JP2003313612A - Process for producing grain-refined martensitic stainless steel and cutting tool using the stainless steel - Google Patents

Process for producing grain-refined martensitic stainless steel and cutting tool using the stainless steel

Info

Publication number
JP2003313612A
JP2003313612A JP2002120014A JP2002120014A JP2003313612A JP 2003313612 A JP2003313612 A JP 2003313612A JP 2002120014 A JP2002120014 A JP 2002120014A JP 2002120014 A JP2002120014 A JP 2002120014A JP 2003313612 A JP2003313612 A JP 2003313612A
Authority
JP
Japan
Prior art keywords
stainless steel
weight
grain
martensitic stainless
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002120014A
Other languages
Japanese (ja)
Inventor
Junji Imai
順二 今井
Tadashi Hamada
糾 濱田
Shinji Fujimoto
真司 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2002120014A priority Critical patent/JP2003313612A/en
Publication of JP2003313612A publication Critical patent/JP2003313612A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a process for producing a grain-refined martensitic stainless steel which has high strength and high corrosion resistance and is suitably used for manufacturing electric razors, hair clippers, etc., requiring sharp cutting edges, and a cutting tool using this stainless steel. <P>SOLUTION: A base material based on a composition of SUS420J2 is prepared, subjected to at least one process chosen from a high-density dislocation generation process and rapid solidification process, and further annealed to obtain a ferrite steel with fine metallic structure. Next, the ferrite steel is cold rolled, annealed, subjected to plastic working to yield a cutting tool of a predetermined shape, and further quenched to obtain the grain-refined martensitic stainless steel. By sharpening it through grinding/polishing, the cutting tool made of the grain-refined martensitic stainless steel can be obtained. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、鋭角の刃先を必要
とする電気カミソリやバリカン等への使用に好適な耐食
性に優れた結晶粒微細化マルテンサイト系ステンレス鋼
の製造方法、および同ステンレス鋼を用いた刃物に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a grain refined martensitic stainless steel having excellent corrosion resistance, which is suitable for use in an electric razor, a hair clipper, etc., which requires a sharp edge, and the same stainless steel. It relates to a knife using.

【0002】[0002]

【従来の技術】従来、電気カミソリやバリカン等の刃物
にはSUS420J2あるいはこれにMoを添加して耐
食性を向上させたステンレス鋼素材を鋳造、鍛造、熱間
圧延、冷間圧延の順に加工して得られる材料が使用され
ている。この材料は、焼鈍後には塑性成形性が高く、焼
入れをすることにより高強度、高硬度が得られるが、結
晶粒径が2〜10μm程度であり、分散する炭化物粒子
も1μm以上であるので、硬度がHvで600程度であ
り、耐力も最大で1.3GPa程度である。
2. Description of the Related Art Conventionally, for blades such as electric razors and hair clippers, SUS420J2 or a stainless steel material having Mo added thereto to improve corrosion resistance is cast, forged, hot rolled, and cold rolled in this order. The resulting material is used. This material has high plastic formability after annealing, and high strength and high hardness can be obtained by quenching, but the crystal grain size is about 2 to 10 μm, and the dispersed carbide particles are also 1 μm or more. The hardness is about 600 at Hv, and the proof stress is about 1.3 GPa at the maximum.

【0003】[0003]

【発明が解決しようとする課題】ところで、バリカンや
電気カミソリのように固定された網目状の刃で髪の毛や
髭のような被切断物を切断する場合は、刃に設けられた
開口への被切断物の導入率を高めるために開口率を上げ
る必要がある。しかし、開口率を上げることは刃物自体
の強度低下を招くので、開口率の増加は刃物材料の強度
改善と密接に関係する。
By the way, in the case of cutting an object to be cut such as hair or whiskers with a fixed mesh-like blade such as a hair clipper or an electric razor, an object to be cut into an opening provided in the blade is to be cut. It is necessary to increase the aperture ratio in order to increase the introduction rate of the cut product. However, increasing the aperture ratio leads to a reduction in the strength of the cutting tool itself, so increasing the opening ratio is closely related to improving the strength of the cutting material.

【0004】さらに、機械加工で鋭角な刃を作製しよう
とすると、刃先にたわみと塑性変形が生じ、刃先にバリ
が生じやすい。また、硬度が低く、結晶粒が粗大である
材料を用いて鋭利な刃先を有する刃物を作製する場合、
刃先の摩耗が大きく、また結晶粒の脱落に起因するチッ
ピングが問題となり、刃物寿命の短命化を招く。
Further, when an attempt is made to form a sharp-edged blade by machining, the blade edge is bent and plastically deformed, and burrs are easily generated at the blade edge. Further, when a blade having a sharp cutting edge is manufactured using a material having low hardness and coarse crystal grains,
The blade edge is largely worn, and chipping due to falling of crystal grains becomes a problem, leading to a shortened life of the blade.

【0005】このような背景において、SUS420J
2より硬度および強度が高く、耐食性を有する素材とし
てSUS440Cのような高炭素、高クロムステンレス
鋼を素材とすることも提案されるが、この材料は加工性
が乏しく、厚さ0.5mm以下の薄帯への加工や、電気
カミソリやバリカン等の複雑形状を有する刃物への成形
加工が困難であるため、比較的単純な形状を有するナイ
フ等への応用に限定されているのが現状である。
Against this background, SUS420J
It is also proposed to use high carbon, high chromium stainless steel such as SUS440C as a material having hardness and strength higher than 2, and corrosion resistance, but this material is poor in workability and has a thickness of 0.5 mm or less. Since it is difficult to process thin strips and molding tools with complicated shapes such as electric razors and hair clippers, it is currently limited to applications such as knives with relatively simple shapes. .

【0006】[0006]

【課題を解決するための手段】そこで、本発明の目的と
するところは、SUS420J2組成をベースとする素
材に高密度転位導入法および超急冷凝固法の少なくとも
一方と、その後の焼鈍、塑性加工、焼入れ処理を含む一
連のプロセスを実施することによって、高強度、高耐食
性を有し、鋭角の刃先を必要とする電気カミソリやバリ
カン等への使用に好適な結晶粒微細化マルテンサイト系
ステンレス鋼の製造方法を提供することにある。
Therefore, an object of the present invention is to provide a material based on SUS420J2 composition with at least one of a high-density dislocation introduction method and an ultra-rapid quenching solidification method, followed by annealing, plastic working, By carrying out a series of processes including quenching treatment, it has high strength, high corrosion resistance, and has a grain refined martensitic stainless steel suitable for use in electric razors, hair clippers, etc. that require sharp cutting edges. It is to provide a manufacturing method.

【0007】すなわち、本発明の結晶粒微細化マルテン
サイト系ステンレス鋼の製造方法は、Cr:13.0〜
14.0重量%、Mo:1.15〜1.35重量%、
C:0.35〜0.55重量%、Si:0.20〜0.
50重量%、Mn:0.20〜0.50重量%、P:
0.025重量%以下、S:0.020重量%以下、残
部:Fe及び不可避な不純物元素からなる組成を有する
基材を作製する工程と、この基材に高密度転位導入法お
よび超急冷凝固法の少なくとも一方を施した後、焼鈍処
理して微細組織フェライト鋼を得る工程と、前記フェラ
イト鋼に冷間圧延、焼鈍、必要に応じて所定形状への塑
性加工を施した後、焼入れ処理して結晶粒微細化マルテ
ンサイト系ステンレス鋼を得る工程とを含むことを特徴
とする。
That is, the method for producing a grain-refined martensitic stainless steel of the present invention is Cr: 13.0-
14.0% by weight, Mo: 1.15 to 1.35% by weight,
C: 0.35 to 0.55% by weight, Si: 0.20 to 0.
50% by weight, Mn: 0.20 to 0.50% by weight, P:
0.025% by weight or less, S: 0.020% by weight or less, balance: Fe, and a step of producing a base material having a composition consisting of unavoidable impurity elements, and a method of introducing high-density dislocations and ultra-rapid solidification into the base material. After applying at least one of the method, a step of annealing to obtain a microstructured ferritic steel, and cold rolling, annealing, and if necessary, subjecting the ferritic steel to plastic working to a predetermined shape, and then quenching. And a step of obtaining a grain refined martensitic stainless steel.

【0008】そして、得られた上記結晶粒微細化マルテ
ンサイト系ステンレス鋼に研削/研磨による刃付け加工
を施すことで、刃に設けた複数の開口への髭や髪の毛の
ような被切断物の導入率(開口率)を高めることができ、
刃先が鋭利であるにもかかわらず長期にわたって良好な
切れ味が維持される寿命の長い結晶粒微細化マルテンサ
イト系ステンレス鋼製の刃物を提供することができる。
この場合、結晶粒微細化マルテンサイト系ステンレス鋼
の結晶粒径は1μm未満であることが特に好ましい。
Then, the obtained grain refined martensitic stainless steel is subjected to a edging process by grinding / polishing to obtain an object to be cut such as a beard or a hair in a plurality of openings provided in the blade. The introduction rate (aperture ratio) can be increased,
It is possible to provide a blade made of grain refined martensitic stainless steel having a long life, which maintains good sharpness for a long period of time even though the blade edge is sharp.
In this case, the crystal grain size of the grain refined martensitic stainless steel is particularly preferably less than 1 μm.

【0009】本発明のより好ましい実施形態として、上
記基材は、Cr:13.0〜14.0重量%、Mo:
1.15〜1.35重量%、C:0.35〜0.55重
量%、Si:0.20〜0.50重量%、Mn:0.2
0〜0.50重量%、P:0.025重量%以下、S:
0.020重量%以下、Ti:2.2重量%以下、Z
r:4.15重量%以下、Nb:4.25重量%以下、
残部:Fe及び不可避な不純物元素からなり、C量を"
a"とし、Ti量を"b"とし、Zr量を"c"とし、Nb
量を"d"で表す場合に、以下の関係: b+c+d≧0.2重量%、 b/4+c/7.6+d/7.7≦a を満足する基材であることが好ましい。
In a more preferred embodiment of the present invention, the base material is Cr: 13.0 to 14.0% by weight, Mo:
1.15 to 1.35% by weight, C: 0.35 to 0.55% by weight, Si: 0.20 to 0.50% by weight, Mn: 0.2
0 to 0.50% by weight, P: 0.025% by weight or less, S:
0.020 wt% or less, Ti: 2.2 wt% or less, Z
r: 4.15 wt% or less, Nb: 4.25 wt% or less,
Balance: Fe and unavoidable impurity elements
a ", Ti amount" b ", Zr amount" c ", Nb
When the amount is represented by "d", it is preferable that the substrate satisfies the following relationships: b + c + d ≧ 0.2% by weight, b / 4 + c / 7.6 + d / 7.7 ≦ a.

【0010】また、高密度転位導入法および超急冷凝固
法の少なくとも一方を実施するに先立って、上記組成を
有する基材としての鋳塊に鍛造および展伸加工の少なく
と一方を施すことが好ましい。
Further, prior to carrying out at least one of the high-density dislocation introduction method and the ultra-rapid solidification method, it is preferable to subject the ingot as a base material having the above composition to at least one of forging and stretching. .

【0011】また、上記高密度転位導入法で導入する転
位密度が1010/cm3以上であることが好ましい。こ
の場合は、上記高密度転位導入法としては、ECAE法
(Equal-Channel Angular Extrusion)もしくはARB法
(Accumulative Roll-Bonding)により8以上の歪み量を
上記基材に提供することが特に好ましい。尚、加工中に
導入した転位が除去されないように、高密度転位導入法
における加工温度を500℃以下とすることが好まし
い。
It is preferable that the dislocation density introduced by the high density dislocation introduction method is 10 10 / cm 3 or more. In this case, the ECAE method is used as the high density dislocation introduction method.
(Equal-Channel Angular Extrusion) or ARB method
It is particularly preferable to provide the substrate with a strain amount of 8 or more by (Accumulative Roll-Bonding). The processing temperature in the high density dislocation introduction method is preferably 500 ° C. or less so that the dislocations introduced during processing are not removed.

【0012】上記方法において、超急冷凝固法を実施す
る場合は、その際の冷却速度を10℃/秒以上とするこ
とが好ましい。また、超急冷凝固法として、回転ロール
法を採用する場合は、ロール周速を0.1m/秒以上と
することが好ましい。さらに、超急冷凝固法として、水
冷銅鋳型鋳造法を採用する場合は、鋳込み面間隔を5m
m以下とすることが好ましい。
In the above method, when the ultra-rapid solidification method is carried out, the cooling rate at that time is preferably 10 ° C./second or more. When the rotating roll method is adopted as the ultra-rapid solidification method, the roll peripheral speed is preferably 0.1 m / sec or more. Furthermore, when adopting a water-cooled copper mold casting method as the super rapid solidification method, the casting surface interval is 5 m.
It is preferably m or less.

【0013】また、超急冷凝固法と高密度転位導入法の
両方を実施する場合は、超急冷凝固法で得られた0.5
mm以上の板材を焼鈍した後、高密度転位導入法を実施
することが好ましい。あるいは、超急冷凝固法で得られ
た0.5mm未満の薄帯を分断して薄帯を作製し、この
薄帯を700℃以下の放電プラズマス焼結法で焼結して
焼結体を作製し、この焼結体に高密度転位導入法を実施
することが好ましい。さらに、超急冷凝固法で得られた
0.5mm未満の薄帯を分断して薄帯を作製し、この薄
帯を金属カプセルに充填した後、高密度転位導入法とし
てECAE法を施すことも好ましい。
When both the ultra-rapid solidification method and the high-density dislocation introduction method are carried out, 0.5 obtained by the ultra-rapid solidification method is used.
It is preferable to perform the high-density dislocation introduction method after annealing the plate material having a size of mm or more. Alternatively, a ribbon having a diameter of less than 0.5 mm obtained by the ultra rapid solidification method is divided to produce a ribbon, and the ribbon is sintered by a discharge plasma sintering method at 700 ° C. or less to obtain a sintered body. It is preferable that the sintered body is produced and subjected to a high density dislocation introduction method. Further, a ribbon having a thickness of less than 0.5 mm obtained by the ultra-rapid solidification method may be divided to produce a ribbon, which may be filled in a metal capsule and then subjected to the ECAE method as a high-density dislocation introduction method. preferable.

【0014】尚、上記方法において、所定形状への塑性
加工前の焼鈍を650〜750℃の温度で実施すること
が好ましい。
In the above method, it is preferable that the annealing before plastic working into a predetermined shape is carried out at a temperature of 650 to 750 ° C.

【0015】本発明のさらなる目的および長所は、添付
の図面を参照しながら、以下の発明の好ましい実施形態
に基づいてより明確に理解されるだろう。
Further objects and advantages of the present invention will be more clearly understood based on the following preferred embodiments of the invention with reference to the accompanying drawings.

【0016】[0016]

【発明の実施の形態】以下、本発明の結晶粒微細化マル
テンサイト系ステンレス鋼の製造方法を詳細に説明す
る。
BEST MODE FOR CARRYING OUT THE INVENTION The method for producing a grain refined martensitic stainless steel of the present invention will be described in detail below.

【0017】本発明においては、SUS420J2の組
成をベースに、基材原料を、Cr:13.0〜14.0
重量%、Mo:1.15〜1.35重量%、C:0.3
5〜0.55重量%、Si:0.20〜0.50重量
%、Mn:0.20〜0.50重量%、P:0.025
重量%以下、S:0.020重量%以下、残部:Fe及
び不可避な不純物元素からなる組成となるように秤量、
溶融、鋳込んで素材鋳塊を作製する。
In the present invention, the base material is made of Cr: 13.0 to 14.0 based on the composition of SUS420J2.
% By weight, Mo: 1.15 to 1.35% by weight, C: 0.3
5 to 0.55% by weight, Si: 0.20 to 0.50% by weight, Mn: 0.20 to 0.50% by weight, P: 0.025
Wt% or less, S: 0.020 wt% or less, balance: Fe and weighed so as to have a composition consisting of unavoidable impurity elements,
A material ingot is prepared by melting and casting.

【0018】次いで、高密度転位導入法および超急冷凝
固法の少なくとも一方を実施する。超急冷凝固法を採用
する場合は、鋳込む前の溶融素材をそのまま10℃/秒
以上の冷却速度で超急冷凝固法により加工することが好
ましい。また、高密度転位導入法を採用する場合は、鋳
塊を鍛造、熱間展伸加工した後、1010/cm3以上の
高転位密度で転位が導入されるように高密度転位導入法
を実施することが好ましい。あるいは、鋳込む前の溶融
素材をそのまま1℃/秒以上の冷却速度で超急冷凝固法
により加工し、必要に応じて焼鈍、成形(焼結、カプセ
ル充填)した後、1010/cm3以上の高転位密度で転位
が導入されるように高密度転位導入法を実施しても良
い。
Next, at least one of the high density dislocation introduction method and the ultra-rapid solidification method is carried out. When adopting the ultra-rapid solidification method, it is preferable to process the molten material before casting by the ultra-rapid solidification method as it is at a cooling rate of 10 ° C./sec or more. When adopting the high-density dislocation introduction method, the high-density dislocation introduction method is applied so that the dislocations are introduced at a high dislocation density of 10 10 / cm 3 or more after forging the ingot and hot stretching. It is preferably carried out. Alternatively, the molten material before being cast is directly processed by the ultra-rapid solidification method at a cooling rate of 1 ° C / sec or more, and if necessary, annealed and formed (sintering, capsule filling), then 10 10 / cm 3 or more The high density dislocation introduction method may be carried out so that the dislocations are introduced at a high dislocation density.

【0019】高密度転位導入法および超急冷凝固法の少
なくとも一方を施した後、焼鈍(再結晶処理)を実施する
ことにより結晶粒径1μm未満の微細組織フェライト鋼
が得られる。このフェライト鋼に冷間圧延、焼鈍、所望
の形状への塑性加工を施した後、焼入れ処理すれば本発
明の結晶粒微細化マルテンサイト系ステンレス鋼が得ら
れる。そして、これに研削/研磨による刃付け加工を施
すことでマルテンサイト系ステンレス鋼製の刃物を得る
ことができる。
After performing at least one of the high-density dislocation introduction method and the ultra-rapid solidification method, annealing (recrystallization treatment) is performed to obtain a microstructured ferritic steel having a grain size of less than 1 μm. The grain refined martensitic stainless steel of the present invention can be obtained by subjecting this ferritic steel to cold rolling, annealing, plastic working into a desired shape, and then quenching treatment. Then, a cutting tool made of martensite stainless steel can be obtained by subjecting this to grinding / polishing.

