JP2003309045A - Electric double layer capacitor - Google Patents

Electric double layer capacitor

Info

Publication number
JP2003309045A
JP2003309045A JP2002112165A JP2002112165A JP2003309045A JP 2003309045 A JP2003309045 A JP 2003309045A JP 2002112165 A JP2002112165 A JP 2002112165A JP 2002112165 A JP2002112165 A JP 2002112165A JP 2003309045 A JP2003309045 A JP 2003309045A
Authority
JP
Japan
Prior art keywords
electrode
electric double
layer
double layer
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002112165A
Other languages
Japanese (ja)
Inventor
Naoki Yoshida
直樹 吉田
Takeshi Kawasato
健 河里
Kazuya Hiratsuka
和也 平塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2002112165A priority Critical patent/JP2003309045A/en
Publication of JP2003309045A publication Critical patent/JP2003309045A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electric double layer capacitor which has little change of the internal resistance over aging and high reliability even when the capacitor is used for a long period of time. <P>SOLUTION: The electric double layer capacitor is constituted of an element comprising a positive electrode and a negative electrode, each having an electrode layer containing a carbon material of 100-2500 m<SP>2</SP>/g specific surface area formed on a metal current collector. A separator is arranged between the positive electrode and the negative electrode, and a nonaqueous electrolytic solution is infiltrated into the element. In the negative electrode, a porous layer having higher conductivity than that of the electrode layer is formed on the surface of the electrode layer. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は電気二重層キャパシ
タ、特に内部抵抗の変化が小さく、信頼性に優れる電気
二重層キャパシタに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric double layer capacitor, and more particularly to an electric double layer capacitor having a small change in internal resistance and excellent reliability.

【0002】[0002]

【従来の技術】活性炭等の炭素材料を主体とする一対の
分極性電極を用いた電気二重層キャパシタでは、正極、
負極ともに本質的に同質の電極を使用するのが一般的で
ある。このような電極は、あらかじめシート状又はディ
スク状に成形され、導電性接着剤等を用いて集電体に接
着又は機械的な押圧により集電体に密着させて使用され
る。また、活性炭等の電極材料とバインダ等を含有する
ペースト状又は液状の組成物が、塗布や噴霧により集電
体上に直接成形される場合もある。
2. Description of the Related Art In an electric double layer capacitor using a pair of polarizable electrodes mainly composed of a carbon material such as activated carbon, a positive electrode,
It is common to use essentially the same electrode for both the negative electrode. Such an electrode is preliminarily formed into a sheet shape or a disk shape, and is used by adhering it to a current collector using a conductive adhesive or the like or bringing it into close contact with the current collector by mechanical pressing. In addition, a paste-like or liquid composition containing an electrode material such as activated carbon and a binder may be directly formed on the current collector by coating or spraying.

【0003】そして、上述のように集電体と一体化され
た一対の電極の間にセパレータを挟んでなる素子を電解
液と共に金属ケース中に収納し、ガスケットを介して金
属蓋によって密封したコイン型、又は一対のシート状分
極性電極の間にセパレータを介して巻回してなる素子を
電解液と共に金属ケース中に収容し、ケースの開口部か
ら電解液が蒸発しないように封口した巻回型等の構造で
供される。
Then, an element in which a separator is sandwiched between a pair of electrodes integrated with a current collector as described above is housed together with an electrolytic solution in a metal case, and a coin is sealed with a metal lid through a gasket. Or a winding type in which an element formed by winding a pair of sheet-like polarizable electrodes via a separator is housed together with an electrolytic solution in a metal case and sealed so that the electrolytic solution does not evaporate from the opening of the case. And so on.

【0004】従来の電気二重層キャパシタの電解液に
は、硫酸等の鉱酸、アルカリ金属塩又はアルカリを含む
水系電解液の他、各種非水系電解液が用いられている。
非水系電解液の溶媒としては、プロピレンカーボネー
ト、γ−ブチロラクトン、アセトニトリル、ジメチルホ
ルムアミド(特開昭49−68254)、スルホラン誘
導体等(特開昭62−237715)が知られている。
耐電圧を比較すると、水系電解液が0.8Vに対し、非
水系電解液は2.5〜3.3Vであり、キャパシタの静
電エネルギーは耐電圧の2乗に比例するので、静電エネ
ルギーの点では非水系電解液の方が有利である。そし
て、非水系電解液を使用する電気二重層キャパシタにお
いては、より高いエネルギー密度を得るために、より高
い電圧で作動することが求められている。
As a conventional electrolytic solution for an electric double layer capacitor, various non-aqueous electrolytic solutions are used in addition to an aqueous electrolytic solution containing a mineral acid such as sulfuric acid, an alkali metal salt or an alkali.
Known solvents for the non-aqueous electrolyte are propylene carbonate, γ-butyrolactone, acetonitrile, dimethylformamide (JP-A-49-68254), sulfolane derivative and the like (JP-A-62-237715).
Comparing the withstand voltage, the non-aqueous electrolyte solution is 2.5 to 3.3 V with respect to the aqueous electrolyte solution of 0.8 V, and the electrostatic energy of the capacitor is proportional to the square of the withstand voltage. From the point of view, the non-aqueous electrolyte is more advantageous. Then, in the electric double layer capacitor using the non-aqueous electrolyte, it is required to operate at a higher voltage in order to obtain a higher energy density.

【0005】[0005]

【発明が解決しようとする課題】しかし、作動電圧を高
くするほど電気二重層キャパシタの劣化が加速され、特
に内部抵抗の増大が顕著になるという問題があった。抵
抗が低いキャパシタを得るために、接着力及び導電性が
高い第一電極層を集電体に接して配置し、その第一電極
層上に第二電極層を配置した多層構造体を電極とする
(特開2001−307716)ことが提案されている
が、未だ不十分である。
However, there is a problem that the higher the operating voltage is, the more the deterioration of the electric double layer capacitor is accelerated, and the increase of the internal resistance becomes remarkable. In order to obtain a capacitor with low resistance, a first electrode layer having high adhesion and conductivity is arranged in contact with a current collector, and a multilayer structure in which a second electrode layer is arranged on the first electrode layer is used as an electrode. (Japanese Patent Laid-Open No. 2001-307716) has been proposed, but it is still insufficient.

【0006】本発明は、上記の従来技術の問題点を解決
し、使用時の劣化による内部抵抗変化が小さく、信頼性
の高い電気二重層キャパシタを提供することを目的とす
る。
It is an object of the present invention to solve the above-mentioned problems of the prior art and to provide an electric double layer capacitor having a small change in internal resistance due to deterioration during use and having high reliability.

【0007】[0007]

【課題を解決するための手段】本発明は、高比表面積の
炭素材料を含む電極層が金属集電体上に形成された正極
及び負極と、前記正極と前記負極との間に配置されるセ
パレータとにより素子が形成されており、該素子に非水
系電解液が含浸されてなる電気二重層キャパシタにおい
て、前記負極においては、前記電極層より導電性が高く
かつ多孔質の高導電層が前記電極層の表面に形成されて
いて前記電極層と前記セパレータとの間に配置されてい
ることを特徴とする電気二重層キャパシタを提供する。
According to the present invention, an electrode layer containing a carbon material having a high specific surface area is arranged between a positive electrode and a negative electrode formed on a metal current collector, and the positive electrode and the negative electrode. An element is formed by a separator, and in the electric double layer capacitor in which the element is impregnated with a non-aqueous electrolytic solution, in the negative electrode, a highly conductive and porous highly conductive layer is higher than the electrode layer. Provided is an electric double layer capacitor, which is formed on the surface of an electrode layer and is arranged between the electrode layer and the separator.

【0008】また、本発明は、比表面積100〜250
0m/gの炭素材料を含む電極層が金属集電体上に形
成された正極及び負極との間にセパレータを配置して素
子を形成し、該素子に非水系電解液を含浸させる電気二
重層キャパシタの製造方法において、前記負極の電極層
の前記金属集電体と接しない側の表面に、カーボンブラ
ック、黒鉛及び金属からなる群から選ばれる1種以上か
らなる粉末又は微小繊維が分散媒に分散した分散液を、
塗布又は噴霧することにより高導電層を形成することを
特徴とする電気二重層キャパシタの製造方法を提供す
る。
The present invention also has a specific surface area of 100 to 250.
An electric element for forming an element by disposing a separator between a positive electrode and a negative electrode having an electrode layer containing 0 m 2 / g of a carbon material formed on a metal current collector and impregnating the element with a non-aqueous electrolyte solution. In the method for manufacturing a multilayer capacitor, on the surface of the electrode layer of the negative electrode which is not in contact with the metal current collector, powder or fine fibers made of one or more selected from the group consisting of carbon black, graphite and metal is used as a dispersion medium. The dispersion liquid dispersed in
Provided is a method for manufacturing an electric double layer capacitor, which comprises forming a highly conductive layer by coating or spraying.

【0009】また、本発明は比表面積100〜2500
/gの炭素材料を含む電極層が金属集電体上に形成
された正極及び負極との間にセパレータを配置して素子
を形成し、該素子に非水系電解液を含浸させる電気二重
層キャパシタの製造方法において、カーボンブラック、
黒鉛及び金属からなる群から選ばれる1種以上からなる
粉末又は微小繊維をバインダとともにシート状に成形し
た成形体、炭素繊維のシート状成形物、金属箔からなる
マイクロエキスパンドメッシュ及び金属ウールのシート
状成形物からなる群から選ばれる1種を、前記負極の電
極層の前記金属集電体と接しない側の表面に密着させて
高導電層を形成することを特徴とする電気二重層キャパ
シタの製造方法を提供する。
The present invention also has a specific surface area of 100 to 2500.
An electric element in which a separator is disposed between a positive electrode and a negative electrode having an electrode layer containing m 2 / g of a carbon material formed on a metal current collector to form an element, and the element is impregnated with a non-aqueous electrolyte solution. In the method of manufacturing a multilayer capacitor, carbon black,
A molded product obtained by molding a powder or fine fibers made of one or more kinds selected from the group consisting of graphite and a metal into a sheet with a binder, a carbon fiber sheet-shaped molded product, a micro-expanded mesh made of a metal foil, and a metal wool sheet. A high-conductivity layer is formed by closely adhering one selected from the group consisting of molded products to the surface of the electrode layer of the negative electrode that is not in contact with the metal current collector to form a highly conductive layer. Provide a way.

【0010】本発明者らは、長期の使用により内部抵抗
が増加した電気二重層キャパシタの電極を詳しく調査し
たところ、正極よりも負極の抵抗増加が大きいことを見
いだした。さらに詳細な検討の結果、負極の中でも特に
正極と対向する表面付近(セパレータと隣接する部分)
での抵抗上昇が著しいことが判明した。そこで本発明者
らは、使用時の劣化による内部抵抗変化が小さく、信頼
性の高い電気二重層キャパシタを得るためには、正極と
対向する負極表面(セパレータと隣接している面付近)
の抵抗上昇を抑制することが重要であると考えた。
The present inventors have conducted a detailed investigation on the electrode of the electric double layer capacitor whose internal resistance has increased due to long-term use, and have found that the resistance increase of the negative electrode is larger than that of the positive electrode. As a result of a more detailed study, in the negative electrode, particularly near the surface facing the positive electrode (the portion adjacent to the separator)
It was found that the resistance increase at Therefore, in order to obtain an electric double layer capacitor having a small change in internal resistance due to deterioration during use and having high reliability, the present inventors have prepared a negative electrode surface facing the positive electrode (near the surface adjacent to the separator).
I thought it important to suppress the increase in resistance.

【0011】高比表面積の炭素材料からなる電極層は、
通常例えば導電材を添加する等して導電性を有するよう
に構成されているが、その電極層よりも導電性が高い層
を正極と対向する負極の表面(負極のセパレータと接す
る面)に設けることにより効果的に上述の負極の抵抗上
昇を抑制することが可能となることを見出し、本発明に
至った。
The electrode layer made of a carbon material having a high specific surface area is
Usually, it is configured to have conductivity by adding, for example, a conductive material, but a layer having higher conductivity than the electrode layer is provided on the surface of the negative electrode facing the positive electrode (the surface in contact with the negative electrode separator). As a result, they have found that it is possible to effectively suppress the above-mentioned increase in resistance of the negative electrode, and have completed the present invention.

【0012】本発明の電気二重層キャパシタでは、正
極、負極とも高比表面積(比表面積100〜2500m
/g)の炭素材料を主成分とする電極層を有し、該電
極と電解液との界面に形成される電気二重層に電荷を蓄
積するか、電気化学的反応を含む擬似電気二重層に電荷
を蓄積することを原理としている。セルの体積あたりの
容量を大きくするためには、炭素材料の比表面積は大き
いことが好ましく、電極層は上記比表面積の炭素材料と
有機バインダとを含むことが好ましい。
In the electric double layer capacitor of the present invention, both the positive electrode and the negative electrode have a high specific surface area (specific surface area 100 to 2500 m).
2 / g) an electrode layer containing a carbon material as a main component and accumulating charges in an electric double layer formed at an interface between the electrode and an electrolytic solution or a pseudo electric double layer including an electrochemical reaction. The principle is to accumulate electric charge in. In order to increase the capacity per cell volume, the carbon material preferably has a large specific surface area, and the electrode layer preferably contains the carbon material having the specific surface area and the organic binder.

【0013】例えば、電極層は、比表面積の大きい活性
炭、ポリアセン等の炭素材料粉末を主成分とし、これに
導電性物質としてカーボンブラック、アセチレンブラッ
ク、ケッチェンブラック又はカーボンウィスカーを、及
び結合剤としてポリテトラフルオロエチレン(PTF
E)、ポリフッ化ビニリデン(PVdF)、カルボキシ
メチルセルロース等を加え、アルコール等の液体潤滑剤
の存在下で混練し、ロール圧延等によりシート状に成形
し、乾燥したシート状成形物を金属集電体の両面に熱圧
着するか導電性接着剤等を介して接合することにより形
成される。
For example, the electrode layer is mainly composed of a carbon material powder having a large specific surface area, such as activated carbon or polyacene, to which carbon black, acetylene black, ketjen black or carbon whiskers is used as a conductive substance, and a binder. Polytetrafluoroethylene (PTF
E), polyvinylidene fluoride (PVdF), carboxymethyl cellulose, etc. are added, kneaded in the presence of a liquid lubricant such as alcohol, rolled into a sheet-like shape, and the dried sheet-like shaped article is a metal current collector. It is formed by thermocompression bonding to both surfaces of or by bonding with a conductive adhesive or the like.

【0014】活性炭材料としては、やしがら等の天然植
物組織、フェノール等の合成樹脂、石炭、コークス、ピ
ッチ等の化石燃料由来のものが使用できる。活性炭の賦
活方法としては、用いる原料によって異なるが、通常水
蒸気賦活、アルカリ特にKOH賦活法が適用される。天
然植物組織や、化石燃料由来の活性炭では、金属不純物
量が比較的多く含まれることから、一般には酸洗浄等に
よる精製が必要である。同様に、アルカリ賦活法によっ
て賦活された活性炭では、賦活に用いたアルカリ金属
や、賦活装置からアルカリとの反応によって持ち込まれ
た金属不純物量が多いため、洗浄操作が必須となる。こ
の中では、合成樹脂を原料とする水蒸気賦活炭が金属不
純物の点では最も好適である。
As the activated carbon material, natural plant tissue such as coconut shell, synthetic resin such as phenol, and fossil fuel derived from coal, coke, pitch and the like can be used. As a method for activating activated carbon, although it depends on the raw material used, steam activation or alkali, especially KOH activation method is usually applied. Since natural plant tissues and activated carbon derived from fossil fuels contain a relatively large amount of metal impurities, purification by acid washing or the like is generally required. Similarly, in activated carbon activated by the alkali activation method, the amount of alkali metal used for activation and the amount of metal impurities brought in from the activation device by the reaction with alkali are large, and thus a washing operation is essential. Among these, steam activated carbon made of synthetic resin is the most preferable in terms of metal impurities.

【0015】電極層の厚さに制限はないが通常10μm
〜0.5mm程度である。なお、混練するかわりに上記
結合剤の溶媒(水、N−メチル−2−ピロリドン等)を
混合してスラリーとし、これを金属集電体の表面に塗布
・乾燥して電極層を形成してもよい。
The thickness of the electrode layer is not limited, but is usually 10 μm.
It is about 0.5 mm. Instead of kneading, a solvent of the above-mentioned binder (water, N-methyl-2-pyrrolidone, etc.) is mixed to form a slurry, which is applied on the surface of the metal current collector and dried to form an electrode layer. Good.

【0016】集電体は電気化学的、化学的に耐蝕性のあ
る金属であればよく、アルミニウム、ステンレス鋼、ニ
ッケル、タンタル等の金属の表面を粗面化した箔、網等
を用いられる。特にステンレス鋼及びアルミニウム又は
それらの合金からなる箔、網等が好ましく用いられる。
さらに好ましくは、99.9%、より好ましくは99.
99%純度のアルミニウム箔が用いられる。本発明では
このような金属箔からなり、厚さが10μm〜0.5m
m程度の集電体を用いることが好ましい。
The current collector may be any metal that is electrochemically and chemically resistant to corrosion, and may be a foil, a net, or the like having a roughened surface of a metal such as aluminum, stainless steel, nickel, or tantalum. In particular, foils, nets and the like made of stainless steel and aluminum or their alloys are preferably used.
More preferably, it is 99.9%, more preferably 99.
Aluminum foil of 99% purity is used. In the present invention, such a metal foil is used and has a thickness of 10 μm to 0.5 m.
It is preferable to use a current collector of about m.

【0017】本発明における高導電層は、電極層上に形
成されることにより、実質的に電極層の比抵抗を低減さ
せる層をいう。特に、4端子法により電極層の直流抵抗
を測定した際、高導電層が表面に形成されることによっ
て、比抵抗が3%以上、特に5%以上小さくなることが
好ましい。比抵抗の測定は、具体的には、高導電層が形
成されていない電極層及び高導電層が表面に形成された
電極層それぞれの直流抵抗を測定してそれぞれの比抵抗
を算出して行う。なお、本発明における高導電層は多孔
質であるため、絶縁体シートの上に形成して比抵抗を測
定した場合、電極層よりも抵抗が大きい場合もある。
The high-conductivity layer in the present invention means a layer which is formed on the electrode layer to substantially reduce the specific resistance of the electrode layer. In particular, when the direct current resistance of the electrode layer is measured by the 4-terminal method, it is preferable that the specific resistance is reduced by 3% or more, particularly 5% or more by forming the highly conductive layer on the surface. Specifically, the specific resistance is measured by measuring the direct current resistance of each of the electrode layer in which the highly conductive layer is not formed and the electrode layer in which the highly conductive layer is formed, and calculating each specific resistance. . Since the highly conductive layer in the present invention is porous, when formed on the insulating sheet and measured for specific resistance, the resistance may be higher than that of the electrode layer.

【0018】高導電層を形成しても比抵抗の減少が3%
未満である場合は、高導電層を形成する効果が小さい。
一方、高導電層の形成による比抵抗減少の上限は特に制
限されないが、通常高導電層を形成可能な材料で比抵抗
減少が50%を超えるようにしようとすると、高導電層
の厚さが厚くなりすぎて正負極間の距離(電極層どうし
の距離)が長くなるため内部抵抗が上昇するおそれがあ
る。また、高導電層の存在する分だけ、容量を発現する
ための高比表面積の炭素材料(活性炭等)の電気二重層
キャパシタセル中に含まれる量が減少するので、静電容
量の低下等の性能低下が顕著になるおそれがある。した
がって、上記比抵抗減少は50%以下とすることが好ま
しい。
Even if a highly conductive layer is formed, the specific resistance is reduced by 3%.
When the amount is less than the above, the effect of forming the highly conductive layer is small.
On the other hand, the upper limit of the decrease in specific resistance due to the formation of the high conductive layer is not particularly limited, but if it is attempted that the decrease in specific resistance exceeds 50% with a material capable of forming a high conductive layer, the thickness of the high conductive layer is usually reduced. Since the thickness becomes too thick and the distance between the positive and negative electrodes (distance between the electrode layers) becomes long, the internal resistance may increase. In addition, since the amount of the carbon material (activated carbon etc.) having a high specific surface area for expressing the capacitance contained in the electric double layer capacitor cell is reduced by the amount of the presence of the high conductive layer, it is possible to reduce the capacitance. There is a possibility that the performance will be significantly reduced. Therefore, it is preferable that the specific resistance decrease is 50% or less.

【0019】本発明において、負極の電極層の表面に形
成されている高導電層は、負極と一体化していてもよい
し、負極とは独立した層で単に積層されていてもよい。
電気二重層キャパシタの製造工程上の容易性の観点から
は、一体化したものが好ましい。
In the present invention, the highly conductive layer formed on the surface of the negative electrode layer may be integrated with the negative electrode, or may be simply laminated as a layer independent of the negative electrode.
From the viewpoint of easiness in the manufacturing process of the electric double layer capacitor, the integrated one is preferable.

【0020】上記高導電層を構成する主成分としては、
導電性があり、使用条件下で電気化学的、化学的に耐蝕
性を有し、正負極間の電気的導通をとるイオン導電性を
妨げない形態に成形できるものであれば特に限定されな
いが、黒鉛、カーボンブラック、アセチレンブラック、
ケッチェンブラック、炭素繊維等の炭素質材料や、アル
ミニウム、ステンレス鋼、ニッケル、タンタル等の金属
が好ましい。
The main constituents of the highly conductive layer are:
There is no particular limitation as long as it has conductivity, has electrochemical corrosion resistance under use conditions, and has chemical resistance to corrosion, and can be molded into a form that does not interfere with ionic conductivity for electrical conduction between the positive and negative electrodes, Graphite, carbon black, acetylene black,
Carbonaceous materials such as Ketjen black and carbon fibers, and metals such as aluminum, stainless steel, nickel and tantalum are preferable.

【0021】また、高導電層は多孔質であることが必要
である。高導電層が無孔性又は過度に緻密であると、正
負極間のイオン導電性を遮断又は阻害することになり、
逆に電気二重層キャパシタの内部抵抗上昇を引き起こ
す。上記観点から、高導電層の空隙率は40〜97%、
特に50〜93%であることが好ましい。
Further, the highly conductive layer needs to be porous. If the highly conductive layer is non-porous or excessively dense, it will block or hinder the ionic conductivity between the positive and negative electrodes,
Conversely, it causes an increase in the internal resistance of the electric double layer capacitor. From the above viewpoint, the porosity of the highly conductive layer is 40 to 97%,
It is particularly preferably 50 to 93%.

【0022】高導電層を形成する方法は特に限定されな
いが、高導電層は、導電性を有するカーボンブラックや
黒鉛等の炭素質材料や金属等の粉末や微小繊維等を、必
要に応じて界面活性剤や結着剤とともに水や有機溶剤等
の分散媒に分散させ、得られた液体又はスラリーを電極
層となる電極シート又は集電体を接合した電極体の電極
層表面に塗布、噴霧等することにより形成できる。高導
電層が金属を主成分とする場合には溶射や蒸着によって
形成してもよい。
The method of forming the high-conductivity layer is not particularly limited, but the high-conductivity layer may include carbonaceous material having conductivity such as carbon black or graphite, powder of metal or the like, fine fibers, etc., if necessary. Dispersed in a dispersion medium such as water or an organic solvent together with an activator and a binder, and the obtained liquid or slurry is applied, sprayed, or the like on the electrode layer surface of an electrode sheet or an electrode body to which an electrode layer is joined. Can be formed. When the highly conductive layer contains a metal as a main component, it may be formed by thermal spraying or vapor deposition.

【0023】また、導電性を有する炭素質材料や金属の
粉末や微小繊維等を上述の電極シートと同様な方法でバ
インダとともにシート状に成形したもの、カーボンペー
パーのような炭素繊維のシート状成形物、金属箔を用い
たマイクロエキスパンドメッシュ、金属ウールのシート
状成形物等の高導電性シートを高導電層として、負極の
電極層表面に密着させてもよい。この高導電性シートと
電極層となる電極シートは、電極シートを金属集電体に
接合する前にあらかじめプレス成形等により密着、一体
化させておいてもよいし、金属集電体接合後にプレス成
形等により密着、一体化させてもよい。また、電気二重
層キャパシタの素子製造時に負極の電極層の表面に高導
電性シートを積層してもよい。
Further, a carbonaceous material having conductivity, a powder of a metal, a fine fiber or the like is formed into a sheet with a binder in the same manner as the above-described electrode sheet, or a sheet of carbon fiber such as carbon paper is formed. A highly conductive sheet such as a material, a micro-expanded mesh using a metal foil, or a sheet-shaped molded product of metal wool may be used as a highly conductive layer and brought into close contact with the surface of the negative electrode layer. The high-conductivity sheet and the electrode sheet to be the electrode layer may be adhered and integrated by press molding or the like in advance before joining the electrode sheet to the metal current collector, or may be pressed after joining the metal current collector. It may be adhered and integrated by molding or the like. In addition, a highly conductive sheet may be laminated on the surface of the negative electrode layer during the production of the electric double layer capacitor element.

【0024】高導電層は、電気二重層キャパシタの長期
使用による経時的な内部抵抗の上昇の抑制に有効である
が、初期の抵抗や静電容量等の性能は向上させない。し
たがって、高導電層の厚さは高導電層が有効に作用する
限り薄い方がよく、1〜50μmが好ましく、さらに好
ましくは5〜30μmである。1μmより薄いとそれ自
体で高導電性を発現することが困難になる。50μmよ
り厚い場合には導電性の点では問題ないが、その厚さの
分だけ正負極間の距離(電極層どうしの距離)が長くな
るため内部抵抗が上昇するおそれがある。また、高導電
層の存在する分だけ、容量を発現するための高比表面積
の炭素材料(活性炭等)の電気二重層キャパシタセル中
に含まれる量が減少するので、静電容量の低下等の性能
低下が顕著になるおそれがある。
The high-conductivity layer is effective in suppressing an increase in internal resistance over time due to long-term use of the electric double layer capacitor, but does not improve performance such as initial resistance and capacitance. Therefore, the thickness of the high-conductivity layer is preferably as thin as possible so that the high-conductivity layer works effectively, and is preferably 1 to 50 μm, more preferably 5 to 30 μm. If the thickness is less than 1 μm, it becomes difficult to develop high conductivity by itself. When the thickness is more than 50 μm, there is no problem in terms of conductivity, but the distance between the positive and negative electrodes (distance between the electrode layers) becomes longer by that thickness, so that the internal resistance may increase. In addition, since the amount of the carbon material (activated carbon etc.) having a high specific surface area for expressing the capacitance contained in the electric double layer capacitor cell is reduced by the amount of the presence of the high conductive layer, it is possible to reduce the capacitance. There is a possibility that the performance will be significantly reduced.

【0025】本発明の電気二重層キャパシタに用いるセ
パレータは特に限定されず、イオンを通過する多孔質セ
パレータであればよく、微孔性ポリエチレンフィルム、
微孔性ポリプロピレンフィルム、ポリエチレン不織布、
ポリプロピレン不織布、ポリプロピレン不織布、ガラス
繊維混抄不織布、ガラスマットフィルタ、セルロース
紙、クラフトパルプ、サイザル麻やマニラ麻等が好適に
使用できる。セパレータの厚さは20〜200μm、特
に30〜100μmとするのが好ましい。電解液に対す
る吸液性、保液性、内部抵抗の点では、空隙率が高いほ
ど好ましいが、空隙率が高いほどピンホール等の欠陥が
増大し、自己放電不良に繋がるので、通常50〜90%
の範囲が好ましく、さらに好ましくは60〜85%の範
囲である。
The separator used in the electric double layer capacitor of the present invention is not particularly limited as long as it is a porous separator through which ions can pass, and a microporous polyethylene film,
Microporous polypropylene film, polyethylene non-woven fabric,
Polypropylene non-woven fabric, polypropylene non-woven fabric, glass fiber mixed non-woven fabric, glass mat filter, cellulose paper, kraft pulp, sisal hemp, Manila hemp etc. can be preferably used. The thickness of the separator is preferably 20 to 200 μm, particularly preferably 30 to 100 μm. From the viewpoint of liquid absorbability to electrolyte, liquid retention, and internal resistance, higher porosity is more preferable, but higher porosity increases defects such as pinholes and leads to self-discharge failure. %
Is preferable, and more preferably 60 to 85%.

【0026】本発明の電気二重層キャパシタに用いる非
水系電解液の溶質としては、R 又は
(ただし、R、R、R、R
はそれぞれ独立に炭素数1〜6のアルキル基)で表さ
れる第4級オニウムカチオンと、BF 、PF
CFSO 、AsF 、N(SO
、ClO 等のアニオンとからなる塩のい
ずれか1種又は2種以上を混合したものが好ましい。
The non-semiconductor used in the electric double layer capacitor of the present invention
As the solute of the aqueous electrolytic solution, R1R TwoRThreeRFourN+Or
R1RTwoRThreeRFourP+(However, R1, RTwo, RThree, R
FourAre each independently represented by an alkyl group having 1 to 6 carbon atoms).
Quaternary onium cation and BFFour , PF6 ,
CFThreeSOThree , AsF6 , N (SOTwoC
FThree)Two , ClOFour Salt salt consisting of anions such as
It is preferable to use one of them or a mixture of two or more thereof.

【0027】また、非水系電解液に使用される有機溶媒
としては、エチレンカーボネート、プロピレンカーボネ
ート、ブチレンカーボネート等の環状カーボネート、ジ
メチルカーボネート、エチルメチルカーボネート、ジエ
チルカーボネート等の鎖状カーボネート、スルホラン及
びスルホラン誘導体、アセトニトリル、グルタロニトリ
ル等のニトリル類が好ましい。特にプロピレンカーボネ
ート、エチレンカーボネート、ジメチルカーボネート、
ジエチルカーボネート、メチルエチルカーボネート、ス
ルホラン及びメチルスルホランからなる群から選ばれる
1種以上が好ましい。
As the organic solvent used in the non-aqueous electrolyte, cyclic carbonates such as ethylene carbonate, propylene carbonate and butylene carbonate, chain carbonates such as dimethyl carbonate, ethylmethyl carbonate and diethyl carbonate, sulfolane and sulfolane derivatives are used. Nitriles such as acetonitrile, acetonitrile and glutaronitrile are preferred. Especially propylene carbonate, ethylene carbonate, dimethyl carbonate,
At least one selected from the group consisting of diethyl carbonate, methyl ethyl carbonate, sulfolane and methyl sulfolane is preferable.

【0028】本発明の電気二重層キャパシタの構造とし
ては、特に限定されず、コイン型構造、円筒型構造、角
型構造のいずれにおいても好適に適用できる。例えば、
コイン型構造は、円盤状の正極と負極との間にセパレー
タを配置した素子を、電解液とともに金属ケース内に収
容し、金属封口蓋体及び両者を絶縁するガスケットによ
り密封して形成するものである。
The structure of the electric double layer capacitor of the present invention is not particularly limited, and any of a coin type structure, a cylindrical type structure and a square type structure can be suitably applied. For example,
The coin type structure is formed by enclosing an element in which a separator is arranged between a disk-shaped positive electrode and a negative electrode in a metal case together with an electrolytic solution and sealing it with a metal sealing lid and a gasket that insulates both. is there.

【0029】また、円筒型構造については、図1及び図
2を参照しながら説明する。図1は円筒型構造の電気二
重層キャパシタの素子を示す図であり、図2は円筒型構
造の電気二重層キャパシタの素子の一部の断面図であっ
て、正極体1、負極体2の構成と、正極体1と負極体2
とセパレータ6との配置を示している。例えば金属から
なる集電体4の両面に活性炭等を主成分とする電極層3
を形成した帯状の正極体1と、正極体1同様に集電体
4’の両面に電極層3’を形成した電極体の両表面に高
導電層5を形成してなる帯状の負極体2とを、帯状のセ
パレータ6と交互に積層し、巻回してなる巻回素子7を
円筒型の金属ケースに収容し、電解液を含浸させた後、
正極体1及び負極体2より引き出された集電リードを、
例えば電気絶縁性の封口蓋体に設けられた電極端子にそ
れぞれ接続するとともに、該封口蓋体を金属ケースに嵌
合して得られる。
The cylindrical structure will be described with reference to FIGS. 1 and 2. FIG. 1 is a diagram showing an element of an electric double layer capacitor having a cylindrical structure, and FIG. 2 is a partial cross-sectional view of an element of an electric double layer capacitor having a cylindrical structure, showing a positive electrode body 1 and a negative electrode body 2. Configuration, positive electrode body 1 and negative electrode body 2
And the separator 6 are shown. For example, electrode layers 3 containing activated carbon as a main component on both sides of a current collector 4 made of metal.
And a strip-shaped negative electrode body 2 in which a highly conductive layer 5 is formed on both surfaces of an electrode body in which electrode layers 3 ′ are formed on both surfaces of a current collector 4 ′ similarly to the cathode body 1. And the strip-shaped separator 6 are alternately laminated, and the winding element 7 formed by winding is housed in a cylindrical metal case and impregnated with an electrolytic solution.
The current collecting leads drawn from the positive electrode body 1 and the negative electrode body 2 are
For example, it can be obtained by connecting to the electrode terminals provided on the electrically insulating sealing lid and fitting the sealing lid into a metal case.

【0030】なお、図1に示すように、正極体1では最
表面に電極層3が、負極体2では最表面に高導電層5が
配置される。また、図1、2は、集電体4、4’に電極
層を形成しない部分を設け、その部分を集電リードとし
て利用する例である。また、ここで巻回素子7を得る
際、高導電層5としてはシート状のものを用い、巻回す
るときに負極の電極層3’とセパレータ6との間に配置
してもよい。
As shown in FIG. 1, the positive electrode body 1 has the electrode layer 3 on the outermost surface, and the negative electrode body 2 has the highly conductive layer 5 on the outermost surface. In addition, FIGS. 1 and 2 are examples in which the current collectors 4 and 4'are provided with a portion where no electrode layer is formed and the portion is used as a current collecting lead. Further, when the winding element 7 is obtained here, a sheet-like material may be used as the high-conductivity layer 5 and may be arranged between the negative electrode layer 3 ′ and the separator 6 when winding.

【0031】角型構造は、例えば矩形の金属集電体の両
面に電極層が形成され、かつ集電リードを備えている正
極体、及び正極と対向する表面に高導電層を有する以外
は正極体と同じ構成の負極体を、セパレータを介して交
互に積層して集電リードが引き出されている積層素子体
を形成し、角型の金属ケースに収容し、電解液を含浸さ
せ、封口蓋体をケースに嵌合するものである。また、高
導電層をあらかじめシート状に成形し、素子の積層時に
正極体と同じ構成の負極体とセパレータとの間に挟んで
積層して積層素子体を得ることもできる。
The prismatic structure has a positive electrode body in which electrode layers are formed on both sides of a rectangular metal current collector, and a current collector lead is provided, and a highly conductive layer is provided on the surface facing the positive electrode. Negative electrode bodies having the same structure as the body are alternately laminated via separators to form a laminated element body in which current collecting leads are drawn out, housed in a rectangular metal case, impregnated with an electrolytic solution, and a sealing lid. The body is fitted into the case. Alternatively, the high-conductivity layer may be formed into a sheet shape in advance, and the laminated element body may be obtained by laminating the negative electrode body having the same structure as the positive electrode body and the separator when laminating the element.

【0032】[0032]

【実施例】以下、実施例(例1〜3、5〜7)及び比較
例(例4)を用いて本発明を詳しく説明するが、本発明
はこれらに限定されない。
EXAMPLES The present invention will be described in detail below with reference to Examples (Examples 1 to 3, 5 to 7) and Comparative Examples (Example 4), but the present invention is not limited thereto.

【0033】[例1〜5]フェノール樹脂を原料とし水
蒸気賦活された活性炭(比表面積2000m/g)
と、導電材としてのアセチレンブラックと、バインダと
してのポリテトラフルオロエチレンとを質量比で8:
1:1となるように混合し、さらにエチルアルコールを
加えて混練し、シート状にロール成形した。これを加熱
乾燥してエチルアルコールを除去することにより、厚さ
200μmの電極シートを得た。
[Examples 1 to 5] Activated carbon activated with steam from a phenol resin as a raw material (specific surface area 2000 m 2 / g)
And acetylene black as a conductive material and polytetrafluoroethylene as a binder in a mass ratio of 8:
The mixture was mixed at a ratio of 1: 1 and ethyl alcohol was further added and kneaded to form a sheet into a roll. This was heated and dried to remove ethyl alcohol, thereby obtaining an electrode sheet having a thickness of 200 μm.

【0034】次に得られた電極シートを、厚さ50μm
のアルミニウム箔からなる集電体上の片面に、カーボン
を含む導電性接着剤を用いて貼合せ接合し電極体を得
た。この電極体を200℃で24時間真空乾燥処理し、
正極体とした。また、上記電極体に、カーボンブラック
(ケッチェンブラックEC)の水分散液(ライオン社
製、W−311N)を、塗布乾燥後の厚さが表1に示す
とおりとなるように所定量塗布したものを200℃で2
時間乾燥した後、電極の凹凸を平均化するために軽くロ
ールプレス機を通し、さらに200℃で24時間真空乾
燥処理し、これを負極体とした。ここでカーボンブラッ
クを主成分とする層が高導電層に相当する。
Next, the obtained electrode sheet was made to have a thickness of 50 μm.
On one surface of the current collector made of the aluminum foil, was bonded and bonded using a conductive adhesive containing carbon to obtain an electrode body. This electrode body is vacuum dried at 200 ° C. for 24 hours,
It was used as a positive electrode body. Further, a predetermined amount of an aqueous dispersion of carbon black (Ketjen Black EC) (W-311N, manufactured by Lion Corporation) was applied to the above electrode body so that the thickness after coating and drying was as shown in Table 1. 2 at 200 ℃
After drying for a period of time, it was lightly passed through a roll press to even out the irregularities of the electrode, and vacuum dried at 200 ° C. for 24 hours to obtain a negative electrode. Here, the layer containing carbon black as a main component corresponds to the highly conductive layer.

【0035】上記の正極体及び負極体をそれぞれ切り抜
いて有効電極面積4cm×6cmとなるようにし、厚さ
160μmのガラス繊維マット製セパレータを介して電
極層が対面するように正極体と負極体とを対向させて素
子を形成した。その後、260℃で5時間真空乾燥して
不純物を除去した。次いで、1.5mol/Lの(C
(CH)NBFを溶解したプロピレンカー
ボネート溶液を電解液としてこの素子に真空含浸させ
た。この素子をポリプロピレン製容器に収納し、密閉し
て電気二重層キャパシタとした。
Cut out the positive electrode body and the negative electrode body, respectively.
The effective electrode area is 4 cm x 6 cm, and the thickness
It is electrically charged through a 160 μm glass fiber mat separator.
The positive electrode body and the negative electrode body are opposed to each other so that the electrode layers face each other.
Formed a child. Then vacuum dry at 260 ° C for 5 hours
Impurities were removed. Then, 1.5 mol / L of (C Two
H5)Three(CHThree) NBFFourDissolved propylene car
This element was vacuum impregnated with the Bonate solution as an electrolyte.
It was Store this element in a polypropylene container and seal it.
To obtain an electric double layer capacitor.

【0036】この電気二重層キャパシタに70℃で2.
8Vの電圧を200時間印加し、初期の電極体積あたり
の容量と電圧印加試験前後の抵抗変化を測定した。結果
を表1に示す。なお、例4は負極体として正極体と同じ
ものを用いた(高導電層を形成していない)比較例であ
る。
1. This electric double layer capacitor was heated at 70.degree.
A voltage of 8 V was applied for 200 hours, and the initial capacity per electrode volume and the resistance change before and after the voltage application test were measured. The results are shown in Table 1. In addition, Example 4 is a comparative example in which the same negative electrode body as that of the positive electrode body was used (no highly conductive layer was formed).

【0037】また、例1〜5の各負極について、高導電
層が形成された電極シート(例4は電極シートのみ)の
4端子法による直流抵抗を測定し、それぞれの比抵抗を
算出した。また、高導電層を形成する前後の電極シート
の体積と質量から算出した高導電層の空隙率はいずれも
92%であった。結果を表1に示す。
Further, for each of the negative electrodes of Examples 1 to 5, the DC resistance of the electrode sheet having the highly conductive layer formed (Example 4 only electrode sheet) was measured by the 4-terminal method, and the specific resistance of each was calculated. The porosity of the high-conductivity layer calculated from the volume and mass of the electrode sheet before and after forming the high-conductivity layer was 92%. The results are shown in Table 1.

【0038】[0038]

【表1】 [Table 1]

【0039】[例6]例1における正極体と同様の電極
体を、正極体及び負極体に用いた。素子を形成する際
に、負極とセパレータの間に厚さ20μmのアルミニウ
ム製マイクロメッシュ(開口率50%)からなる高導電
層を挟んで積層し、負極は上記電極体と高導電層とから
構成した。上記素子を用いた以外は例1と同様にして電
気二重層キャパシタを作製し、例1と同様の試験を行っ
た。初期内部抵抗は0.35mΩ、電極体積あたりの容
量は55F/ccであり、内部抵抗の上昇率は12%で
あった。
Example 6 The same electrode body as the positive electrode body in Example 1 was used for the positive electrode body and the negative electrode body. When forming an element, a highly conductive layer made of an aluminum micromesh (aperture ratio of 50%) having a thickness of 20 μm is sandwiched between a negative electrode and a separator, and the negative electrode is composed of the electrode body and the highly conductive layer. did. An electric double layer capacitor was produced in the same manner as in Example 1 except that the above element was used, and the same test as in Example 1 was performed. The initial internal resistance was 0.35 mΩ, the capacity per electrode volume was 55 F / cc, and the increase rate of the internal resistance was 12%.

【0040】[例7]アセチレンブラックとバインダとし
てのポリテトラフルオロエチレンとを質量比で9:1と
なるように混合し、さらにエチルアルコールを加えて混
練し、シート状にロール成形することにより厚さ100
μmの導電性シートを得た。これとは別に、フェノール
樹脂を原料とする水蒸気賦活活性炭(比表面積2000
/g)と、導電材としてのアセチレンブラックと、
バインダとしてのポリテトラフルオロエチレンとを8:
1:1の質量比で混合し、さらにエチルアルコールを加
えて混練し、シート状にロール成形して厚さ1mmの活
性炭シートを得た。
[Example 7] Acetylene black and polytetrafluoroethylene as a binder were mixed at a mass ratio of 9: 1, ethyl alcohol was further added and kneaded, and roll-formed into a sheet to obtain a thick film. 100
A conductive sheet of μm was obtained. Separately from this, steam activated carbon made of phenolic resin (specific surface area 2000
m 2 / g) and acetylene black as a conductive material,
Polytetrafluoroethylene as a binder 8:
The mixture was mixed at a mass ratio of 1: 1, ethyl alcohol was further added and kneaded, and the mixture was roll-formed into a sheet to obtain an activated carbon sheet having a thickness of 1 mm.

【0041】上記の導電性シートと活性炭シートを重
ね、ロールプレス機により圧延、接合した後エチルアル
コールを加熱乾燥することにより厚さ220μmの電極
シートを得た。この電極シートにおいて、活性炭を含む
電極層の厚さは約200μm、アセチレンブラックを含
む導電性層が本発明における高導電層にあたり、その厚
さは約20μmであった。さらに得られた電極シート
を、導電性層が表面に出るようにして、厚さ50μmの
アルミニウム集電体の片面に接合した。接合に際して
は、カーボンを含む導電性接着剤を用いた。得られた電
極体を200℃で24時間真空乾燥処理して負極体とし
た。
The above conductive sheet and activated carbon sheet were superposed, rolled by a roll press and bonded, and ethyl alcohol was heated and dried to obtain an electrode sheet having a thickness of 220 μm. In this electrode sheet, the thickness of the electrode layer containing activated carbon was about 200 μm, and the conductive layer containing acetylene black was the highly conductive layer in the present invention, and the thickness was about 20 μm. Further, the obtained electrode sheet was bonded to one surface of an aluminum current collector having a thickness of 50 μm so that the conductive layer was exposed on the surface. At the time of joining, a conductive adhesive containing carbon was used. The obtained electrode body was vacuum dried at 200 ° C. for 24 hours to obtain a negative electrode body.

【0042】正極体には例1と同じものを用いた。この
正極体と負極体とを用いて素子を形成した以外は例1と
同様にして電気二重層キャパシタを作製し、例1と同様
の試験を行った。初期内部抵抗は0.23mΩ、電極体
積あたりの容量は58F/ccであり、内部抵抗の上昇
率は15%であった。なお、上記電極シートにおいて、
導電性層の空隙率は約60%と見積もられた。
The same positive electrode body as in Example 1 was used. An electric double layer capacitor was produced in the same manner as in Example 1 except that an element was formed using this positive electrode body and negative electrode body, and the same test as in Example 1 was performed. The initial internal resistance was 0.23 mΩ, the capacity per electrode volume was 58 F / cc, and the increase rate of the internal resistance was 15%. In the above electrode sheet,
The porosity of the conductive layer was estimated to be about 60%.

【0043】[0043]

【発明の効果】実施例の結果からも明らかなように、本
発明によれば、長期間の使用による内部抵抗変化が小さ
く、長期の使用に対して信頼性が高い電気二重層キャパ
シタが得られる。
As is apparent from the results of the examples, according to the present invention, an electric double layer capacitor having a small change in internal resistance due to long-term use and having high reliability for long-term use can be obtained. .

【図面の簡単な説明】[Brief description of drawings]

【図1】円筒型構造の電気二重層キャパシタの素子を示
す図。
FIG. 1 is a diagram showing an element of an electric double layer capacitor having a cylindrical structure.

【図2】円筒型構造の電気二重層キャパシタの素子の一
部の断面図。
FIG. 2 is a sectional view of a part of an element of an electric double layer capacitor having a cylindrical structure.

【符号の説明】[Explanation of symbols]

1:正極体 2:負極体 3、3’:集電体 4、4’:電極層 5:高導電層 6:セパレータ 7:巻回素子 1: Positive body 2: Negative electrode body 3, 3 ': Current collector 4, 4 ': electrode layer 5: Highly conductive layer 6: Separator 7: winding element

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】比表面積100〜2500m/gの炭素
材料を含む電極層が金属集電体上に形成された正極及び
負極と、前記正極と前記負極との間に配置されるセパレ
ータとにより素子が形成されており、該素子に非水系電
解液が含浸されてなる電気二重層キャパシタにおいて、
前記負極においては、前記電極層より導電性が高くかつ
多孔質の高導電層が前記電極層の表面に形成されていて
前記電極層と前記セパレータとの間に配置されているこ
とを特徴とする電気二重層キャパシタ。
1. A positive electrode and a negative electrode in which an electrode layer containing a carbon material having a specific surface area of 100 to 2500 m 2 / g is formed on a metal current collector, and a separator arranged between the positive electrode and the negative electrode. In an electric double layer capacitor in which an element is formed and the element is impregnated with a non-aqueous electrolyte,
In the negative electrode, a highly conductive and porous highly conductive layer is formed on the surface of the electrode layer and is disposed between the electrode layer and the separator. Electric double layer capacitor.
【請求項2】前記高導電層が前記電極層上に形成される
ことにより、前記電極層自体の4端子法により測定され
る直流抵抗から算出される比抵抗が3〜50%低減する
請求項1に記載の電気二重層キャパシタ。
2. The specific resistance calculated from the direct current resistance of the electrode layer itself measured by the four-terminal method is reduced by 3 to 50% by forming the highly conductive layer on the electrode layer. 1. The electric double layer capacitor described in 1.
【請求項3】前記高導電層は、カーボンブラック又は黒
鉛を主成分とする請求項1又は2に記載の電気二重層キ
ャパシタ。
3. The electric double layer capacitor according to claim 1, wherein the high conductive layer contains carbon black or graphite as a main component.
【請求項4】前記高導電層は、金属を主成分とする請求
項1又は2に記載の電気二重層キャパシタ。
4. The electric double layer capacitor according to claim 1, wherein the high conductive layer contains a metal as a main component.
【請求項5】前記高導電層は厚さが1〜50μmである
請求項1〜4のいずれかに記載の電気二重層キャパシ
タ。
5. The electric double layer capacitor according to claim 1, wherein the highly conductive layer has a thickness of 1 to 50 μm.
【請求項6】前記高導電層は、空隙率が40〜97%の
多孔質層である請求項1〜5のいずれかに記載の電気二
重層キャパシタ。
6. The electric double layer capacitor according to claim 1, wherein the highly conductive layer is a porous layer having a porosity of 40 to 97%.
【請求項7】比表面積100〜2500m/gの炭素
材料を含む電極層が金属集電体上に形成された正極及び
負極との間にセパレータを配置して素子を形成し、該素
子に非水系電解液を含浸させる電気二重層キャパシタの
製造方法において、前記負極の電極層の前記金属集電体
と接しない側の表面に、カーボンブラック、黒鉛及び金
属からなる群から選ばれる1種以上からなる粉末又は微
小繊維が分散媒に分散した分散液を、塗布又は噴霧する
ことにより高導電層を形成することを特徴とする電気二
重層キャパシタの製造方法。
7. A device is formed by disposing a separator between a positive electrode and a negative electrode having an electrode layer containing a carbon material having a specific surface area of 100 to 2500 m 2 / g formed on a metal current collector, and forming an element on the element. In the method for producing an electric double layer capacitor impregnated with a non-aqueous electrolyte, one or more selected from the group consisting of carbon black, graphite and metal on the surface of the electrode layer of the negative electrode that is not in contact with the metal current collector. A method for producing an electric double layer capacitor, characterized in that a highly conductive layer is formed by applying or spraying a dispersion liquid in which the powder or the microfibers is dispersed in a dispersion medium.
【請求項8】比表面積100〜2500m/gの炭素
材料を含む電極層が金属集電体上に形成された正極及び
負極との間にセパレータを配置して素子を形成し、該素
子に非水系電解液を含浸させる電気二重層キャパシタの
製造方法において、カーボンブラック、黒鉛及び金属か
らなる群から選ばれる1種以上からなる粉末又は微小繊
維をバインダとともにシート状に成形した成形体、炭素
繊維のシート状成形物、金属箔からなるマイクロエキス
パンドメッシュ及び金属ウールのシート状成形物からな
る群から選ばれる1種を、前記負極の電極層の前記金属
集電体と接しない側の表面に密着させて高導電層を形成
することを特徴とする電気二重層キャパシタの製造方
法。
8. An element is formed by disposing a separator between a positive electrode and a negative electrode having an electrode layer containing a carbon material having a specific surface area of 100 to 2500 m 2 / g formed on a metal current collector, and forming an element on the element. In the method of manufacturing an electric double layer capacitor impregnated with a non-aqueous electrolyte, a molded product obtained by molding a powder or fine fibers of at least one selected from the group consisting of carbon black, graphite and metals into a sheet with a binder, and carbon fibers. Of the sheet-like molded article, a micro-expanded mesh made of a metal foil, and a sheet-like molded article of a metal wool are adhered to the surface of the negative electrode layer which is not in contact with the metal current collector. A method of manufacturing an electric double layer capacitor, which comprises forming a highly conductive layer.
JP2002112165A 2002-04-15 2002-04-15 Electric double layer capacitor Pending JP2003309045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002112165A JP2003309045A (en) 2002-04-15 2002-04-15 Electric double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002112165A JP2003309045A (en) 2002-04-15 2002-04-15 Electric double layer capacitor

Publications (1)

Publication Number Publication Date
JP2003309045A true JP2003309045A (en) 2003-10-31

Family

ID=29394751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002112165A Pending JP2003309045A (en) 2002-04-15 2002-04-15 Electric double layer capacitor

Country Status (1)

Country Link
JP (1) JP2003309045A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7646587B2 (en) 2005-10-11 2010-01-12 Showa Denko K.K. Electric double layer capacitor
JP2012114396A (en) * 2010-11-25 2012-06-14 Samsung Electro-Mechanics Co Ltd Multilayer electrode and supercapacitor including the electrode
CN103854876A (en) * 2013-12-23 2014-06-11 燕山大学 Preparation method for self-supporting graphene-manganese oxide composite electrode materials

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7646587B2 (en) 2005-10-11 2010-01-12 Showa Denko K.K. Electric double layer capacitor
US8085526B2 (en) 2005-10-11 2011-12-27 Showa Denko K.K. Electric double layer capacitor
EP2665072A2 (en) 2005-10-11 2013-11-20 Showa Denko K.K. Collector for electric double layer capacitor
US9025312B2 (en) 2005-10-11 2015-05-05 Showa Denko K.K. Electric double layer capacitor
JP2012114396A (en) * 2010-11-25 2012-06-14 Samsung Electro-Mechanics Co Ltd Multilayer electrode and supercapacitor including the electrode
CN103854876A (en) * 2013-12-23 2014-06-11 燕山大学 Preparation method for self-supporting graphene-manganese oxide composite electrode materials

Similar Documents

Publication Publication Date Title
US6879482B2 (en) Electric double layer capacitor
JPH097896A (en) Electric double-layer capacitor
US20060171101A1 (en) Electric double layer capacitor
US6710999B2 (en) Electric double layer capacitor
JPH09134726A (en) Collector of electrochemical element, and manufacture of electrochemical element and collector of electrochemical element
JP4374888B2 (en) Electric double layer capacitor
US6830594B2 (en) Process for producing an electric double layer capacitor and positive electrode for an electric double layer capacitor
US7755879B2 (en) Non-aqueous electrolytic solution for electric double layer capacitor and electric double layer capacitor using the same
WO2013146464A1 (en) Electrode material, and capacitor and secondary battery using said electrode material
JP2000106327A (en) Electric double layer capacitor
JP2003309045A (en) Electric double layer capacitor
JPS62200715A (en) Electric double-layer capacitor
JP4765955B2 (en) Method for producing rolled electrode sheet for electric double layer capacitor
JP2003243260A (en) Electric double layer capacitor
JP2013197535A (en) Electrolytic solution and electric double-layer capacitor
JPH0974052A (en) Method for manufacturing polarizable electrode
JP2001110678A (en) Electric double-layer capacitor
JPS6258131B2 (en)
JP3951390B2 (en) Electric double layer capacitor, electrode body for the capacitor, and method for manufacturing the same
JP5565113B2 (en) Electrode using porous aluminum as current collector, and capacitor using the same
JP2014203909A (en) Power storage device
JP2001110679A (en) Electric double-layer capacitor
JP2002222739A (en) Electric double-layer capacitor and electrolyte therefor
JP2007184312A (en) Electrode and electric double layer capacitor
JP2003188053A (en) Electric double-layer capacitor