JP2003309235A - Heat radiating member and power module - Google Patents

Heat radiating member and power module

Info

Publication number
JP2003309235A
JP2003309235A JP2002115993A JP2002115993A JP2003309235A JP 2003309235 A JP2003309235 A JP 2003309235A JP 2002115993 A JP2002115993 A JP 2002115993A JP 2002115993 A JP2002115993 A JP 2002115993A JP 2003309235 A JP2003309235 A JP 2003309235A
Authority
JP
Japan
Prior art keywords
heat
adhesive layer
heat dissipation
conductive filler
power module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002115993A
Other languages
Japanese (ja)
Other versions
JP3739335B2 (en
Inventor
Masato Kawano
正人 川野
Toshikatsu Mitsunaga
敏勝 光永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2002115993A priority Critical patent/JP3739335B2/en
Publication of JP2003309235A publication Critical patent/JP2003309235A/en
Application granted granted Critical
Publication of JP3739335B2 publication Critical patent/JP3739335B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat radiating member of superior electrical insulation and thermal conductivity, and a power module in which the member is incorporated. <P>SOLUTION: An adhesive layer that is formed of thermoplastic resin filled with a thermally conductive filler and deformed by heating is formed on at least a part of a silicone-cured material filled with an insulating thermally conductive filler, to constitute the heat radiating member. It is preferred that the adhesive layer further contains an organic material having a low-melting point. Such a heat radiating member is incorporated in the power module. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電気絶縁性と熱伝
導性に優れた放熱部材及びパワーモジュールに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat radiating member and a power module having excellent electric insulation and thermal conductivity.

【0002】[0002]

【従来の技術】従来、パワーモジュールや自動車電装部
品等では、発生した熱を効率よく除去するため、シリコ
ーンゴムにボロンナイトライド粉末を分散含有させてな
る絶縁放熱シートを介して放熱フィン等に取り付けられ
ている。このような絶縁放熱シートにおいては、その熱
伝導性はボロンナイトライド粉末の充填率を高くするこ
とによって行われているが、その反面、引張強度が著し
く低下するので高充填化による熱伝導性の向上には限度
があった。
2. Description of the Related Art Conventionally, in a power module, an automobile electric component, etc., in order to efficiently remove the generated heat, it is mounted on a heat radiation fin or the like through an insulating heat radiation sheet made by dispersing boron nitride powder in silicone rubber. Has been. In such an insulating heat dissipation sheet, its thermal conductivity is performed by increasing the filling rate of the boron nitride powder, but on the other hand, the tensile strength is significantly reduced, so that the thermal conductivity of the high filling There was a limit to improvement.

【0003】そのため、市販の絶縁放熱シート、例えば
TO−3タイプのトランジスター用絶縁放熱シートで
は、その厚みが0. 3mmのもので、熱抵抗が0. 20
℃/W程度(熱伝導率として2. 5W/mK程度)が最
上級品である。しかし、近年、モジュールや電装部品は
高性能化により発熱量が増大しており、さらに熱伝導性
の優れた絶縁放熱シートが要求されるようになってき
た。
Therefore, a commercially available insulating heat radiating sheet, for example, a TO-3 type insulating heat radiating sheet for transistors has a thickness of 0.3 mm and a thermal resistance of 0.20.
The highest grade is about ℃ / W (heat conductivity is about 2.5W / mK). However, in recent years, the amount of heat generated by modules and electrical components has increased due to higher performance, and there has been a demand for an insulating and heat dissipation sheet having further excellent thermal conductivity.

【0004】そこで、窒化アルミニウム粉末のような高
熱伝導性フィラーを高充填させる試みもあるが、この場
合、ゴムシートの表面に微細な凹凸が生じて電子部品や
放熱板等との密着性が悪化し、界面熱抵抗が上昇して期
待したほどには放熱効果は高まらない。
Therefore, there has been an attempt to highly fill a high thermal conductive filler such as aluminum nitride powder, but in this case, fine irregularities are generated on the surface of the rubber sheet, and the adhesion to electronic parts, heat sinks, etc. deteriorates. However, the interface thermal resistance increases and the heat dissipation effect does not increase as expected.

【0005】[0005]

【発明が解決しようとする課題】本発明者らは、このよ
うな現状に鑑み、電気絶縁性と熱伝導性に優れた高熱伝
導性絶縁シート等の放熱部材を得ることを目的として種
々検討した結果、従来の絶縁放熱シートは、界面に発生
する熱抵抗の影響により、熱伝導性が大幅に損なわれる
ことを突き止め、界面熱抵抗を減少させる方法として、
絶縁放熱シート表面に熱伝導性フィラー充填の熱可塑性
樹脂からなる接着層を形成させれば良いことを見いだ
し、本発明を完成させたものである。
SUMMARY OF THE INVENTION In view of the above situation, the present inventors have made various studies for the purpose of obtaining a heat dissipation member such as a high thermal conductivity insulating sheet having excellent electrical insulation and thermal conductivity. As a result, the conventional insulating heat-dissipating sheet finds that the thermal conductivity is greatly impaired by the influence of the thermal resistance generated at the interface, and as a method of reducing the interface thermal resistance,
The inventors have found that it is sufficient to form an adhesive layer made of a thermoplastic resin filled with a thermally conductive filler on the surface of the insulating heat dissipation sheet, and have completed the present invention.