【0020】例えば、上記のようにして得られたフェラ
イト鋼に冷間圧延、焼鈍、刃物形状への塑性加工を施し
た後、これを所定の形状(厚さ、幅)まで冷間圧延し、再
度焼鈍して延性を確保する。こうして得られる薄帯をプ
レス加工等の塑性加工法で刃物形状に成形し、焼入れ処
理を行うことで微細な結晶粒(≦1μm)を有するマルテ
ンサイト系ステンレス鋼が得られる。このようにして得
られた結晶粒微細化マルテンサイト系ステンレス鋼に研
削や研磨等により刃付け加工を施せば、所定の形状を有
する刃物を得ることができる。
For example, the ferritic steel obtained as described above is cold-rolled, annealed, plastically worked into a blade shape, and then cold-rolled to a predetermined shape (thickness, width), Anneal again to ensure ductility. The thin strip thus obtained is formed into a blade shape by a plastic working method such as press working, and is subjected to a quenching treatment to obtain a martensitic stainless steel having fine crystal grains (≦ 1 μm). A blade having a predetermined shape can be obtained by subjecting the crystal grain-refining martensitic stainless steel thus obtained to a cutting process such as grinding or polishing.

【0021】上記したように、SUS420J2をベー
ス組成とした鋳塊を溶融し、回転ロール法もしくは水冷
銅鋳型連続鋳造法に基づき10℃/秒以上の冷却速度で
超急冷凝固させ、その後焼鈍処理を実施する場合は、結
晶粒径1μm未満、分散炭化物粒子径0.1μm未満の
フェライト組織を安定して得ることができる。そして、
これをそのまま、あるいは冷間圧延、焼鈍した後、焼入
れ処理すると結晶粒径1μm未満のマルテンサイト組織
が得られる。これらの操作により得られる材料の耐力は
1.6GPa以上、硬度はHvで800以上になる。こ
のような材料で刃物を作成する場合、電気カミソリやバ
リカン用刃物の開口率の向上が図れるので髪の毛や髭な
どの被切断物の導入を高くすることができると共に、刃
先の鋭利化、長寿命化を図ることができる。
As described above, the ingot having SUS420J2 as a base composition is melted, and is rapidly quenched and solidified at a cooling rate of 10 ° C./sec or more based on the rotating roll method or the water-cooled copper mold continuous casting method, and then annealed. When carrying out, a ferrite structure having a crystal grain size of less than 1 μm and a dispersed carbide grain size of less than 0.1 μm can be stably obtained. And
A martensite structure having a crystal grain size of less than 1 μm is obtained by subjecting this to a quenching treatment as it is, or after cold rolling and annealing. The yield strength of the material obtained by these operations is 1.6 GPa or more, and the hardness is 800 or more in Hv. When making knives with such materials, it is possible to improve the opening ratio of electric razors and cutting tools for hair clippers, so it is possible to increase the introduction of cut objects such as hair and beard, sharpen the cutting edge, and have a long life. Can be realized.

【0022】10℃/秒の冷却速度を回転ロール法で得
るためには、回転ロールの周速を0.1m/秒もしくは
それ以上とすることが好ましい。また、水冷銅鋳型連続
鋳造法の場合は、銅鋳型の面間隔の小さい方を5mm以
下とすることが必要である。尚、冷却速度が10℃/秒
よりも遅くなると、結晶生成核の生成間隔が大きくな
り、最終的に得られるマルテンサイト結晶粒が1μm以
上になる恐れがある。
In order to obtain a cooling rate of 10 ° C./sec by the rotating roll method, it is preferable that the peripheral speed of the rotating roll is 0.1 m / sec or higher. Further, in the case of the water-cooled copper mold continuous casting method, it is necessary that the smaller surface distance of the copper mold is 5 mm or less. When the cooling rate is slower than 10 ° C./sec, the production interval of the crystal production nuclei becomes large, and the finally obtained martensite crystal grains may be 1 μm or more.

【0023】また、SUS420J2をベース組成とす
る鋳塊を鍛造し、熱間展伸加工し、焼鈍した素材をEC
AE法やARB法のような高密度転位導入法により10
10/cm3以上の密度で転位を導入し、その後に焼鈍(再
結晶化処理)することで結晶粒径1μm未満のフェライ
ト組織を得ることができる。これらの操作により得られ
る材料の耐力は、1.6GPa以上、硬度はHvで80
0以上になる。このような材料で刃物を作成する場合、
電気カミソリやバリカン用刃物の開口率の向上が図れる
ので髪の毛や髭などの被切断物の導入を高くすることが
できると共に、刃先の鋭利化、長寿命化を図ることがで
きる。
Further, the ingot having a base composition of SUS420J2 is forged, hot-expanded, and annealed to obtain an EC material.
10 by high density dislocation introduction method such as AE method and ARB method
A ferrite structure having a crystal grain size of less than 1 μm can be obtained by introducing dislocations at a density of 10 3 / cm 3 or more and then annealing (recrystallization treatment). The yield strength of the material obtained by these operations is 1.6 GPa or more, and the hardness is 80 at Hv.
It becomes 0 or more. When making a tool with such materials,
Since the aperture ratio of an electric razor or a hair clipper can be improved, it is possible to increase the introduction of an object to be cut such as hair or beard, and to sharpen the blade and prolong the service life.

【0024】尚、1010/cm3以上の密度で転位を導
入する場合は、ECAE法もしくはARB法で8以上の
歪み量を導入することが好ましい。導入する転位密度が
10 10/cm3未満の場合は、焼鈍によりパイルアップ
して粒界を形成するのに1μm3のエリア分では不十分
で、最終的に得られるマルテンサイト結晶粒径が1μm
以上となる恐れがある。
Incidentally, 10Ten/ Cm3Guide dislocations with above density
When entering, the ECAE method or ARB method must be 8 or more
It is preferable to introduce a strain amount. The dislocation density to be introduced is
10 Ten/ Cm3If less than, pile up by annealing
1 μm to form grain boundaries3Area is not enough
And the grain size of the martensite crystal finally obtained is 1 μm.
There is a possibility that the above will be over.

【0025】また、超急冷凝固法で得られた素材に焼鈍
のみを実施、あるいは放電プラズマ焼結法で焼結、焼鈍
後、金属カプセルに充填した素材に高密度転位導入法を
施すことも好ましい。この場合は、結晶粒微細化に関し
ての相乗作用が働いて、得られる結晶粒は0.5μm以
下となり、最終焼入れ後の材料の耐力は1.8GPa以
上、硬度はHvで900以上になる。尚、焼結の際に通
常のホットプレスやHIPのような方法では、加熱時間
が長く、加熱温度が高くなるため、結晶粒成長、炭化物
の凝集粗大化を生じ、先に急冷凝固した効果が失われる
可能性が大きい。同様の理由で、放電プラズマ焼結の温
度が700℃を越えないようにすることが好ましい。
It is also preferable that the material obtained by the ultra-rapid solidification method is annealed only, or the material filled in the metal capsule is subjected to the high density dislocation introduction method after sintering and annealing by the discharge plasma sintering method. . In this case, a synergistic effect on crystal grain refinement works, resulting in a crystal grain of 0.5 μm or less, a proof stress of the material after final quenching of 1.8 GPa or more, and a hardness of 900 or more in Hv. In addition, in a method such as a normal hot press or HIP at the time of sintering, since the heating time is long and the heating temperature is high, crystal grain growth and agglomeration and coarsening of carbides occur, and the effect of rapid solidification is obtained. It is likely to be lost. For the same reason, it is preferable that the temperature of spark plasma sintering does not exceed 700 ° C.

【0026】ところで、素材の組成において、Cr:1
3.0〜14.0重量%、Mo:1.15〜1.35重
量%、C:0.35〜0.55重量%に制限する理由
は、耐食性の確保と、焼鈍後のプレス加工での塑性加工
性を確保するためである。また、さらなる添加元素とし
て、Ti:2.2重量%以下、Zr:4.15重量%以
下、Nb:4.25重量%以下を加え、C量を"a"と
し、Ti量を"b"とし、Zr量を"c"とし、Nb量を"
d"で表す場合に以下の関係: b+c+d≧0.2重量%、 b/4+c/7.6+d/7.7≦a を満すように素材を作製することが好ましく、この場合
は、通常のクロム炭化物より鋼中で炭化物を生成しやす
い元素であるTi、Zr、Nbを添加したことによる炭
化物生成の促進効果が得られると共に、より微細にそれ
ら炭化物を分散させることができる。この効果を安定し
て得るために、Ti、ZrおよびNbの合計量が0.2
重量%もしくはそれ以上となるように添加することが好
ましいのである。また、炭化物を形成する炭素量以上の
添加が必要ないこと、および加工性の劣化を防ぐ観点か
ら、b/4+c/7.6+d/7.7≦aなる条件を設
定している。さらに、厚さが0.5mm未満の試料では
ECAE法やARB法といった高密度転位導入法を実施
することが困難であるので、焼結やカプセル充填といっ
た方法を選択することが好ましい。
By the way, in the composition of the material, Cr: 1
The reason for limiting the content to 3.0 to 14.0% by weight, Mo: 1.15 to 1.35% by weight, and C: 0.35 to 0.55% by weight is to secure corrosion resistance and press working after annealing. This is for ensuring the plastic workability of. Further, as additional elements, Ti: 2.2% by weight or less, Zr: 4.15% by weight or less, Nb: 4.25% by weight or less are added, and the C amount is set to "a" and the Ti amount is "b". , Zr amount is "c", Nb amount is "
In the case of being represented by d ″, it is preferable to manufacture the material so as to satisfy the following relations: b + c + d ≧ 0.2% by weight, b / 4 + c / 7.6 + d / 7.7 ≦ a. The addition of Ti, Zr, and Nb, which are elements more likely to form carbides in steel than chromium carbides, has the effect of promoting the formation of carbides, and more finely disperse these carbides. Therefore, the total amount of Ti, Zr and Nb is 0.2
It is preferable to add it so as to be in a weight% or more. Further, from the viewpoint that it is not necessary to add more than the amount of carbon forming a carbide and the deterioration of workability is prevented, the condition of b / 4 + c / 7.6 + d / 7.7 ≦ a is set. Further, since it is difficult to carry out the high density dislocation introduction method such as the ECAE method or the ARB method with the sample having the thickness of less than 0.5 mm, it is preferable to select the method such as sintering or capsule filling.

【0027】また、高密度転位導入法を採用する場合
は、加工温度は500℃を越えないことが望ましい。5
00℃を越える場合は、加工中に転位の除去作用が生じ
るので、十分な転位密度を確保することが困難になる恐
れがある。さらに、焼鈍温度は650〜750℃の範囲
内に設定することが望ましい。焼鈍温度が650℃未満
では、加工歪みの除去が十分でなく、加工性の劣化に繋
がる恐れがある。また、焼鈍温度が750℃を越える
と、結晶粒が粗大化する恐れがある。
When the high density dislocation introduction method is adopted, it is desirable that the processing temperature does not exceed 500 ° C. 5
If the temperature exceeds 00 ° C, dislocation removal action occurs during processing, and it may be difficult to secure a sufficient dislocation density. Further, the annealing temperature is preferably set within the range of 650 to 750 ° C. If the annealing temperature is lower than 650 ° C, the work strain is not sufficiently removed, which may lead to deterioration of workability. If the annealing temperature exceeds 750 ° C, the crystal grains may become coarse.

【0028】このように、本発明によれば、結晶粒径が
1μm以下で、高強度を有する結晶粒微細化マルテンサ
イト系ステンレス鋼を用いて、高開口率、鋭利刃先、長
寿命の特性を備えた刃物を製造することができる。
As described above, according to the present invention, by using the grain refined martensitic stainless steel having a grain size of 1 μm or less and high strength, the characteristics of high aperture ratio, sharp edge and long life are obtained. It is possible to manufacture a provided cutting tool.

【0029】具体例に基づいて、本発明の結晶粒微細化
マルテンサイト系ステンレス鋼の製造方法をより詳細に
説明する。
The method for producing the grain refined martensitic stainless steel of the present invention will be described in more detail based on specific examples.

【0030】Cr:13.5重量%、Mo:1.25重
量%、C:0.40重量%、Si:0.25重量%、M
n:0.25重量%、P:0.025重量%以下、S:
0.020重量%以下、残部:Fe及び不可避な不純物
元素となるように原料を秤量し、それを攪拌しながら、
加熱、溶融して断面形状が□15x40mmの銅鋳型に
鋳込んで素材鋳塊を作製する。この素材を0.05MP
aのArガス雰囲気中で断面形状が□4x25mmの水
冷銅鋳型に連続鋳造することにより20℃/秒の冷却速
度が得られる。
Cr: 13.5% by weight, Mo: 1.25% by weight, C: 0.40% by weight, Si: 0.25% by weight, M
n: 0.25% by weight, P: 0.025% by weight or less, S:
0.020% by weight or less, the balance: Fe and the unavoidable impurity elements are weighed so that the raw materials are weighed and stirred,
A material ingot is produced by heating and melting and casting into a copper mold having a cross section of □ 15 × 40 mm. This material is 0.05MP
A cooling rate of 20 ° C./sec is obtained by continuously casting in a water-cooled copper mold having a cross-sectional shape of □ 4 × 25 mm in the Ar gas atmosphere of a.

【0031】このように急冷して得た板材を700℃、
300秒間加熱、焼鈍した後、4x20x90mmの角
柱状に加工してステンレス素材を得る。次いで、図1に
示すように、この加工用のステンレス素材1をL字型の
押出し経路を有するECAE加工用金型2にセットし、
350℃に加熱して矢印で示す方向にプランジャー3を
移動させて押出し加工(ECAE法)する。このECAE
法を10回繰り返すことにより歪み量10まで到達させ
る。これにより、転位密度は2x1011/cm 3にもな
る。
The plate material obtained by quenching in this way is 700 ° C.
After heating and annealing for 300 seconds, the corner of 4x20x90mm
It is processed into a pillar shape to obtain a stainless material. Then, in FIG.
As shown, the stainless steel material 1 for this processing is
Set it in the ECAE processing mold 2 that has an extrusion path,
Heat to 350 ° C and move the plunger 3 in the direction shown by the arrow.
It is moved and extruded (ECAE method). This ECAE
By repeating the method 10 times, the strain amount reaches 10
It As a result, the dislocation density is 2 × 10.11/ Cm 3Nina
It

【0032】この後、素材を700℃、300秒間加
熱、焼鈍、再結晶化させる。これにより、粒径0.5μ
m、分散炭化物粒子径0.05μmのフェライト鋼が得
られる。これを厚さ0.04mmまで冷間圧延し、さら
に700℃で30秒間加熱、焼鈍して得られた薄帯を1
050℃、30秒間加熱した後、10℃/秒の冷却速度
で冷却する焼入れ処理を実施すれば、粒径0.4μm、
分散炭化物粒子径0.05μmのマルテンサイト系ステ
ンレス鋼が得られる。このマルテンサイト系ステンレス
鋼の耐力は1.8GPaであり、硬度はHvで900に
もなる。
After that, the material is heated at 700 ° C. for 300 seconds, annealed, and recrystallized. As a result, the particle size is 0.5μ
m, a ferritic steel having a dispersed carbide particle size of 0.05 μm is obtained. This was cold-rolled to a thickness of 0.04 mm, further heated at 700 ° C. for 30 seconds and annealed to obtain a strip 1
After heating at 050 ° C. for 30 seconds and then performing a quenching treatment of cooling at a cooling rate of 10 ° C./second, a particle size of 0.4 μm
A martensitic stainless steel having a dispersed carbide particle size of 0.05 μm can be obtained. This martensitic stainless steel has a yield strength of 1.8 GPa and a hardness of 900 Hv.

【0033】例えば、図2に示すように、焼入れ前の薄
帯24を刃成形プレス金型(30,31)を用いてプレス
加工して所定のカミソリ刃形状にした後、1050℃、
30秒間加熱後、10℃/秒で冷却する焼入れ処理34
を実施し、さらに砥石32等を使用して研削/研磨によ
り刃付け工程を行えば、本発明に基づいて製造されたマ
ルテンサイト系ステンレス鋼製の刃物35を得ることが
できる。
For example, as shown in FIG. 2, the thin strip 24 before quenching is pressed using a blade forming press die (30, 31) to obtain a predetermined razor blade shape, and then at 1050 ° C.
Quenching treatment of heating for 30 seconds and cooling at 10 ° C./second 34
And a blade attaching step by grinding / polishing using the grindstone 32 or the like, a blade 35 made of martensitic stainless steel manufactured according to the present invention can be obtained.

【0034】(実施例)以下に本発明の結晶粒微細化マ
ルテンサイト系ステンレス鋼の製造方法および同ステン
レス鋼を用いた刃物の実施例を示す。尚、これらの実施
例は本発明を限定するように解釈されるべきではない。
(Examples) Hereinafter, examples of the method for producing a grain-refined martensitic stainless steel of the present invention and an example of a blade using the stainless steel will be described. However, these examples should not be construed as limiting the invention.

【0035】(実施例1)Cr:13.5重量%、M
o:1.25重量%、C:0.40重量%、Si:0.
25重量%、Mn:0.25重量%、残部:Feとなる
ように原料を秤量し、それを攪拌しながら、加熱、溶融
して断面形状が□15x40mmの銅鋳型に鋳込んで、
素材鋳塊を作製した。尚、上記素材中のPは0.025
重量%以下であり、Sは0.020重量%以下であっ
た。
(Example 1) Cr: 13.5% by weight, M
o: 1.25% by weight, C: 0.40% by weight, Si: 0.
25% by weight, Mn: 0.25% by weight, the balance: Fe is weighed so that it is heated and melted while stirring and cast into a copper mold having a cross section of □ 15 × 40 mm,
A raw ingot was prepared. In addition, P in the above material is 0.025
The content was S or less and the content of S was 0.020 or less.

【0036】次いで、図3に示すように、この素材を高
周波加熱装置7により溶解し、溶融素材10を0.05
MPaのArガス雰囲気中で断面形状が□4x25mm
の水冷銅鋳型13に連続鋳造した。この時の冷却速度は
20℃/秒であった。尚、図3中、番号8は噴射ノズル
を、番号9はArボンベを、番号14は水冷銅鋳型13
に設けられた水冷用水路をそれぞれ示す。これにより、
水冷銅鋳型13下部から急冷された薄帯11が得られ
る。
Next, as shown in FIG. 3, this material is melted by the high frequency heating device 7, and the molten material 10 is melted to 0.05%.
Cross-sectional shape is □ 4x25mm in Ar gas atmosphere of MPa
The water-cooled copper mold 13 was continuously cast. The cooling rate at this time was 20 ° C./sec. In FIG. 3, numeral 8 is an injection nozzle, numeral 9 is an Ar cylinder, and numeral 14 is a water-cooled copper mold 13.
The water-cooling canals provided in each are shown. This allows
From the lower part of the water-cooled copper mold 13, the quenched ribbon 11 is obtained.

