JP2003313208A - 光硬化性樹脂組成物 - Google Patents

光硬化性樹脂組成物

Info

Publication number
JP2003313208A
JP2003313208A JP2002153124A JP2002153124A JP2003313208A JP 2003313208 A JP2003313208 A JP 2003313208A JP 2002153124 A JP2002153124 A JP 2002153124A JP 2002153124 A JP2002153124 A JP 2002153124A JP 2003313208 A JP2003313208 A JP 2003313208A
Authority
JP
Japan
Prior art keywords
photocurable resin
resin composition
light
wavelength
light energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002153124A
Other languages
English (en)
Inventor
Mitsunori Toizumi
光紀 樋泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meiko Co Ltd
Original Assignee
Meiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiko Co Ltd filed Critical Meiko Co Ltd
Priority to JP2002153124A priority Critical patent/JP2003313208A/ja
Priority to EP03008587A priority patent/EP1355193A3/en
Priority to KR1020030024654A priority patent/KR20040002497A/ko
Priority to CN03122209A priority patent/CN1451693A/zh
Publication of JP2003313208A publication Critical patent/JP2003313208A/ja
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B43/00Improving safety of vessels, e.g. damage control, not otherwise provided for
    • B63B43/02Improving safety of vessels, e.g. damage control, not otherwise provided for reducing risk of capsizing or sinking
    • B63B43/10Improving safety of vessels, e.g. damage control, not otherwise provided for reducing risk of capsizing or sinking by improving buoyancy
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • G03F7/031Organic compounds not covered by group G03F7/029
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0037Production of three-dimensional images
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • G03F7/029Inorganic compounds; Onium compounds; Organic compounds having hetero atoms other than oxygen, nitrogen or sulfur
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B2231/00Material used for some parts or elements, or for particular purposes
    • B63B2231/40Synthetic materials
    • B63B2231/50Foamed synthetic materials

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Polymerisation Methods In General (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

