JP3855045B2 (en) Method for producing ruthenium perovskite
EP1928788B1 (en) Method for preparing metal oxide containing precious metals
JP2006256911A (en) Preparation method of ceria-zirconia-based oxide
JP2005066587A (en) Exhaust gas clarifying catalyst, method for production thereof, and exhaust gas clarifying catalyst device
JP2005170775A (en) Oxide powder, method for producing the same. and exhaust gas cleaning catalyst
EP0808800A2 (en) Praseodymium-zirconium-oxides for catalyst and washcoat
US6210649B1 (en) Metal oxide catalysts for nitric oxide reduction
JP3744291B2 (en) Fuel reforming catalyst and method of using the same
JPH08995A (en) Exhaust gas purifying catalyst

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061024

R150 Certificate of patent or registration of utility model

Ref document number: 3882075

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term