【0037】この薄帯を700℃、300秒間加熱、焼
鈍した後、4x20x90mmの角柱状に機械加工し
た。これを図1に示すL字型の押出し経路(屈曲角=9
0°)を有するECAE加工用金型2にセットし、35
0℃に加熱してECAE法により押出し加工した。この
ECAE加工を10回繰り返すことにより歪み量10ま
で到達させた。この時の転位密度は2x1011/cm3
に達する。
The thin strip was heated at 700 ° C. for 300 seconds, annealed, and then machined into a prism of 4 × 20 × 90 mm. This is the L-shaped extrusion path shown in Fig. 1 (bending angle = 9
Set it to the ECAE processing mold 2 having 0 °), and
It was heated at 0 ° C. and extruded by the ECAE method. This ECAE processing was repeated 10 times to reach a strain amount of 10. The dislocation density at this time is 2 × 10 11 / cm 3
Reach

【0038】この後、素材を700℃、300秒間加
熱、焼鈍して再結晶化させた。これにより、粒径0.5
μm、分散炭化物粒子径0.05μmのフェライト鋼素
材を得た。これを厚さ0.04mmまで冷間圧延し、さ
らに700℃で30秒間加熱、焼鈍して得られた薄帯を
1050℃、30秒間加熱した後、10℃/秒の冷却速
度で冷却する焼入れ処理を実施して、粒径0.4μm、
分散炭化物粒子径0.05μmのマルテンサイト系ステ
ンレス鋼を得た。このステンレス鋼の耐力は1.8GP
aであり、硬度はHvで900であった。
After that, the material was heated at 700 ° C. for 300 seconds and annealed to be recrystallized. This gives a particle size of 0.5
A ferritic steel material having a particle size of μm and a dispersed carbide particle size of 0.05 μm was obtained. This is cold-rolled to a thickness of 0.04 mm, further heated at 700 ° C for 30 seconds and annealed to obtain a thin strip, which is heated at 1050 ° C for 30 seconds, and then cooled at a cooling rate of 10 ° C / second. The particle size is 0.4 μm
A martensitic stainless steel having a dispersed carbide particle size of 0.05 μm was obtained. The yield strength of this stainless steel is 1.8 GP
The hardness was 900 in Hv.

【0039】また、電気カミソリ用外刃を製造するた
め、焼入れ前の薄帯を電気カミソリ外刃形状にプレス加
工する際に従来の外刃と同等の桟強度となるように桟幅
を従来の70%、刃先角度が60°になるようにしてプ
レス加工を施した。その後、1050℃、30秒間加熱
し、10℃/秒で冷却する焼入れ処理を施し、さらに研
削/研磨による刃付け工程を経て実施例1の電気カミソ
リ用外刃を得た。
Further, in order to manufacture the outer blade for electric razor, when the thin ribbon before quenching is pressed into the shape of the electric razor outer blade, the width of the conventional blade is made equal to that of the conventional outer blade. The press working was performed so that the blade edge angle was 70% and the blade edge angle was 60 °. After that, a quenching treatment of heating at 1050 ° C. for 30 seconds and cooling at 10 ° C./second was performed, and an outer blade for an electric razor of Example 1 was obtained through a blade attaching step by grinding / polishing.

【0040】この外刃を評価したところ、開口率:58
%、開口への髭の導入率:70%、刃先R:0.2μm
であった。尚、転位密度を測定するために、塑性加工が
完了した鋼材を厚さ0.5mmにスライスした後、厚さ
0.1mm以下になるまで機械的研磨を施し、さらに電
解研磨にて厚さ2μmに加工してTEM観察試料とし
た。
When this outer blade was evaluated, the aperture ratio was 58.
%, Whisker introduction rate into opening: 70%, cutting edge R: 0.2 μm
Met. In addition, in order to measure the dislocation density, the steel material that has been plastically worked is sliced to a thickness of 0.5 mm, mechanically polished until the thickness becomes 0.1 mm or less, and further electrolytically polished to a thickness of 2 μm. Was processed into a TEM observation sample.

【0041】そして、TEM観察試料の厚さを確認した
後、TEMで10000倍にて転位網を観察、写真撮影
し、さらに試料を10°チルさせて(傾きを与えて)か
ら、再度、同じ場所の転位網を観察、写真撮影した。こ
の2枚のTEM写真および観察試料の厚さとから写真上
に1μmx1μmx2μmの空間を設定し、その空間内
部にある転位をカウントし、その体積で割ることにより
転位密度を求めた。
Then, after confirming the thickness of the TEM observation sample, the dislocation network was observed and photographed with a TEM at 10000 times, and the sample was chilled by 10 ° (tilting), and then the same. The dislocation network at the place was observed and photographed. A space of 1 μm × 1 μm × 2 μm was set on the photographs from the TEM photographs of these two sheets and the thickness of the observed sample, the dislocations inside the space were counted, and the dislocation density was obtained by dividing by the volume.

【0042】(実施例2)Cr:13.5重量%、M
o:1.25重量%、C:0.40重量%、Si:0.
25重量%、Mn:0.25重量%、Zr:3.0重量
%、残部:Feとなるように原料を秤量し、それを攪拌
しながら、加熱、溶融して断面形状が□15x40mm
の銅鋳型に鋳込んで、素材鋳塊を作製した。尚、上記素
材中のPは0.025重量%以下であり、Sは0.02
0重量%以下であった。
(Example 2) Cr: 13.5% by weight, M
o: 1.25% by weight, C: 0.40% by weight, Si: 0.
25% by weight, Mn: 0.25% by weight, Zr: 3.0% by weight, and the balance: Fe was weighed and heated with stirring while melting to obtain a cross-sectional shape of □ 15 × 40 mm.
The copper ingot was cast into a copper mold to produce a raw material ingot. In the above materials, P is 0.025% by weight or less and S is 0.02%.
It was 0% by weight or less.

【0043】この素材を図3に示すように、0.05M
PaのArガス雰囲気中で断面形状が□2x25mmの
水冷銅鋳型13に連続鋳造することにより50℃/秒の
冷却速度を得た。これにより、水冷銅鋳型13下部から
薄帯11が得られる。この薄帯を700℃、300秒間
加熱、焼鈍した後、2x20x90mmの角柱状に機械
加工した。
As shown in FIG. 3, this material is 0.05M
A cooling rate of 50 ° C./second was obtained by continuously casting in a water-cooled copper mold 13 having a cross section of □ 2 × 25 mm in an Ar gas atmosphere of Pa. Thereby, the ribbon 11 is obtained from the lower portion of the water-cooled copper mold 13. The thin strip was heated at 700 ° C. for 300 seconds, annealed, and then machined into a 2 × 20 × 90 mm prism.

【0044】これを図1に示すようなL字型の押出し経
路(屈曲角=90°)を有するECAE加工用金型2にセ
ットし、350℃に加熱してECAE法により押出し加
工した。このECAE加工を12回繰り返すことにより
歪み量10まで到達させた。この時の転位密度は2x1
12/cm3に達する。
This was set in an ECAE processing mold 2 having an L-shaped extrusion path (bending angle = 90 °) as shown in FIG. 1, heated at 350 ° C. and extruded by the ECAE method. This ECAE processing was repeated 12 times to reach a strain amount of 10. The dislocation density at this time is 2x1.
Reaching 0 12 / cm 3 .

【0045】この後、素材を700℃、300秒間加
熱、焼鈍して再結晶化させた。これにより、粒径0.1
μm、分散炭化物粒子径0.01μmのフェライト鋼素
材を得た。これを厚さ0.04mmまで冷間圧延し、さ
らに700℃で30秒間加熱、焼鈍して得られた薄帯を
1050℃、30秒間加熱した後、10℃/秒の冷却速
度で冷却する焼入れ処理を実施して粒径0.1μm、分
散炭化物粒子径0.01μmのマルテンサイト系ステン
レス鋼を得た。このステンレス鋼の耐力は2.4GPa
であり、硬度はHvで1100であった。
Thereafter, the material was heated at 700 ° C. for 300 seconds and annealed to be recrystallized. This gives a particle size of 0.1
A ferritic steel material having a particle diameter of μm and a dispersed carbide particle diameter of 0.01 μm was obtained. This is cold-rolled to a thickness of 0.04 mm, further heated at 700 ° C for 30 seconds and annealed to obtain a thin strip, which is heated at 1050 ° C for 30 seconds, and then cooled at a cooling rate of 10 ° C / second. By performing the treatment, a martensitic stainless steel having a particle size of 0.1 μm and a dispersed carbide particle size of 0.01 μm was obtained. The yield strength of this stainless steel is 2.4 GPa
And the hardness was 1100 in Hv.

【0046】また、電気カミソリ用外刃を製造するた
め、焼入れ前の薄帯を電気カミソリ外刃形状にプレス加
工する際に従来の外刃と同等の桟強度となるように桟幅
を従来の55%、刃先角度が20°になるようにしてプ
レス加工を施した。その後、1050℃、30秒間加熱
し、10℃/秒で冷却する焼入れ処理を実施し、研削、
研磨による刃付け工程を経て実施例2の電気カミソリ用
外刃を得た。この外刃を評価したところ、開口率:65
%、開口への髭の導入率:80%、刃先R:0.1μm
であった。
Further, in order to manufacture an outer blade for an electric razor, when a thin strip before hardening is pressed into a shape of an electric razor outer blade, the width of the conventional blade is made equal to that of the conventional outer blade. The press working was performed such that the blade edge angle was 55% at 20%. After that, a quenching process of heating at 1050 ° C. for 30 seconds and cooling at 10 ° C./second is performed, grinding,
An outer blade for an electric razor of Example 2 was obtained through a blade attaching step by polishing. When this outer blade was evaluated, the aperture ratio was 65.
%, Whisker introduction rate into opening: 80%, cutting edge R: 0.1 μm
Met.

【0047】(実施例3)Cr:13.5重量%、M
o:1.25重量%、C:0.40重量%、Si:0.
25重量%、Mn:0.25重量%、Ti:0.2重量
%、残部:Feとなるように原料を秤量し、それを攪拌
しながら、加熱、溶融して断面形状が□15x40mm
の銅鋳型に鋳込んで、素材鋳塊を作製した。尚、上記素
材中のPは0.025重量%以下であり、Sは0.02
0重量%以下であった。
(Example 3) Cr: 13.5% by weight, M
o: 1.25% by weight, C: 0.40% by weight, Si: 0.
25% by weight, Mn: 0.25% by weight, Ti: 0.2% by weight, balance: Fe was weighed so that the cross-sectional shape was □ 15 × 40 mm by heating and melting while stirring.
The copper ingot was cast into a copper mold to produce a raw material ingot. In the above materials, P is 0.025% by weight or less and S is 0.02%.
It was 0% by weight or less.

【0048】次いで、図4に示すように、この素材を高
周波加熱装置7により溶解し、0.05MPaのArガ
ス雰囲気中で、周速10m/秒で回転する銅ロール12
に雰囲気+0.05MPaの圧力で噴射ノズル8から溶
融素材10を噴射した、この時の冷却速度は100℃/
秒であった。この回転ロール法により、幅20mm、厚
さ0.1mmの薄帯11を得た。
Next, as shown in FIG. 4, this material is melted by a high frequency heating device 7 and is rotated in a 0.05 MPa Ar gas atmosphere at a peripheral speed of 10 m / sec.
The molten material 10 was injected from the injection nozzle 8 at a pressure of the atmosphere +0.05 MPa, and the cooling rate at this time was 100 ° C /
It was seconds. By this rotation roll method, a thin strip 11 having a width of 20 mm and a thickness of 0.1 mm was obtained.

【0049】この薄帯を700℃、60秒間加熱、焼鈍
した後、厚さ0.04mmまで冷間圧延し、700℃、
30秒間加熱、焼鈍した。こうして得られた薄帯をさら
に1050℃、30秒間加熱した後、10℃/秒の冷却
速度で冷却する焼入れ処理を実施して粒径0.5μm、
分散炭化物粒子径0.01μmのマルテンサイト系ステ
ンレス鋼を得た。このステンレス鋼の耐力は1.7GP
aであり、硬度はHvで850であった。
This ribbon was heated at 700 ° C. for 60 seconds and annealed, and then cold-rolled to a thickness of 0.04 mm, and 700 ° C.
It was heated and annealed for 30 seconds. The ribbon thus obtained is further heated at 1050 ° C. for 30 seconds and then subjected to a quenching treatment of cooling at a cooling rate of 10 ° C./second to obtain a particle diameter of 0.5 μm.
A martensitic stainless steel having a dispersed carbide particle size of 0.01 μm was obtained. The yield strength of this stainless steel is 1.7 GP
The hardness was 850 in Hv.

【0050】また、電気カミソリ用外刃を製造するた
め、焼入れ前の薄帯を電気カミソリ外刃形状にプレス加
工する際に従来の外刃と同等の桟強度となるように桟幅
を従来の75%、刃先角度が45°になるようにしてプ
レス加工を施した。その後、1050℃、30秒間加熱
し、10℃/秒で冷却する焼入れ処理を実施し、研削/
研磨による刃付け工程を経て実施例3の電気カミソリ用
外刃を得た。この外刃を評価したところ、開口率:55
%、開口への髭の導入率:65%、刃先R:0.5μm
であった。
Further, in order to manufacture an outer blade for an electric razor, when the thin ribbon before quenching is pressed into the shape of the electric razor outer blade, the width of the conventional blade is made equal to that of the conventional outer blade. The press working was performed so that the blade edge angle was 75% and 45%. After that, a quenching treatment of heating at 1050 ° C. for 30 seconds and cooling at 10 ° C./second is performed, and grinding /
An outer blade for an electric razor of Example 3 was obtained through a blade attaching step by polishing. When this outer blade was evaluated, the aperture ratio: 55
%, Introduction rate of whiskers into the opening: 65%, cutting edge R: 0.5 μm
Met.

【0051】(実施例4)Cr:14.0重量%、M
o:1.15重量%、C:0.40重量%、Si:0.
25重量%、Mn:0.25重量%、Nb:2.5重量
%、残部:Feとなるように原料を秤量し、それを攪拌
しながら、加熱、溶融して断面形状が□40x40mm
の銅鋳型に鋳込んで、素材鋳塊を作製した。尚、上記素
材中のPは0.025重量%以下であり、Sは0.02
0重量%以下であった。
(Example 4) Cr: 14.0% by weight, M
o: 1.15% by weight, C: 0.40% by weight, Si: 0.
25% by weight, Mn: 0.25% by weight, Nb: 2.5% by weight, the balance: Fe is weighed so that the cross-sectional shape is □ 40 × 40 mm by heating and melting while stirring.
The copper ingot was cast into a copper mold to produce a raw material ingot. In the above materials, P is 0.025% by weight or less and S is 0.02%.
It was 0% by weight or less.

【0052】この素材鋳塊を熱間鍛造および押出しでφ
20mmの棒材に加工した。この棒材を700℃、30
0秒間加熱、焼鈍した後、φ20x90mmの円柱状に
切断した。これを図1に示すようなL字型の押出し経路
(屈曲角=90°)を有するECAE加工用金型2にセッ
トし、450℃に加熱してECAE法により押出し加工
した。このECAE加工を8回繰り返すことにより歪み
量8まで到達させた。この時の転位密度は1x1010
cm3に達する。
This material ingot was hot-forged and extruded with φ
It processed into the bar material of 20 mm. This rod is 700 ℃, 30
After heating and annealing for 0 seconds, it was cut into a cylinder of φ20 × 90 mm. This is an L-shaped extrusion path as shown in FIG.
It was set in a mold 2 for ECAE processing having a bending angle of 90 °, heated to 450 ° C. and extruded by the ECAE method. By repeating this ECAE processing 8 times, a strain amount of 8 was reached. The dislocation density at this time is 1 × 10 10 /
reach cm 3 .

【0053】この後、素材を700℃、300秒間加
熱、焼鈍して再結晶化させた。これにより、粒径1.0
μm、分散炭化物粒子径0.8μmのフェライト鋼素材
を得た。これを厚さ0.5mmまで冷間圧延し、さらに
700℃で30秒間加熱、焼鈍して得られた薄帯を10
50℃、30秒間加熱した後、10℃/秒の冷却速度で
冷却する焼入れ処理を実施して粒径0.9μm、分散炭
化物粒子径0.8μmのマルテンサイト系ステンレス鋼
を得た。このステンレス鋼の耐力は1.6GPaであ
り、硬度はHvで800であった。
After that, the material was heated at 700 ° C. for 300 seconds and annealed to be recrystallized. This gives a particle size of 1.0
A ferrite steel material having a particle size of μm and a dispersed carbide particle size of 0.8 μm was obtained. This was cold-rolled to a thickness of 0.5 mm, further heated at 700 ° C. for 30 seconds and annealed to obtain a thin strip having a thickness of 10 mm.
After heating at 50 ° C. for 30 seconds, quenching treatment of cooling at a cooling rate of 10 ° C./second was performed to obtain a martensitic stainless steel having a grain size of 0.9 μm and a dispersed carbide grain size of 0.8 μm. The yield strength of this stainless steel was 1.6 GPa and the hardness was 800 in Hv.

【0054】また、電気カミソリ用内刃を製造するた
め、焼入れ前の薄帯を電気カミソリ内刃形状にプレス加
工する際に刃先角度が45°になるようにしてプレス加
工を施した。その後、1050℃、30秒間加熱後、1
0℃/秒で冷却する焼入れ処理を実施し、研削/研磨に
よる刃付け工程を経て実施例4の電気カミソリ用内刃を
得た。この内刃を評価したところ、刃先R:0.5μm
であった。
Further, in order to manufacture an inner blade for an electric razor, when the thin ribbon before quenching was pressed into the shape of the inner blade of the electric razor, the blade was pressed at an angle of 45 °. Then, after heating at 1050 ° C for 30 seconds, 1
A quenching process of cooling at 0 ° C./sec was performed, and an inner blade for an electric razor of Example 4 was obtained through a blade attaching process by grinding / polishing. When this inner blade was evaluated, the blade edge R: 0.5 μm
Met.

【0055】(実施例5)Cr:13.0重量%、M
o:1.35重量%、C:0.40重量%、Si:0.
20重量%、Mn:0.45重量%、Zr:3.0重量
%、残部:Feとなるように原料を秤量し、それを攪拌
しながら、加熱、溶融して断面形状が□60x60mm
の銅鋳型に鋳込んで、素材鋳塊を作製した。尚、上記素
材中のPは0.025重量%以下であり、Sは0.02
0重量%以下であった。
(Example 5) Cr: 13.0% by weight, M
o: 1.35% by weight, C: 0.40% by weight, Si: 0.
20% by weight, Mn: 0.45% by weight, Zr: 3.0% by weight, and the balance: Fe are weighed out, and the mixture is heated and melted with stirring to have a cross-sectional shape of □ 60 × 60 mm.
The copper ingot was cast into a copper mold to produce a raw material ingot. In the above materials, P is 0.025% by weight or less and S is 0.02%.
It was 0% by weight or less.