【0006】[0006]

【課題を解決するための手段】すなわち、本発明は、絶
縁性熱伝導性フィラーの充填されたシリコーン硬化物の
少なくとも一部分に、熱伝導性フィラー充填の熱可塑性
樹脂らなり加温により変形する接着層を形成させてなる
ことを特徴とする放熱部材である。この場合において、
接着層には、熱可塑性樹脂の融点よりも低い低融点有機
物を更に含有させてなることが好ましい。また、本発明
は、上記放熱部材が組み込まれたパワーモジュールであ
る。
That is, according to the present invention, at least a part of a cured silicone material filled with an insulating heat conductive filler is bonded to a thermoplastic resin filled with the heat conductive filler and deformed by heating. It is a heat dissipation member characterized by forming a layer. In this case,
It is preferable that the adhesive layer further contains a low-melting point organic substance having a melting point lower than that of the thermoplastic resin. Further, the present invention is a power module incorporating the heat dissipation member.

【0007】[0007]

【発明の実施の形態】以下、さらに詳しく本発明につい
て説明すると、本発明の放熱部材は、絶縁性熱伝導性フ
ィラーの充填されたシリコーン硬化物からなる基材と、
その少なくとも一部分に形成させた熱伝導性フィラー充
填の熱可塑性樹脂からなる接着層とから構成されてい
る。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in more detail below. A heat dissipation member of the present invention comprises a base material made of a cured silicone material filled with an insulating heat conductive filler.
An adhesive layer made of a thermoplastic resin filled with a heat conductive filler is formed on at least a part thereof.

【0008】基材には、種々の形態のものが使用でき
る。たとえば、熱伝導率0.5〜3.5W/mK、ショア
A硬度70〜100、厚み0.09〜5.0mmの放熱
シート、熱伝導率0.5〜10W/mK、アスカーC硬
度5〜50、厚み0.1〜5.0の放熱スペーサーなど
である。放熱シートは、半導体素子が搭載された基板を
放熱フィンに取り付ける際に主に用いられ、放熱スペー
サーは、放熱フィンを取り付けるスペースがないとか、
電子機器が密閉されていて放熱フィンからの放熱が困難
な場合において、電子機器のケースに直接伝熱して放熱
するとき、あるいはIC・LSIの半導体素子がプリン
ト基板に実装する際の放熱に主に用いられる。
The substrate may be in various forms. For example, a heat conductivity of 0.5 to 3.5 W / mK, a Shore A hardness of 70 to 100, a thickness of 0.09 to 5.0 mm, a heat dissipation sheet of 0.5 to 10 W / mK, and an Asker C hardness of 5 to 5. 50, a heat dissipation spacer having a thickness of 0.1 to 5.0. The heat dissipation sheet is mainly used when attaching the substrate on which the semiconductor element is mounted to the heat dissipation fin, and the heat dissipation spacer has no space to attach the heat dissipation fin.
When the electronic equipment is hermetically sealed and it is difficult to dissipate the heat from the heat dissipation fins, it is mainly used to dissipate heat by directly transferring heat to the case of the electronic equipment or when mounting the semiconductor element of IC / LSI on the printed circuit board. Used.

【0009】放熱シート、放熱スペーサーの製造の区分
は、原料シリコーンと、熱伝導性フィラーの種類及びそ
の割合と、硬化度等とによって行われる。放熱シート
は、例えばシリコーンゴム又は樹脂100部(体積部、
以下同じ)と、窒化アルミニウム、窒化ホウ素、窒化珪
素、酸化アルミニウム、酸化マグネシウム、酸化亜鉛か
ら選ばれる一種又は二種以上の絶縁性熱伝導性フィラー
35〜70部の混合物をシート成形後、硬化することに
よって製造される(例えば特公昭57−52376号公
報参照)。放熱スペーサーは、例えば一液型又は二液型
液状シリコーン100部と上記絶縁性熱伝導性フィラー
50〜85部の混合物をシート成形後、硬化することに
よって製造される(例えば特開2001−158609
号参照)。いずれも市販品があり、前者には電気化学工
業製商品名「放熱シートBFGグレード」など、後者に
は電気化学工業製商品名「放熱スペーサーFSAグレー
ド」などが例示される。
The production of the heat-dissipating sheet and the heat-dissipating spacer is classified according to the raw material silicone, the kind and ratio of the heat-conductive filler, the degree of curing and the like. The heat dissipation sheet is, for example, 100 parts of silicone rubber or resin (volume part,
The same shall apply hereinafter) and a mixture of 35 to 70 parts of one or more insulating and thermally conductive fillers selected from aluminum nitride, boron nitride, silicon nitride, aluminum oxide, magnesium oxide, and zinc oxide are cured after sheet formation. (See, for example, Japanese Patent Publication No. 57-52376). The heat radiating spacer is produced, for example, by molding a mixture of 100 parts of one-component or two-component liquid silicone and 50 to 85 parts of the insulating heat conductive filler and curing the mixture (for example, JP 2001-158609 A).
No.). There are commercial products in both cases, and the former is exemplified by the product name "Heat dissipation sheet BFG grade" manufactured by Denki Kagaku Kogyo, and the latter is exemplified by the product name manufactured by Denki Kagaku Kogyo "Radiation spacer FSA grade".