(57)【要約】 【課題】 光硬化性樹脂組成物に照射する光の波長が3
30〜500nmの波長範囲から選択された波長の光エ
ネルギーに対応して、光硬化性樹脂組成物の単一硬化形
状、特にZ軸方向の硬化深度の伸びと、照射面上のX軸
方向及びY軸方向における硬化幅(面積)の広がりを抑
制することができる光硬化性樹脂組成物を提供する。 【解決手段】 光エネルギーに反応して硬化し固体化す
る光硬化性樹脂組成物であって、該光硬化性樹脂組成物
は、少なくとも光硬化性樹脂媒体と、紫外光域より可視
光域に及ぶ範囲に渡る光吸収波長域を有する光開始剤
と、蛍光増白剤とより構成されている。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、光造形用の光硬化
性樹脂組成物に関し、より詳しくは、光エネルギーに反
応して光硬化する光ビームの照射単位面積当りの硬化部
分(以下単一硬化体と言う)の形状(以下単一硬化形状
と言う)の、特に光の透過方向(以下これをZ軸方向と
言う)の深度寸法の伸びを抑えつつ、光照射面における
直交方向(以下これをX−Y軸方向と言う)の幅寸法の
広がりを抑制することが出来、寸法精度の高い単一硬化
体を得ることが出来る光硬化性樹脂組成物に関するもの
である。
【0002】
【従来の技術】三次元造形物の層化された多数の断面体
を光硬化性樹脂の硬化固体層として順次積層することに
よって三次元造形物を造形することはすでに周知であ
る。前述の断面体の硬化固体層は、既に積層された硬化
固体層上に所定層厚の表面未硬化液体層を形成し、前記
表面未硬化液体層に光走査によって光エネルギーを照射
することによって、液体層の光走査された部分が硬化し
固体化することによって形成される。
【0003】このような光硬化性樹脂を用いた三次元造
形物の積層造形方法及び装置は、例えば特開昭56−1
44478号公報に開示されており、また積層造形方法
及び装置ならびにそれに用いられる立体造形用光硬化性
樹脂組成物に関する改良が数多く提案されている。この
ような光エネルギーを用いた三次元造形物の積層造形に
係る技術的改良は、例えば、特許第3117394号、
特開平6−228413号公報、特開平6−22827
1号公報、特開平11−367254号公報等に開示さ
れている。
【0004】光硬化性樹脂を用いた代表的な三次元造形
物の積層造形法としては、容器に収納された流動性のあ
る光硬化性樹脂組成物に、コンピュータによって制御さ
れた光エネルギーを選択的に照射して薄い硬化固体層を
形成させ、その上に再度前記流動性光硬化性樹脂組成物
の所定層厚の液体層を新たに形成し、前記光エネルギー
を選択的に照射することを繰り返して連続する硬化固体
層を順次形成し、最終的に三次元の立体造形物を得る方
法が一般的に採用されている。
【0005】また、近年においては、このような光硬化
性樹脂を用いた三次元造形物の積層造形によって得られ
る立体造形物が、単なる意匠確認のためのモデルから、
鋳造用焼失モデル、鋳型の原型、テストモデルや簡易金
型などへと用途が広げられており、それに合せて得られ
た立体造形物の寸法精度に対する要求が益々高まってき
ている。
【0006】このような要求に答えるべく、Z軸方向の
高い寸法精度の要求を満たすために、例えば特開平3−
15520号公報、特開平3−41126号公報及び特
開平3−114733号公報等に開示されているよう
に、流動性光硬化性樹脂組成物層に光エネルギーを照射
する際の、Z軸方向からの光硬化性樹脂組成物内へ進入
する光の深度の調整及び均一化を達成するための有効な
手段として、Z軸方向に進入する光をX軸、Y軸及びそ
の他の方向に偏向又は散乱させる偏向物質等を光硬化性
樹脂組成物に添加することが知られている。
【0007】さらに、前記特許第3117394号及び
前記特開平11−367254号公報等にも開示されて
いるように、紫外線吸収剤を光硬化性樹脂組成物に添加
することによって、この光硬化性樹脂組成物の流動性液
体層に照射される光の余剰な紫外線を吸収させることに
よって、Z軸方向に高い寸法精度を有する光硬化性樹脂
組成物の硬化固体層を形成し、これら複数の硬化固体層
を積層することにより、Z軸方向に高い寸法精度を有す
る三次元立体造形物を造形することが出来ることが知ら
れている。
【0008】
【発明が解決しようとする課題】しかしながら、偏向物
質等を光硬化性樹脂組成物に添加し、光硬化性樹脂組成
物に照射された光を偏向又は散乱させてZ軸方向の硬化
寸法を制御する方法では、照射された光が確実に制御さ
れつつ偏向又は散乱するためには、照射された光に対し
て、偏向物質の光偏向面若しくは散乱面が一定の角度で
そろっていりことが必要であり、逆に偏向面若しくは散
乱面がこのように制御されていなければ、照射された光
は乱反射を起こし、仮に光のZ軸方向における光硬化性
樹脂組成物液体層への進入深度、換言すれば光硬化性樹
脂組成物の液体層の硬化深度は制御することが出来て
も、X軸方向及びY軸方向の硬化幅は制御し難いことは
容易に推測される。
【0009】また、紫外線吸収剤を添加した光硬化性樹
脂組成物を用い、照射された余剰な紫外線を吸収させて
Z軸方向に高い寸法精度を有する光硬化性樹脂組成物の
硬化固体層を形成し、これら複数の硬化固体層を積層す
ることによりZ軸方向に高い寸法精度を有する三次元立
体造形物を造形する場合、光硬化性樹脂組成物の液体層
に照射する光エネルギーの波長が400nm以下、より
正確には300〜350nmの波長範囲、の波長を有す
る光エネルギーを用いかつ光硬化性樹脂組成物の液体層
がその光エネルギーを吸収することによって硬化するも
のであることが必要である。
【0010】例えば、350nm以上の波長、厳密に言
えば380nm以上の紫外域波長の光エネルギーまたは
400nm以上の可視光域波長の光エネルギーを光硬化
性樹脂組成物の液体層上に照射した場合、あるいは紫外
域波長と可視光域波長を同時に含む光エネルギーを光硬
化性樹脂組成物の液体層上に照射した場合、更には40
0nm以上の可視光域波長の光エネルギーを同時に複数
種類光硬化性樹脂組成物の液体層上に照射した場合等に
は、その光エネルギーの内380nm以上の波長の光エ
ネルギーは光硬化性樹脂組成物の液体層のZ軸方向の硬
化深度及びX方向及びY軸方向の硬化幅の制御に関して
はなんら有効に作用せず光エネルギー照射効率が悪いと
言う問題が存在する。
【0011】従来の光硬化性樹脂組成物を用いた三次元
立体造形物造形装置においては、光エネルギー源として
紫外線域発振レーザが用いられている。これは、光エネ
ルギー強度が高いこと及び単一波長であることに大きく
依存している。
【0012】また従来用いられている光硬化性樹脂組成
物は可視光域の波長の光エネルギーに対しては不感応性
(光硬化反応を起こさない)であるために、光エネルギ
ー源として紫外線域発振レーザを用いることは光硬化性
樹脂組成物の取扱いをきわめて容易にすると言う利点が
ある。
【0013】その反面、紫外線域発振レーザは概して高
価格であり、またレーザの種類によっては冷却用の付帯
設備等が必要となるなど、三次元立体造形物造形装置の
低価格化及び小型化を阻害する大きな要因となってい
た。
【0014】そこで、紫外域波長光を発振する水銀ラン
プや、可視域波長の光を発振する可視光半導体レーザ
(以下LDと称す)を大量生産が可能でかつ安価な光照
射エネルギーのエネルギー源として用いることが考えら
れている。
【0015】低価格でありかつ小型であって寸法精度の
高い三次元立体造形物を積層造形するための光硬化性樹
脂を使用した積層造形装置を提供しようとした場合、光
エネルギー源として、光源の価格の観点から、紫外域の
光を発振する紫外線ランプや可視光半導体レーザ等の光
源を使用することが不可欠である。
【0016】紫外線ランプには紫外域以外の波長を有す
る光が混在しており、また可視光半導体レーザにあって
はその発振光の光エネルギー強度が、紫外線ランプが発
振する紫外域波長の光の光エネルギー強度と比較した場
合に格段に低く、紫外線によって光硬化反応を起こす光
硬化性樹脂に対しては利用することが出来ないという問
題があった。
【0017】特に、半導体レーザを使用する場合、光開
始剤が効率良く照射光エネルギーを吸収するように、半
導体レーザの発振光の波長が長くなればなる程、光開始
剤の吸収波長域を可視波長域側に移行させねばならな
い。
【0018】その結果、このような光開始剤を含む光硬
化性樹脂組成物は非常に感度の良い、換言すれば低いエ
ネルギー強度の光に対しても容易に反応する安定性の悪
い、光硬化性樹脂組成物となってしまう。
【0019】また、可視光硬化型の光硬化性樹脂組成物
より積層造形された造形物を積層造形装置から取り出す
際に、積層造形装置内に配置された樹脂ポット内の未硬
化樹脂組成物が光エネルギーを被爆することによって、
無秩序な硬化反応を起こしてしまうことがある。このよ
うな無秩序な硬化反応を避けると共に、Z軸方向の硬化
深度の制御並びにX軸方向及びY軸方向の硬化幅の制御
を兼ねて、光硬化性樹脂組成物の光被爆量を極力減らす
ために、複雑で高価な機構を伴う所謂規制液面法を採用
したり、あるいは積層造形後は樹脂ポット内の未硬化樹
脂組成物を回収して未硬化樹脂組成物への不必要な露光
を避ける等の対処が必要である。
【0020】あるいはまた光硬化性樹脂組成物そのもの
を着色することによって、光開始剤が受ける照射光の光
エネルギー強度を下げることが不可欠となる。この場
合、可視光硬化型の光硬化性樹脂組成物より積層造形さ
れた立体造形物の透明度が著しく低下し、嵌合確認等の
ための立体造形物への使用には不適切である。
【0021】また、可視光硬化型の光硬化性樹脂組成物
は、紫外光硬化型の光硬化性樹脂組成物と比較すると、
不必要な光エネルギー被爆を避けるためにより細心の注
意が必要とされ取り扱い上好ましいものではない。
【0022】本発明は、従来の三次元造形物の積層造形
に使用される光硬化性樹脂組成物の問題点を解決するた
めになされたものであり、光硬化性樹脂組成物に照射す
る光の波長が330〜500nmの波長範囲から選択さ
れた波長の光エネルギーに対応して、光硬化性樹脂組成
物の単一硬化形状、特にZ軸方向の硬化深度の伸びと、
照射面上のX軸方向及びY軸方向における硬化幅(面
積)の広がりを抑制することができる光硬化性樹脂組成
物を提供することを目的とするものである。
【0023】
【課題を解決するための手段】前記目的を達成するた
め、本発明は、光造形法で用いる光エネルギーの波長
(330〜500nm)に合せて、光硬化を開始させる
ための光開始剤として、紫外線吸収型の光開始剤に光鋭
感剤を加えることなどで、光硬化反応を起こす光エネル
ギー吸収波長域を330〜500nmまで広げながら
も、500nmを超える光エネルギーには光硬化反応を
起こさせない様にした上で、蛍光増白剤を光硬化性樹脂
組成物に添加した光硬化性樹脂組成物である。
【0024】この光硬化性樹脂組成物を使用することに
よって、光造形装置で使用する光エネルギーの波長が3
30〜500nmの紫外線域から可視光域の波長であっ
ても、単一硬化形状におけるZ軸方向の寸法の伸びと照
射面上のX−Y軸方向の広がり寸法を抑制し、最終的に
寸法精度の良い積層立体造形物を造形することができ
る。
【0025】本発明者は、光造形装置を利用したいと考
えている多くの人々に、低価格、小型な装置でありなが
ら、積層造形された造形物は、紫外域から可視光域(3
30〜500nm)までの任意に選択された光エネルギ
ー波長を、光硬化の為のエネルギー源として用いた場合
であっても積層造形された造形物の、X−Y軸方向の硬
化幅とZ軸方向の硬化深さの寸法精度が良い物を提供す
るという前述の課題を解決すべく、光硬化性樹脂の研究
に鋭意研究を重ねた。
【0026】その結果、光照射に用いる光源の最長波長
に合せて、光開始剤の最長吸収波長を可視波長域にドリ
フトさせた上で、光照射に用いる波長を吸収し、波長変
換し放出しつつ、波長反射率50%以上を示す蛍光増白
剤を光硬化性樹脂媒体に添加することで紫外波長域から
可視波長域(330〜500nm)間での広い範囲の中
の選択された波長に対応し、今まで得ることの出来なか
った、微細で硬化寸法精度の良い硬化物を作ることが出
来る光硬化性樹脂組成物を得ることに成功した。
【0027】即ち、本発明の光硬化性樹脂組成物は、光
吸収波長域が400nm以下に留まっている光開始剤に
吸収波長域を400nm以上に増感させる光鋭感剤を添
加することなどで、光硬化に用いる光エネルギーの波長
に合せて紫外線吸収剤及び蛍光増白剤を適宜組合せて添
加することによって、330〜500nmの範囲の波長
であればZ軸方向の硬化深度とX軸方向及びY軸方向の
硬化幅が小さい、寸法精度の高い硬化物を積層造形する
ことが出来る光硬化性樹脂組成物が得られることにあ
る。
【0028】この光硬化性樹脂組成物を使用することに
よって、自然光や、室内の蛍光灯内に含まれる紫外域波
長の光エネルギーに被爆することによる光硬化性樹脂組
成物の劣化や無秩序な硬化反応の発生を防止し、尚且つ
光硬化反応には寄与しない光エネルギーには光硬化反応
を起こさない光硬化性樹脂組成物を提供するものであ
る。
【0029】先ず太陽から照射される光エネルギーのう
ちもっとも光エネルギー強度の高い紫外波長域(330
〜400nm)は紫外線吸収剤又は蛍光増白剤若しくは
両方の組合せで吸収させ、波長変換を行わせたのち可視
光として光エネルギーを放出させることで光開始剤を開
裂させるためのエネルギー量を制御し、尚且つ400〜
420nmの波長においては、蛍光増白剤を用いること
で、光エネルギーを微量ではあるが、吸収させつつ尚且
つ反射を行わせることで、光開始剤を開裂させるための
エネルギー量を制御し、500nmを超える波長は、光
鋭感剤の鋭感作用が無くなることで、言い換えれば、光
硬化性樹脂の硬化反応に必要としない範囲の光エネルギ
ーのうちより長い波長に対しては不感にさせることで制
御し、照射波長及び照射波長より短い波長に関しては、
吸収、波長変換・放出、反射によって光開始剤へ到達す
る光エネルギー強度を制御する方法によって問題解決を
図った。
【0030】前述の原理によって製作された光硬化性樹
脂組成物は、紫外域から可視光域までの光エネルギーに
よって光硬化反応を起こす樹脂でありながら、室内蛍光
灯下30分の放置を行っても自己硬化反応を起こさず紫
外線硬化型光硬化性樹脂と同様の取扱いが可能で、かつ
硬化寸法精度も紫外線硬化型光硬化性樹脂と同等のもの
が得られるようになった。
【0031】
【発明の実施の形態】以下に本発明の実施例について詳
細に説明する。
【0032】光造形法における光硬化性樹脂の硬化メカ
ニズムは、光硬化性樹脂組成物に光エネルギーを照射す
ることによって前記光硬化性樹脂組成物中に含まれてい
る光開始剤が放出する物質の種類によって以下の形態に
分類される。即ち、光開始剤がラジカル反応系の場合
は、光エネルギーが照射されると該光開始剤が解離して
ラジカルを放出し、この放出されたラジカルが反応種と
なって前記光硬化性樹脂媒体のモノマーやオリゴマー等
を架橋反応させて光硬化性樹脂組成物を硬化し固体化す
る。
【0033】また、光硬化性樹脂組成物中に含まれてい
る光開始剤がカチオン重合系の場合は、光エネルギーが
照射されると該光開始剤がカチオン重合を開始させる触
媒成分を放出し、該触媒成分が反応種となって前記光硬
化性樹脂媒体のモノマーやオリゴマー等を架橋反応させ
て光硬化性樹脂組成物を硬化し固体化する。
【0034】ここで前記光開始剤に与えられた光エネル
ギーは光の波長や光硬化性樹脂組成物の組成等に応じて
前記光硬化性樹脂組成物の被照射面より内部に向かって
次第に減衰し、最終的に光硬化反応を起こさせるに必要
なエネルギー強度を失う。従って、光硬化性樹脂組成物
の光エネルギー照射による硬化範囲(寸法)は、前記光
硬化性樹脂組成物に照射された総エネルギー量とそのエ
ネルギーの減衰状態、厳密には光開始剤を解離してラジ
カルを放出させ若しくは光開始剤から触媒成分を放出を
させるのために必要な光エネルギー強度(閾値)と光開
始剤から放出されたラジカルまたは触媒成分の効果が及
ぶ到達範囲に依存する。
【0035】当然のことながら寸法精度の高い立体造形
物を造形する場合、特に複雑なオーバーハング等を有す
る立体造形物を積層造形する場合、光エネルギーの照射
によって得られる光硬化性樹脂組成物の単一硬化体の形
状のX軸方向及びY軸方向の硬化範囲の広がりが小さく
Z軸方向の伸びが少ない方が造形物の寸法精度が高くな
ることは言うまでもない。
【0036】特に照射する光の波長が330〜380n
m以下の場合には、前記光硬化性樹脂組成物に添加され
た紫外線吸収剤の添加量に対応して紫外線を吸収させる
方法が有効であり、紫外線吸収剤の添加量を制御するこ
とで光開始剤を開裂させる為の閾値を制御し、単一硬化
体の寸法精度を高めることが出来る。
【0037】然しながら、光硬化性樹脂組成物に照射す
る光の波長が可視光発振レーザによって得られる光のよ
うに400nm以上の場合や、照射する光の波長が紫外
線ランプによって得られる光のように330〜500n
mに渡る広範囲の波長が混在している場合には、添加さ
れる紫外線吸収剤だけでは、構造上380nm以上の長
い波長の光は吸収できず、380nm以上の波長の光エ
ネルギーは光硬化性樹脂組成物の光硬化反応にとっては
単なる不純物(不用エネルギー)に過ぎなかった。
【0038】そこで、光硬化性樹脂組成物に照射する光
が380nm以上の長い波長成分を含むの場合であって
も、与えられた全光エネルギーが光硬化性樹脂組成物の
光硬化反応に寄与し、単一硬化体の形状、特にZ軸方向
の寸法の伸びとX軸方向及びY軸方向における硬化範囲
の広がり寸法を抑え、単一硬化体の寸法精度、ひいては
最終造形体の形状、の制御が可能な光硬化性樹脂組成物
を提供することである。
【0039】
【実施例】以下に実施例に従って本発明について具体的
に説明するが、本発明は以下の実施例によって何ら限定
されるものではない。
【0040】以下の実施例において使用される用語
『部』は重量部を意味する。
【0041】実施例1 光硬化性樹脂媒体としてのプロポキシ化トリメチロール
プロパントリアクリレート(POTMPTA)20.0
部とラジカル系光開始剤としての2−メチル−1〔4−
(メチルチオ)フェニル〕−2−モリフォリノプロパン
−1−オン(例えば商品名イルガキュア907)0.4
8部とを基本組成とした光硬化性樹脂基本組成物を調整
し、自然光、例えば室内の蛍光灯の下に30分間放置し
たところ、この光硬化性樹脂基本組成物が室内の自然光
では状態変化していない(硬化反応が起こらなかった)
ことが確認された。
【0042】その後、該光硬化性樹脂基本組成物に更に
光鋭感剤としてイソプロピルチオキサンソン(TPO)
を基本組成物20.0部当り0.12部を添加して光硬
化性樹脂組成物を調整し、同様に自然光、例えば室内の
蛍光灯の下に30分間放置し、光硬化性樹脂組成物の状
態変化(硬化反応)の有無を確認した所、若干ではある
が、状態変化、即ち硬化反応が認められた。
【0043】そこで、この光鋭感剤を含有する光硬化性
樹脂組成物にアルゴンレーザ(コヒーレント社製、商品
名イノーバ90−6)を用いて、457.9nmの波長
については出力25mW,488.0nmの波長につい
ては出力18mW,また514.5nmの波長について
は出力15mWのエネルギーの光をそれぞれ10秒間照
射し、状態変化の有無を確認した。
【0044】その結果、この光硬化性樹脂組成物は45
7.9nmの波長の光では状態変化を起こすが、48
8.0nm及び514.5nmの波長の光では状態変化
を起こさないことが実証された。
【0045】この、488.0nm以上の波長の光に対
しては光硬化反応を起こさないことが実証された光硬化
性樹脂組成物に、可視光発振半導体レーザ(例えば日亜
化学工業株式会社製;商品名NLHV3000)用いて
405nmの波長のシングルモードのレーザ光をビーム
径で約40μmまで集光し、出力を5段階に変えて前記
光硬化性樹脂組成物に照射した結果、下記表1に示すよ
うな単一硬化体が得られた。
【0046】
【表1】
【0047】可視域光発振半導体レーザ(LD)を用い
ても前記光硬化性樹脂組成物が状態変化を起こすことが
実証された。
【0048】次に、上記ラジカル系光開始剤及び光鋭感
剤に加えて、ビスベンゾオキサゾリル系誘導体である
2,5−ビス〔5−t−ブチルベンゾオキサゾリル
(2)〕チオフェン(例えば製商品名UVITEX−O
B)より成る蛍光増白剤を上記光硬化性樹脂基本組成物
20.0部当り0.01部(0.05%),0.02部
(0.10%),0.03部(0.15%),0.04
部(0.20%)及び0.05部(0.25%)をそれ
ぞれ添加した光硬化性樹脂組成物を調整し、これらの光
硬化性樹脂組成物に上記同様のレーザ光を照射し、その
結果得られた単一硬化体の形状寸法を計測した。その結
果を表2に、また蛍光漂白剤を含有しない場合とともに
図1に示す。
【0049】
【表2】 蛍光増白剤を0.05部含有する光硬化性樹脂組成物に
ついては、上記UVITEX−OBの場合、常温下にお
いて十分な溶解力を示さなかったので、計測しなかっ
た。
【0050】この結果から明らかなように、蛍光増白剤
として例えばビスベンゾオキサゾリル系誘導体を添加す
ることによって、Z軸方向の硬化深度とX−Y軸方向の
硬化幅の寸法精度が著しく向上していることが明らかで
ある。
【0051】実施例2 光硬化性樹脂媒体としてのプロポキシ化トリメチロール
プロパントリアクリレート(POTMPTA)20.0
部とラジカル系光開始剤としての2−ヒドロ−2−メチ
ル−1−フェニルプロパン−1−オン(例えば商品名ダ
ロキュア−1173)0.48部とを基本組成とした光
硬化性樹脂基本組成物を調整し、実施例1と同様に、室
内自然光下に40分間放置し、光硬化性樹脂基本組成物
が自然光では状態変化(硬化反応)を起こさないことを
確認した上で、該光硬化性樹脂基本組成物に更に光鋭感
剤としてイソプロピルチオキサンソン(PTO)を光硬
化性樹脂基本組成物20.0部当り0.12部添加した
光硬化性樹脂組成物を同様に室内自然光下に40分間放
置し該光硬化性樹脂組成物の状態変化を確認した所、自
然光による光硬化性樹脂組成物の状態変化は認められな
かった。
【0052】実施例1と同様に、この光鋭感剤を含有す
る光硬化性樹脂組成物にアルゴンレーザを用いて、45
7.9nmの波長については出力25mWの,488.
0nmの波長については出力18mWの,また514.
5nmの波長については出力15mWのエネルギーの光
をそれぞれ10秒間照射し、状態変化(硬化反応)の有
無を確認した。その結果457.9nm、488.0n
m及び514.5nmの波長の光全てに対し状態変化
(硬化反応)を起こさないことが確認された。
【0053】そこで、この457.9nm以上の波長の
光には光硬化反応を起こさない光硬化性樹脂組成物に、
実施例1と同様に可視光発振半導体レーザを用いて波長
405nmのシングルモードのレーザ光をビーム径で約
40μmまで集光し、出力を3段階に変えて照射した結
果、下記表3に示すような単一硬化体を得た。
【0054】
【表3】
【0055】可視域光発振半導体レーザ(LD)を用い
ても前記光硬化性樹脂組成物が光硬化反応を起こすこと
が実証されたので、更に、実施例1と同様に、蛍光増白
剤として、例えばビスベンゾオキサゾリル系誘導体であ
る2,5−ビス〔5−t−ブチルベンゾオキサゾリル
(2)〕チオフェン(例えば商品名UVITEX−O
B)を光硬化性樹脂基本組成物20.0部当り0.01
部(0.05%),0.02部(0.10%),0.0
3部(0.15%),0.04部(0.20%)及び
0.05部(0.25%)をそれぞれ添加した光硬化性
樹脂組成物を調整し、これらの光硬化性樹脂組成物に上
記レーザ光を照射した。
【0056】得られた単一硬化体の寸法を計測した。そ
の結果を表4に、また蛍光漂白剤を含有しない場合とと
もに図2に示す。
【0057】
【表4】 蛍光増白剤を0.05部含有する光硬化性樹脂組成物に
ついては、上記UVITEX−OBの場合、常温下にお
いて十分な溶解力を示さなかったので、計測しなかっ
た。
【0058】この結果から明らかなように、蛍光増白剤
として例えばビスベンゾオキサゾリル系誘導体を添加す
ることによって、Z軸方向の硬化深度とX−Y軸方向の
硬化幅の寸法精度が著しく向上していることが明らかで
ある。
【0059】実施例3 光硬化性樹脂媒体としてのプロポキシ化トリメチロール
プロパントリアクリレート(POTMPTA)20.0
部とラジカル系光開始剤としての2−ベンジル−2−ジ
メチルアミノ−1−(4−モリフォリノフェニル)−ブ
タノン−1(例えば商品名イルガキュア369)0.4
8部とを基本組成とした光硬化性樹脂組成物を調整し、
自然光下に40分間放置し、この光硬化性樹脂組成物が
室内の自然光では状態変化(硬化反応)を起こしている
か否かを観察したところ、該光硬化性樹脂組成物を室内
に放置し始めて約10分が経過した時点で光硬化反応を
開始することが確認された。
【0060】そこで、実施例1及び2とは異なり、この
同様の基本光硬化性樹組成物に光鋭感剤を添加すること
なく、上記同様のアルゴンレーザを用いて、457.9
nmの波長については出力25mWの,488.0nm
の波長については出力18mWの,また514.5nm
の波長については出力15mWのエネルギーの光をそれ
ぞれ10秒間照射し、硬化反応の有無を確認した。その
結果、この光硬化性樹脂組成物は457.9nm及び4
88.0nmの波長の光に対しては光硬化反応を起こさ
ず514.5nmの波長の光に対してのみ光硬化反応を
起こすことが実証された。
【0061】この、488.0nm以上の波長の光に対
しては光硬化反応を起こさないことが実証された光硬化
性樹脂組成物に、前記実施例1及び2において使用され
たものと同様の可視光発振半導体レーザを使用して波長
405nmのシングルモードのレーザ光をビーム径で約
40μmまで集光し、出力を3段階に変えて前記光硬化
性樹脂組成物に照射した。その結果、下記表5に示す単
一硬化体が得られた。
【0062】
【表5】
【0063】可視光発振半導体レーザを用いても前記光
硬化性樹脂組成物が形態変化を起こすことが実証された
ので、更に、実施例1及び2と同様に、蛍光増白剤とし
てビスベンゾオキサゾリル系誘導体である2,5−ビス
〔5−t−ブチルベンゾオキサゾリル(2)〕チオフェ
ン(UBITEX−OB)を前記光硬化性樹脂組成物2
0.0部当り0.01部(0.05%),0.02部
(0.10%),0.03部(0.15%),0.04
部(0.20%)及び0.05部(0.25%)をそれ
ぞれ添加した光硬化性樹脂組成物を調整し、これらの光
硬化性樹脂組成物に上記レーザ光を照射し、この結果得
られた単一硬化体の寸法を計測した。
【0064】その結果を表6に、また蛍光漂白剤を含有
しない場合とともに図3に示す。
【0065】
【表6】 蛍光増白剤を0.05部含有する光硬化性樹脂組成物に
ついては、上記UVITEX−OBの場合、常温下にお
いて十分な溶解力を示さなかったので、計測しなかっ
た。
【0066】この結果からも明らかなように、蛍光増白
剤として,例えばビスベンゾオキサゾリル系誘導体,を
添加することによって、Z軸方向の硬化深度とX−Y軸
方向の硬化幅の寸法精度が著しく向上していることが明
らかである。
【0067】以上の各実施例においては、蛍光漂白剤と
して、ビスベンゾオキサゾリル系誘導体、例えば2,5
−ビス〔5−t−ブチルベンゾオキサゾリル(2)〕チ
オフェンを用いたが、ビストリアジニルアミノスチルベ
ンジスルホン酸誘導体、クマリン誘導体、ピラゾリン誘
導体、ナフタルイミド誘導体、ビススチルビフェニール
誘導体、トリアゾール誘導体化合物を単独もしくは組み
合わせて用いても良い。
【0068】
【発明の効果】本発明によれば、紫外線対応型光開始剤
に光鋭感剤を添加することで、紫外線光エネルギーでし
か光硬化反応を起こさなかった紫外線硬化樹脂が、可視
光域の波長の光エネルギーに対してはも光硬化反応を起
す光硬化性樹脂が提供でき,これによって光硬化に必要
な光エネルギー源も、より安価で小型軽量の可視光半導
体レーザや、複数の波長が交じり合った紫外線ランプ
や、複数波長の可視光を同時に用いることが出来る様に
なる。
【0069】このことによって光造形装置の小型化、軽
量化を可能とし、さらに低価格化を実現することが可能
になる。
【0070】さらに、光硬化性樹脂に照射する光エネル
ギーの波長を選択することで、選択照射された波長より
も長い波長の光エネルギーには硬化反応を起こさない光
硬化性樹脂組成物を製作することが可能となり、光硬化
反応に関与しない光エネルギーに対して極めて安定性に
優れた光硬化性樹脂組成物となる。
【0071】したがって、作業性の向上に寄与し、光開
始剤に加えて蛍光増白剤を適量加えることで、硬化物の
Z軸の硬化深度及びX−Y軸の硬化幅の非常に小さい単
一硬化形状が得られるようになり、紫外域波長の光エネ
ルギーを用いた光造形装置で造形した造形物と同様な造
形物が造形できる光造形装置を提供することができる。
【0072】更に、造形された積層立体造形物が蛍光増
白剤や、紫外線吸収剤が含まれることによって、造形物
をディスプレーとして用いる場合に、光硬化に使用した
光と同じ波長の光を造形物に照射することで、あたかも
造形物が発光している様に見え、ディスプレーとしての
商品価値を高めることが出来るばかりか、透明で複雑な
形状の積層立体造形物をヤスリがけ等の後加工作業を行
う場合においても、光硬化において使用した波長の光を
照射することによって、透明であった造形物があたかも
発色しているように見え、ヤスリがけ等の後加工作業性
も向上する。
【図面の簡単な説明】
【図1】実施例1における光硬化性樹脂組成物の光エネ
ルギーに対する蛍光増白剤の含有量と硬化寸法の関係を
示すグラフである。
【図2】実施例2における光硬化性樹脂組成物の光エネ
ルギーに対する蛍光増白剤の含有量と硬化寸法の関係を
示すグラフである。
【図3】実施例3における光硬化性樹脂組成物の光エネ
ルギーに対する蛍光増白剤の含有量と硬化寸法の関係を
示すグラフである。

Claims (6)

    【特許請求の範囲】
  1. 【請求項1】 光エネルギーに反応して硬化し固体化す
    る光硬化性樹脂組成物であって、該光硬化性樹脂組成物
    は、少なくとも光硬化性樹脂媒体と、紫外光域より可視
    光域に及ぶ範囲に渡る光吸収波長域を有する光開始剤
    と、蛍光増白剤とより構成されていることを特徴とする
    光硬化性樹脂組成物。
  2. 【請求項2】 前記光硬化性樹脂組成物は、光鋭感剤を
    含有していることを特徴とする請求項1記載の光硬化性
    樹脂組成物。
  3. 【請求項3】 前記蛍光増白剤は、ビストリアジニルア
    ミノスチルベンジスルホン酸誘導体、クマリン誘導体、
    ピラゾリン誘導体、ナフタルイミド誘導体、ビスベンゾ
    オキサゾリル誘導体、ビススチルビフェニール誘導体、
    トリアゾール誘導体化合物のうち少なくとも1種類より
    構成されていることを特徴とする請求項1記載の光硬化
    性樹脂組成物。
  4. 【請求項4】 前記光硬化性樹脂組成物は、波長300
    〜500nmの範囲の光エネルギーに反応し、波長50
    0nmを超える光エネルギーには不感応であることを特
    徴とする請求項1ないし3記載の光硬化性樹脂組成物。
  5. 【請求項5】 前記光鋭感剤は、チオキサンソン系物質
    であることを特徴とする請求項1ないし4記載の光硬化
    性樹脂組成物。
  6. 【請求項6】 前記光鋭感剤は、イソプロピルチオキサ
    ンソンであることを特徴とする請求項5記載の光硬化性
    樹脂組成物。
JP2002153124A 2002-04-19 2002-04-19 光硬化性樹脂組成物 Pending JP2003313208A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002153124A JP2003313208A (ja) 2002-04-19 2002-04-19 光硬化性樹脂組成物
EP03008587A EP1355193A3 (en) 2002-04-19 2003-04-14 Photo-curable resin composition
KR1020030024654A KR20040002497A (ko) 2002-04-19 2003-04-18 광 경화성 수지 조성물
CN03122209A CN1451693A (zh) 2002-04-19 2003-04-21 光固化树脂组合物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002153124A JP2003313208A (ja) 2002-04-19 2002-04-19 光硬化性樹脂組成物

Publications (1)

Publication Number Publication Date
JP2003313208A true JP2003313208A (ja) 2003-11-06

Family

ID=28672713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002153124A Pending JP2003313208A (ja) 2002-04-19 2002-04-19 光硬化性樹脂組成物

Country Status (4)

Country Link
EP (1) EP1355193A3 (ja)
JP (1) JP2003313208A (ja)
KR (1) KR20040002497A (ja)
CN (1) CN1451693A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008070679A (ja) * 2006-09-15 2008-03-27 Fujifilm Corp フラットパネルディスプレイの製造方法及びその装置
JP2014087686A (ja) * 2008-03-11 2014-05-15 Immunolight Llc 外部放射源からの内部エネルギー活性のためのプラズモニクス支援システムおよび方法
JP2021518207A (ja) * 2018-03-22 2021-08-02 ティシウム ソシエテ アノニム 生体材料のための3dプリンティング用組成物

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150024547A (ko) * 2013-08-27 2015-03-09 동우 화인켐 주식회사 광 루미네선스 코팅 조성물 및 이를 이용한 광 루미네선스 필름
JP6783381B2 (ja) * 2017-03-29 2020-11-11 旭化成株式会社 感光性樹脂組成物

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11292910A (ja) * 1998-02-27 1999-10-26 Ciba Specialty Chem Holding Inc 着色された光硬化性組成物
JP2001181313A (ja) * 1999-12-24 2001-07-03 Teijin Seiki Co Ltd 光学的立体造形用樹脂組成物

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5707781A (en) * 1995-05-05 1998-01-13 Bayer Corporation Photopolymerizable compositions having acyl or diacyl phosphine oxide and a fluorescent optical brightner
GB9605712D0 (en) * 1996-03-19 1996-05-22 Minnesota Mining & Mfg Novel uv-curable compositions

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11292910A (ja) * 1998-02-27 1999-10-26 Ciba Specialty Chem Holding Inc 着色された光硬化性組成物
JP2001181313A (ja) * 1999-12-24 2001-07-03 Teijin Seiki Co Ltd 光学的立体造形用樹脂組成物

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008070679A (ja) * 2006-09-15 2008-03-27 Fujifilm Corp フラットパネルディスプレイの製造方法及びその装置
US9682250B2 (en) 2007-04-08 2017-06-20 Immunolight, Llc Systems and methods for interior energy-activation from an exterior source
US9278331B2 (en) 2007-04-08 2016-03-08 Immunolight, Llc Systems and methods for interior energy-activation from an exterior source
US9498643B2 (en) 2007-04-08 2016-11-22 Immunolight, Llc Systems and methods for interior energy-activation from an exterior source
US9579523B2 (en) 2007-04-08 2017-02-28 Immunolight, Llc Plasmonic assisted systems and methods for interior energy-activation from an exterior source
US9630022B2 (en) 2007-04-08 2017-04-25 Immunolight, Llc. Plasmonic assisted systems and methods for interior energy-activation from an exterior source
US10029117B2 (en) 2007-04-08 2018-07-24 Immunolight, Llc Systems and methods for interior energy-activation from an exterior source
US10201796B2 (en) 2007-04-08 2019-02-12 Immunolight, Llc. Plasmonic assisted systems and methods for interior energy-activation from an exterior source
US10213763B2 (en) 2007-04-08 2019-02-26 Immunolight, Llc. Plasmonic assisted systems and methods for interior energy-activation from an exterior source
JP2014087686A (ja) * 2008-03-11 2014-05-15 Immunolight Llc 外部放射源からの内部エネルギー活性のためのプラズモニクス支援システムおよび方法
US10363541B2 (en) 2008-03-11 2019-07-30 Immunolight, Llc. Systems and methods for interior energy-activation from an exterior source
US11173467B2 (en) 2008-03-11 2021-11-16 Immunolight, Llc Systems and methods for interior energy-activation from an exterior source
JP2021518207A (ja) * 2018-03-22 2021-08-02 ティシウム ソシエテ アノニム 生体材料のための3dプリンティング用組成物

Also Published As

Publication number Publication date
EP1355193A3 (en) 2005-11-02
CN1451693A (zh) 2003-10-29
EP1355193A2 (en) 2003-10-22
KR20040002497A (ko) 2004-01-07

Similar Documents

Publication Publication Date Title
US9864274B2 (en) Liquid radiation curable resins capable of curing into layers with selective visual effects and methods for the use thereof
EP3377291B1 (en) Improved antimony-free radiation curable compositions for additive fabrication, and applications thereof in investment casting processes
CN106125509B (zh) 用于加成法制造的可led固化的液体树脂组合物
US8017193B1 (en) Monomeric formulation for making polymer waveguides
KR20180016505A (ko) 부가적 제조용 액체 하이브리드 자외선/가시광선 복사선-경화성 수지 조성물
JPH08224790A (ja) 光学的立体造形用樹脂組成物
JPH0315520A (ja) 厚みを自己規制する光硬化性材料を使用する立体像形成方法
US20170087765A1 (en) Color and/or opacity changing liquid radiation curable resins, and methods for using the same in additive fabrication
Dreyer et al. Application of LEDs for UV-curing
Emami et al. An improved vat photopolymerization cure model demonstrates photobleaching effects
CN103492951A (zh) 增大多光子成像分辨率的方法
JP2003313208A (ja) 光硬化性樹脂組成物
JP2010260230A (ja) 光学的立体造形物の処理方法
JP7251715B2 (ja) 付加造形用組成物及び物品並びにそれらの使用方法
JP5738367B2 (ja) 黄色度の低い光学的立体造形物
Jiang Accelerating fabrication speed in two-laser beam stereolithography system using adaptive crosshatch technique
RU2699556C1 (ru) Отверждаемая полимерная композиция и способ изготовления из неё отверждённого продукта
JP2845968B2 (ja) 光硬化性樹脂組成物及びその立体形状物形成方法
JP2020172083A (ja) 光学的立体造形物の後硬化方法および後硬化・後処理方法
Shahzadi et al. Resin design in stereolithography 3D printing for microfluidic applications
JP2018103472A (ja) 光学的立体造形方法
WO2001010632A1 (fr) Lithographie optique
JP4149783B2 (ja) 光硬化性樹脂成形物の製造方法
Zyzalo Masked projection stereolithography: improvement of the Limaye model for curing single layer medium sized parts: a thesis presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Engineering (School of Engineering and Advanced Technology) at Massey University, Albany, New Zealand
JP2020172082A (ja) 光学的立体造形物の後硬化装置および後硬化方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050607