【0056】この素材鋳塊を熱間鍛造および圧延して幅
50mm、厚さ5mmの圧延板を得た。この圧延板を7
00℃、300秒間加熱、焼鈍した後、500mmの長
さに切断した。次いで圧延板の表面をショットブラスト
で活性化して加工用ステンレス素材1を得た。
This material ingot was hot forged and rolled to obtain a rolled plate having a width of 50 mm and a thickness of 5 mm. This rolled plate 7
After heating and annealing at 00 ° C. for 300 seconds, it was cut into a length of 500 mm. Then, the surface of the rolled plate was activated by shot blasting to obtain a stainless material 1 for processing.

【0057】このステンレス素材1を図5に示すよう
に、3枚重ねて500℃の下、圧延ロール5を用いて圧
下率66%の圧延処理を実施した。さらに、得られた圧
延処理板6にショットブラストして圧延方向に3等分
し、それらを3枚重ねて同様の圧延処理を繰り返すAR
B法を実施した。図5中、番号6’は圧延ロール5で2
回の圧延処理が施された圧延処理板を示す。このARB
法に基づく圧延処理を9回繰り返すことにより総歪み量
を9.9まで到達させた。この時の転位密度は2x10
11/cm3に達する。
As shown in FIG. 5, three stainless steel materials 1 were stacked and rolled at 500 ° C. using a rolling roll 5 at a reduction rate of 66%. Furthermore, shot rolling is performed on the obtained rolled plate 6 to divide it into three equal parts in the rolling direction, three of them are stacked and the same rolling process is repeated.
Method B was performed. In FIG. 5, numeral 6'denotes a rolling roll 5
The rolled plate that has been rolled twice is shown. This ARB
The total strain amount reached 9.9 by repeating the rolling process based on the method 9 times. The dislocation density at this time is 2 × 10.
Reach 11 / cm 3 .

【0058】この素材を700℃、300秒間加熱、焼
鈍して再結晶化させた。これにより、粒径0.8μm、
分散炭化物粒子径0.5μmのフェライト鋼素材を得
た。これを厚さ1.2mmまで冷間圧延し、さらに70
0℃で120秒間加熱、焼鈍して得られた薄帯を105
0℃、60秒間加熱した後、10℃/秒の冷却速度で冷
却する焼入れ処理を実施して粒径0.7μm、分散炭化
物粒子径0.5μmのマルテンサイト系ステンレス鋼を
得た。このステンレス鋼の耐力は1.8GPaであり、
硬度はHvで850であった。
This material was heated at 700 ° C. for 300 seconds and annealed for recrystallization. This gives a particle size of 0.8 μm,
A ferritic steel material having a dispersed carbide particle size of 0.5 μm was obtained. This is cold rolled to a thickness of 1.2 mm, and then 70
The ribbon obtained by heating and annealing at 0 ° C for 120 seconds is 105
After heating at 0 ° C. for 60 seconds, quenching treatment of cooling at a cooling rate of 10 ° C./second was performed to obtain a martensitic stainless steel having a particle size of 0.7 μm and a dispersed carbide particle size of 0.5 μm. The yield strength of this stainless steel is 1.8 GPa,
The hardness was 850 in Hv.

【0059】また、バリカン用固定刃を製造するため、
焼入れ前の薄帯をバリカン固定刃形状にプレス加工する
際に刃先角度を45°になるようにしてプレス加工を施
した。その後、1050℃、60秒間加熱し、10℃/
秒で冷却する焼入れ処理を実施し、研削/研磨による刃
付け工程を経て実施例5のバリカン用固定刃を得た。こ
の固定刃を評価したところ、刃先R:0.5μmであっ
た。
Further, in order to manufacture a fixed blade for hair clipper,
When the thin strip before quenching was pressed into a clipper fixed blade shape, the blade was pressed at a blade angle of 45 °. After that, heat at 1050 ° C. for 60 seconds, 10 ° C. /
A quenching process of cooling in seconds was performed, and a fixed blade for hair clipper of Example 5 was obtained through a blade attaching process by grinding / polishing. When this fixed blade was evaluated, the blade edge R was 0.5 μm.

【0060】(実施例6)Cr:13.0重量%、M
o:1.35重量%、C:0.50重量%、Si:0.
25重量%、Mn:0.25重量%、Zr:2.5重量
%、残部:Feとなるように原料を秤量し、それを攪拌
しながら、加熱、溶融して断面形状が□15x40mm
の銅鋳型に鋳込んで、素材鋳塊を作製した。尚、上記素
材中のPは0.025重量%以下であり、Sは0.02
0重量%以下であった。
(Example 6) Cr: 13.0% by weight, M
o: 1.35% by weight, C: 0.50% by weight, Si: 0.
25% by weight, Mn: 0.25% by weight, Zr: 2.5% by weight, the balance: Fe was weighed so that it was heated and melted while stirring so that the cross-sectional shape was □ 15 × 40 mm.
The copper ingot was cast into a copper mold to produce a raw material ingot. In the above materials, P is 0.025% by weight or less and S is 0.02%.
It was 0% by weight or less.

【0061】次いで、図4に示すように、この素材鋳塊
を溶解し、0.05MPaのArガス雰囲気中で、周速
40m/秒で回転する銅ロール12に雰囲気+0.05
MPaの圧力で噴射し、200℃/秒の冷却速度で幅3
mm、厚さ0.05mmの薄帯11を得た。次いで、図
6に示すように、この薄帯15を粉砕し、内径20mm
の黒鉛ダイス16に充填し、プラズマ焼結法で700
℃、300秒間加熱、100MPaの加圧条件下で焼結
してφ20x30mmの円柱状焼結体を得た。
Next, as shown in FIG. 4, this raw material ingot is melted, and in a 0.05 MPa Ar gas atmosphere, the atmosphere +0.05 is applied to a copper roll 12 rotating at a peripheral speed of 40 m / sec.
Injection at a pressure of MPa, cooling rate of 200 ° C / sec, width 3
A thin strip 11 having a thickness of 0.05 mm and a thickness of 0.05 mm was obtained. Next, as shown in FIG. 6, this thin strip 15 is crushed to have an inner diameter of 20 mm.
Filled in graphite die 16 of and 700 by plasma sintering method
It was heated at 300 ° C. for 300 seconds and sintered under a pressure of 100 MPa to obtain a cylindrical sintered body of φ20 × 30 mm.

【0062】これを図1に示すようなL字型の押出し経
路(屈曲角=90°)を有するECAE加工用金型2にセ
ットし、400℃に加熱してECAE法により押出し加
工した。このECAE法を12回繰り返すことにより歪
み量を12まで到達させた。この時の転位密度は1x1
12/cm3に達する。
This was set in a mold 2 for ECAE processing having an L-shaped extrusion path (bending angle = 90 °) as shown in FIG. 1, heated to 400 ° C. and extruded by the ECAE method. By repeating this ECAE method 12 times, the strain amount reached to 12. The dislocation density at this time is 1x1.
Reaching 0 12 / cm 3 .

【0063】この後、素材を700℃、300秒間加
熱、焼鈍して再結晶化させた。これにより、粒径0.1
μm、分散炭化物粒子径0.01μmのフェライト鋼素
材を得た。これを厚さ0.04mmまで冷間圧延し、さ
らに700℃で30秒間加熱、焼鈍して得られた薄帯を
1050℃、30秒間加熱した後、10℃/秒の冷却速
度で冷却する焼入れ処理を実施して粒径0.09μm、
分散炭化物粒子径0.01μmのマルテンサイト系ステ
ンレス鋼を得た。このステンレス鋼の耐力は2.4GP
aであり、硬度はHvで1100であった。
After that, the material was heated at 700 ° C. for 300 seconds and annealed to be recrystallized. This gives a particle size of 0.1
A ferritic steel material having a particle diameter of μm and a dispersed carbide particle diameter of 0.01 μm was obtained. This is cold-rolled to a thickness of 0.04 mm, further heated at 700 ° C for 30 seconds and annealed to obtain a thin strip, which is heated at 1050 ° C for 30 seconds, and then cooled at a cooling rate of 10 ° C / second. The particle size is 0.09 μm after the treatment.
A martensitic stainless steel having a dispersed carbide particle size of 0.01 μm was obtained. The yield strength of this stainless steel is 2.4 GP
The hardness was 1100 in Hv.

【0064】また、電気カミソリ用外刃を製造するた
め、焼入れ前の薄帯を電気カミソリ外刃形状にプレス加
工する際に従来の外刃と同等の桟強度となるように桟幅
を従来の55%、刃先角度が20°になるようにしてプ
レス加工を施した。その後、1050℃、30秒間加熱
し、10℃/秒で冷却する焼入れ処理を実施し、研削/
研磨による刃付け工程を経て実施例6の電気カミソリ用
外刃を得た。この外刃を評価したところ、開口率:65
%、開口への髭の導入率:80%、刃先R:0.1μm
であった。
Further, in order to manufacture an outer blade for an electric razor, when the thin ribbon before quenching is pressed into the shape of an electric razor outer blade, the width of the conventional blade is made equal to that of the conventional outer blade. The press working was performed such that the blade edge angle was 55% at 20%. After that, a quenching treatment of heating at 1050 ° C. for 30 seconds and cooling at 10 ° C./second is performed, and grinding /
An outer blade for an electric razor of Example 6 was obtained through a blade attaching step by polishing. When this outer blade was evaluated, the aperture ratio was 65.
%, Whisker introduction rate into opening: 80%, cutting edge R: 0.1 μm
Met.

【0065】(実施例7)Cr:13.5重量%、M
o:1.35重量%、C:0.40重量%、Si:0.
40重量%、Mn:0.20重量%、Ti:1.0重量
%、残部:Feとなるように原料を秤量し、それを攪拌
しながら、加熱、溶融して断面形状が□15x40mm
の銅鋳型に鋳込んで、素材鋳塊を作製した。尚、上記素
材中のPは0.025重量%以下であり、Sは0.02
0重量%以下であった。
(Example 7) Cr: 13.5% by weight, M
o: 1.35% by weight, C: 0.40% by weight, Si: 0.
40% by weight, Mn: 0.20% by weight, Ti: 1.0% by weight, and the balance: Fe was weighed so that the cross-sectional shape was □ 15 × 40 mm by heating and melting while stirring.
The copper ingot was cast into a copper mold to produce a raw material ingot. In the above materials, P is 0.025% by weight or less and S is 0.02%.
It was 0% by weight or less.

【0066】次いで、図4に示すように、この素材鋳塊
を溶解し、0.05MPaのArガス雰囲気中で、周速
40m/秒で回転する銅ロール12に雰囲気+0.05
MPaの圧力で噴射し、200℃/秒の冷却速度で幅3
mm、厚さ0.05mmの薄帯を得た。この薄帯を70
0℃、30秒間の加熱で焼鈍した後、粉砕し、外径30
mm、高さ90mm、内径20mmの5000系Al合
金製カプセルに充填、真空脱気して密封した。
Next, as shown in FIG. 4, this raw material ingot is melted, and in an Ar gas atmosphere of 0.05 MPa, an atmosphere of 0.05 + 0.05 is set on a copper roll 12 rotating at a peripheral speed of 40 m / sec.
Injection at a pressure of MPa, cooling rate of 200 ° C / sec, width 3
A thin strip having a thickness of 0.05 mm and a thickness of 0.05 mm was obtained. 70 this ribbon
After being annealed by heating at 0 ° C for 30 seconds, it is crushed to an outer diameter of 30
mm, height 90 mm, inner diameter 20 mm, 5000 series Al alloy capsule was filled, vacuum deaerated and sealed.

【0067】これを図1に示すようなL字型の押出し経
路(屈曲角=90°)を有するECAE加工用金型2にセ
ットし、500℃に加熱してECAE法により押出し加
工しながら焼結した。このECAE加工を12回繰り返
すことにより歪み量を12まで到達させた。この時の転
位密度は1x1012/cm3に達する。
This was set in a mold 2 for ECAE processing having an L-shaped extrusion path (bending angle = 90 °) as shown in FIG. 1, heated to 500 ° C. and baked while being extruded by the ECAE method. Tied up. By repeating this ECAE processing 12 times, the amount of strain was reached to 12. The dislocation density at this time reaches 1 × 10 12 / cm 3 .

【0068】この素材を700℃、300秒間加熱、焼
鈍して再結晶化させた。これにより、粒径0.2μm、
分散炭化物粒子径0.01μmのフェライト鋼素材を得
た。これを厚さ0.4mmまで冷間圧延し、さらに70
0℃で30秒間加熱、焼鈍して得られた薄帯を1050
℃、30秒間加熱した後、10℃/秒の冷却速度で冷却
する焼入れ処理を実施して粒径0.15μm、分散炭化
物粒子径0.01μmのマルテンサイト系ステンレス鋼
を得た。このステンレス鋼の耐力は2.1GPaであ
り、硬度はHvで1000であった。
This material was heated at 700 ° C. for 300 seconds and annealed for recrystallization. This gives a particle size of 0.2 μm,
A ferritic steel material having a dispersed carbide particle size of 0.01 μm was obtained. This is cold rolled to a thickness of 0.4 mm and further 70
The thin strip obtained by heating and annealing at 0 ° C. for 30 seconds is 1050
After heating at 0 ° C. for 30 seconds, quenching treatment of cooling at a cooling rate of 10 ° C./second was performed to obtain a martensitic stainless steel having a particle size of 0.15 μm and a dispersed carbide particle size of 0.01 μm. The yield strength of this stainless steel was 2.1 GPa, and the hardness was 1000 in Hv.

【0069】また、電気カミソリ用内刃を製造するた
め、焼入れ前の薄帯を電気カミソリ内刃形状にプレス加
工する際に刃先角度が30°になるようにしてプレス加
工を施した。その後、1050℃、30秒間加熱後、1
0℃/秒で冷却する焼入れ処理を実施し、研削/研磨に
よる刃付け工程を経て実施例7の電気カミソリ用内刃を
得た。この内刃を評価したところ、刃先R:0.1μm
であった。
Further, in order to manufacture an inner blade for an electric razor, when a thin strip before quenching was pressed into an inner shape of an electric razor, the blade was pressed at an angle of 30 °. Then, after heating at 1050 ° C for 30 seconds, 1
A quenching process of cooling at 0 ° C./sec was performed, and an inner blade for an electric razor of Example 7 was obtained through a blade attaching step by grinding / polishing. When this inner blade was evaluated, the blade edge R: 0.1 μm
Met.

【0070】(実施例8)Cr:13.5重量%、M
o:1.35重量%、C:0.40重量%、Si:0.
20重量%、Mn:0.20重量%、残部:Feとなる
ように原料を秤量し、それを攪拌しながら、加熱、溶融
して断面形状が□15x40mmの銅鋳型に鋳込んで、
素材鋳塊を作製した。尚、上記素材中のPは0.025
重量%以下であり、Sは0.020重量%以下であっ
た。
(Example 8) Cr: 13.5% by weight, M
o: 1.35% by weight, C: 0.40% by weight, Si: 0.
20% by weight, Mn: 0.20% by weight, the balance: Fe is weighed so as to be, heated and melted while stirring, and cast into a copper mold having a cross-sectional shape of □ 15 × 40 mm,
A raw ingot was prepared. In addition, P in the above material is 0.025
The content was S or less and the content of S was 0.020 or less.

【0071】次いで、図7に示すように、高周波加熱装
置7でこの素材鋳塊を溶解し、0.05MPaのArガ
ス雰囲気中で、間隔2mmを隔てて、周速0.1m/秒
で回転する2つの銅ロール12の間に雰囲気+0.05
MPaの圧力で噴射ノズル8から溶融素材10を噴射
し、20℃/秒の冷却速度で幅20mm、厚さ2mmの
薄帯11を得た。この薄帯を700℃、300秒間加
熱、焼鈍した後、500mmの長さに切断した。
Next, as shown in FIG. 7, the raw material ingot was melted by a high frequency heating device 7, and was rotated at a peripheral speed of 0.1 m / sec at an interval of 2 mm in an Ar gas atmosphere of 0.05 MPa. Atmosphere +0.05 between two copper rolls 12
The molten material 10 was jetted from the jet nozzle 8 at a pressure of MPa, and a ribbon 11 having a width of 20 mm and a thickness of 2 mm was obtained at a cooling rate of 20 ° C./sec. This thin strip was heated at 700 ° C. for 300 seconds, annealed, and then cut into a length of 500 mm.

【0072】次いでこの薄帯の表面をショットブラスト
で活性化した後、図5に示すように、3枚重ねて500
℃の下、圧下率66%の圧延処理を実施した。さらに、
得られた圧延処理板6にショットブラストして圧延方向
に3等分し、それらを3枚重ねて同様の圧延処理を繰り
返すARB法を実施した。このARB法に基づく圧延処
理を10回繰り返すことにより総歪み量を11まで到達
させた。この時の転位密度は1x1012/cm3に達す
る。
Next, after activating the surface of this ribbon by shot blasting, as shown in FIG.
Rolling treatment was carried out at a rolling reduction of 66% at ℃. further,
Shot rolling was performed on the obtained rolled plate 6 to divide it into three equal parts in the rolling direction, three of them were stacked, and the same rolling process was repeated to carry out the ARB method. By repeating the rolling process based on the ARB method 10 times, the total strain amount reached 11. The dislocation density at this time reaches 1 × 10 12 / cm 3 .

【0073】この素材を700℃、300秒間加熱、焼
鈍して再結晶化させた。これにより、粒径0.4μm、
分散炭化物粒子径0.08μmのフェライト鋼素材を得
た。これを厚さ0.4mmまで冷間圧延し、さらに70
0℃で60秒間加熱、焼鈍して得られた薄帯を1050
℃、60秒間加熱した後、10℃/秒の冷却速度で冷却
する焼入れ処理を実施して粒径0.3μm、分散炭化物
粒子径0.08μmのマルテンサイト系ステンレス鋼を
得た。このステンレス鋼の耐力は2.0GPaであり、
硬度はHvで950であった。
This material was heated at 700 ° C. for 300 seconds and annealed for recrystallization. This gives a particle size of 0.4 μm,
A ferritic steel material having a dispersed carbide particle size of 0.08 μm was obtained. This is cold rolled to a thickness of 0.4 mm and further 70
The thin ribbon obtained by heating and annealing at 0 ° C. for 60 seconds is 1050
After heating at 60 ° C. for 60 seconds, a quenching treatment of cooling at a cooling rate of 10 ° C./second was performed to obtain a martensitic stainless steel having a particle size of 0.3 μm and a dispersed carbide particle size of 0.08 μm. The yield strength of this stainless steel is 2.0 GPa,
The hardness was 950 Hv.

【0074】また、電気カミソリ用内刃を製造するた
め、焼入れ前の薄帯を電気カミソリ内刃形状にプレス加
工する際に刃先角度が30°になるようにしてプレス加
工を施した。その後、1050℃、30秒間加熱後、1
0℃/秒で冷却する焼入れ処理を実施し、研削/研磨に
よる刃付け工程を経て実施例8の電気カミソリ用内刃を
得た。この内刃を評価したところ、刃先R:0.1μm
であった。
Further, in order to manufacture an inner blade for an electric razor, when the thin ribbon before quenching was pressed into the shape of the inner blade of the electric razor, the blade was pressed at an angle of 30 °. Then, after heating at 1050 ° C for 30 seconds, 1
A quenching process of cooling at 0 ° C./sec was performed, and an inner blade for an electric razor of Example 8 was obtained through a blade attaching process by grinding / polishing. When this inner blade was evaluated, the blade edge R: 0.1 μm
Met.

【0075】(実施例9)Cr:14.0重量%、M
o:1.35重量%、C:0.55重量%、Si:0.
20重量%、Mn:0.20重量%、Zr:4.1重量
%、残部:Feとなるように原料を秤量し、それを攪拌
しながら、加熱、溶融して断面形状が□15x40mm
の銅鋳型に鋳込んで、素材鋳塊を作製した。尚、上記素
材中のPは0.025重量%以下であり、Sは0.02
0重量%以下であった。
(Example 9) Cr: 14.0% by weight, M
o: 1.35% by weight, C: 0.55% by weight, Si: 0.
20% by weight, Mn: 0.20% by weight, Zr: 4.1% by weight, and the balance: Fe was weighed so that the sectional shape was □ 15 × 40 mm by heating and melting while stirring.
The copper ingot was cast into a copper mold to produce a raw material ingot. In the above materials, P is 0.025% by weight or less and S is 0.02%.
It was 0% by weight or less.

【0076】次いで、図7に示すように、この素材鋳塊
を溶解し、0.05MPaのArガス雰囲気中で、間隔
0.4mmを隔てて、周速5m/秒で回転する2つの銅
ロール12の間に雰囲気+0.05MPaの圧力で噴射
ノズル8から溶融素材10を噴射し、80℃/秒の冷却
速度で幅25mm、厚さ0.4mmの薄帯11を得た。
Then, as shown in FIG. 7, this material ingot was melted, and two copper rolls were rotated at a peripheral speed of 5 m / sec in an Ar gas atmosphere of 0.05 MPa with an interval of 0.4 mm. The molten material 10 was injected from the injection nozzle 8 at a pressure of atmosphere + 0.05 MPa between 12 to obtain a ribbon 11 having a width of 25 mm and a thickness of 0.4 mm at a cooling rate of 80 ° C./sec.

【0077】この薄帯を700℃、300秒間加熱、焼
鈍することで、粒径0.4μm、分散炭化物粒子径0.
02μmのフェライト鋼素材を得た。これを、さらに1
050℃、30秒間加熱した後、10℃/秒の冷却速度
で冷却する焼入れ処理を実施して粒径0.8μm、分散
炭化物粒子径0.02μmのマルテンサイト系ステンレ
ス鋼を得た。このステンレス鋼の耐力は1.7GPaで
あり、硬度はHvで850であった。
This ribbon was heated at 700 ° C. for 300 seconds and annealed to obtain a particle size of 0.4 μm and a dispersed carbide particle size of 0.
A 02 μm ferritic steel material was obtained. This one more
After heating at 050 ° C. for 30 seconds, quenching treatment of cooling at a cooling rate of 10 ° C./second was performed to obtain a martensitic stainless steel having a grain size of 0.8 μm and a dispersed carbide grain size of 0.02 μm. The yield strength of this stainless steel was 1.7 GPa and the hardness was 850 in Hv.

【0078】また、電気カミソリ用内刃を製造するた
め、焼入れ前の薄帯を電気カミソリ内刃形状にプレス加
工する際に刃先角度が45°になるようにしてプレス加
工を施した。その後、1050℃、30秒間加熱後、1
0℃/秒で冷却する焼入れ処理を実施し、研削/研磨に
よる刃付け工程を経て実施例9の電気カミソリ用内刃を
得た。この内刃を評価したところ、刃先R:0.5μm
であった。
Further, in order to manufacture an inner blade for an electric razor, when the thin ribbon before quenching was pressed into the shape of the inner blade of the electric razor, the blade was pressed at an angle of 45 °. Then, after heating at 1050 ° C for 30 seconds, 1
A quenching process of cooling at 0 ° C./sec was performed, and an inner blade for an electric razor of Example 9 was obtained through a blade attaching process by grinding / polishing. When this inner blade was evaluated, the blade edge R: 0.5 μm
Met.

【0079】(実施例10)Cr:13.5重量%、M
o:1.35重量%、C:0.40重量%、Si:0.
20重量%、Mn:0.50重量%、残部:Feとなる
ように原料を秤量し、それを攪拌しながら、加熱、溶融
して断面形状が□15x40mmの銅鋳型に鋳込んで、
素材鋳塊を作製した。尚、上記素材中のPは0.025
重量%以下であり、Sは0.020重量%以下であっ
た。
(Example 10) Cr: 13.5% by weight, M
o: 1.35% by weight, C: 0.40% by weight, Si: 0.
20% by weight, Mn: 0.50% by weight, and the balance: Fe is weighed out, heated and melted while stirring, and cast into a copper mold having a cross section of □ 15 × 40 mm,
A raw ingot was prepared. In addition, P in the above material is 0.025
The content was S or less and the content of S was 0.020 or less.

【0080】次いで、図7に示すように、この素材鋳塊
を溶解し、0.05MPaのArガス雰囲気中で、間隔
2mmを隔てて、周速0.1m/秒で回転する2つの銅
ロール12の間に雰囲気+0.05MPaの圧力で噴射
ノズル8から溶融素材10を噴射し、20℃/秒の冷却
速度で幅20mm、厚さ2mmの薄帯11を得た。この
薄帯を700℃、300秒間加熱、焼鈍した後、500
mmの長さに切断した。
Then, as shown in FIG. 7, this ingot of material was melted, and two copper rolls were rotated at a peripheral speed of 0.1 m / sec in an Ar gas atmosphere of 0.05 MPa with an interval of 2 mm. The molten material 10 was sprayed from the spray nozzle 8 at a pressure of atmosphere + 0.05 MPa between 12 to obtain a ribbon 11 having a width of 20 mm and a thickness of 2 mm at a cooling rate of 20 ° C./sec. This ribbon was heated at 700 ° C. for 300 seconds and annealed, and then 500
It was cut to a length of mm.

【0081】次いで、薄帯の表面をショットブラストで
活性化した後、図5に示すように、3枚重ねて500℃
の下、圧下率66%の圧延処理を実施した。さらに、得
られた圧延板6にショットブラストして圧延方向に3等
分し、それらを3枚重ねて同様の圧延処理を繰り返すA
RB法を実施した。このARB法に基づく圧延処理を1
2回繰り返すことにより総歪み量を13まで到達させ
た。この時の転位密度は5x1012/cm3に達する。
Then, after activating the surface of the ribbon by shot blasting, as shown in FIG.
The rolling treatment was carried out under a rolling reduction of 66%. Further, the obtained rolled plate 6 is shot blasted and divided into three equal parts in the rolling direction, three of them are stacked and the same rolling process is repeated A
The RB method was performed. The rolling process based on this ARB method is 1
By repeating twice, the total strain amount reached 13. The dislocation density at this time reaches 5 × 10 12 / cm 3 .

【0082】この素材を700℃、300秒間加熱、焼
鈍して再結晶化させた。これにより、粒径0.2μm、
分散炭化物粒子径0.08μmのフェライト鋼素材を得
た。これを厚さ0.04mmまで冷間圧延し、さらに7
00℃で60秒間加熱、焼鈍して得られた薄帯を105
0℃、60秒間加熱した後、10℃/秒の冷却速度で冷
却する焼入れ処理を実施して粒径0.15μm、分散炭
化物粒子径0.08μmのマルテンサイト系ステンレス
鋼を得た。このステンレス鋼の耐力は2.2GPaであ
り、硬度はHvで1000であった。
This material was heated at 700 ° C. for 300 seconds and annealed to be recrystallized. This gives a particle size of 0.2 μm,
A ferritic steel material having a dispersed carbide particle size of 0.08 μm was obtained. This is cold rolled to a thickness of 0.04 mm and
The thin strip obtained by heating and annealing at 00 ° C. for 60 seconds is 105
After heating at 0 ° C. for 60 seconds, quenching treatment of cooling at a cooling rate of 10 ° C./second was performed to obtain a martensitic stainless steel having a particle size of 0.15 μm and a dispersed carbide particle size of 0.08 μm. The yield strength of this stainless steel was 2.2 GPa, and the hardness was 1000 in Hv.

【0083】また、電気カミソリ用外刃を製造するた
め、焼入れ前の薄帯を電気カミソリ外刃形状にプレス加
工する際に従来の外刃と同等の桟強度となるように桟幅
を従来の58%、刃先角度が60°になるようにしてプ
レス加工を施した。その後、1050℃、30秒間加熱
し、10℃/秒で冷却する焼入れ処理を実施し、研削/
研磨による刃付け工程を経て実施例10の電気カミソリ
用外刃を得た。この外刃を評価したところ、開口率:6
3%、開口への髭の導入率:75%、刃先R:0.1μ
mであった。
Further, in order to manufacture the outer blade for the electric razor, when the thin ribbon before quenching is pressed into the shape of the electric razor outer blade, the width of the conventional blade is made to be the same as that of the conventional outer blade. The press working was performed so that the blade edge angle was 58% and 60 °. After that, a quenching treatment of heating at 1050 ° C. for 30 seconds and cooling at 10 ° C./second is performed, and grinding /
An outer blade for an electric razor of Example 10 was obtained through a blade attaching step by polishing. When this outer blade was evaluated, the aperture ratio was 6
3%, introduction rate of whiskers into the opening: 75%, cutting edge R: 0.1μ
It was m.

【0084】(実施例11)Cr:13.0重量%、M
o:1.15重量%、C:0.35重量%、Si:0.
20重量%、Mn:0.20重量%、残部:Feとなる
ように原料を秤量し、それを攪拌しながら、加熱、溶融
して断面形状が□15x40mmの銅鋳型に鋳込んで、
素材鋳塊を作製した。尚、上記素材中のPは0.025
重量%以下であり、Sは0.020重量%以下であっ
た。
(Example 11) Cr: 13.0% by weight, M
o: 1.15% by weight, C: 0.35% by weight, Si: 0.
20% by weight, Mn: 0.20% by weight, the balance: Fe is weighed so as to be, heated and melted while stirring, and cast into a copper mold having a cross-sectional shape of □ 15 × 40 mm,
A raw ingot was prepared. In addition, P in the above material is 0.025
The content was S or less and the content of S was 0.020 or less.

【0085】次いで、図7に示すように、この素材鋳塊
を溶解し、0.05MPaのArガス雰囲気中で、間隔
2mmを隔てて、周速0.1m/秒で回転する2つの銅
ロール12の間に雰囲気+0.05MPaの圧力で噴射
ノズル8から溶融素材10を噴射し、20℃/秒の冷却
速度で幅20mm、厚さ2mmの薄帯11を得た。この
薄帯を700℃、300秒間加熱、焼鈍した後、500
mmの長さに切断した。
Then, as shown in FIG. 7, this ingot of material was melted, and two copper rolls were rotated at a peripheral speed of 0.1 m / sec in an Ar gas atmosphere of 0.05 MPa with an interval of 2 mm. The molten material 10 was sprayed from the spray nozzle 8 at a pressure of atmosphere + 0.05 MPa between 12 to obtain a ribbon 11 having a width of 20 mm and a thickness of 2 mm at a cooling rate of 20 ° C./sec. This ribbon was heated at 700 ° C. for 300 seconds and annealed, and then 500
It was cut to a length of mm.

【0086】次いで、薄帯の表面をショットブラストで
活性化した後、図5に示すように、3枚重ねて500℃
の下、圧下率66%の圧延処理を実施した。さらに、得
られた圧延処理板6にショットブラストして圧延方向に
3等分し、それらを3枚重ねて同様の圧延処理を繰り返
すARB法を実施した。このARB法に基づく圧延処理
を8回繰り返すことにより総歪み量を8.8まで到達さ
せた。この時の転位密度は5x1010/cm3に達す
る。
Then, after activating the surface of the ribbon by shot blasting, as shown in FIG.
The rolling treatment was carried out under a rolling reduction of 66%. Furthermore, the obtained rolled plate 6 was shot-blasted and divided into three equal parts in the rolling direction, three of them were piled up, and the same rolling process was repeated to carry out the ARB method. By repeating the rolling process based on this ARB method eight times, the total strain amount reached 8.8. The dislocation density at this time reaches 5 × 10 10 / cm 3 .

【0087】この素材を700℃、180秒間加熱、焼
鈍して再結晶化させた。これにより、粒径0.8μm、
分散炭化物粒子径0.08μmのフェライト鋼素材を得
た。これを厚さ0.04mmまで冷間圧延し、さらに7
00℃で60秒間加熱、焼鈍して得られた薄帯を105
0℃、60秒間加熱した後、10℃/秒の冷却速度で冷
却する焼入れ処理を実施して粒径0.7μm、分散炭化
物粒子径0.08μmのマルテンサイト系ステンレス鋼
を得た。このステンレス鋼の耐力は1.8GPaであ
り、硬度はHvで900であった。
This material was recrystallized by heating at 700 ° C. for 180 seconds and annealing. This gives a particle size of 0.8 μm,
A ferritic steel material having a dispersed carbide particle size of 0.08 μm was obtained. This is cold rolled to a thickness of 0.04 mm and
The thin strip obtained by heating and annealing at 00 ° C. for 60 seconds is 105
After heating at 0 ° C. for 60 seconds, quenching treatment of cooling at a cooling rate of 10 ° C./second was performed to obtain a martensitic stainless steel having a particle size of 0.7 μm and a dispersed carbide particle size of 0.08 μm. This stainless steel had a yield strength of 1.8 GPa and a hardness of 900 Hv.

【0088】また、電気カミソリ用外刃を製造するた
め、焼入れ前の薄帯を電気カミソリ外刃形状にプレス加
工する際に従来の外刃と同等の桟強度となるように桟幅
を従来の70%、刃先角度が45°になるようにしてプ
レス加工を施した。その後、1050℃、30秒間加熱
し、10℃/秒で冷却する焼入れ処理を実施し、研削/
研磨による刃付け工程を経て実施例11の電気カミソリ
用外刃を得た。この外刃を評価したところ、開口率:5
8%、開口への髭の導入率:70%、刃先R:0.3μ
mであった。
Further, in order to manufacture an outer blade for an electric razor, when the thin ribbon before quenching is pressed into the shape of an electric razor outer blade, the width of the conventional blade is made equal to that of the conventional outer blade. The press working was performed so that the blade angle was 70% and the blade edge angle was 45 °. After that, a quenching treatment of heating at 1050 ° C. for 30 seconds and cooling at 10 ° C./second is performed, and grinding /
An outer blade for an electric razor of Example 11 was obtained through a blade attaching step by polishing. When this outer blade was evaluated, the aperture ratio was 5
8%, introduction rate of whiskers into the opening: 70%, cutting edge R: 0.3μ
It was m.

【0089】(実施例12)Cr:13.5重量%、M
o:1.25重量%、C:0.40重量%、Si:0.
25重量%、Mn:0.25重量%、残部:Feとなる
ように原料を秤量し、それを攪拌しながら、加熱、溶融
して断面形状が□15x40mmの銅鋳型に鋳込んで、
素材鋳塊を作製した。尚、上記素材中のPは0.025
重量%以下であり、Sは0.020重量%以下であっ
た。
(Example 12) Cr: 13.5% by weight, M
o: 1.25% by weight, C: 0.40% by weight, Si: 0.
25% by weight, Mn: 0.25% by weight, the balance: Fe is weighed so that it is heated and melted while stirring and cast into a copper mold having a cross section of □ 15 × 40 mm,
A raw ingot was prepared. In addition, P in the above material is 0.025
The content was S or less and the content of S was 0.020 or less.

【0090】この素材鋳塊を図3に示すように、0.0
5MPaのArガス雰囲気中で断面形状が□4x25m
mの水冷銅鋳型13に連続鋳造することにより20℃/
秒の冷却速度を得た。これにより、水冷銅鋳型13下部
から急冷された薄帯11が得られる。この薄帯を700
℃、300秒間加熱、焼鈍した後、4x20x90mm
の角柱状に機械加工した。
As shown in FIG. 3, this raw material ingot is 0.0
The cross-sectional shape is □ 4x25m in an Ar gas atmosphere of 5 MPa.
m water-cooled copper mold 13 by continuous casting at 20 ° C /
A cooling rate of seconds was obtained. As a result, the thin ribbon 11 that is rapidly cooled is obtained from the lower portion of the water-cooled copper mold 13. This ribbon 700
After heating and annealing at ℃ for 300 seconds, 4x20x90mm
Machined into a prismatic shape.

【0091】これを図1に示すようなL字型の押出し経
路(屈曲角=90°)を有するECAE加工用金型2にセ
ットし、350℃に加熱してECAE法により押出し加
工した。このECAE加工を9回繰り返すことにより歪
み量を9まで到達させた。この時の転位密度は8x10
10/cm3に達する。
This was set in a mold 2 for ECAE processing having an L-shaped extrusion path (bending angle = 90 °) as shown in FIG. 1, heated to 350 ° C. and extruded by the ECAE method. By repeating this ECAE processing 9 times, the amount of strain reached 9. The dislocation density at this time is 8x10.
Reach 10 / cm 3 .

【0092】この後、素材を700℃、300秒間加
熱、焼鈍して再結晶化させた。これにより、粒径0.8
μm、分散炭化物粒子径0.05μmのフェライト鋼素
材を得た。これを厚さ0.8mmまで冷間圧延し、さら
に700℃で30秒間加熱、焼鈍して得られた薄帯を1
050℃、30秒間加熱した後、10℃/秒の冷却速度
で冷却する焼入れ処理を実施して粒径0.7μm、分散
炭化物粒子径0.05μmのマルテンサイト系ステンレ
ス鋼を得た。このステンレス鋼の耐力は1.7GPaで
あり、硬度はHvで850であった。
After that, the material was heated at 700 ° C. for 300 seconds and annealed to be recrystallized. This gives a particle size of 0.8
A ferritic steel material having a particle size of μm and a dispersed carbide particle size of 0.05 μm was obtained. This was cold-rolled to a thickness of 0.8 mm, further heated at 700 ° C. for 30 seconds and annealed to obtain a thin strip of 1
After heating at 050 ° C. for 30 seconds, quenching treatment of cooling at a cooling rate of 10 ° C./second was performed to obtain a martensitic stainless steel having a particle size of 0.7 μm and a dispersed carbide particle size of 0.05 μm. The yield strength of this stainless steel was 1.7 GPa and the hardness was 850 in Hv.

【0093】また、バリカン用可動刃を製造するため、
焼入れ前の薄帯をバリカン用可動刃形状にプレス加工す
る際に刃先角度を30°になるようにしてプレス加工を
施した。その後、1050℃、30秒間加熱し、10℃
/秒で冷却する焼入れ処理を実施し、研削/研磨による
刃付け工程を経て実施例12のバリカン用可動刃を得
た。この固定刃を評価したところ、刃先R:0.5μm
であった。
In order to manufacture a movable blade for hair clipper,
When pressing the thin strip before quenching into the shape of a movable blade for hair clippers, the thin blade was pressed at a blade angle of 30 °. After that, heat at 1050 ° C for 30 seconds, 10 ° C
A quenching process of cooling at a speed of 1 sec / sec was performed, and a movable blade for hair clipper of Example 12 was obtained through a blade attaching process by grinding / polishing. When this fixed blade was evaluated, the blade edge R: 0.5 μm
Met.

【0094】(実施例13)Cr:13.5重量%、M
o:1.25重量%、C:0.40重量%、Si:0.
25重量%、Mn:0.25重量%、残部:Feとなる
ように原料を秤量し、それを攪拌しながら、加熱、溶融
して断面形状が□15x40mmの銅鋳型に鋳込んで、
素材鋳塊を作製した。尚、上記素材中のPは0.025
重量%以下であり、Sは0.020重量%以下であっ
た。
(Example 13) Cr: 13.5% by weight, M
o: 1.25% by weight, C: 0.40% by weight, Si: 0.
25% by weight, Mn: 0.25% by weight, the balance: Fe is weighed so that it is heated and melted while stirring and cast into a copper mold having a cross section of □ 15 × 40 mm,
A raw ingot was prepared. In addition, P in the above material is 0.025
The content was S or less and the content of S was 0.020 or less.

【0095】この素材鋳塊を図3に示すように、0.0
5MPaのArガス雰囲気中で断面形状が□4x25m
mの水冷銅鋳型13に連続鋳造することにより20℃/
秒の冷却速度を得た。これにより、水冷銅鋳型13下部
から急冷された薄帯11が得られる。この薄帯を700
℃、300秒間加熱、焼鈍した後、300mmの長さに
切断した。
As shown in FIG. 3, the ingot of this material was 0.0
The cross-sectional shape is □ 4x25m in an Ar gas atmosphere of 5 MPa.
m water-cooled copper mold 13 by continuous casting at 20 ° C /
A cooling rate of seconds was obtained. As a result, the thin ribbon 11 that is rapidly cooled is obtained from the lower portion of the water-cooled copper mold 13. This ribbon 700
After heating at 300C for 300 seconds and annealing, it was cut into a length of 300 mm.

【0096】次いで、薄帯の表面をショットブラストで
活性化した後、図5に示すように、3枚重ねて500℃
の下、圧下率66%の圧延処理を実施した。さらに、得
られた圧延処理板6にショットブラストして圧延方向に
3等分し、それらを3枚重ねて同様の圧延処理を繰り返
すARB法を実施した。このARB法に基づく圧延処理
を10回繰り返すことにより総歪み量を11まで到達さ
せた。この時の転位密度は5x1011/cm3に達す
る。
Next, after activating the surface of the ribbon by shot blasting, as shown in FIG.
The rolling treatment was carried out under a rolling reduction of 66%. Furthermore, the obtained rolled plate 6 was shot-blasted and divided into three equal parts in the rolling direction, three of them were piled up, and the same rolling process was repeated to carry out the ARB method. By repeating the rolling process based on the ARB method 10 times, the total strain amount reached 11. The dislocation density at this time reaches 5 × 10 11 / cm 3 .

【0097】この素材を700℃、300秒間加熱、焼
鈍して再結晶化させた。これにより、粒径0.5μm、
分散炭化物粒子径0.08μmのフェライト鋼素材を得
た。これを厚さ0.04mmまで冷間圧延し、さらに7
00℃で60秒間加熱、焼鈍して得られた薄帯を105
0℃、30秒間加熱した後、10℃/秒の冷却速度で冷
却する焼入れ処理を実施して粒径0.4μm、分散炭化
物粒子径0.08μmのマルテンサイト系ステンレス鋼
を得た。このステンレス鋼の耐力は1.9GPaであ
り、硬度はHvで900であった。
This material was heated at 700 ° C. for 300 seconds and annealed for recrystallization. This gives a particle size of 0.5 μm,
A ferritic steel material having a dispersed carbide particle size of 0.08 μm was obtained. This is cold rolled to a thickness of 0.04 mm and
The thin strip obtained by heating and annealing at 00 ° C. for 60 seconds is 105
After heating at 0 ° C. for 30 seconds, quenching treatment of cooling at a cooling rate of 10 ° C./second was performed to obtain a martensitic stainless steel having a particle size of 0.4 μm and a dispersed carbide particle size of 0.08 μm. The yield strength of this stainless steel was 1.9 GPa, and the hardness was 900 in Hv.

【0098】また、電気カミソリ用外刃を製造するた
め、焼入れ前の薄帯を電気カミソリ外刃形状にプレス加
工する際に従来の外刃と同等の桟強度となるように桟幅
を従来の60%、刃先角度が30°になるようにしてプ
レス加工を施した。その後、1050℃、30秒間加熱
し、10℃/秒で冷却する焼入れ処理を実施し、研削/
研磨による刃付け工程を経て実施例13の電気カミソリ
用外刃を得た。この外刃を評価したところ、開口率:6
0%、開口への髭の導入率:72%、刃先R:0.5μ
mであった。
Further, in order to manufacture an outer blade for an electric razor, when the thin ribbon before quenching is pressed into the shape of an electric razor outer blade, the width of the conventional blade is made equal to that of the conventional outer blade. The press working was performed so that the blade edge angle was 30% at 60%. After that, a quenching treatment of heating at 1050 ° C. for 30 seconds and cooling at 10 ° C./second is performed, and grinding /
An outer blade for an electric razor of Example 13 was obtained through a blade attaching step by polishing. When this outer blade was evaluated, the aperture ratio was 6
0%, whisker introduction rate into opening: 72%, cutting edge R: 0.5μ
It was m.

【0099】(実施例14)Cr:13.0重量%、M
o:1.35重量%、C:0.45重量%、Si:0.
20重量%、Mn:0.20重量%、Zr:3.0重量
%、残部:Feとなるように原料を秤量し、それを攪拌
しながら、加熱、溶融して断面形状が□15x40mm
の銅鋳型に鋳込んで、素材鋳塊を作製した。尚、上記素
材中のPは0.025重量%以下であり、Sは0.02
0重量%以下であった。
(Example 14) Cr: 13.0% by weight, M
o: 1.35% by weight, C: 0.45% by weight, Si: 0.
The raw material is weighed so that 20% by weight, Mn: 0.20% by weight, Zr: 3.0% by weight, and the balance: Fe, and is heated and melted while stirring to obtain a cross-sectional shape of □ 15 × 40 mm.
The copper ingot was cast into a copper mold to produce a raw material ingot. In the above materials, P is 0.025% by weight or less and S is 0.02%.
It was 0% by weight or less.

【0100】次いで、図4に示すように、この素材鋳塊
を溶解し、0.05MPaのArガス雰囲気中で、周速
40m/秒で回転する銅ロールに雰囲気+0.05MP
aの圧力で噴射し、200℃/秒の冷却速度で幅3m
m、厚さ0.05mmの薄帯を得た。次いで、図6に示
すように、この薄帯15を粉砕し、内径20mmの黒鉛
ダイス16に充填し、プラズマ焼結法で700℃、30
0秒間加熱、100MPaの加圧条件となるよう上下パ
ンチ(19、20)で加圧しながら、充填した薄帯15を
焼結し、φ20x30mmの円柱状焼結体を得た。図6
中、番号17は放電プラズマ用電源を、番号18は通電
回路を示す。
Next, as shown in FIG. 4, this raw material ingot was melted, and in a 0.05 MPa Ar gas atmosphere, a copper roll rotating at a peripheral speed of 40 m / sec was used to add an atmosphere of +0.05 MPa.
Injection at a pressure of a, width of 3m at a cooling rate of 200 ° C / sec
A thin strip having a thickness of m and a thickness of 0.05 mm was obtained. Next, as shown in FIG. 6, this thin strip 15 is crushed and filled in a graphite die 16 having an inner diameter of 20 mm, and the temperature is 700 ° C. at 30 ° C. by a plasma sintering method.
The filled thin strip 15 was sintered while heating for 0 seconds and applying pressure of 100 MPa with the upper and lower punches (19, 20) to obtain a cylindrical sintered body of φ20 × 30 mm. Figure 6
In the figure, numeral 17 indicates a discharge plasma power source, and numeral 18 indicates an energizing circuit.

【0101】これを図1に示すようなL字型の押出し経
路(屈曲角=90°)を有するECAE加工用金型2にセ
ットし、450℃に加熱してECAE法により押出し加
工した。このECAE加工を10回繰り返すことにより
歪み量を10まで到達させた。この時の転位密度は1x
1011/cm3に達する。
This was set in an ECAE processing die 2 having an L-shaped extrusion path (bending angle = 90 °) as shown in FIG. 1, heated at 450 ° C. and extruded by the ECAE method. By repeating this ECAE processing 10 times, the amount of strain reached 10. The dislocation density at this time is 1x
It reaches 10 11 / cm 3 .

【0102】この後、素材を700℃、300秒間加
熱、焼鈍して再結晶化させた。これにより、粒径0.3
μm、分散炭化物粒子径0.01μmのフェライト鋼素
材を得た。これを厚さ0.8mmまで冷間圧延し、さら
に700℃で120秒間加熱、焼鈍して得られた薄帯を
1050℃、60秒間加熱した後、10℃/秒の冷却速
度で冷却する焼入れ処理を実施して粒径0.25μm、
分散炭化物粒子径0.01μmのマルテンサイト系ステ
ンレス鋼を得た。このステンレス鋼の耐力は2.0GP
aであり、硬度はHvで950であった。
After that, the material was heated at 700 ° C. for 300 seconds and annealed to be recrystallized. This gives a particle size of 0.3
A ferritic steel material having a particle diameter of μm and a dispersed carbide particle diameter of 0.01 μm was obtained. This is cold-rolled to a thickness of 0.8 mm, further heated at 700 ° C. for 120 seconds and annealed to obtain a thin strip, heated at 1050 ° C. for 60 seconds, and then cooled at a cooling rate of 10 ° C./second. The treatment is performed to obtain a particle size of 0.25 μm,
A martensitic stainless steel having a dispersed carbide particle size of 0.01 μm was obtained. The yield strength of this stainless steel is 2.0 GP
and the hardness was 950 in Hv.

【0103】また、バリカン用可動刃を製造するため、
焼入れ前の薄帯をバリカン用可動刃形状にプレス加工す
る際に刃先角度を40°になるようにしてプレス加工を
施した。その後、1050℃、60秒間加熱し、10℃
/秒で冷却する焼入れ処理を実施し、研削/研磨による
刃付け工程を経て実施例14のバリカン用可動刃を得
た。この固定刃を評価したところ、刃先R:0.2μm
であった。
Further, in order to manufacture a movable blade for hair clipper,
When the thin strip before quenching was pressed into a movable blade shape for hair clippers, the thin blade was pressed at a blade angle of 40 °. After that, heat at 1050 ° C for 60 seconds, 10 ° C
A quenching process of cooling at 1 / sec was performed, and a movable blade for hair clipper of Example 14 was obtained through a blade attaching process by grinding / polishing. When this fixed blade was evaluated, the blade edge R: 0.2 μm
Met.

【0104】(実施例15)Cr:13.5重量%、M
o:1.25重量%、C:0.40重量%、Si:0.
25重量%、Mn:0.25重量%、残部:Feとなる
ように原料を秤量し、それを攪拌しながら、加熱、溶融
して断面形状が□15x40mmの銅鋳型に鋳込んで、
素材鋳塊を作製した。尚、上記素材中のPは0.025
重量%以下であり、Sは0.020重量%以下であっ
た。
(Example 15) Cr: 13.5% by weight, M
o: 1.25% by weight, C: 0.40% by weight, Si: 0.
25% by weight, Mn: 0.25% by weight, the balance: Fe is weighed so that it is heated and melted while stirring and cast into a copper mold having a cross section of □ 15 × 40 mm,
A raw ingot was prepared. In addition, P in the above material is 0.025
The content was S or less and the content of S was 0.020 or less.

【0105】この素材鋳塊を、図3に示すように、0.
05MPaのArガス雰囲気中で断面形状が□6x30
mmの水冷銅鋳型13に連続鋳造することにより5℃/
秒の冷却速度を得た。これにより、水冷銅鋳型13下部
から急冷された薄帯11が得られる。この薄帯を700
℃、300秒間加熱、焼鈍することにより、粒径2μ
m、分散炭化物粒子径0.5μmのフェライト鋼素材を
得た。
As shown in FIG. 3, this raw material ingot was treated with 0.
The cross-sectional shape is □ 6x30 in an Ar gas atmosphere of 05 MPa.
5 ° C / by continuously casting in a water-cooled copper mold 13 of mm
A cooling rate of seconds was obtained. As a result, the thin ribbon 11 that is rapidly cooled is obtained from the lower portion of the water-cooled copper mold 13. This ribbon 700
Particle size 2μ by heating and annealing at ℃ for 300 seconds
A ferritic steel material having m and a dispersed carbide particle diameter of 0.5 μm was obtained.

【0106】これを厚さ0.04mmまで冷間圧延し、
さらに700℃で30秒間加熱、焼鈍して得られた薄帯
を1050℃、30秒間加熱した後、10℃/秒の冷却
速度で冷却する焼入れ処理を実施して粒径1.5μm、
分散炭化物粒子径0.55μmのマルテンサイト系ステ
ンレス鋼を得た。このステンレス鋼の耐力は1.3GP
aであり、硬度はHvで650であった。
This was cold rolled to a thickness of 0.04 mm,
Further, the thin strip obtained by heating and annealing at 700 ° C. for 30 seconds is heated at 1050 ° C. for 30 seconds, and then subjected to a quenching treatment of cooling at a cooling rate of 10 ° C./second to obtain a particle diameter of 1.5 μm.
A martensitic stainless steel having a dispersed carbide particle diameter of 0.55 μm was obtained. The yield strength of this stainless steel is 1.3 GP
The hardness was 650 in Hv.

【0107】また、電気カミソリ用外刃を製造するた
め、焼入れ前の薄帯を電気カミソリ外刃形状にプレス加
工する際に従来の外刃と同等の桟強度となるように桟幅
を従来のまま、刃先角度が30°になるようにしてプレ
ス加工を施した。その後、1050℃、30秒間加熱
し、10℃/秒で冷却する焼入れ処理を実施し、研削/
研磨による刃付け工程を経て実施例15の電気カミソリ
用外刃を得た。この外刃を評価したところ、開口率:5
0%、開口への髭の導入率:65%、刃先R:1.5μ
mであった。
Further, in order to manufacture the outer blade for the electric razor, when the thin ribbon before hardening is pressed into the shape of the electric razor outer blade, the width of the conventional blade is made equal to that of the conventional outer blade. As it was, press working was performed so that the blade edge angle was 30 °. After that, a quenching treatment of heating at 1050 ° C. for 30 seconds and cooling at 10 ° C./second is performed, and grinding /
An outer blade for an electric razor of Example 15 was obtained through a blade attaching step by polishing. When this outer blade was evaluated, the aperture ratio was 5
0%, whisker introduction rate into opening: 65%, cutting edge R: 1.5μ
It was m.

【0108】(実施例16)Cr:14.0重量%、M
o:1.15重量%、C:0.40重量%、Si:0.
25重量%、Mn:0.25重量%、Nb:2.5重量
%、残部:Feとなるように原料を秤量し、それを攪拌
しながら、加熱、溶融して断面形状が□40x40mm
の銅鋳型に鋳込んで、素材鋳塊を作製した。尚、上記素
材中のPは0.025重量%以下であり、Sは0.02
0重量%以下であった。
(Example 16) Cr: 14.0% by weight, M
o: 1.15% by weight, C: 0.40% by weight, Si: 0.
25% by weight, Mn: 0.25% by weight, Nb: 2.5% by weight, the balance: Fe is weighed so that the cross-sectional shape is □ 40 × 40 mm by heating and melting while stirring.
The copper ingot was cast into a copper mold to produce a raw material ingot. In the above materials, P is 0.025% by weight or less and S is 0.02%.
It was 0% by weight or less.

【0109】この素材鋳塊を熱間鍛造および押出しでφ
20mmの棒材に加工した。この棒材を700℃、30
0秒間加熱、焼鈍した後、φ20x90mmの円柱状に
切断した。これを図1に示すようなL字型の押出し経路
(屈曲角=90°)を有するECAE加工用金型2にセッ
トし、450℃に加熱してECAE法により押出し加工
した。このECAE加工を7回繰り返すことにより歪み
量を7まで到達させた。この時の転位密度は1x109
/cm3に達する。
This material ingot was hot-forged and extruded with a φ
It processed into the bar material of 20 mm. This rod is 700 ℃, 30
After heating and annealing for 0 seconds, it was cut into a cylinder of φ20 × 90 mm. This is an L-shaped extrusion path as shown in FIG.
It was set in a mold 2 for ECAE processing having a bending angle of 90 °, heated to 450 ° C. and extruded by the ECAE method. The strain amount was reached to 7 by repeating this ECAE processing 7 times. The dislocation density at this time is 1 × 10 9
/ Cm 3 is reached.

【0110】この後、素材を700℃、300秒間加
熱、焼鈍して再結晶化させた。これにより、粒径2.0
μm、分散炭化物粒子径0.8μmのフェライト鋼素材
を得た。これを厚さ0.5mmまで冷間圧延し、さらに
700℃で30秒間加熱、焼鈍して得られた薄帯を10
50℃、30秒間加熱した後、10℃/秒の冷却速度で
冷却する焼入れ処理を実施して粒径1.5μm、分散炭
化物粒子径0.8μmのマルテンサイト系ステンレス鋼
を得た。このステンレス鋼の耐力は1.2GPaであ
り、硬度はHvで600であった。
After that, the material was heated at 700 ° C. for 300 seconds and annealed to be recrystallized. This gives a particle size of 2.0
A ferrite steel material having a particle size of μm and a dispersed carbide particle size of 0.8 μm was obtained. This was cold-rolled to a thickness of 0.5 mm, further heated at 700 ° C. for 30 seconds and annealed to obtain a thin strip having a thickness of 10 mm.
After heating at 50 ° C. for 30 seconds, quenching treatment of cooling at a cooling rate of 10 ° C./second was performed to obtain a martensitic stainless steel having a particle size of 1.5 μm and a dispersed carbide particle size of 0.8 μm. The yield strength of this stainless steel was 1.2 GPa, and the hardness was 600 in Hv.

【0111】また、電気カミソリ用内刃を製造するた
め、焼入れ前の薄帯を電気カミソリ内刃形状にプレス加
工する際に刃先角度が45°になるようにしてプレス加
工を施した。その後、1050℃、30秒間加熱後、1
0℃/秒で冷却する焼入れ処理を実施し、研削/研磨に
よる刃付け工程を経て実施例16の電気カミソリ用内刃
を得た。この内刃を評価したところ、刃先R:1.5μ
mであった。
Further, in order to manufacture an inner blade for an electric razor, when the thin ribbon before quenching was pressed into the shape of the inner blade of the electric razor, the blade was pressed at an angle of 45 °. Then, after heating at 1050 ° C for 30 seconds, 1
A quenching process of cooling at 0 ° C./sec was performed, and an inner blade for an electric razor of Example 16 was obtained through a blade attaching step by grinding / polishing. When this inner blade was evaluated, the blade edge R: 1.5μ
It was m.

【0112】(比較例1)Cr:13.5重量%、M
o:1.25重量%、C:0.40重量%、Si:0.
25重量%、Mn:0.25重量%、残部:Feとなる
ように原料を秤量し、それを攪拌しながら、加熱、溶融
して断面形状がφ80mmの銅鋳型に鋳込んで、素材鋳
塊を作製した。
(Comparative Example 1) Cr: 13.5% by weight, M
o: 1.25% by weight, C: 0.40% by weight, Si: 0.
25% by weight, Mn: 0.25% by weight, and the balance: Fe, the raw material is weighed, heated and melted while stirring, and cast into a copper mold having a cross-sectional shape of φ80 mm to form a raw material ingot. Was produced.

【0113】この素材鋳塊を熱間鍛造および圧延して幅
50mm、厚さ5mmの圧延板を得た。この圧延板を7
00℃、300秒間加熱、焼鈍して再結晶化させた。こ
れにより、粒径10μm、分散炭化物粒子径2μmのフ
ェライト鋼素材を得た。これを厚さ0.04mmまで冷
間圧延し、さらに700℃で30秒間加熱、焼鈍して得
られた薄帯を1100℃、30秒間加熱した後、10℃
/秒の冷却速度で冷却する焼入れ処理を実施して粒径5
μm、分散炭化物粒子径2μmのマルテンサイト系ステ
ンレス鋼を得た。このステンレス鋼の耐力は1.3GP
aであり、硬度はHvで650であった。
This raw material ingot was hot forged and rolled to obtain a rolled plate having a width of 50 mm and a thickness of 5 mm. This rolled plate 7
It was recrystallized by heating and annealing at 00 ° C for 300 seconds. As a result, a ferritic steel material having a particle size of 10 μm and a dispersed carbide particle size of 2 μm was obtained. This was cold-rolled to a thickness of 0.04 mm, further heated at 700 ° C. for 30 seconds and annealed to obtain a thin strip, which was heated at 1100 ° C. for 30 seconds, and then at 10 ° C.
The grain size is 5 after the quenching process is performed at a cooling rate of 1 / sec.
A martensitic stainless steel having a diameter of μm and a dispersed carbide particle diameter of 2 μm was obtained. The yield strength of this stainless steel is 1.3 GP
The hardness was 650 in Hv.

【0114】また、電気カミソリ用外刃を製造するた
め、焼入れ前の薄帯を電気カミソリ外刃形状にプレス加
工する際に従来の外刃形状で、刃先角度が60°になる
ようにしてプレス加工を施した。その後、1050℃、
30秒間加熱し、10℃/秒で冷却する焼入れ処理を実
施し、研削/研磨による刃付け工程を経て比較例1の電
気カミソリ用外刃を得た。この外刃を評価したところ、
開口率:50%、開口への髭の導入率:65%、刃先
R:1.0μmであった。尚、比較例1では、刃付け工
程時に、結晶粒の粗大化が原因と考えられる刃先のチッ
ピングが多数生じた。
Further, in order to manufacture an outer blade for an electric razor, when a thin strip before quenching is pressed into an electric razor outer blade shape, it is pressed with a conventional outer blade shape and a blade angle of 60 °. Processed. After that, 1050 ℃,
A quenching treatment of heating for 30 seconds and cooling at 10 ° C./second was performed, and an outer blade for an electric razor of Comparative Example 1 was obtained through a blade attaching step by grinding / polishing. When this outer blade was evaluated,
Opening ratio: 50%, whisker introduction ratio into opening: 65%, cutting edge R: 1.0 μm. In Comparative Example 1, a large number of chippings of the cutting edge, which are considered to be caused by the coarsening of the crystal grains, occurred during the cutting step.

【0115】(比較例2)Cr:13.5重量%、M
o:1.25重量%、C:0.40重量%、Si:0.
25重量%、Mn:0.25重量%、残部:Feとなる
ように原料を秤量し、それを攪拌しながら、加熱、溶融
して断面形状がφ80mmの銅鋳型に鋳込んで、素材鋳
塊を作製した。
(Comparative Example 2) Cr: 13.5% by weight, M
o: 1.25% by weight, C: 0.40% by weight, Si: 0.
25% by weight, Mn: 0.25% by weight, and the balance: Fe, the raw material is weighed, heated and melted while stirring, and cast into a copper mold having a cross-sectional shape of φ80 mm to form a raw material ingot. Was produced.

【0116】この素材鋳塊を熱間鍛造および圧延して幅
50mm、厚さ5mmの圧延板を得た。この圧延板を7
00℃、300秒間加熱、焼鈍して再結晶化させた。こ
れにより、粒径10μm、分散炭化物粒子径2μmのフ
ェライト素材を得た。これを厚さ0.4mmまで冷間圧
延し、さらに700℃で30秒間加熱、焼鈍して得られ
た薄帯を1050℃、30秒間加熱した後、10℃/秒
の冷却速度で冷却する焼入れ処理を実施して粒径5μ
m、分散炭化物粒子径2μmのマルテンサイト系ステン
レス鋼を得た。このステンレス鋼の耐力は1.2GPa
であり、硬度はHvで600であった。
This raw material ingot was hot forged and rolled to obtain a rolled plate having a width of 50 mm and a thickness of 5 mm. This rolled plate 7
It was recrystallized by heating and annealing at 00 ° C for 300 seconds. As a result, a ferrite material having a particle size of 10 μm and a dispersed carbide particle size of 2 μm was obtained. This is cold-rolled to a thickness of 0.4 mm, further heated at 700 ° C for 30 seconds and annealed to obtain a thin strip, which is heated at 1050 ° C for 30 seconds, and then cooled at a cooling rate of 10 ° C / second. Particle size is 5μ after processing
A martensitic stainless steel having m and a dispersed carbide particle diameter of 2 μm was obtained. The yield strength of this stainless steel is 1.2 GPa
And the hardness was 600 in Hv.

【0117】また、電気カミソリ用内刃を製造するた
め、焼入れ前の薄帯を電気カミソリ内刃形状にプレス加
工する際に刃先角度が30°になるようにしてプレス加
工を施した。その後、1050℃、30秒間加熱後、1
0℃/秒で冷却する焼入れ処理を実施し、研削/研磨に
よる刃付け工程を経て比較例2の電気カミソリ用内刃を
得た。この内刃を評価したところ、刃先R:1.5μm
であった。尚、比較例2では、刃付け工程時に、結晶粒
の粗大化が原因と考えられる刃先のチッピングが多数生
じた。
Further, in order to manufacture an inner blade for an electric razor, when the thin ribbon before quenching was pressed into the shape of the inner blade of the electric razor, the blade was pressed at an angle of 30 °. Then, after heating at 1050 ° C for 30 seconds, 1
A quenching process of cooling at 0 ° C./second was performed, and an inner blade for an electric razor of Comparative Example 2 was obtained through a blade attaching process by grinding / polishing. When this inner blade was evaluated, the blade edge R: 1.5 μm
Met. In Comparative Example 2, chipping of the cutting edge, which is considered to be caused by coarsening of the crystal grains, occurred during the cutting step.

【0118】(比較例3)Cr:18.0重量%、M
o:1.00重量%、C:1.20重量%、Si:0.
25重量%、Mn:0.25重量%、残部:Feとなる
ように原料を秤量し、それを攪拌しながら、加熱、溶融
して断面形状がφ80mmの銅鋳型に鋳込んで、素材鋳
塊を作製した。
(Comparative Example 3) Cr: 18.0% by weight, M
o: 1.00% by weight, C: 1.20% by weight, Si: 0.
25% by weight, Mn: 0.25% by weight, and the balance: Fe, the raw material is weighed, heated and melted while stirring, and cast into a copper mold having a cross-sectional shape of φ80 mm to form a raw material ingot. Was produced.

【0119】この素材鋳塊を熱間鍛造および圧延して幅
50mm、厚さ5mmの圧延板を得た。この圧延板を7
00℃、300秒間加熱、焼鈍して再結晶化させた。こ
れにより、粒径10μm、分散炭化物粒子径3μmのフ
ェライト鋼素材を得た。これを厚さ0.04mmまで冷
間圧延すると複数箇所でクラックが発生した。そこで、
クラック発生量の少ない比較的良好な部分を700℃で
30秒間加熱、焼鈍し、さらに1100℃、30秒間加
熱後、10℃/秒の冷却速度で冷却する焼入れ処理を実
施して粒径5μm、分散炭化物粒子径2μmのマルテン
サイト系ステンレス鋼を得た。このステンレス鋼の耐力
は1.6GPaであり、硬度はHvで800であった。
This material ingot was hot forged and rolled to obtain a rolled plate having a width of 50 mm and a thickness of 5 mm. This rolled plate 7
It was recrystallized by heating and annealing at 00 ° C for 300 seconds. As a result, a ferritic steel material having a particle size of 10 μm and a dispersed carbide particle size of 3 μm was obtained. When this was cold-rolled to a thickness of 0.04 mm, cracks were generated at multiple points. Therefore,
A relatively good portion with a small amount of cracks is heated and annealed at 700 ° C. for 30 seconds, further heated at 1100 ° C. for 30 seconds, and then subjected to a quenching treatment of cooling at a cooling rate of 10 ° C./second to obtain a particle size of 5 μm. A martensitic stainless steel having a dispersed carbide particle diameter of 2 μm was obtained. The yield strength of this stainless steel was 1.6 GPa and the hardness was 800 in Hv.

【0120】また、電気カミソリ用外刃を製造するた
め、焼入れ前の薄帯を電気カミソリ外刃形状にプレス加
工する際に従来の外刃形状で、刃先角度60°になるよ
うにしてプレス加工を施したところ、外刃肩R部に大量
のクラックが発生して外刃としての評価はできなかっ
た。
Further, in order to manufacture an outer blade for an electric razor, when a thin strip before quenching is pressed into an electric razor outer blade shape, it is pressed with a conventional outer blade shape and a cutting edge angle of 60 °. As a result, a large amount of cracks were generated in the R portion of the outer blade shoulder, and the outer blade could not be evaluated.

【0121】[0121]

【発明の効果】本発明の製造方法によれば、SUS42
0J2をベース組成にした鋳塊を1)溶融後、超急冷凝
固法を実施することにより、あるいは2)鍛造、展伸加
工後に高密度転位導入法を実施することにより、あるい
は3)溶融後、超急冷凝固法を実施し、さらに焼鈍、あ
るいは焼結し、高密度転位導入法を実施することによ
り、焼鈍(再結晶)後に1μm以下の微細フェライト結晶
組織とし、これを冷間圧延、焼鈍、プレス加工、焼入
れ、刃付け加工の一連の工程を経ることで、1μm以下
の微細マルテンサイト組織を有する刃物を製造すること
ができる。この場合は、素材が高強度となるので、シェ
ーバー外刃のような閉鎖系の刃物において刃に設けられ
る複数の開口への髭や髪の毛のような被切断物の導入率
(開口率)を高めることができる。また、小さな刃先角度
で、1μm以下の小さな刃先Rを有する鋭利な刃先を実
現することができるとともに、高硬度に由来する高耐摩
耗性と、微細組織に起因する粗大チッピングの抑制効果
とで刃物の長寿命化を達成することができる。
According to the manufacturing method of the present invention, SUS42
By 1) melting and then performing an ultra-rapid solidification method after melting an ingot having 0J2 as a base composition, or 2) performing a high-density dislocation introduction method after forging and stretching, or 3) after melting, By performing the ultra-rapid solidification method, further annealing or sintering, and implementing the high-density dislocation introduction method, a fine ferrite crystal structure of 1 μm or less is obtained after annealing (recrystallization), and this is subjected to cold rolling, annealing, A blade having a fine martensite structure of 1 μm or less can be manufactured by undergoing a series of steps of pressing, quenching, and edging. In this case, since the material has high strength, the rate of introduction of objects to be cut such as whiskers and hairs into a plurality of openings provided in the blade in a closed system blade such as a shaver outer blade.
(Aperture ratio) can be increased. Further, it is possible to realize a sharp cutting edge having a small cutting edge R of 1 μm or less with a small cutting edge angle, and at the same time, a high wear resistance resulting from high hardness and an effect of suppressing coarse chipping due to a fine structure. It is possible to achieve a long life.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に基づく結晶粒微細化マルテン
サイト系ステンレス鋼の製造方法に用いたECAE(Equ
al-Channel Angular Extrusion)法を示す概略図であ
る。
FIG. 1 is an ECAE (Equation) used in a method for producing grain refined martensitic stainless steel according to an embodiment of the present invention.
It is a schematic diagram showing an al-Channel Angular Extrusion) method.

【図2】同結晶粒微細化マルテンサイト系ステンレス鋼
への刃付け工程を示す概略図である。
FIG. 2 is a schematic view showing a step of blading the same grain refined martensitic stainless steel.

【図3】本発明の実施例に基づく結晶粒微細化マルテン
サイト系ステンレス鋼の製造方法に用いた水冷銅鋳型連
続鋳造法を示す概略図である。
FIG. 3 is a schematic diagram showing a water-cooled copper mold continuous casting method used in a method for producing grain-refined martensitic stainless steel according to an example of the present invention.

【図4】本発明の実施例に基づく結晶粒微細化マルテン
サイト系ステンレス鋼の製造方法に用いた単ロール式回
転ロール法を示す概略図である。
FIG. 4 is a schematic view showing a single roll type rotary roll method used in the method for producing grain refined martensitic stainless steel according to the example of the present invention.

【図5】本発明の実施例に基づく結晶粒微細化マルテン
サイト系ステンレス鋼の製造方法に用いたARB(Accum
ulative Roll-Bonding)法を示す概略図である。
FIG. 5 is an ARB (Accum) used in a method for producing a grain-refined martensitic stainless steel according to an embodiment of the present invention.
It is the schematic which shows the ulative Roll-Bonding method.

【図6】本発明の実施例に基づく結晶粒微細化マルテン
サイト系ステンレス鋼の製造方法に用いた放電プラズマ
焼結法を示す概略図である。
FIG. 6 is a schematic view showing a spark plasma sintering method used in the method for producing grain refined martensitic stainless steel according to the example of the present invention.

【図7】本発明の実施例に基づく結晶粒微細化マルテン
サイト系ステンレス鋼の製造方法に用いた双ロール式回
転ロール法を示す概略図である。
FIG. 7 is a schematic view showing a twin roll type rotating roll method used in the method for producing grain refined martensitic stainless steel according to the example of the present invention.

【符号の説明】[Explanation of symbols]

1 ステンレス素材 2 ECAE加工用金型 3 プランジャー 5 圧延ロール 6 圧延処理板 6’ 2回圧延処理板 7 高周波加熱装置 8 噴射ノズル 9 Arガスボンベ 10 溶融素材 11 薄帯 12 急冷用金属ロール 13 水冷連続鋳造銅鋳型 14 水冷用水路 15 薄帯 16 黒鉛ダイス 17 放電プラズマ用電源 18 通電回路 19 上パンチ 20 下パンチ 24 刃付け用素材 30 刃成形プレス金型 31 刃成形プレス金型 32 回転砥石 34 焼入れ処理 35 刃物 1 Stainless steel material 2 ECAE processing mold 3 Plunger 5 rolling rolls 6 Rolled plate 6'twice rolled plate 7 High frequency heating device 8 injection nozzles 9 Ar gas cylinder 10 molten material 11 ribbon 12 Quenching metal roll 13 Water-cooled continuous casting copper mold 14 Water-cooling canal 15 Thin strip 16 graphite die 17 Discharge plasma power supply 18 energizing circuit 19 Top punch 20 Lower punch Material for 24 blades 30 blade forming press mold 31 blade forming press die 32 rotating whetstone 34 Quenching treatment 35 cutlery

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C21D 9/18 C21D 9/18 C22C 38/00 302 C22C 38/00 302Z 38/22 38/22 38/28 38/28 // B26B 19/00 B26B 19/00 D (72)発明者 藤本 真司 大阪府門真市大字門真1048番地松下電工株 式会社内 Fターム(参考) 3C056 BA23 BA25 4E004 DB02 DB11 MA01 SC01 SC04 SD02 SE10 4K032 AA05 AA06 AA13 AA16 AA20 AA22 AA27 AA29 AA31 AA35 AA39 CA05 CC01 CH04 CH06 CJ03 4K042 AA10 BA02 CA07 CA08 CA09 CA12 CA16 DA01 DA02 DA03 DC02 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C21D 9/18 C21D 9/18 C22C 38/00 302 C22C 38/00 302Z 38/22 38/22 38/28 38/28 // B26B 19/00 B26B 19/00 D (72) Inventor Shinji Fujimoto 1048, Kadoma, Kadoma, Osaka Prefecture Matsushita Electric Works Co., Ltd. F-term (reference) 3C056 BA23 BA25 4E004 DB02 DB11 MA01 SC01 SC04 SD02 SE10 4K032 AA05 AA06 AA13 AA16 AA20 AA22 AA27 AA29 AA31 AA35 AA39 CA05 CC01 CH04 CH06 CJ03 4K042 AA10 BA02 CA07 CA08 CA09 CA12 CA16 DA01 DA02 DA03 DC02

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 Cr:13.0〜14.0重量%、M
o:1.15〜1.35重量%、C:0.35〜0.5
5重量%、Si:0.20〜0.50重量%、Mn:
0.20〜0.50重量%、P:0.025重量%以
下、S:0.020重量%以下、残部:Fe及び不可避
な不純物元素からなる組成を有する基材を作製する工程
と、この基材に高密度転位導入法および超急冷凝固法の
少なくとも一方を施した後、焼鈍処理して微細組織フェ
ライト鋼を得る工程と、前記フェライト鋼に冷間圧延、
焼鈍、必要に応じて所定形状への塑性加工を施した後、
焼入れ処理して結晶粒微細化マルテンサイト系ステンレ
ス鋼を得る工程とを含むことを特徴とする結晶粒微細化
マルテンサイト系ステンレス鋼の製造方法。
1. Cr: 13.0 to 14.0% by weight, M
o: 1.15 to 1.35% by weight, C: 0.35 to 0.5
5% by weight, Si: 0.20 to 0.50% by weight, Mn:
A step of producing a base material having a composition of 0.20 to 0.50% by weight, P: 0.025% by weight or less, S: 0.020% by weight or less, the balance: Fe and inevitable impurity elements; After subjecting the substrate to at least one of high-density dislocation introduction method and ultra-rapid solidification method, a step of obtaining a microstructured ferritic steel by annealing, and cold rolling to the ferritic steel,
After annealing and, if necessary, plastic working into a prescribed shape,
And a step of obtaining a grain-refined martensitic stainless steel by quenching, the method for producing a grain-refined martensitic stainless steel.
【請求項2】 上記基材は、Cr:13.0〜14.0
重量%、Mo:1.15〜1.35重量%、C:0.3
5〜0.55重量%、Si:0.20〜0.50重量
%、Mn:0.20〜0.50重量%、P:0.025
重量%以下、S:0.020重量%以下、Ti:2.2
重量%以下、Zr:4.15重量%以下、Nb:4.2
5重量%以下、残部:Fe及び不可避な不純物元素から
なり、C量を"a"とし、Ti量を"b"とし、Zr量を"
c"とし、Nb量を"d"で表す場合に、以下の関係: b+c+d≧0.2重量%、 b/4+c/7.6+d/7.7≦a を満足する基材であることを特徴とする請求項1に記載
の結晶粒微細化マルテンサイト系ステンレス鋼の製造方
法。
2. The base material is Cr: 13.0 to 14.0.
% By weight, Mo: 1.15 to 1.35% by weight, C: 0.3
5 to 0.55% by weight, Si: 0.20 to 0.50% by weight, Mn: 0.20 to 0.50% by weight, P: 0.025
Wt% or less, S: 0.020 wt% or less, Ti: 2.2
Wt% or less, Zr: 4.15 wt% or less, Nb: 4.2
5% by weight or less, balance: Fe and unavoidable impurity elements, C amount "a", Ti amount "b", Zr amount "
c "and the amount of Nb is represented by" d ", it is a base material satisfying the following relations: b + c + d ≧ 0.2 wt%, b / 4 + c / 7.6 + d / 7.7 ≦ a The method for producing a grain refined martensitic stainless steel according to claim 1.
【請求項3】 上記高密度転位導入法および超急冷凝固
法の少なくとも一方を実施するに先立って、上記組成を
有する基材としての鋳塊に鍛造および展伸加工の少なく
と一方を施すことを特徴とする請求項1もしくは2に記
載の結晶粒微細化マルテンサイト系ステンレス鋼の製造
方法。
3. Prior to carrying out at least one of the high density dislocation introduction method and the ultra-rapid solidification method, the ingot as a base material having the above composition is subjected to at least one of forging and stretching. The method for producing a grain refined martensitic stainless steel according to claim 1 or 2.
【請求項4】 上記高密度転位導入法で導入する転位密
度が1010/cm3以上であることを特徴とする請求項
1乃至3のいずれかに記載の結晶粒微細化マルテンサイ
ト系ステンレス鋼の製造方法。
4. The grain refined martensitic stainless steel according to claim 1, wherein the dislocation density introduced by the high density dislocation introduction method is 10 10 / cm 3 or more. Manufacturing method.
【請求項5】 上記高密度転位導入法として、ECAE
法(Equal-Channel Angular Extrusion)により8以上の
歪み量を上記基材に提供することを特徴とする請求項1
乃至4のいずれかに記載の結晶粒微細化マルテンサイト
系ステンレス鋼の製造方法。
5. The method of introducing high-density dislocations is ECAE.
A strain amount of 8 or more is provided to the base material by a method (Equal-Channel Angular Extrusion).
5. The method for producing a grain-refined martensitic stainless steel according to any one of 1 to 4.
【請求項6】 上記高密度転位導入法として、ARB法
(Accumulative Roll-Bonding)により8以上の歪み量を
上記基材に提供することを特徴とする請求項1乃至4の
いずれかに記載の結晶粒微細化マルテンサイト系ステン
レス鋼の製造方法。
6. The ARB method as the high density dislocation introduction method
The method for producing a grain-refined martensitic stainless steel according to any one of claims 1 to 4, wherein the substrate is provided with a strain amount of 8 or more by (Accumulative Roll-Bonding).
【請求項7】 上記高密度転位導入法における加工温度
が500℃以下であることを特徴とする請求項1乃至6
のいずれかに記載の結晶粒微細化マルテンサイト系ステ
ンレス鋼の製造方法。
7. The processing temperature in the high density dislocation introduction method is 500.degree. C. or lower.
The method for producing a grain-refined martensitic stainless steel according to any one of 1.
【請求項8】 上記超急冷凝固法の冷却速度が10℃/
秒以上であることを特徴とする請求項1乃至3のいずれ
かに記載の結晶粒微細化マルテンサイト系ステンレス鋼
の製造方法。
8. The cooling rate of the ultra-rapid solidification method is 10 ° C. /
The method for producing a grain-refined martensitic stainless steel according to any one of claims 1 to 3, wherein the time is at least 2 seconds.
【請求項9】 上記超急冷凝固法がロール周速0.1m
/秒以上の回転ロール法であることを特徴とするに請求
項1乃至3のいずれかに記載の結晶粒微細化マルテンサ
イト系ステンレス鋼の製造方法。
9. A roll peripheral speed of 0.1 m is used for the super rapid solidification method.
The method for producing a grain-refined martensitic stainless steel according to any one of claims 1 to 3, which is a rotating roll method of not less than 1 / second.
【請求項10】 上記超急冷凝固法が鋳込み面間隔5m
m以下の水冷銅鋳型鋳造法であることを特徴とするに請
求項1乃至3のいずれかに記載の結晶粒微細化マルテン
サイト系ステンレス鋼の製造方法。
10. The superficial rapid solidification method uses a casting surface spacing of 5 m.
The method for producing crystal grain refined martensitic stainless steel according to any one of claims 1 to 3, which is a water-cooled copper mold casting method of m or less.
【請求項11】 上記超急冷凝固法で得られた0.5m
m以上の板材を焼鈍した後、高密度転位導入法を実施す
ることを特徴とする請求項1乃至3のいずれかに記載の
結晶粒微細化マルテンサイト系ステンレス鋼の製造方
法。
11. 0.5 m obtained by the above rapid solidification method
The method for producing a grain-refined martensitic stainless steel according to any one of claims 1 to 3, wherein a high density dislocation introduction method is performed after annealing a plate material having a length of m or more.
【請求項12】 上記超急冷凝固法で得られた0.5m
m未満の薄帯を分断して薄帯を作製し、この薄帯を70
0℃以下の放電プラズマス焼結法で焼結して焼結体を作
製し、この焼結体に高密度転位導入法を実施することを
特徴とする請求項1乃至3のいずれかに記載の結晶粒微
細化マルテンサイト系ステンレス鋼の製造方法。
12. 0.5 m obtained by the ultra-rapid solidification method
A thin strip of less than m is cut to form a thin strip.
The sintered body is sintered by a discharge plasma sintering method at 0 ° C. or less, and a high density dislocation introduction method is performed on the sintered body. For producing a grain-refined martensitic stainless steel.
【請求項13】 上記超急冷凝固法で得られた0.5m
m未満の薄帯を分断して薄帯を作製し、この薄帯を金属
カプセルに充填した後、高密度転位導入法としてECA
E法を施すことを特徴とする請求項1乃至3のいずれか
に記載の結晶粒微細化マルテンサイト系ステンレス鋼の
製造方法。
13. 0.5 m obtained by the above-mentioned ultra rapid solidification method
ECA was performed as a method for introducing high density dislocations by dividing a ribbon of less than m into a ribbon, filling the ribbon with a metal capsule.
Process E is performed, The manufacturing method of the grain refinement martensitic stainless steel in any one of Claim 1 thru | or 3 characterized by the above-mentioned.
【請求項14】 上記所定形状への塑性加工前の焼鈍が
650〜750℃の温度で実施されることを特徴とする
請求項1乃至13のいずれかに記載の結晶粒微細化マル
テンサイト系ステンレス鋼の製造方法。
14. The grain-refined martensitic stainless steel according to claim 1, wherein the annealing before plastic working into the predetermined shape is performed at a temperature of 650 to 750 ° C. Steel manufacturing method.
【請求項15】 上記結晶粒微細化マルテンサイト系ス
テンレス鋼の結晶粒径が1μm未満であることを特徴と
する請求項1乃至14に記載の結晶粒微細化マルテンサ
イト系ステンレス鋼の製造方法。
15. The method for producing a grain-refined martensitic stainless steel according to claim 1, wherein the grain size of the grain-refined martensitic stainless steel is less than 1 μm.
【請求項16】請求項1乃至15に記載の製造方法によ
り製造された上記結晶粒微細化マルテンサイト系ステン
レス鋼に研削/研磨による刃付け加工を施すことで得ら
れる刃物。
16. A blade obtained by subjecting the grain refined martensitic stainless steel manufactured by the manufacturing method according to claim 1 to grinding / polishing.
JP2002120014A 2002-04-23 2002-04-23 Process for producing grain-refined martensitic stainless steel and cutting tool using the stainless steel Withdrawn JP2003313612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002120014A JP2003313612A (en) 2002-04-23 2002-04-23 Process for producing grain-refined martensitic stainless steel and cutting tool using the stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002120014A JP2003313612A (en) 2002-04-23 2002-04-23 Process for producing grain-refined martensitic stainless steel and cutting tool using the stainless steel

Publications (1)

Publication Number Publication Date
JP2003313612A true JP2003313612A (en) 2003-11-06

Family

ID=29536360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002120014A Withdrawn JP2003313612A (en) 2002-04-23 2002-04-23 Process for producing grain-refined martensitic stainless steel and cutting tool using the stainless steel

Country Status (1)

Country Link
JP (1) JP2003313612A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007536086A (en) * 2004-04-28 2007-12-13 ザ・ナノスティール・カンパニー Nanocrystalline steel sheet
WO2010049950A1 (en) * 2008-10-27 2010-05-06 Tata Steel Limited Production of ultra-fine grains in interstitial free (if) steels by equal channel angular extrusion (ecae)
KR100963021B1 (en) 2003-06-30 2010-06-10 주식회사 포스코 Method for manufacturing continuous casting of martensite stainless steel having with excellent surface quality
WO2011078530A2 (en) * 2009-12-21 2011-06-30 주식회사 포스코 Martensitic stainless steel and a production method therefor
WO2011078532A2 (en) * 2009-12-21 2011-06-30 주식회사 포스코 High-carbon martensitic stainless steel and a production method therefor
CN102666902A (en) * 2009-12-28 2012-09-12 Posco公司 Martensitic stainless steel produced by a twin roll strip casting process and method for manufacturing same
KR101264232B1 (en) 2009-12-28 2013-05-14 주식회사 포스코 Apparatus and method for controlling horizontal oscillation of edge dam in twin roll strip caster
JP2014504332A (en) * 2010-12-27 2014-02-20 ポスコ High corrosion resistance martensitic stainless steel and method for producing the same
KR101403286B1 (en) 2011-12-27 2014-06-02 주식회사 포스코 Martensitic stainless steel sheet and method for manufacturing the same
KR20180104013A (en) 2016-03-09 2018-09-19 히다찌긴조꾸가부시끼가이사 Martensitic stainless steel foil and manufacturing method thereof
EP3403752A1 (en) * 2017-05-18 2018-11-21 Becker Stahl-Service GmbH Tool for splitting aluminium sheet and method for producing such a tool
CN111906158A (en) * 2020-06-24 2020-11-10 西安诺博尔稀贵金属材料股份有限公司 Method for preparing silver-copper-zinc-tin brazing filler metal strip
CN112207527A (en) * 2020-09-29 2021-01-12 重庆派斯克刀具制造股份有限公司 Machining process of martensitic stainless steel surface-replaceable blade
CN113385549A (en) * 2021-07-07 2021-09-14 兰州理工大学 Composite processing method of high-strength high-conductivity pure copper wire
WO2022153790A1 (en) 2021-01-13 2022-07-21 日鉄ステンレス株式会社 Martensite-based stainless steel material and method for producing same

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100963021B1 (en) 2003-06-30 2010-06-10 주식회사 포스코 Method for manufacturing continuous casting of martensite stainless steel having with excellent surface quality
JP2007536086A (en) * 2004-04-28 2007-12-13 ザ・ナノスティール・カンパニー Nanocrystalline steel sheet
WO2010049950A1 (en) * 2008-10-27 2010-05-06 Tata Steel Limited Production of ultra-fine grains in interstitial free (if) steels by equal channel angular extrusion (ecae)
KR101268800B1 (en) * 2009-12-21 2013-05-28 주식회사 포스코 Martensitic stainless steels containing high carbon content and method of manufacturing the same
WO2011078530A2 (en) * 2009-12-21 2011-06-30 주식회사 포스코 Martensitic stainless steel and a production method therefor
WO2011078530A3 (en) * 2009-12-21 2011-10-20 주식회사 포스코 Martensitic stainless steel and a production method therefor
WO2011078532A3 (en) * 2009-12-21 2011-11-03 주식회사 포스코 High-carbon martensitic stainless steel and a production method therefor
CN102665963A (en) * 2009-12-21 2012-09-12 Posco公司 Martensitic stainless steel and a production method therefor
CN102665964A (en) * 2009-12-21 2012-09-12 Posco公司 High-carbon martensitic stainless steel and a production method therefor
CN102665964B (en) * 2009-12-21 2016-04-20 Posco公司 High-carbon martensitic stainless steel and manufacture method thereof
WO2011078532A2 (en) * 2009-12-21 2011-06-30 주식회사 포스코 High-carbon martensitic stainless steel and a production method therefor
JP2013514891A (en) * 2009-12-21 2013-05-02 ポスコ High carbon martensitic stainless steel and method for producing the same
JP2013514890A (en) * 2009-12-21 2013-05-02 ポスコ Martensitic stainless steel and method for producing the same
KR101312776B1 (en) * 2009-12-21 2013-09-27 주식회사 포스코 Martensitic stainless steel and method of the manufacture the same containing 0.1~0.5% carbon
AU2010339154B2 (en) * 2009-12-28 2014-01-23 Posco Martensitic stainless steel produced by a twin roll strip casting process and method for manufacturing same
KR101264232B1 (en) 2009-12-28 2013-05-14 주식회사 포스코 Apparatus and method for controlling horizontal oscillation of edge dam in twin roll strip caster
JP2013512347A (en) * 2009-12-28 2013-04-11 ポスコ Martensitic stainless steel produced by twin roll thin plate casting process and method for producing the same
CN102666902A (en) * 2009-12-28 2012-09-12 Posco公司 Martensitic stainless steel produced by a twin roll strip casting process and method for manufacturing same
JP2014504332A (en) * 2010-12-27 2014-02-20 ポスコ High corrosion resistance martensitic stainless steel and method for producing the same
US9731345B2 (en) 2010-12-27 2017-08-15 Posco Martensitic stainless steel highly resistant to corrosion, and method for manufacturing same
KR101403286B1 (en) 2011-12-27 2014-06-02 주식회사 포스코 Martensitic stainless steel sheet and method for manufacturing the same
EP3428298A4 (en) * 2016-03-09 2019-10-16 Hitachi Metals, Ltd. Martensitic stainless steel foil and method for manufacturing same
KR20180104013A (en) 2016-03-09 2018-09-19 히다찌긴조꾸가부시끼가이사 Martensitic stainless steel foil and manufacturing method thereof
KR102114022B1 (en) 2016-03-09 2020-05-22 히다찌긴조꾸가부시끼가이사 Martensitic stainless steel foil and its manufacturing method
US11098393B2 (en) 2016-03-09 2021-08-24 Hitachi Metals, Ltd. Martensitic stainless steel foil and manufacturing method thereof
EP3403752A1 (en) * 2017-05-18 2018-11-21 Becker Stahl-Service GmbH Tool for splitting aluminium sheet and method for producing such a tool
CN111906158A (en) * 2020-06-24 2020-11-10 西安诺博尔稀贵金属材料股份有限公司 Method for preparing silver-copper-zinc-tin brazing filler metal strip
CN112207527A (en) * 2020-09-29 2021-01-12 重庆派斯克刀具制造股份有限公司 Machining process of martensitic stainless steel surface-replaceable blade
WO2022153790A1 (en) 2021-01-13 2022-07-21 日鉄ステンレス株式会社 Martensite-based stainless steel material and method for producing same
KR20230069179A (en) 2021-01-13 2023-05-18 닛테츠 스테인레스 가부시키가이샤 Martensitic stainless steel and manufacturing method thereof
CN113385549A (en) * 2021-07-07 2021-09-14 兰州理工大学 Composite processing method of high-strength high-conductivity pure copper wire

Similar Documents

Publication Publication Date Title
JP2003313612A (en) Process for producing grain-refined martensitic stainless steel and cutting tool using the stainless steel
US6143241A (en) Method of manufacturing metallic products such as sheet by cold working and flash annealing
RU2066253C1 (en) Method of making turbine blades
US4318733A (en) Tool steels which contain boron and have been processed using a rapid solidification process and method
CN112195317B (en) Cold rolling composite laser surface annealing process method for high-entropy alloy with heterogeneous structure
US5032190A (en) Sheet processing for ODS iron-base alloys
US9101984B2 (en) High hardness, corrosion resistant PM Nitinol implements and components
JPH05117800A (en) Production of oxide-dispersed and reinforced iron base alloy
TWI774333B (en) Stainless steel sheet and its manufacturing method, cutting tools and cutting tools
Huang et al. Cryogenic treatment on Ti6Al4V alloy fabricated by electron beam melting: microstructure and mechanical properties
JP4155200B2 (en) Method for producing grain refined martensitic stainless steel
US3021211A (en) High temperature nickel base alloys
JP2004176118A (en) Method for producing martensitic stainless steel material having fine crystal grain
GB2116207A (en) Improved tool steels which contain boron and have been processed using a rapid solidification process and method
JPS62156203A (en) Production of tool
JP2016137502A (en) MANUFACTURING METHOD OF TITANIUM MATERIAL CONSISTING MAINLY OF α PHASE AND HOT ROLLING RAW MATERIAL MADE OF TITANIUM
KR102046232B1 (en) Method for manufacturing blank for forming
JP2781325B2 (en) Method for producing medium and high carbon martensitic stainless steel strip having fine carbides
JPH10202331A (en) Manufacture of hot working die
CN114807545A (en) Cold work die steel eutectic carbide refining heat treatment process
JP2648709B2 (en) Method for producing high carbon content martensitic stainless steel sheet
JPS6216266B2 (en)
Lima et al. Effect of heat treatment on the microstructure of spray formed AISI M2 high-speed steel
JPH10298646A (en) Production of stainless steel plate
CN112899559A (en) Steel for mold and mold

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050705