【0010】基材は、引張り・引裂き等の強度と、電気
絶縁に対する信頼性を高めるため、網目状補強材で補強
されていることが好ましい。網目状補強材としては、ガ
ラスクロス、フッ素樹脂製メッシュ、ステンレスメッシ
ュなどが使用される。
The base material is preferably reinforced with a mesh-like reinforcing material in order to enhance the strength such as pulling and tearing and the reliability of electric insulation. As the mesh-like reinforcing material, glass cloth, fluororesin mesh, stainless mesh, or the like is used.

【0011】接着層は、パワーモジュール等の作動温
度、例えば40〜150℃で形態変化し、基材と相手材
とを密着させ、界面熱抵抗を低下させる機能を発現させ
るものである。接着層は、加温によって変形する熱可塑
性樹脂に熱伝導性フィラーが充填されたものである。接
着力は、JIS Z 0237に従い、アルミニウム板
で測定された値(室温)が0.3N/25mm以上であ
ることが好ましい。これよりも小さいと、電子機器に組
み込む際にズレたりして取り扱いが不便となる。接着力
は、熱可塑性樹脂の種類や配合比によって調整すること
ができる。エチレン−酢酸ビニル共重合体を熱可塑性樹
脂とし、その配合比を高めると接着力が高くなる。ま
た、ホットメルト接着剤の接着力向上に使われる、ロジ
ン、ポリペンテン系樹脂、オレフィン系の不飽和炭化水
素などを配合することによっても接着力を高めることが
できる。
The adhesive layer changes its form at the operating temperature of the power module or the like, for example, at 40 to 150 ° C., and brings the base material and the mating material into close contact with each other to exhibit the function of lowering the interfacial thermal resistance. The adhesive layer is a thermoplastic resin that is deformed by heating and is filled with a thermally conductive filler. According to JIS Z 0237, the adhesive strength is preferably 0.3 N / 25 mm or more when measured on an aluminum plate (room temperature). If it is smaller than this, it may be misaligned when incorporated into an electronic device, which makes it inconvenient to handle. The adhesive strength can be adjusted by the type and blending ratio of the thermoplastic resin. If the ethylene-vinyl acetate copolymer is used as the thermoplastic resin and the compounding ratio thereof is increased, the adhesive strength is increased. The adhesive strength can also be increased by blending rosin, a polypentene resin, an olefinic unsaturated hydrocarbon, etc., which are used for improving the adhesive strength of the hot melt adhesive.

【0012】熱可塑性樹脂としては、融点が40〜15
0℃の低分子ポリエチレン、低分子ポリプロピレン等の
比較的低分子量のポリマー、エチレン−αオレフィン共
重合体、エチレン−酢酸ビニル共重合体等のコポリマ
ー、ポリエステル系熱可塑樹脂、ポリウレタン系熱可塑
樹脂などが好適である。また、熱伝導性フィラーとして
は、上記絶縁性熱伝導性フィラーの他に、炭化ケイ素、
黒鉛、ダイアモンド、金、銀、銅、鉄、アルミニウム、
ニッケル等の導電性粉末も使用することができる。
The thermoplastic resin has a melting point of 40 to 15
Relatively low molecular weight polymers such as low molecular weight polyethylene and low molecular weight polypropylene at 0 ° C, copolymers such as ethylene-α olefin copolymers and ethylene-vinyl acetate copolymers, polyester thermoplastic resins, polyurethane thermoplastic resins, etc. Is preferred. Further, as the heat conductive filler, in addition to the insulating heat conductive filler, silicon carbide,
Graphite, diamond, gold, silver, copper, iron, aluminum,
A conductive powder such as nickel can also be used.

【0013】相手材との密着性を高めるには、熱可塑性
樹脂が加温されたときに流動する方がよく、熱伝導性を
高めるためには、熱伝導性フィラーを高充填するのがよ
いが流動性が悪くなるので、熱伝導性と加温時の流動性
のバランスを考慮して、熱伝導性フィラーの充填量が決
定される。充填量は、熱可塑性樹脂100部に対し55
〜65部を例示できるが、フィラーの形状、粒子径、粒
子径分布等の影響を受けるため、最適充填量は試行錯誤
によって決定することが望ましい。
In order to enhance the adhesion with the mating material, it is better for the thermoplastic resin to flow when heated, and in order to enhance the thermal conductivity, it is preferable to highly fill the thermally conductive filler. However, the filling amount of the thermally conductive filler is determined in consideration of the balance between the thermal conductivity and the fluidity during heating. The filling amount is 55 with respect to 100 parts of the thermoplastic resin.
Although it can be exemplified by up to 65 parts, it is desirable to determine the optimum filling amount by trial and error because it is affected by the shape of the filler, the particle size, the particle size distribution and the like.

【0014】接着層には、融点が熱可塑性樹脂の融点よ
りも低い低融点有機物が、熱可塑性樹脂100部に対し
200部以下、特に30〜100部含まれていることが
好ましい。これによって、加温時に接着層の流動性が高
まり、接着層の薄肉化や密着性を確保することが可能と
なる。200部をこえると、加温状態で低融点有機物が
滲みだし、周囲の電子部品などを汚染する原因となる。
低融点有機物としては、加温状態で液状となるものが好
ましいが、室温で液状のものでもあってもよい。例示す
れば、流動パラフィン、固形パラフィン、ロジン等の低
分子炭化水素化合物やシリコーンオイルなどである。
The adhesive layer preferably contains 200 parts or less, particularly 30 to 100 parts, of a low melting point organic material having a melting point lower than that of the thermoplastic resin, relative to 100 parts of the thermoplastic resin. As a result, the fluidity of the adhesive layer is increased during heating, and it becomes possible to secure the thinness and adhesion of the adhesive layer. If it exceeds 200 parts, the low-melting-point organic matter will ooze out in a heated state, which may cause contamination of surrounding electronic parts and the like.
As the low-melting point organic substance, those which are liquid at a heated state are preferable, but those which are liquid at room temperature may be used. Examples include liquid paraffin, solid paraffin, low molecular weight hydrocarbon compounds such as rosin, and silicone oil.

【0015】接着層の形成は、熱可塑性樹脂に熱伝導性
フィラーが充填されてなる接着層形成材料をトルエンな
どの溶剤でスラリー化し基材にスクリーン印刷する方法
が最も精度良く、所定量、所定厚みにすることができ
る。また、接着層形成材料を基材に点在させた後、耐熱
性離型フィルムで挟み、加熱ロールを通すことによって
フィルム状に形成させることもできる。さらには、押し
出し法、加熱ロール法等によって接着層形成材料のフィ
ルムを成形し、それを基材に張り合わせ、ラミネーター
等で加温することによっても形成させることができる。
The method for forming the adhesive layer is to make the adhesive layer forming material, which is a thermoplastic resin filled with a heat conductive filler, into a slurry with a solvent such as toluene, and screen-print it on the substrate with the highest accuracy. It can be thick. Alternatively, the adhesive layer-forming material may be scattered on a base material, sandwiched between heat-resistant release films, and passed through a heating roll to form a film. Further, it can also be formed by forming a film of the adhesive layer forming material by an extrusion method, a heating roll method or the like, adhering it to a substrate and heating it with a laminator or the like.

【0016】接着層は、基材の少なくとも一部分に形成
されるが、好ましくは基材表裏面積の60%以上、特に
表裏全面に形成させることが好ましい。形成割合が、基
材表裏面積の60%未満では、相手材との密着が不十分
となり、また空気が閉じこめられて空気断熱層を形成す
る恐れがある。
The adhesive layer is formed on at least a part of the base material, preferably 60% or more of the front and back surface area of the base material, and particularly preferably formed on the entire front and back surfaces. If the formation ratio is less than 60% of the front and back surface area of the base material, the close contact with the mating material becomes insufficient, and air may be trapped to form an air heat insulating layer.

【0017】パワーモジュールは、高性能化に比例して
消費電力が上昇している。たとえば、ハイブリッド自動
車向けのものは消費電力が数十キロワットに上昇してい
る。更に、熱の発生源であるチップは高密度実装され、
発熱密度は益々上昇していく傾向にある。モジュールに
はピン挿入実装タイプ、表面実装タイプ、及びそれらの
混在タイプがあるが、特に表面実装タイプが主流となっ
ている。何れのタイプも極細のリード線が表面に剥き出
しになるため、モジュール上方側は、空気冷熱以外の放
熱策を取ることができないため、上方からの放熱は僅か
である。従って、発生する熱の大半をモジュール下方へ
伝熱させ放散させなければならない。
The power consumption of the power module is increasing in proportion to the performance improvement. For example, power consumption for hybrid vehicles has risen to several tens of kilowatts. Furthermore, the chips, which are the source of heat, are densely packed,
The heat generation density tends to increase more and more. Modules include a pin insertion mounting type, a surface mounting type, and a mixed type thereof, and the surface mounting type is particularly predominant. In both types, since extremely fine lead wires are exposed on the surface, the upper side of the module cannot take heat radiation measures other than air cooling heat, so that heat radiation from the top is small. Therefore, most of the generated heat must be transferred to the lower part of the module to be dissipated.

【0018】チップの使用可能温度範囲は175℃以下
とされているが、一般的には100℃以下で使われる。
そのためには下方から効率よく熱を放散させる必要があ
り、本発明の放熱部材が組み込まれたパワーモジュール
は、チップ温度上昇を従来よりも大幅に抑えることが可
能である。本発明のパワーモジュールとしては、チップ
が表面実装された基板と、冷却用の放熱ユニットの間
に、接着層を有する本発明の放熱部材が装着された構造
を例示できる。
The usable temperature range of the chip is 175 ° C. or lower, but it is generally used at 100 ° C. or lower.
For that purpose, it is necessary to efficiently dissipate heat from below, and the power module incorporating the heat dissipation member of the present invention can significantly suppress the temperature rise of the chip as compared with the conventional case. Examples of the power module of the present invention include a structure in which the heat dissipation member of the present invention having an adhesive layer is mounted between a substrate on which chips are surface-mounted and a heat dissipation unit for cooling.

【0019】[0019]

【実施例】以下、実施例、比較例をあげてさらに具体的
に本発明を説明する。使用した材料は、以下のとおりで
ある。
EXAMPLES The present invention will be described in more detail with reference to Examples and Comparative Examples. The materials used are as follows.

【0020】(1)基材の樹脂成分 液状シリコーンゴム:GE東芝シリコーン社製商品名
「YE5822」 アクリルゴム:三井化学社製商品名「アルマテックス」 ウレタンゴム:三井化学社製商品名「オレスター」
(1) Resin component of the base material Liquid silicone rubber: GE Toshiba Silicone, trade name "YE5822" Acrylic rubber: Mitsui Chemicals, trade name "ALMATEX" Urethane rubber: Mitsui Chemicals, trade name "Orestar "

【0021】(2)接着層の樹脂成分 熱可塑性樹脂:EVA(エチレン−酢酸ビニル共重合
体);三井デュポンポリケミカル社製商品名「エバフレ
ックスEV40W」(融点40℃) 低融点有機物: 流動パラフィン;松村石油研究所社製商品名「モレスコ
ホワイトP350P」(融点−12℃以下(流動点−1
2℃)) ロジン;荒川化学工業社製商品名「スーパーエステル
L」(融点なし、粘性液体) 固形パラフィン;OG技研社製商品名「HR−1A」
(融点55℃)
(2) Resin component of adhesive layer Thermoplastic resin: EVA (ethylene-vinyl acetate copolymer); trade name "Evaflex EV40W" (melting point 40 ° C) manufactured by DuPont Mitsui Polychemical Co., Ltd. Low melting point organic substance: liquid paraffin Manufactured by Matsumura Oil Research Institute "Molesco White P350P" (melting point -12 ° C or less (pour point -1
2 ° C.)) Rosin; Arakawa Chemical Co., Ltd. product name “Super Ester L” (no melting point, viscous liquid) Solid paraffin; OG Giken product name “HR-1A”
(Melting point 55 ° C)

【0022】(3)絶縁性熱伝導性フィラー(表には
「フィラー」と記載)及び熱伝導性フィラー 窒化ホウ素:電気化学工業社製商品名「SGP」(平均
粒子径15μm) 窒化アルミニウム/粗粉:窒化アルミニウム粉末(電気
化学工業社製商品名「AP10」)を、窒素雰囲気下、
1750℃で2時間焼成した後ボールミルで解砕し、振
動篩で45μm下に分級した粉末 窒化アルミニウム/微粉:トクヤマ社製商品名「Hグレ
ード」(平均粒子径2μm) 窒化ケイ素:電気化学工業社製商品名「SN−F1」
(平均粒子径27μm) アルミナ/粗紛:昭和電工社製商品名「CB30」(平
均粒子径30μm) アルミナ/微紛:昭和電工社製商品名「CB10」(平
均粒子径10μm) アルミナ/超微紛:住友化学工業社製商品名「AA0
5」(平均粒子径0.5μm) 銅紛:福田金属箔工業社製(平均粒子径5μm)
(3) Insulating thermally conductive filler (described as "filler" in the table) and thermally conductive filler boron nitride: trade name "SGP" (average particle diameter 15 μm) manufactured by Denki Kagaku Kogyo Co., Ltd. Aluminum nitride / coarse Powder: Aluminum nitride powder (trade name “AP10” manufactured by Denki Kagaku Kogyo Co., Ltd.) was added under a nitrogen atmosphere.
Powdered aluminum nitride / fine powder pulverized with a ball mill after calcination at 1750 ° C. for 2 hours and classified with a vibrating sieve under 45 μm: Tokuyama's trade name “H grade” (average particle size 2 μm) Silicon nitride: Denki Kagaku Kogyo Product name "SN-F1"
(Average particle size 27 μm) Alumina / coarse powder: Showa Denko's trade name “CB30” (average particle size 30 μm) Alumina / fine powder: Showa Denko's trade name “CB10” (average particle size 10 μm) Alumina / ultrafine Powder: Product name "AA0" manufactured by Sumitomo Chemical Co., Ltd.
5 "(average particle size 0.5 μm) Copper powder: Fukuda Metal Foil Industry Co., Ltd. (average particle size 5 μm)

【0023】実施例1〜8 比較例1〜4 樹脂成分と絶縁性熱伝導性フィラーを表1、表2示す割
合で混合し、トルエンの適量を加えて粘度を50Pa・
s程度のスラリーを調製した。これを用いて網目状補強
材(ユニチカ社製ガラスクロス商品名「E02A4
W」)をシート中央内部に介在させたシートを成形し、
表1、表2に示される熱伝導率、ショアA硬度、厚みを
有する基材を製造した。
Examples 1 to 8 Comparative Examples 1 to 4 Resin components and insulating thermally conductive fillers were mixed in the ratios shown in Tables 1 and 2, and an appropriate amount of toluene was added to the mixture to give a viscosity of 50 Pa.
A slurry of about s was prepared. Using this, a mesh-like reinforcing material (Unitika glass cloth product name “E02A4
W ”) is formed inside the center of the sheet,
Substrates having the thermal conductivity, Shore A hardness, and thickness shown in Tables 1 and 2 were manufactured.

【0024】樹脂成分と熱伝導性フィラーを、表1、表
2の割合で混合し、110℃加熱下で混練して接着層形
成材料を製造した。
The resin component and the heat conductive filler were mixed in the ratios shown in Table 1 and Table 2 and kneaded under heating at 110 ° C. to produce an adhesive layer forming material.

【0025】ついで、基材の両面又は片面に、直径2m
mの孔が3mmの等間隔で並んだステンレス製の板を置
き、その上から接着層形成材料のトルエンスラリー(粘
度約20Pa・s)をローラーで点在状に塗工し、放熱
部材を製造した。
Then, a diameter of 2 m is applied to both sides or one side of the base material.
A stainless steel plate in which m holes are lined up at equal intervals of 3 mm is placed, and a toluene slurry (viscosity of about 20 Pa · s) of the adhesive layer forming material is applied on the plate in a scattered manner with rollers to manufacture a heat dissipation member. did.

【0026】得られた放熱部材の絶縁破壊電圧及び熱抵
抗を以下に従って測定した。それらの結果を表1、表2
に示す。比較例1〜4は接着層を形成させなかった基材
の値である。
The dielectric breakdown voltage and thermal resistance of the obtained heat dissipation member were measured as follows. The results are shown in Table 1 and Table 2.
Shown in. Comparative Examples 1 to 4 are values of the base material on which the adhesive layer was not formed.

【0027】(1)絶縁破壊電圧:JIS C 211
0に準じて測定した。 (2)熱抵抗:放熱部材をTO−3型銅製ヒーターケー
スと銅板との間に挟み、締付けトルク0.5Nmにてセ
ットした後、銅製ヒーターケースに電力15Wをかけて
4分間保持して銅製ヒーターケースと銅板との温度差を
測定し、式、熱抵抗(℃/W)=温度差(℃)/電力
(W)、により算出した。 (3)熱伝導率:(2)で算出した熱抵抗値をもとに、
式、熱伝導率(W/mK)=試料厚み(m)/伝熱面積
(m2)/熱抵抗(℃/W)、により算出した。なお、
伝熱面積は0.0006m2(TO−3形状)である。 (4)ショアA硬度:ショア硬度計により測定した。
(1) Dielectric breakdown voltage: JIS C 211
It measured according to 0. (2) Thermal resistance: A heat-dissipating member is sandwiched between a TO-3 type copper heater case and a copper plate and set with a tightening torque of 0.5 Nm, and then a power of 15 W is applied to the copper heater case for 4 minutes to hold it for 4 minutes. The temperature difference between the heater case and the copper plate was measured and calculated by the formula: thermal resistance (° C / W) = temperature difference (° C) / power (W). (3) Thermal conductivity: Based on the thermal resistance value calculated in (2),
It was calculated by the equation, thermal conductivity (W / mK) = sample thickness (m) / heat transfer area (m 2 ) / thermal resistance (° C./W). In addition,
The heat transfer area is 0.0006 m 2 (TO-3 shape). (4) Shore A hardness: Measured by a Shore hardness meter.

【0028】実施例9、10 比較例5、6 液状シリコーンゴムのかわりに、表3に示される基材の
樹脂成分を用いたこと以外は、実施例1に準じて放熱部
材を製造した。それらの結果を表3に示す。比較例5、
6は、接着層を形成させなかった基材の値である。
Examples 9 and 10 Comparative Examples 5 and 6 A heat radiating member was manufactured according to Example 1 except that the resin component of the substrate shown in Table 3 was used instead of the liquid silicone rubber. The results are shown in Table 3. Comparative Example 5,
6 is the value of the base material on which the adhesive layer was not formed.

【0029】実施例11〜14 接着層を表4に示すように種々違えたこと以外は、実施
例1に準じて放熱部材を製造した。それらの結果を表4
に示す。
Examples 11 to 14 A heat radiating member was manufactured according to Example 1 except that the adhesive layers were variously changed as shown in Table 4. The results are shown in Table 4.
Shown in.

【0030】実施例15〜17 実施例1で製造した接着層形成材料を、厚み0.15m
mのフィルム状に成形した。これを比較例1の基材両面
に張り合わせた後、離型フィルムで挟んで、加熱ロール
に掛け密着させて放熱部材を製造した。それらの結果を
表5に示す。
Examples 15 to 17 The adhesive layer forming material produced in Example 1 was used in a thickness of 0.15 m.
m was formed into a film shape. After sticking this on both sides of the base material of Comparative Example 1, it was sandwiched between release films and placed on a heating roll for close contact to produce a heat dissipation member. The results are shown in Table 5.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【表2】 [Table 2]

【0033】[0033]

【表3】 [Table 3]

【0034】[0034]

【表4】 [Table 4]

【0035】[0035]

【表5】 [Table 5]

【0036】表1〜5から、本発明の実施例は、接着層
を形成させない比較例に比べて、熱抵抗が大幅に低減で
き、しかも絶縁破壊電圧5kV以上であって十分な電気
絶縁性を有する放熱部材となることが分かる。また、粘
着層にパラフィンを配合させた実施例1と実施例4との
対比から、配合した低融点有機物が同種であっても、熱
可塑性樹脂の融点よりも低い低融点有機物を更に存在さ
せることによって低熱抵抗となることが示された。
From Tables 1 to 5, the examples of the present invention can significantly reduce thermal resistance and have a dielectric breakdown voltage of 5 kV or more and sufficient electrical insulation properties as compared with the comparative examples in which no adhesive layer is formed. It can be seen that the heat dissipation member has. Further, from the comparison between Example 1 and Example 4 in which paraffin is blended in the adhesive layer, even if the blended low-melting-point organic substances are of the same kind, it is necessary to further present a low-melting-point organic substance lower than the melting point of the thermoplastic resin. It was shown that the thermal resistance was low.

【0037】[0037]

【発明の効果】本発明によれば、電気絶縁性と熱伝導性
に優れた放熱部材が提供される。本発明の放熱部材の組
み込まれたパワーモジュールは、パワーモジュール自体
から発生する熱を効果的に放熱させることができ、高性
能化、高密度実装化が可能となる。
According to the present invention, there is provided a heat dissipation member having excellent electrical insulation and thermal conductivity. The power module incorporating the heat dissipation member of the present invention can effectively dissipate the heat generated from the power module itself, and can achieve high performance and high density mounting.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 絶縁性熱伝導性フィラーの充填されたシ
リコーン硬化物の少なくとも一部分に、熱伝導性フィラ
ー充填の熱可塑性樹脂からなり加温により変形する接着
層を形成させてなることを特徴とする放熱部材。
1. An adhesive layer formed of a thermoplastic resin filled with a heat conductive filler and deformable by heating is formed on at least a part of a cured silicone material filled with an insulating heat conductive filler. A heat dissipation member.
【請求項2】 接着層には、熱可塑性樹脂の融点よりも
低い低融点有機物を更に含有させてなることを特徴とす
る請求項1記載の放熱部材。
2. The heat dissipation member according to claim 1, wherein the adhesive layer further contains a low-melting point organic substance having a melting point lower than that of the thermoplastic resin.
【請求項3】 請求項1又は2記載の放熱部材が組み込
まれたパワーモジュール。
3. A power module incorporating the heat dissipation member according to claim 1 or 2.
JP2002115993A 2002-04-18 2002-04-18 Heat dissipation member and power module Expired - Fee Related JP3739335B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002115993A JP3739335B2 (en) 2002-04-18 2002-04-18 Heat dissipation member and power module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002115993A JP3739335B2 (en) 2002-04-18 2002-04-18 Heat dissipation member and power module

Publications (2)

Publication Number Publication Date
JP2003309235A true JP2003309235A (en) 2003-10-31
JP3739335B2 JP3739335B2 (en) 2006-01-25

Family

ID=29397025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002115993A Expired - Fee Related JP3739335B2 (en) 2002-04-18 2002-04-18 Heat dissipation member and power module

Country Status (1)

Country Link
JP (1) JP3739335B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005209765A (en) * 2004-01-21 2005-08-04 Denki Kagaku Kogyo Kk Mixed powder and application thereof
JP2006137930A (en) * 2004-10-14 2006-06-01 Shin Etsu Chem Co Ltd Thermoconductive silicone grease composition
JP2007129146A (en) * 2005-11-07 2007-05-24 Toyota Motor Corp Cooling structure of reactor and electrical apparatus unit
JP2011178894A (en) * 2010-03-01 2011-09-15 Mitsubishi Electric Corp Thermosetting resin composition, thermally conductive sheet, and power module
JP2013082767A (en) * 2011-10-06 2013-05-09 Nitto Denko Corp Heat-dissipating member and method for producing the same
WO2017073727A1 (en) * 2015-10-29 2017-05-04 日東電工株式会社 Thermally conductive sheet and semiconductor module
JP2020057638A (en) * 2018-09-28 2020-04-09 日本ゼオン株式会社 Device laminate, manufacturing method thereof, device, and manufacturing method thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005209765A (en) * 2004-01-21 2005-08-04 Denki Kagaku Kogyo Kk Mixed powder and application thereof
JP4481019B2 (en) * 2004-01-21 2010-06-16 電気化学工業株式会社 Mixed powder and its use
JP2006137930A (en) * 2004-10-14 2006-06-01 Shin Etsu Chem Co Ltd Thermoconductive silicone grease composition
JP4687887B2 (en) * 2004-10-14 2011-05-25 信越化学工業株式会社 Thermally conductive silicone grease composition
JP2007129146A (en) * 2005-11-07 2007-05-24 Toyota Motor Corp Cooling structure of reactor and electrical apparatus unit
JP4645417B2 (en) * 2005-11-07 2011-03-09 トヨタ自動車株式会社 Reactor cooling structure and electrical equipment unit
JP2011178894A (en) * 2010-03-01 2011-09-15 Mitsubishi Electric Corp Thermosetting resin composition, thermally conductive sheet, and power module
JP2013082767A (en) * 2011-10-06 2013-05-09 Nitto Denko Corp Heat-dissipating member and method for producing the same
WO2017073727A1 (en) * 2015-10-29 2017-05-04 日東電工株式会社 Thermally conductive sheet and semiconductor module
JP2020057638A (en) * 2018-09-28 2020-04-09 日本ゼオン株式会社 Device laminate, manufacturing method thereof, device, and manufacturing method thereof
JP7143712B2 (en) 2018-09-28 2022-09-29 日本ゼオン株式会社 Device laminate and manufacturing method thereof, and device and manufacturing method thereof

Also Published As

Publication number Publication date
JP3739335B2 (en) 2006-01-25

Similar Documents

Publication Publication Date Title
EP1376689B1 (en) Radiating structural body of electronic part and radiating sheet used for the radiating structural body
US10964617B2 (en) Methods for establishing thermal joints between heat spreaders or lids and heat sources
JP5184543B2 (en) Thermally conductive sheet and power module
TWI244880B (en) Phase change thermal interface materials including polyester resin
EP1797155B1 (en) Thermally conductive composition and method for preparing the same
US8511369B2 (en) Thermally reversible crosslinked polymer modified particles and methods for making the same
JP6418348B1 (en) Composite material
WO2015190270A1 (en) Heat-conductive sheet
WO2014069353A1 (en) Semiconductor device
JP5391530B2 (en) Method for manufacturing thermally conductive resin sheet and method for manufacturing power module
JP2003218296A (en) Heat radiating member and method for manufacturing and for installing the same
JP2002164481A (en) Heat conductive sheet
JP2008258254A (en) Thermally conductive adhesives and heat radiation module using the same and power converter
JP3739335B2 (en) Heat dissipation member and power module
JP4749631B2 (en) Heat dissipation member
JP4030399B2 (en) Self-adhesive phase change heat dissipation member
JP2002299534A (en) Heat radiation material and manufacturing method therefor
JP4115024B2 (en) Sheet with conductivity and thermal conductivity
TWI491722B (en) Thermal interface material with phenyl ester
JP3744420B2 (en) Thermally conductive resin composition and electronic component device using the same
JP2017028130A (en) Substrate for power module, circuit board for power module, and power module
WO2022168729A1 (en) Thermally conductive sheet laminate and electronic equipment using same
TW201811961A (en) Thermally conductive composite sheet
JP6757787B2 (en) Hollow structure electronic components
TWI246878B (en) Phase change thermal conductive plate and heat dissipating device having same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051101

R150 Certificate of patent or registration of utility model

Ref document number: 3739335

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111111

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111111

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131111

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees