JP2003317162A - Flame detecting device - Google Patents

Flame detecting device

Info

Publication number
JP2003317162A
JP2003317162A JP2002125347A JP2002125347A JP2003317162A JP 2003317162 A JP2003317162 A JP 2003317162A JP 2002125347 A JP2002125347 A JP 2002125347A JP 2002125347 A JP2002125347 A JP 2002125347A JP 2003317162 A JP2003317162 A JP 2003317162A
Authority
JP
Japan
Prior art keywords
detection device
flame
flame detection
region
translucent member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002125347A
Other languages
Japanese (ja)
Other versions
JP3963355B2 (en
Inventor
Hidenari Matsukuma
秀成 松熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hochiki Corp
Original Assignee
Hochiki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hochiki Corp filed Critical Hochiki Corp
Priority to JP2002125347A priority Critical patent/JP3963355B2/en
Publication of JP2003317162A publication Critical patent/JP2003317162A/en
Application granted granted Critical
Publication of JP3963355B2 publication Critical patent/JP3963355B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Fire-Detection Mechanisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce an unnecessary detection area outside a target monitor area by changing the shape of the detection area. <P>SOLUTION: The flame detecting device is equipped with a detecting element which converts infrared energy incident through a light-transmissive member 23 into an electric signal and outputs the resultant signal. The light-transmissive member 23 is provided with a plurality of areas 23a to 23c, each area having different transmissivity to the infrared energy. The level of the electric signal can be varied with transmissivity corresponding to the angle of incidence of the infrared energy and, for example, when large transmissivity is given to infrared energy having a 0° incidence angle, the unnecessary detection area outside the target monitor area can be reduced by reducing the detection area of the detecting element in the direction of its normal (of a detection surface). <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、炎検出装置に関
し、詳しくは、炎の発光を利用して火災に伴う炎の検出
を行う炎検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flame detection device, and more particularly, to a flame detection device that detects the flame accompanying a fire by utilizing the light emission of the flame.

【0002】[0002]

【従来の技術】炎から放射する光には可視光、紫外光及
び赤外光といった様々な波長域の光が含まれているが、
特に3〜5μm程度の赤外光には、燃焼時に生成される
CO2 の共鳴放射と呼ばれる特定波長域(4.3μm付
近の波長域)の光が含まれ、しかも、可視光のように周
囲の光の影響を受けにくいため、この特定波長域を中心
とした所定帯域の赤外エネルギーをセンサで検出し、所
定レベル以上のエネルギーが検出されたときに火災に伴
う炎の発生を判定するようにした炎検出装置が知られて
いる。
2. Description of the Related Art The light emitted from a flame includes visible light, ultraviolet light and
And light of various wavelength ranges such as infrared light are included,
Especially, in the infrared light of about 3 to 5 μm, it is generated during combustion.
CO2 Specific wavelength range (4.3 μm)
Light in the near wavelength range is included, and the
Since it is not easily affected by the surrounding light, it is focused on this specific wavelength range.
The infrared energy in the specified band is
When a certain level of energy is detected, a fire
A flame detection device is known to determine the occurrence of flame.
There is.

【0003】さらに、炎の発光エネルギーは、低い周波
数(一般に数Hz程度)の帯域を中心とした揺らぎ(以
下「揺らぎ信号成分」という)を持つことも知られてお
り、上述のエネルギー強度の判定に加えて、時系列信号
出力の周波数解析等によって求めた周波数特性を元に太
陽光や照明光などの外乱光による誤判定を排除して検出
精度の向上を図った炎検出装置も知られている。
Further, it is also known that the light emission energy of the flame has a fluctuation (hereinafter referred to as a “fluctuation signal component”) centered on a low frequency band (generally about several Hz), and the above-mentioned energy intensity determination is performed. In addition, based on the frequency characteristics obtained by frequency analysis of the time-series signal output, etc., flame detection devices are also known that aim at improving detection accuracy by eliminating erroneous determinations due to ambient light such as sunlight and illumination light. There is.

【0004】図12は、炎検出装置と赤外エネルギー放
射体(以下「被検物」という)との関係図であり、1は
炎検出装置の内部に設けられた検知素子、2は被検物で
ある。検知素子1は受光面1aに到達した被検物2から
の赤外エネルギーを電気信号に変換して出力する例えば
焦電型の赤外線センサである。なお、受光面1aの前面
に特定波長域の光を通過させるための光学波長フィルタ
を装着しているが、図では省略してある。
FIG. 12 is a diagram showing the relationship between a flame detection device and an infrared energy radiator (hereinafter referred to as "inspection object"). Reference numeral 1 is a detection element provided inside the flame detection device, and 2 is an inspection object. It is a thing. The detection element 1 is, for example, a pyroelectric infrared sensor that converts the infrared energy from the test object 2 reaching the light receiving surface 1a into an electric signal and outputs the electric signal. An optical wavelength filter for passing light in a specific wavelength range is attached to the front surface of the light receiving surface 1a, but it is omitted in the figure.

【0005】検知素子1の出力信号レベルは、検知素子
1と被検物2との間の距離Rや赤外エネルギーの受光面
への入射角θ(θは検知素子1の受光面の法線3とのな
す角度)によって変化する。例えば、Rが大きくなると
出力信号レベルは減少し、また、θが大きくなっても出
力信号レベルは減少する。
The output signal level of the detection element 1 is the distance R between the detection element 1 and the object 2 and the incident angle θ of the infrared energy to the light receiving surface (θ is the normal to the light receiving surface of the detection element 1). Angle formed by 3). For example, the output signal level decreases as R increases, and the output signal level decreases even when θ increases.

【0006】今、被検物2を規定の火炎モデルにすると
ともに、Rやθを様々に変化させながら検知素子1の出
力信号レベルを平面図表上にプロットし、炎の検知が可
能な最小の出力信号レベルのプロット点を結ぶことによ
り、炎検出装置の検知エリアを把握できる。
Now, the object to be inspected 2 is made into a prescribed flame model, and the output signal level of the detecting element 1 is plotted on a plan chart while changing R and θ variously, and the minimum flame detection is possible. The detection area of the flame detection device can be grasped by connecting the plot points of the output signal level.

【0007】図13は、検知エリアを示す図である。図
において、4は炎検出装置、5は不図示の受光面の法
線、6は炎の検知が可能な最小の出力信号レベルのプロ
ット点を結んだ線であり、この線6の内側が検知エリア
(以下、線6を検知エリアという)になる。但し、図で
は炎検出装置4の近くにある無効エリア(出力信号レベ
ルが大きすぎて正確な炎の検知を行えないエリア)を省
略している。
FIG. 13 is a diagram showing a detection area. In the figure, 4 is a flame detection device, 5 is a normal line of a light receiving surface (not shown), 6 is a line connecting plot points of the minimum output signal level at which flame detection is possible, and the inside of this line 6 is a detection line. It becomes an area (hereinafter, the line 6 is referred to as a detection area). However, in the drawing, an invalid area (area where the output signal level is too large to perform accurate flame detection) near the flame detection device 4 is omitted.

【0008】検知エリア6は、炎検出装置4(の検知素
子)の受光点Pから扇状に広がるとともに、その先で曲
線を描いて閉じた形になっており、曲線上の任意点xと
受光点Pとを結ぶ直線の長さLは、炎の検知が可能な最
小の出力信号レベルに対応する上記距離Rに相当する。
また、曲線上の任意点xと受光点Pとを結ぶ直線と法線
5とのなす角φは、同じく炎の検知が可能な最小の出力
信号レベルに対応する上記入射角θに相当する。
The detection area 6 spreads in a fan shape from the light receiving point P of (the detection element of) the flame detecting device 4 and has a curved closed shape at the tip of the light receiving point P. The length L of the straight line connecting the point P corresponds to the distance R corresponding to the minimum output signal level at which the flame can be detected.
The angle φ formed by the straight line connecting the arbitrary point x on the curve and the light receiving point P and the normal line 5 corresponds to the incident angle θ corresponding to the minimum output signal level at which the flame can be detected.

【0009】図示の検知エリア6において、炎の検知が
可能な距離Rの最大地点はθが最小(θ=0)となる法
線4上の点yにある。すなわち、検知エリア6の受光点
Pから最も遠い部分は点yの付近にある。
In the detection area 6 shown in the figure, the maximum point of the distance R at which the flame can be detected is the point y on the normal line 4 where θ is the minimum (θ = 0). That is, the farthest portion of the detection area 6 from the light receiving point P is near the point y.

【0010】このような形状の検知エリア6を有する炎
検出装置4を、実際の火災監視対象に適用する場合は、
図14に示すように、監視エリア8の全体が検知エリア
6に完全に収まるように炎検出装置4の設置位置等の調
節を行う。これにより、監視エリア8の全体を漏れなく
監視することができる。
When the flame detection device 4 having the detection area 6 having such a shape is applied to an actual fire monitoring target,
As shown in FIG. 14, the installation position and the like of the flame detection device 4 are adjusted so that the entire monitoring area 8 fits completely within the detection area 6. As a result, the entire monitoring area 8 can be monitored without omission.

【0011】[0011]

【発明が解決しようとする課題】しかしながら、上記従
来の炎検出装置にあっては、検知エリア6の形状、特に
最遠部の形状が曲線状になっているため、監視エリアの
一般的な形状(矩形状)と一致せず、監視エリア8の外
側に無用な検知エリア9が広がっていた。
However, in the above-mentioned conventional flame detection device, since the shape of the detection area 6, especially the shape of the farthest portion is curved, the general shape of the monitoring area is used. It did not match the (rectangular shape), and the unnecessary detection area 9 spread outside the monitoring area 8.

【0012】このため、例えば、図15に示すように、
監視エリア8の境界部分に窓のような開口部10がある
場合には、太陽や外灯などの外部光源11からの光が開
口部10を通して入り込み、炎検出装置4で受光される
結果、誤警報を発することがあるという問題点があっ
た。
Therefore, for example, as shown in FIG.
When there is an opening 10 such as a window at the boundary of the monitoring area 8, light from an external light source 11 such as the sun or an external light enters through the opening 10 and is received by the flame detection device 4, resulting in a false alarm. There is a problem that it may emit.

【0013】したがって、本発明が解決しようとする課
題は、検知エリアの形を変更して、対象となる監視エリ
アの外側の無用な検知エリアを縮小することにある。
Therefore, the problem to be solved by the present invention is to change the shape of the detection area to reduce the useless detection area outside the target monitoring area.

【0014】[0014]

【課題を解決するための手段】請求項1記載の発明は、
透光部材を介して入射する赤外エネルギーを電気信号に
変換して出力する検知素子を備えた炎検出装置におい
て、前記透光部材に複数の領域を設け、各々の領域の前
記赤外エネルギーに対する透過率に差を持たせたことを
特徴とする。請求項2記載の発明は、請求項1記載の発
明において、表面荒さの異なるすりガラス加工によって
前記透過率の差を持たせたことを特徴とする。請求項3
記載の発明は、請求項2記載の発明において、すりガラ
ス加工面を検知素子に対向する面としたことを特徴とす
る。請求項4記載の発明は、請求項1記載の発明におい
て、透過波長帯域幅の異なる光学波長フィルタを用いて
前記透過率の差を持たせたことを特徴とする。請求項5
記載の発明は、請求項1記載の発明において、前記領域
は、同心円状の複数の領域であることを特徴とする。請
求項6記載の発明は、請求項1記載の発明において、前
記領域は、同心円状の領域と楕円状の領域を含むことを
特徴とする。請求項7記載の発明は、請求項1記載の発
明において、前記領域は、帯状の領域であることを特徴
とする。請求項8記載の発明は、請求項7記載の発明に
おいて、前記帯状の領域の少なくとも一つを更に透過率
の異なる複数の領域に分割することを特徴とする。請求
項9記載の発明は、請求項1記載の発明において、前記
透光部材の中央部に位置する領域の透過率が最低、前記
透光部材の周縁部に位置する領域の透過率が最大となる
ように設定することを特徴とする。請求項10記載の発
明は、請求項1記載の発明において、前記透光部材の直
径方向に沿って各領域の透過率が増大又は減少変化する
ことを特徴とする。請求項11記載の発明は、透光部材
を介して入射する赤外エネルギーを電気信号に変換して
出力する検知素子を備えた炎検出装置において、前記検
知素子を二次元平面に複数個配列するとともに、中央付
近の検知素子の検知面サイズを周囲の検知素子の検知面
サイズより小さくしたことを特徴とする。
The invention according to claim 1 is
In a flame detection device including a detection element that converts infrared energy incident through a translucent member into an electric signal and outputs the electric signal, a plurality of regions are provided in the translucent member, and the infrared energy for each region is It is characterized by having a difference in transmittance. The invention according to claim 2 is characterized in that, in the invention according to claim 1, the difference in the transmittance is provided by frosted glass processing having different surface roughness. Claim 3
In the invention described in claim 2, the invention described in claim 2 is characterized in that the ground glass processing surface is a surface facing the detection element. The invention according to claim 4 is characterized in that, in the invention according to claim 1, the optical wavelength filters having different transmission wavelength bandwidths are used to provide the difference in the transmittance. Claim 5
In the invention described in claim 1, the described invention is characterized in that the region is a plurality of concentric regions. According to a sixth aspect of the invention, in the first aspect of the invention, the region includes a concentric region and an elliptical region. According to a seventh aspect of the invention, in the first aspect of the invention, the region is a strip-shaped region. The invention according to claim 8 is the invention according to claim 7, characterized in that at least one of the strip-shaped regions is further divided into a plurality of regions having different transmittances. According to a ninth aspect of the invention, in the first aspect of the invention, a region located in a central portion of the light transmitting member has a minimum transmittance, and a region located in a peripheral portion of the light transmitting member has a maximum transmittance. It is characterized by setting so that According to a tenth aspect of the present invention, in the first aspect of the invention, the transmittance of each region increases or decreases along the diametrical direction of the translucent member. According to an eleventh aspect of the present invention, in a flame detection device including a detection element that converts infrared energy incident through a translucent member into an electric signal and outputs the electric signal, a plurality of the detection elements are arranged in a two-dimensional plane. In addition, the detection surface size of the detection element near the center is smaller than the detection surface size of the surrounding detection elements.

【0015】[0015]

【発明の実施形態】以下、図面を参照して本発明の実施
形態を詳細に説明する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

【0016】図1は、炎検出装置の構造図である。炎検
出装置20は、薄型円筒状のケース21と、このケース
21の内部に収められたセンサパッケージ22とを備え
ており、ケース21の一端面にはめ込まれた透光部材2
3を介して外部の赤外エネルギーを取り込み、センサパ
ッケージ22の光学波長フィルタ24でフィルタリング
された特定波長域の信号光を検知素子25で受光して電
気信号に変換し、不図示の炎検出部に出力する。
FIG. 1 is a structural diagram of a flame detecting device. The flame detection device 20 includes a thin cylindrical case 21 and a sensor package 22 housed inside the case 21, and the translucent member 2 fitted to one end surface of the case 21.
3 receives external infrared energy, receives the signal light of the specific wavelength band filtered by the optical wavelength filter 24 of the sensor package 22 by the detection element 25, converts the signal light into an electric signal, and a flame detection unit (not shown). Output to.

【0017】なお、光学波長フィルタ24は、例えば、
燃焼時に生成されるCO2の共鳴放射と呼ばれる4.3
μm付近の波長域を含む波長帯の透過特性を持つもので
あり、また、検知素子25は、例えば、焦電型の赤外線
センサであるが、これに限定されない。要は、炎の発光
を利用して火災に伴う炎の検出を行う炎検出装置に必要
な検知特性を持つものであればよい。
The optical wavelength filter 24 is, for example,
4.3 called resonant radiation of CO 2 produced during combustion
The sensing element 25 is, for example, a pyroelectric infrared sensor, although it has a transmission characteristic in a wavelength band including a wavelength range near μm. However, the sensing element 25 is not limited to this. The point is that it has only to have a detection characteristic necessary for the flame detection device that detects the flame associated with the fire by utilizing the light emission of the flame.

【0018】図示の炎検出装置20の検知視野角θT
は、検知素子25の受光面(光学波長フィルタ24に対
向する面)の端と透光部材23の端とを結んだ線26、
27の開き角度で与えられ、この角度θTは、図13の
検知エリア6における炎検出装置4(の検知素子)の受
光点Pから扇状に広がる角度に相当する。
Detected viewing angle θT of the illustrated flame detection device 20
Is a line 26 that connects the end of the light-receiving surface of the detection element 25 (the surface facing the optical wavelength filter 24) and the end of the translucent member 23,
The angle θT is given by the opening angle of 27, and this angle θT corresponds to the angle that spreads in a fan shape from the light receiving point P of (the detection element of) the flame detection device 4 in the detection area 6 in FIG. 13.

【0019】本実施形態の特徴的な事項は、専ら透光部
材23の構造にある。すなわち、透光部材23の一の役
割は、従来技術の透光部材と同様に、ケース21と一体
になって雨滴や埃などからセンサパッケージ22を保護
する点にあるが、本実施形態では、さらに検知視野角θ
Tの範囲内の入射光に対して入射角に応じた異なる透過
率を与えるという二の役割を持つ点で従来技術と相違す
る。
The characteristic feature of this embodiment is the structure of the transparent member 23. That is, one role of the translucent member 23 is to protect the sensor package 22 from raindrops, dust, and the like integrally with the case 21, like the translucent member of the conventional technique. Furthermore, the detection viewing angle θ
This is different from the prior art in that it has a dual role of giving different transmittances to incident light within the range of T depending on the incident angle.

【0020】図2は、本実施形態の透光部材23の平面
図である。略円形に成形された薄板状の透光部材23
は、図示の例では三つの同心円領域23a、23b及び
23cを有しており、各領域の透過率をそれぞれTa、
Tb、Tcとすると、Ta>Tb>Tcの関係にある。
但し、Taはほぼ100%またはできるだけ100%に
近い値である。ここで、透過率(Transmitta
nce)とは、物質層または異なる2媒質の境界面を通
して波動が透過するとき、入射波に対する透過波の強度
の比(一般に%で表す)をいう。例えば、透過率が10
0%のときは入射波の強度と透過波の強度が相等しく
(透過損失がゼロ)、また、透過率が0%のときは入射
波のすべてが透過中に失われて透過波の強度がゼロにな
る。
FIG. 2 is a plan view of the translucent member 23 of this embodiment. Thin plate-shaped light-transmitting member 23 formed in a substantially circular shape
Has three concentric regions 23a, 23b and 23c in the illustrated example, and the transmittance of each region is Ta,
If Tb and Tc are satisfied, Ta>Tb> Tc.
However, Ta is almost 100% or a value as close to 100% as possible. Here, the transmittance (Transmitta)
nc) is the ratio of the intensity of the transmitted wave to the incident wave (generally expressed in%) when the wave is transmitted through the material layer or the interface between two different media. For example, the transmittance is 10
When the intensity is 0%, the intensity of the incident wave is equal to the intensity of the transmitted wave (transmission loss is zero), and when the transmittance is 0%, all of the incident wave is lost during transmission and the intensity of the transmitted wave is It becomes zero.

【0021】図3は、図2の透光部材23を用いた場合
の検知素子25の信号強度を示す図である。30a〜3
0cの扇状図形は、透光部材23の各領域23a〜23
cに対応する信号を表し、扇の根元から先端までの長さ
で信号強度を模式化している。すなわち、Ta>Tb>
Tcであるから、透過率Taを有する領域23aの透過
波強度が最大となり、透過率Tbを有する領域23bの
透過波強度がそれに次ぎ、透過率Tcを有する領域23
cの透過波強度が最小となっている。
FIG. 3 is a diagram showing the signal intensity of the detection element 25 when the translucent member 23 of FIG. 2 is used. 30a-3
The fan-shaped figure of 0c is the regions 23a to 23 of the translucent member 23.
A signal corresponding to c is represented, and the signal strength is schematically represented by the length from the root to the tip of the fan. That is, Ta>Tb>
Since it is Tc, the transmitted wave intensity of the region 23a having the transmittance Ta becomes the maximum, the transmitted wave intensity of the region 23b having the transmittance Tb is next, and the region 23 having the transmittance Tc is the second highest.
The transmitted wave intensity of c is the minimum.

【0022】三種類の扇状図形30a〜30cの長さの
差は、透光部材23の各領域23a〜23cの透過率の
差に対応し、例えば、Ta=90%、Tb=60%、T
c=30%とすると、Ta、Tb及びTcの各々の透過
率差は30%であるから、検知素子25の受光特性を無
視すれば、三種類の扇状図形30a〜30cの長さの差
は、各々30%相当になる。
The difference in the lengths of the three types of fan-shaped figures 30a to 30c corresponds to the difference in the transmittances of the respective regions 23a to 23c of the translucent member 23. For example, Ta = 90%, Tb = 60%, T
If c = 30%, the difference in transmittance between Ta, Tb, and Tc is 30%. Therefore, if the light receiving characteristics of the sensing element 25 are ignored, the difference in length between the three types of fan-shaped figures 30a to 30c is , 30% each.

【0023】図4は、上記の透光部材23を備えた炎検
出装置20の検知エリア31を示す図である。図示の検
知エリア31は、三種類のエリア31a〜31cを合成
したものであり、第一のエリア31aは上記扇状図形3
0aに対応し、第二のエリア31bは上記扇状図形30
bに対応し、第三のエリア31cは上記扇状図形30c
に対応する。
FIG. 4 is a view showing a detection area 31 of the flame detecting device 20 having the above-mentioned light transmitting member 23. The illustrated detection area 31 is a combination of three types of areas 31a to 31c, and the first area 31a is the fan-shaped figure 3 described above.
0a, and the second area 31b is the above-mentioned fan-shaped figure 30.
Corresponding to b, the third area 31c is the fan-shaped figure 30c.
Corresponding to.

【0024】今、透光部材23の領域23aの透過率T
aを従来の透光部材の透過率と同じ値とすれば、従来の
炎検出装置の検知エリア6(以下「従来検知エリア」と
いう)は破線の範囲で示すことができる。
Now, the transmittance T of the region 23a of the translucent member 23
If a has the same value as the transmittance of the conventional translucent member, the detection area 6 of the conventional flame detection device (hereinafter referred to as the “conventional detection area”) can be indicated by the broken line range.

【0025】図からも理解されるように、従来検知エリ
ア6は、第一のエリア31a、第二のエリア31b及び
第三のエリア31cを含むと共に、さらに、第二のエリ
ア31bと第三のエリア31cの延長先にハッチングで
示す検知エリア6aを含む。したがって、本実施形態の
検知エリア31は、従来検知エリア6からハッチングの
検知エリア6aを除外したものということができ、この
除外相当分のエリアは、透過部材23の領域23b及び
23cの低透過率(Tb及びTc)によるものである。
As can be understood from the figure, the conventional detection area 6 includes a first area 31a, a second area 31b and a third area 31c, and further, a second area 31b and a third area 31b. The extension of the area 31c includes a detection area 6a indicated by hatching. Therefore, it can be said that the detection area 31 of the present embodiment excludes the hatched detection area 6a from the conventional detection area 6, and the area corresponding to this exclusion is the low transmittance of the regions 23b and 23c of the transmissive member 23. (Tb and Tc).

【0026】図5は、このような形状の検知エリア31
を有する炎検出装置20を、実際の火災監視対象に適用
した場合の図である。従来例と同様に、監視エリア32
の全体が検知エリア31に完全に収まるように炎検出装
置20の設置位置等の調節を行うことにより、監視エリ
ア32の全体を漏れなく監視することができると共に、
さらに、本実施形態では、以下に説明する特有の効果が
得られる。
FIG. 5 shows the detection area 31 having such a shape.
It is a figure when the flame detection apparatus 20 which has is applied to an actual fire monitoring target. Similar to the conventional example, the monitoring area 32
By adjusting the installation position and the like of the flame detection device 20 so that the whole of the above is completely contained in the detection area 31, it is possible to monitor the entire monitoring area 32 without omission,
Furthermore, in this embodiment, the unique effects described below can be obtained.

【0027】すなわち、本実施形態の検知エリア31の
形状、特に最遠部の形状が従来のような曲線状になって
おらず、多少の凹凸があるものの、監視エリアの一般的
な形状(矩形状)に沿う形状になっているため、監視エ
リアの外側の無用な検知エリア(図14の符号9参照)
を縮小することができる。
That is, the shape of the detection area 31 of the present embodiment, particularly the shape of the farthest portion is not a curved shape as in the conventional case, and there is some unevenness, but the general shape of the monitoring area (rectangular shape). Since it has a shape according to (shape), an unnecessary detection area outside the monitoring area (see reference numeral 9 in FIG. 14)
Can be reduced.

【0028】したがって、例えば、監視エリア32の境
界部分に窓のような開口部(図15の符号10参照)が
あった場合でも、この開口部を介して入り込む太陽や外
灯などの外部光源からのエネルギー強度を検知レベル以
下に抑えることができ、誤警報を回避できるという特有
の効果が得られるのである。
Therefore, for example, even if there is an opening such as a window (see reference numeral 10 in FIG. 15) at the boundary of the monitoring area 32, an external light source such as the sun or an external light entering through this opening can be used. The unique effect is that the energy intensity can be suppressed below the detection level and false alarms can be avoided.

【0029】なお、本実施形態における特徴的な事項の
一つである透光部材23の構造は、上記例示のものに限
定されない。発明の意図する範囲において様々な変形例
を含むことはもちろんである。以下、その好ましい変形
例を列挙する。
The structure of the translucent member 23, which is one of the characteristic features of the present embodiment, is not limited to the above example. It goes without saying that various modifications are included within the scope of the invention. The preferred modifications will be listed below.

【0030】図6は、第一の変形例を示す透光部材33
の平面図であり、各々の透過率をTa、Tb及びTc
(Ta>Tb>Tc)とする三つの領域33a〜33c
の一つ(図では領域33b)の形状を楕円形にした例で
ある。
FIG. 6 is a transparent member 33 showing a first modification.
FIG. 3 is a plan view of each of the transmittances of Ta, Tb, and Tc.
Three regions 33a to 33c with (Ta>Tb> Tc)
1 (region 33b in the figure) is an elliptical shape.

【0031】このような構造を有する透光部材33によ
れば、透光部材33の回転角度Fを変えることにより、
検知エリア31の形を調節することができる。例えば、
監視エリアを斜めに見通すように炎検出装置20を取り
付けた場合(図9参照)に、透光部材33の楕円形領域
33bの長径方向Eを縦にすれば、検知面の法線方向に
沿って遠距離から近距離までの信号レベルを抑制するこ
とができる。
According to the translucent member 33 having such a structure, by changing the rotation angle F of the translucent member 33,
The shape of the detection area 31 can be adjusted. For example,
When the flame detection device 20 is installed so as to obliquely see through the monitoring area (see FIG. 9), if the major axis direction E of the elliptical region 33 b of the light transmissive member 33 is set to be vertical, the direction along the normal line of the detection surface is obtained. Therefore, the signal level from a long distance to a short distance can be suppressed.

【0032】図7は、第二の変形例を示す透光部材34
の平面図であり、各々の透過率をTa、Tb及びTc
(Ta>Tb>Tc)とする三種類の領域34a〜34
cの形状を帯状にした例である。
FIG. 7 is a transparent member 34 showing a second modified example.
FIG. 3 is a plan view of each of the transmittances of Ta, Tb, and Tc.
(Ta>Tb> Tc) Three types of areas 34a to 34
This is an example in which the shape of c is a band.

【0033】このような構造を有する透光部材34によ
れば、上記第一の変形例と同様に、透光部材34の回転
角度Fを変えることにより、検知エリア31の形を調節
することができる。
According to the translucent member 34 having such a structure, the shape of the detection area 31 can be adjusted by changing the rotation angle F of the translucent member 34, as in the first modification. it can.

【0034】図8は、第三の変形例を示す透光部材35
の平面図であり、各々の透過率をTa、Tb及びTc
(Ta>Tb>Tc)とする三つの領域35a〜35c
の形状を帯状にしているが、透過率の高い領域35aと
低い領域35cの間に中間の透過率を持つ領域35bを
挟み込んで構成する点で上記第二の変形例と相違する。
FIG. 8 is a transparent member 35 showing a third modified example.
FIG. 3 is a plan view of each of the transmittances of Ta, Tb, and Tc.
Three regions 35a to 35c with (Ta>Tb> Tc)
However, this is different from the second modified example in that the region 35b having an intermediate transmittance is sandwiched between the region 35a having a high transmittance and the region 35c having a low transmittance.

【0035】このような構造を有する透光部材35によ
れば、上記第一及び第二の変形例と同様に、透光部材3
5の回転角度Fを変えることにより、検知エリア31の
形を調節することができるが、特に、図9に示すよう
に、監視エリアを斜めに見通すように炎検出装置20を
取り付けた場合に、透過率の低い領域35cが下になる
ようにすれば、検知エリア内の遠距離部分Eaに透過率
の高い領域35aを対応させることができ、また、中間
距離部分Ebに透過率の中間の領域35bを対応させる
ことができ、さらに、近距離部分Ecに透過率の低い領
域35cを対応させることができる。したがって、中間
距離部分Ebからの信号強度と近距離部分Ecからの信
号強度を各々の透過率に対応させて適切に抑制でき、特
に、近距離部分Ecからの強い信号による炎の誤検出や
受信系の飽和を防止できるという特有の効果が得られ
る。
According to the translucent member 35 having such a structure, the translucent member 3 is similar to the first and second modified examples.
By changing the rotation angle F of 5, the shape of the detection area 31 can be adjusted. In particular, as shown in FIG. 9, when the flame detection device 20 is attached so that the monitoring area is seen obliquely, If the low-transmittance region 35c is located on the lower side, the long-distance portion Ea in the detection area can correspond to the high-transmittance region 35a, and the intermediate distance portion Eb can have an intermediate transmittance region. 35b can be made to correspond, and further, the region 35c having a low transmittance can be made to correspond to the short-distance portion Ec. Therefore, the signal intensity from the intermediate distance portion Eb and the signal intensity from the short distance portion Ec can be appropriately suppressed in correspondence with the respective transmittances, and in particular, erroneous detection or reception of a flame due to a strong signal from the short distance portion Ec. A unique effect is obtained in that system saturation can be prevented.

【0036】なお、上記実施形態並びに上記各変形例で
は、透光部材を三つ又は三種類の領域に分けているが、
この領域数に限定されないことはいうまでもない。
In the above-mentioned embodiment and each of the above-mentioned modified examples, the translucent member is divided into three or three types of regions.
It goes without saying that the number of regions is not limited.

【0037】例えば、図10の第四の変形例に示す透光
部材36のように、三種類の帯状領域36a〜36cの
中央領域35cを、さらに三つの領域35d〜35fに
分割し、各々の領域35a、35b、35d、35e、
35fの透過率をTa、Tb、Tc、Td及びTe(T
a>Tb>Tc>Td>Te)としてもよい。
For example, like the light transmissive member 36 shown in the fourth modified example of FIG. 10, the central region 35c of the three types of band-shaped regions 36a to 36c is further divided into three regions 35d to 35f, and each of them is divided into three regions 35d to 35f. Regions 35a, 35b, 35d, 35e,
The transmittance of 35f is Ta, Tb, Tc, Td and Te (T
a>Tb>Tc>Td> Te).

【0038】このような構造を有する透光部材36によ
れば、特に、図9に示すように、監視エリアを斜めに見
通すように炎検出装置20を取り付けた場合に、帯状領
域の長手方向を縦にすれば、検知エリア内の遠距離部分
Eaに透過率Tcの領域35dを対応させることがで
き、また、中間距離部分Ebに透過率Tdの領域35e
を対応させることができ、さらに、近距離部分Ecに透
過率Teの領域35fを対応させることができ、Tc>
Td>Teであるので、中間距離部分Ebからの信号強
度と近距離部分Ecからの信号強度を各々の透過率に対
応させて適切に抑制でき、特に、近距離部分Ecからの
強い信号による炎の誤検出や受信系の飽和を防止できる
という上記第三の変形例と同様の効果が得られる。
According to the translucent member 36 having such a structure, in particular, as shown in FIG. 9, when the flame detecting device 20 is attached so as to obliquely see through the monitoring area, the longitudinal direction of the strip-shaped region is changed. If it is made vertical, the region 35d having the transmittance Tc can be made to correspond to the long distance portion Ea in the detection area, and the region 35e having the transmittance Td can be made to correspond to the intermediate distance portion Eb.
And the region 35f having the transmittance Te can be associated with the short-distance portion Ec, and Tc>
Since Td> Te, the signal intensity from the intermediate distance portion Eb and the signal intensity from the short distance portion Ec can be appropriately suppressed corresponding to the respective transmittances, and in particular, the flame due to the strong signal from the short distance portion Ec can be used. It is possible to obtain the same effect as that of the third modified example described above, which can prevent erroneous detection of and the saturation of the receiving system.

【0039】図11は、上記の実施形態並びに各変形例
に適用して好ましい透過率調節の具体的手法を示す図で
ある。図11(a)において、37は透光部材であり、
透光部材37は透過率Taを有する、例えば、サファイ
アやパイレックス(登録商標)などの透光性プレート3
8の裏面側(図1のケース21の内部を臨む面)に二種
類の光学波長フィルタ39、40を取り付けて(例え
ば、蒸着により)構成されている。
FIG. 11 is a diagram showing a concrete method of adjusting the transmittance, which is preferably applied to the above-described embodiment and each modification. In FIG. 11A, 37 is a translucent member,
The translucent member 37 has a transmissivity Ta, for example, a translucent plate 3 such as sapphire or Pyrex (registered trademark).
Two types of optical wavelength filters 39 and 40 are attached (for example, by vapor deposition) to the back surface side of 8 (the surface facing the inside of the case 21 in FIG. 1).

【0040】第一の光学波長フィルタ39と第二の光学
波長フィルタ40は、図11(b)に示すように、それ
ぞれ広波長域Waと狭波長域Wbの透過特性を持ってお
り、広波長域Waの透過特性を有する第一の光学波長フ
ィルタ39の透過光量に比べて狭波長域Wbの透過特性
を有する第二の光学波長フィルタ40の透過光量は少な
いから、これら二つのフィルタ39、40に実質的な透
過率差を持たせることができる。
As shown in FIG. 11 (b), the first optical wavelength filter 39 and the second optical wavelength filter 40 have transmission characteristics of a wide wavelength range Wa and a narrow wavelength range Wb, respectively. Since the amount of transmitted light of the second optical wavelength filter 40 having the transmission characteristic of the narrow wavelength region Wb is smaller than the amount of transmitted light of the first optical wavelength filter 39 having the transmission characteristic of the region Wa, these two filters 39, 40 Can have a substantial transmittance difference.

【0041】なお、透光部材の各領域毎の透過率に差を
付ける方法は、かかる光学波長フィルタの利用以外にも
様々考えられる。例えば、透光部材の各領域を表面荒さ
の異なる“すりガラス状”にしてもよい。但し、すりガ
ラスは水滴や油等の付着によって透過率が変化するた
め、すりガラスの形成面を外部に露出してはならない。
すなわち、炎検出装置のケースの内側にしなければなら
ない。
Various methods can be considered for making the transmittance of each region of the translucent member different from the use of such an optical wavelength filter. For example, each region of the light transmissive member may be "frosted glass" having different surface roughness. However, the surface of the ground glass should not be exposed to the outside because the transmittance of the ground glass changes due to the attachment of water droplets or oil.
That is, it must be inside the case of the flame detection device.

【0042】または、本発明の課題は、上述の透光部材
の構造を工夫する以外の方法でも達成可能である。例え
ば、多数の検知素子を二次元平面に配列するとともに、
中央付近の検知素子の検知面サイズを周囲の検知素子の
検知面サイズより小さくすれば、法線方向からの入射光
(入射角の小さい光)に対する出力信号レベルを小さく
できる一方、入射角の大きい光に対する出力信号レベル
を大きくできるので、上述の透光部材の構造を工夫した
場合と同等ないしは類似の効果を期待できる。
Alternatively, the object of the present invention can be achieved by a method other than devising the above-mentioned structure of the transparent member. For example, while arranging a large number of sensing elements in a two-dimensional plane,
If the detection surface size of the detection element near the center is made smaller than the detection surface size of the surrounding detection elements, the output signal level for incident light (light with a small incident angle) from the normal direction can be reduced, but the incident angle is large. Since the output signal level for light can be increased, the same or similar effect as when the structure of the transparent member is devised can be expected.

【0043】[0043]

【発明の効果】請求項1記載の発明によれば、透光部材
を介して入射する赤外エネルギーを電気信号に変換して
出力する検知素子を備えた炎検出装置において、前記透
光部材に複数の領域を設け、各々の領域の前記赤外エネ
ルギーに対する透過率に差を持たせたので、赤外エネル
ギーの入射角度に対応した透過率で前記電気信号のレベ
ルを変化させることができ、例えば、入射角ゼロの赤外
エネルギーに対して大きな透過率を与えれば、検知素子
の(検知面の)法線方向の検知エリアを縮小することが
できる。請求項2記載の発明によれば、表面荒さの異な
るすりガラス加工によって前記透過率の差を持たせたの
で、簡単な加工で済み、加工コストの削減を図ることが
できる。請求項3記載の発明によれば、請求項2記載の
発明において、すりガラス加工面を検知素子に対向する
面としたので、加工面を水滴や油から保護して透過率の
変動を回避できる。請求項4記載の発明によれば、請求
項1記載の発明において、透過波長帯域幅の異なる光学
波長フィルタを用いて前記透過率の差を持たせたので、
正確な透過率を得ることができ、検知エリアの変形精度
を向上できる。請求項5記載の発明によれば、請求項1
記載の発明において、前記領域は、同心円状の複数の領
域であるので、加工の容易化を図ることができる。請求
項6記載の発明によれば、請求項1記載の発明におい
て、前記領域は、同心円状の領域と楕円状の領域を含む
ので、透光部材の回転角度を変えて楕円状領域の向きを
変えることにより、検知エリアの形を変化させることが
できる。請求項7記載の発明によれば、請求項1記載の
発明において、前記領域は、帯状の領域であるりで、同
心円状や楕円状の領域に比べて加工の容易化を図ること
ができると共に、透光部材の回転角度を変えて帯状領域
の向きを変えることにより、検知エリアの形を変化させ
ることができる。請求項8記載の発明によれば、請求項
7記載の発明において、前記帯状の領域の少なくとも一
つを更に透過率の異なる複数の領域に分割するので、検
知エリアの形をきめ細かく変化させることができる。請
求項9記載の発明によれば、請求項1記載の発明におい
て、前記透光部材の中央部に位置する領域の透過率が最
低、前記透光部材の周縁部に位置する領域の透過率が最
大となるように設定するので、検知素子の(検知面の)
法線方向の赤外エネルギーを大きく減衰でき、遠距離側
の無用な検知エリアを小さくできる。請求項10記載の
発明によれば、請求項1記載の発明において、前記透光
部材の直径方向に沿って各領域の透過率が増大又は減少
変化するので、透過率最低の領域を検知エリアの近距離
部分に対応させれば、近距離部分からの赤外エネルギー
を大きく減衰でき、近距離側の無効検知エリアを小さく
できる。請求項11記載の発明によれば、透光部材を介
して入射する赤外エネルギーを電気信号に変換して出力
する検知素子を備えた炎検出装置において、前記検知素
子を二次元平面に複数個配列するとともに、中央付近の
検知素子の検知面サイズを周囲の検知素子の検知面サイ
ズより小さくしたので、入射角ゼロの赤外エネルギーに
対しては中央付近の検知素子によって小さな出力信号を
得ることができる一方、入射角の大きい赤外エネルギー
に対しては周囲の検知素子によって大きな出力信号を得
ることができ、透光部材の構造を変えることなく、請求
項1記載の発明と同等の効果が得られる。
According to the first aspect of the present invention, in the flame detecting device provided with the detecting element for converting the infrared energy incident through the light transmitting member into an electric signal and outputting the electric signal, the light transmitting member is provided. Since a plurality of regions are provided and the respective regions have different transmittances with respect to the infrared energy, the level of the electric signal can be changed with the transmittance corresponding to the incident angle of the infrared energy. By providing a large transmittance for infrared energy with a zero incident angle, the detection area in the normal direction (of the detection surface) of the detection element can be reduced. According to the invention described in claim 2, since the difference in the transmittance is provided by the frosted glass processing having different surface roughness, the simple processing is sufficient and the processing cost can be reduced. According to the third aspect of the present invention, in the second aspect of the present invention, since the ground glass processing surface is the surface facing the detection element, it is possible to protect the processing surface from water droplets or oil and avoid fluctuations in transmittance. According to the invention of claim 4, in the invention of claim 1, since the optical wavelength filters having different transmission wavelength bandwidths are used to provide the difference in the transmittance,
It is possible to obtain accurate transmittance and improve the deformation accuracy of the detection area. According to the invention of claim 5, claim 1
In the described invention, since the region is a plurality of concentric regions, it is possible to facilitate processing. According to the invention of claim 6, in the invention of claim 1, since the region includes a concentric region and an elliptical region, the direction of the elliptical region is changed by changing the rotation angle of the light transmitting member. By changing it, the shape of the detection area can be changed. According to the invention described in claim 7, in the invention described in claim 1, the region is a band-shaped region, which facilitates processing as compared with a concentric circle-shaped region or an elliptical region. The shape of the detection area can be changed by changing the rotation angle of the translucent member and changing the direction of the strip-shaped region. According to the invention of claim 8, in the invention of claim 7, at least one of the strip-shaped regions is further divided into a plurality of regions having different transmittances, so that the shape of the detection area can be finely changed. it can. According to a ninth aspect of the present invention, in the first aspect of the invention, the transmittance of the region located in the central portion of the translucent member is lowest and the transmittance of the region located in the peripheral portion of the translucent member is lower. Since it is set to the maximum, the sensing element (of the sensing surface)
The infrared energy in the normal direction can be greatly attenuated, and the unnecessary detection area on the far side can be reduced. According to the invention of claim 10, in the invention of claim 1, the transmittance of each region increases or decreases along the diametrical direction of the translucent member. If it corresponds to the short-distance portion, the infrared energy from the short-distance portion can be greatly attenuated, and the invalid detection area on the short-distance side can be reduced. According to an eleventh aspect of the present invention, in a flame detection device including a detection element that converts infrared energy incident through a light transmissive member into an electric signal and outputs the electric signal, a plurality of the detection elements are provided on a two-dimensional plane. In addition to arranging them, the sensing surface size of the sensing element near the center was made smaller than the sensing surface size of the surrounding sensing elements, so a small output signal can be obtained by the sensing element near the center for infrared energy with zero incident angle. On the other hand, for infrared energy having a large incident angle, a large output signal can be obtained by the surrounding detection elements, and the same effect as that of the invention of claim 1 can be obtained without changing the structure of the light transmitting member. can get.

【図面の簡単な説明】[Brief description of drawings]

【図1】炎検出装置の構成図である。FIG. 1 is a configuration diagram of a flame detection device.

【図2】実施形態の透光部材の構造図である。FIG. 2 is a structural diagram of a translucent member of the embodiment.

【図3】図2の透光部材を用いた場合の検知素子の信号
強度を示す図である。
FIG. 3 is a diagram showing a signal intensity of a detection element when the translucent member of FIG. 2 is used.

【図4】図2の透光部材を備えた炎検出装置の検知エリ
アを示す図である。
FIG. 4 is a diagram showing a detection area of a flame detection device including the light transmissive member of FIG.

【図5】図4の検知エリアを実際の火災監視対象に適用
した場合の図である。
FIG. 5 is a diagram when the detection area of FIG. 4 is applied to an actual fire monitoring target.

【図6】第一の変形例に係る透光部材の構造図である。FIG. 6 is a structural diagram of a transparent member according to a first modification.

【図7】第二の変形例に係る透光部材の構造図である。FIG. 7 is a structural diagram of a transparent member according to a second modification.

【図8】第三の変形例に係る透光部材の構造図である。FIG. 8 is a structural diagram of a translucent member according to a third modification.

【図9】炎検出装置を斜めに取り付けた場合の検知エリ
アを横方向からみた図である。
FIG. 9 is a view of a detection area when the flame detection device is obliquely attached, as viewed from the lateral direction.

【図10】第四の変形例に係る透光部材の構造図であ
る。
FIG. 10 is a structural diagram of a translucent member according to a fourth modification.

【図11】実施形態並びに各変形例に適用して好ましい
透過率調節の具体的手法を示す図である。
FIG. 11 is a diagram showing a specific method of adjusting the transmittance, which is preferably applied to the embodiment and each modification.

【図12】炎検出装置と被検物との関係図である。FIG. 12 is a relationship diagram between a flame detection device and a test object.

【図13】従来の検知エリアを示す図である。FIG. 13 is a diagram showing a conventional detection area.

【図14】従来の検知エリアを実際の火災監視対象に適
用した場合の図である。
FIG. 14 is a diagram when a conventional detection area is applied to an actual fire monitoring target.

【図15】従来の検知エリアの不都合を説明する図であ
る。
FIG. 15 is a diagram illustrating a disadvantage of a conventional detection area.

【符号の説明】[Explanation of symbols]

23 透光部材 25 検知素子 33 透光部材 34 透光部材 35 透光部材 36 透光部材 37 透光部材 23a〜23c 領域 33a〜33c 領域 34a〜34c 領域 35a〜35c 領域 36a〜36f 領域 39、40 光学波長フィルタ 23 Translucent member 25 sensing elements 33 translucent member 34 translucent member 35 translucent member 36 translucent member 37 translucent member 23a-23c area 33a-33c area Areas 34a to 34c 35a-35c area Areas 36a to 36f 39, 40 Optical wavelength filter

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 透光部材を介して入射する赤外エネルギ
ーを電気信号に変換して出力する検知素子を備えた炎検
出装置において、 前記透光部材に複数の領域を設け、各々の領域の前記赤
外エネルギーに対する透過率に差を持たせたことを特徴
とする炎検出装置。
1. A flame detection device provided with a detection element for converting infrared energy incident through a translucent member into an electric signal and outputting the electric signal, wherein the translucent member is provided with a plurality of regions, and A flame detection device characterized in that the infrared energy has a different transmittance.
【請求項2】 表面荒さの異なるすりガラス加工によっ
て前記透過率の差を持たせたことを特徴とする請求項1
記載の炎検出装置。
2. The difference in transmittance is imparted by frosted glass processing having different surface roughness.
The flame detection device described.
【請求項3】 すりガラス加工面を検知素子に対向する
面としたことを特徴とする請求項2記載の炎検出装置。
3. The flame detection device according to claim 2, wherein the ground glass processing surface is a surface facing the detection element.
【請求項4】 透過波長帯域幅の異なる光学波長フィル
タを用いて前記透過率の差を持たせたことを特徴とする
請求項1記載の炎検出装置。
4. The flame detection device according to claim 1, wherein the transmittances are made different by using optical wavelength filters having different transmission wavelength bandwidths.
【請求項5】 前記領域は、同心円状の複数の領域であ
ることを特徴とする請求項1記載の炎検出装置。
5. The flame detection device according to claim 1, wherein the region is a plurality of concentric regions.
【請求項6】 前記領域は、同心円状の領域と楕円状の
領域を含むことを特徴とする請求項1記載の炎検出装
置。
6. The flame detection device according to claim 1, wherein the area includes a concentric area and an elliptical area.
【請求項7】 前記領域は、帯状の領域であることを特
徴とする請求項1記載の炎検出装置。
7. The flame detection device according to claim 1, wherein the region is a strip-shaped region.
【請求項8】 前記帯状の領域の少なくとも一つを更に
透過率の異なる複数の領域に分割することを特徴とする
請求項7記載の炎検出装置。
8. The flame detection device according to claim 7, wherein at least one of the strip-shaped regions is further divided into a plurality of regions having different transmittances.
【請求項9】 前記透光部材の中央部に位置する領域の
透過率が最低、前記透光部材の周縁部に位置する領域の
透過率が最大となるように設定することを特徴とする請
求項1記載の炎検出装置。
9. The transmittance is set to a minimum in a region located in the central portion of the translucent member and maximized in a region located in a peripheral portion of the translucent member. Item 1. The flame detection device according to item 1.
【請求項10】 前記透光部材の直径方向に沿って各領
域の透過率が増大又は減少変化することを特徴とする請
求項1記載の炎検出装置。
10. The flame detection device according to claim 1, wherein the transmittance of each region increases or decreases along the diameter direction of the translucent member.
【請求項11】 透光部材を介して入射する赤外エネル
ギーを電気信号に変換して出力する検知素子を備えた炎
検出装置において、 前記検知素子を二次元平面に複数個配列するとともに、
中央付近の検知素子の検知面サイズを周囲の検知素子の
検知面サイズより小さくしたことを特徴とする炎検出装
置。
11. A flame detection device provided with a detection element for converting infrared energy incident through a translucent member into an electric signal and outputting the electric signal, wherein a plurality of the detection elements are arranged in a two-dimensional plane, and
A flame detection device characterized in that the detection surface size of the detection element near the center is made smaller than the detection surface size of the surrounding detection elements.
JP2002125347A 2002-04-26 2002-04-26 Flame detector Expired - Fee Related JP3963355B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002125347A JP3963355B2 (en) 2002-04-26 2002-04-26 Flame detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002125347A JP3963355B2 (en) 2002-04-26 2002-04-26 Flame detector

Publications (2)

Publication Number Publication Date
JP2003317162A true JP2003317162A (en) 2003-11-07
JP3963355B2 JP3963355B2 (en) 2007-08-22

Family

ID=29540101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002125347A Expired - Fee Related JP3963355B2 (en) 2002-04-26 2002-04-26 Flame detector

Country Status (1)

Country Link
JP (1) JP3963355B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101071739B1 (en) 2009-07-06 2011-10-11 현대자동차주식회사 A infrared sensor apparutus adopted multi-divided detecting area for detecting vehicle temperature

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0546880A (en) * 1991-08-14 1993-02-26 Hochiki Corp Flame detector
JPH0643028A (en) * 1992-05-27 1994-02-18 Nippondenso Co Ltd Quantity of light detector
JPH08122144A (en) * 1994-10-27 1996-05-17 Murata Mfg Co Ltd Infrared detector
JP2000321132A (en) * 1999-05-14 2000-11-24 Kokusai Gijutsu Kaihatsu Kk Flame sensor
JP2002031571A (en) * 2000-07-14 2002-01-31 Hochiki Corp Flame detection device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0546880A (en) * 1991-08-14 1993-02-26 Hochiki Corp Flame detector
JPH0643028A (en) * 1992-05-27 1994-02-18 Nippondenso Co Ltd Quantity of light detector
JPH08122144A (en) * 1994-10-27 1996-05-17 Murata Mfg Co Ltd Infrared detector
JP2000321132A (en) * 1999-05-14 2000-11-24 Kokusai Gijutsu Kaihatsu Kk Flame sensor
JP2002031571A (en) * 2000-07-14 2002-01-31 Hochiki Corp Flame detection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101071739B1 (en) 2009-07-06 2011-10-11 현대자동차주식회사 A infrared sensor apparutus adopted multi-divided detecting area for detecting vehicle temperature

Also Published As

Publication number Publication date
JP3963355B2 (en) 2007-08-22

Similar Documents

Publication Publication Date Title
EP3724617B1 (en) Spectrometer device and system
US20200370958A1 (en) Spectrometer device and system
US8322191B2 (en) Enhanced cavity for a photoacoustic gas sensor
CN105122038B (en) open path gas detector
CN108460948B (en) Fire alarm with a measuring chamber and a circuit carrier for the joint arrangement of a fire sensor and at least one further sensor
JPH10123048A (en) Integrated sensor and method for detecting biochemical sample
RU2009127806A (en) FIBER OPTICAL TEMPERATURE SENSOR
CN107851355A (en) There is optical measurement chamber in alarm housing and be the scattered light smoke warner that the housing part locates minute surface on the inside of alarm cover
US9791366B2 (en) Gas detector, gas detection method and optical component
CN114910432A (en) Optical gas sensor with LED emitter for emitting light of narrow bandwidth
US6246045B1 (en) Reflected radiance sensors for detection of reflected radiation
US7772993B2 (en) Icing detector for detecting presence of ice in static air
US9188528B2 (en) Sensor for monitoring a medium
JP2003317162A (en) Flame detecting device
JP2007205920A (en) Multiple reflection type cell, and infrared type gas detector
RU129651U1 (en) GLASS PURITY SENSOR
US10114154B2 (en) Optical head for receiving light and optical system using the same
RU2516032C1 (en) Light-emitting module
JP4467933B2 (en) Refractometer
CN108709572A (en) A kind of integral type micro-displacement optical fiber sensing probe
US20190310186A1 (en) Gas sensor
JP6482912B2 (en) Infrared detector, radiation thermometer and human body detector
CN208383151U (en) A kind of integral type micro-displacement optical fiber sensing probe
JP2005122437A (en) Flame sensor
RU2555216C2 (en) Method of sun angular coordinates measurement and device to this end

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070518

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110601

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120601

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130601

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140601

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees