JP2003302410A - Reagent dispensing device - Google Patents

Reagent dispensing device

Info

Publication number
JP2003302410A
JP2003302410A JP2002105916A JP2002105916A JP2003302410A JP 2003302410 A JP2003302410 A JP 2003302410A JP 2002105916 A JP2002105916 A JP 2002105916A JP 2002105916 A JP2002105916 A JP 2002105916A JP 2003302410 A JP2003302410 A JP 2003302410A
Authority
JP
Japan
Prior art keywords
reagent
syringe
tube
valve
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002105916A
Other languages
Japanese (ja)
Other versions
JP4095819B2 (en
Inventor
Katsuaki Takahashi
克明 高橋
So Yamazaki
創 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Science Systems Ltd
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi Science Systems Ltd
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi Science Systems Ltd, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2002105916A priority Critical patent/JP4095819B2/en
Publication of JP2003302410A publication Critical patent/JP2003302410A/en
Application granted granted Critical
Publication of JP4095819B2 publication Critical patent/JP4095819B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00178Special arrangements of analysers
    • G01N2035/00277Special precautions to avoid contamination (e.g. enclosures, glove- boxes, sealed sample carriers, disposal of contaminated material)

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem such that reagents are mixed in a syringe due to diffusion of the reagent when a plurality of reagents are dispensed using one syringe. <P>SOLUTION: The discharge amount of the reagent is set to be larger than every suction amount thereof, and thereby, a diffusive reagent is pressed back to a discharge nozzle to prevent the diffusive reagent from entering the inside of the syringe. Therefore, a reagent dispensing device which can dispense a plurality of reagents with one syringe is realized. Using the device, a cycle time for dispensing the reagent can be significantly shortened, the consumption amount of pure water decreases, no contamination occurs, and the amount of waste reagent decreases. In addition, when installing into an autoanalyzer, an extremely small reagent dispensing device can be realized. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は血液,尿等の成分を
定量あるいは定性分析する自動分析装置に用いられる試
薬の分注装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reagent dispensing device used in an automatic analyzer for quantitatively or qualitatively analyzing components such as blood and urine.

【0002】[0002]

【従来の技術】自動分析装置は小形から大形装置まで幅
広く利用されている。近年の検体数の増加に伴い、処理
能力の高い装置が望まれ、小形の装置を複数台ならべて
大形の装置を形成する並列方式がとられている。しか
し、並列方式は部品数が必然的に倍増し、コスト,信頼
性の点から得策ではない。自動分析装置のサイクルタイ
ムを可能なかぎり短くし、少ない部品を稼動回数多く稼
動させて処理能力を上げることが得策である。
2. Description of the Related Art Automatic analyzers are widely used from small to large instruments. Along with the increase in the number of specimens in recent years, a device with high processing capability is desired, and a parallel system is adopted in which a plurality of small devices are arranged to form a large device. However, the parallel method inevitably doubles the number of parts, and is not a good idea in terms of cost and reliability. It is a good idea to shorten the cycle time of the automatic analyzer as much as possible and increase the processing capacity by operating a small number of parts many times.

【0003】自動分析装置の複数の試薬分注装置に関し
ては、従来方式を大別すると、ピペッティング方式とデ
ィスペンサ方式に分けられる。
Regarding a plurality of reagent dispensing apparatuses of an automatic analyzer, the conventional methods can be roughly classified into a pipetting method and a dispenser method.

【0004】ピペッティング方式は特開昭62−446
63号公報に示されるようにプローブの先端を試薬に付
け、プローブの先端から試薬を吸引し、次にプローブを
試薬から離し、吐出したい場所に移動して吸引した試薬
を押し出す形でプローブ先端より吐出する方式である。
1本のプローブで多試薬の分注が可能である。この方式
には試薬間のコンタミネーションを防ぐために毎回充分
な洗浄水でプローブ内外を洗浄する必要がある。そのた
め、多量の純水を消費するという欠点がある。さらに、
毎回洗浄動作が入るために、また、プローブを試薬液面
から吐出場所へ往復移動する必要があるために分注のサ
イクルタイムを短くするには限界があり、3秒が限界と
思われる。また、プローブ内での洗浄水と試薬の拡散に
より試薬が薄まってしまうため、極力薄まりを小さくす
るために試薬ダミーを余分に吸っているため試薬が無駄
になっているし、ダミーを吸っても薄まりは20%程度
ありゼロではない。ピペッティング方式を自動分析装置
にくみこんだ場合、機構ユニットや試薬ボトルを平面的
に配置せざるをえず、自動分析装置の設置面積が大きく
なってしまう欠点がある。
A pipetting method is disclosed in Japanese Patent Laid-Open No. 62-446.
As shown in Japanese Patent Laid-Open No. 63-63, the tip of the probe is attached to the reagent, the reagent is sucked from the tip of the probe, then the probe is separated from the reagent, and the probe is moved away from the tip to push out the sucked reagent. It is a method of discharging.
Multiple reagents can be dispensed with one probe. In this method, it is necessary to wash the inside and outside of the probe with sufficient washing water each time to prevent contamination between reagents. Therefore, there is a drawback that a large amount of pure water is consumed. further,
There is a limit to shortening the dispensing cycle time because a washing operation is required every time and the probe needs to be reciprocally moved from the reagent liquid surface to the discharge location, and 3 seconds seems to be the limit. In addition, since the reagent is diluted by the washing water and the diffusion of the reagent in the probe, the reagent dummy is sucked excessively in order to reduce the thinning as much as possible, and the reagent is wasted. The thinning is about 20%, which is not zero. When the pipetting method is incorporated into the automatic analyzer, the mechanical unit and the reagent bottle have to be arranged in a plane, and there is a drawback that the installation area of the automatic analyzer becomes large.

【0005】一方ディスペンサ方式は吸込みチューブを
試薬内に投げ入れシリンジ内に試薬を吸引し吐出ノズル
から吐出する方式である。この方式にはシリンジ内に試
薬を吸引するために試薬がその分無駄になる欠点があ
る。さらに、流路切り換え弁なるものが必要となり、弁
に直接試薬が入り込むために流路詰りの原因となる電磁
弁などは使用できない。多少高価でも機械的切換弁を使
用せざるをえない。弁の材質も摺動材としての耐磨耗性
と耐薬品性の両方が要求され、材質が限定されて高価な
ものになってしまう。このようなディスペンサ流路を試
薬の種類の数だけ用意する必要があり、大変部品数が多
くなりコストも高くなる。シリンジの本数を少しでも少
なくしようという考案が特開昭60−225064号公
報に示されている。しかし、この考案でも多数の切換弁
を必要とするし、多流路切換弁なる非常に複雑なものが
必要となっている。また、機械的摺動により流路を切替
えているため切替え摺動時間を必要とし、サイクルタイ
ムを短くするのは困難である。
On the other hand, the dispenser method is a method in which a suction tube is thrown into a reagent and the reagent is sucked into a syringe and discharged from a discharge nozzle. This method has a drawback that the reagent is wasted by that amount because the reagent is sucked into the syringe. Further, a flow path switching valve is required, and a reagent directly enters the valve, so that a solenoid valve or the like that causes flow path clogging cannot be used. Even if it is a little expensive, there is no choice but to use a mechanical switching valve. The valve material is required to have both abrasion resistance and chemical resistance as a sliding material, and the material is limited, resulting in an expensive material. It is necessary to prepare such dispenser channels as many as the types of reagents, resulting in a large number of parts and a high cost. Japanese Patent Application Laid-Open No. 60-225064 discloses a device for reducing the number of syringes as much as possible. However, this invention also requires a large number of switching valves and a very complicated multi-channel switching valve. Further, since the flow paths are switched by mechanical sliding, switching sliding time is required and it is difficult to shorten the cycle time.

【0006】このような問題を解決するために、特開平
11−23583号公報に開示された技術が知られてい
る。しかし、この発明には、試薬の温度が変化した時、
ボトル内容積が変化し分注量の影響を与えてしまうとい
う欠点がある。試薬温度が上がると試薬容器が膨張して
試薬ノズル先端に自然に空気を吸引してしまうし、試薬
温度が下がると試薬容器が収縮して試薬ノズルから自然
に試薬が滴下してしまうのである。
In order to solve such a problem, the technique disclosed in Japanese Patent Laid-Open No. 11-23583 is known. However, according to the present invention, when the temperature of the reagent changes,
There is a drawback that the volume of the bottle changes and the amount of dispensed material is affected. When the reagent temperature rises, the reagent container expands to naturally suck air into the tip of the reagent nozzle, and when the reagent temperature decreases, the reagent container contracts and the reagent naturally drops from the reagent nozzle.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、前述
の両者の持つ欠点を解消すべく、1本のシリンジで多数
の試薬の分注が可能で、1つの試薬を分注するサイクル
タイムを大幅に短縮でき(1.5 秒以下)、純水の消費
量が少なく、コンタミネーションもなく流路構造が簡単
で安価で信頼性が高く、無駄になる試薬量が少なく、自
動分析装置に組み込んでも装置の設置面積が大きくなら
ない試薬分注装置を提供することにある。1本のシリン
ジで多数の試薬を分注すると、試薬とシリンジ内の水と
の相互拡散によって試薬同士が混ざり合ってしまうとい
う問題が生ずる。
SUMMARY OF THE INVENTION An object of the present invention is to dispense a large number of reagents with a single syringe in order to solve the above-mentioned drawbacks of both, and to provide a cycle time for dispensing a single reagent. Can be significantly shortened (1.5 seconds or less), the consumption of pure water is small, there is no contamination, the flow path structure is simple, inexpensive and highly reliable, and the amount of wasted reagent is small, making it an automatic analyzer. An object of the present invention is to provide a reagent dispensing apparatus which does not increase the installation area of the apparatus even when incorporated. When a large number of reagents are dispensed with one syringe, there is a problem that the reagents are mixed with each other due to mutual diffusion of the reagents and water in the syringe.

【0008】[0008]

【課題を解決するための手段】試薬ボトルに接続された
チェック弁と、吐出ノズルに接続されたもうひとつのチ
ェック弁とをT字管で結び、該T字管の第三の分岐部に
は単数のシリンジが配管と合流管,第三の弁なる電磁弁
を介して接続する。該合流管には分注したい数だけの試
薬流路が接続されており、単数のシリンジで複数の試薬
を試薬吐出ノズルより吐出する分注装置の構造とし、シ
リンジで試薬ボトルから吸引した試薬吸入量よりシリン
ジで吐いた吐出量のほうが多いようにした。こうするこ
とによって、常にシリンジからノズル側に拡散試薬が押
し戻されるため拡散によって試薬同士が混ざり合うこと
はなくなる。ただし、水で薄められた試薬が分注される
ことになるが2%程度に押さえることが可能なので問題
ない。
A check valve connected to a reagent bottle and another check valve connected to a discharge nozzle are connected by a T-shaped tube, and a third branch portion of the T-shaped tube is connected to the check valve. A single syringe is connected to the pipe through a confluence pipe and a third solenoid valve. As many reagent channels as desired to be dispensed are connected to the confluent tube, and a structure of a dispensing device that discharges a plurality of reagents from a reagent discharge nozzle with a single syringe is provided, and reagent suction is performed by aspirating the reagent bottle with the syringe The amount discharged by the syringe was set to be larger than the amount discharged. By doing so, the diffusion reagent is always pushed back from the syringe to the nozzle side, so that the reagents are not mixed by diffusion. However, although the reagent diluted with water is dispensed, there is no problem because it can be suppressed to about 2%.

【0009】また、他の解決手段として、T字管の内部
に薄いフィルム状の仕切り膜を設けて、試薬の拡散を防
止する方法とした。フィルム内の容積は吸引吐出によっ
てしぼんだり拡張したりする。
As another solution, a thin film partition film is provided inside the T-tube to prevent the diffusion of the reagent. The volume in the film shrinks or expands by suction and discharge.

【0010】さらに、他の解決手段として、T字管と第
3の弁(電磁弁)との間のチューブに中に非混和性液体
を挿入するようにした。また、このチューブの形状を逆
さU字管にし、さらに非混和性液体の比重を水や試薬よ
り軽くするようにする。そうすると、非混和性液体は常
に逆さU字管部に存在するようになる。こうすることに
よって、試薬の拡散は非混和性液体によって阻止され、
拡散試薬がシリンジ内への流入によって試薬同士が混ざ
り合うということはなくなる。
As another solution, an immiscible liquid is inserted into the tube between the T-tube and the third valve (electromagnetic valve). The shape of this tube is an inverted U-shaped tube, and the specific gravity of the immiscible liquid is made lighter than that of water or the reagent. Then the immiscible liquid will always be present in the inverted U-tube section. By doing this, the diffusion of the reagent is blocked by the immiscible liquid,
When the diffusion reagent flows into the syringe, the reagents are not mixed with each other.

【0011】試薬ボトル,試薬流路,試薬吐出ノズルを
保冷庫の中に納めるようにしていつでも新鮮な試薬が分
注できるようにした。保冷庫は冷却されているためその
周りは断熱材で覆う必要が生ずる。その断熱材に小さい
穴をあけて、ノズル及び試薬ボトルを上下させるように
し、ノズル先端が保冷庫の断熱材の外へ顔を見せるよう
にした。
The reagent bottle, the reagent flow path, and the reagent discharge nozzle are housed in a cool box so that a fresh reagent can be dispensed at any time. Since the cool box is cooled, it is necessary to cover the surroundings with a heat insulating material. A small hole was made in the heat insulating material so that the nozzle and the reagent bottle were moved up and down, and the tip of the nozzle was exposed to the outside of the heat insulating material in the cool box.

【0012】試薬部は吐出ノズル先端まで完全に保冷可
能なので、試薬プライムはボトルを交換した場合だけで
良く、また、毎サイクル捨てる試薬ダミーも必要ないの
で無駄になる試薬が少ない。
Since the reagent portion can be completely kept cool up to the tip of the discharge nozzle, the reagent prime need only be used when the bottle is replaced, and a reagent dummy to be discarded every cycle is not necessary, so that a small amount of reagent is wasted.

【0013】流路切替には応答の速い電磁弁を用いてい
るので分注サイクルタイムの短縮化が図れる。電磁弁に
は水しか流入しない流路構造なので、試薬結晶による電
磁弁動作不良は発生することはなく信頼性が確保でき
る。
Since a solenoid valve having a fast response is used for switching the flow path, the dispensing cycle time can be shortened. Since the flow channel structure allows only water to flow into the solenoid valve, the solenoid valve does not malfunction due to the reagent crystal, and reliability can be secured.

【0014】試薬流路は完全に独立しているので、試薬
のクロスコンタミネーションを防止できる。
Since the reagent flow paths are completely independent, it is possible to prevent cross contamination of the reagents.

【0015】[0015]

【発明の実施の形態】本発明の実施例を図面を用いて説
明する。
Embodiments of the present invention will be described with reference to the drawings.

【0016】図1に本発明の請求項1に対応した実施例
を示す。まず、その流路構成を説明する。試薬ボトル1
にはゴム製のピアスブッシュが付けられており、それに
針状の吸引口4が挿入される。吸引側チェック弁ボール
5がバネ7で押し付けられ、口を封鎖しているためボト
ル内の試薬2は滴下することはない。T字管6部を経て
吐出側チェック弁ボール8を介して試薬ノズル10につ
ながる。T字管6部には連結チューブ12を接続、電磁
弁13を介して合流管14に接続されている。合流管に
は分注したい数だけの電磁弁13及びその先の流路(チ
ェック弁/ボトルなど)が接続されている。合流管に
は、1本のシリンジ15が接続されている。合流管14
の一端を電磁弁20を介してダミーノズル21に接続す
る。シリンジには電磁弁17を介して送水ポンプ18と
タンク19が接続されている。
FIG. 1 shows an embodiment corresponding to claim 1 of the present invention. First, the flow path configuration will be described. Reagent bottle 1
A rubber-made piercing bush is attached to this, and the needle-shaped suction port 4 is inserted therein. Since the suction side check valve ball 5 is pressed by the spring 7 to close the mouth, the reagent 2 in the bottle does not drip. It is connected to the reagent nozzle 10 through the T-tube 6 and the discharge side check valve ball 8. A connecting tube 12 is connected to the T-shaped tube 6 and is connected to a confluent tube 14 via an electromagnetic valve 13. The number of solenoid valves 13 to be dispensed and the passages (check valves / bottles, etc.) beyond that are connected to the confluence pipe. One syringe 15 is connected to the confluence pipe. Confluence pipe 14
Is connected to the dummy nozzle 21 via the solenoid valve 20. A water feed pump 18 and a tank 19 are connected to the syringe via an electromagnetic valve 17.

【0017】次に動作を説明する。Next, the operation will be described.

【0018】まず、電磁弁17と電磁弁20を開きなが
ら、シリンジのプランジャ16を10μl分下げる。そ
うするとタンクの水が送水ポンプによって送られダミー
ノズル21より吐出される。シリンジの吸引速度よりポ
ンプの送水速度が勝っているので水がダミーノズルより
吐出される。結果的にシリンジ内に水10μlが吸引さ
れたことになる。次に、分注したい試薬に対応する電磁
弁13を開く。
First, the plunger 16 of the syringe is lowered by 10 μl while the solenoid valves 17 and 20 are opened. Then, the water in the tank is sent by the water pump and discharged from the dummy nozzle 21. Since the water supply speed of the pump is higher than the suction speed of the syringe, water is discharged from the dummy nozzle. As a result, 10 μl of water was sucked into the syringe. Next, the solenoid valve 13 corresponding to the reagent to be dispensed is opened.

【0019】シリンジのプランジャ16を90μl分下
降させる。そうすると、吸引側チェック弁ボール5が動
いてT字管6部および連結チューブ12内に試薬が吸引
される。プランジャの動きが止まると吸引側チェック弁
ボール5は流路を閉じる。
The plunger 16 of the syringe is lowered by 90 μl. Then, the suction side check valve ball 5 moves and the reagent is sucked into the T-shaped tube 6 and the connecting tube 12. When the movement of the plunger stops, the suction side check valve ball 5 closes the flow path.

【0020】次にプランジャ16を100μl分上昇さ
せる。そうすると、ノズル側チェック弁ボール8が動い
て試薬ノズルから試薬が吐出される。この場合90μl
の原液試薬と10μlの水の混ざったものが吐出され
る。したがって約10%程度薄まった試薬が吐出される
ことになる。しかし、いつも同じ割合で薄まっているこ
とと、試薬には十分な活性量の試薬が含まれているから
分析性能上問題は無い。連結チューブ12内の試薬拡散
状況を図2/図3に示した。試薬を吸引した直後の状態
が図2である。原液試薬22と水24との間に拡散領域
23が存在する。普通ここで示した10μlの余分希釈
押し戻しが無かったら、何回も吸引吐出を繰返すと試薬
は連結チューブ12内で水と拡散し、電磁弁13を通り
越して合流管14まで流入することになる。
Next, the plunger 16 is raised by 100 μl. Then, the nozzle check valve ball 8 moves and the reagent is discharged from the reagent nozzle. 90 μl in this case
A mixture of the undiluted solution reagent and 10 μl of water is discharged. Therefore, the reagent diluted by about 10% is discharged. However, there is no problem in analytical performance because the reagent is always diluted in the same proportion and the reagent contains a sufficient active amount of the reagent. The state of diffusion of the reagent in the connecting tube 12 is shown in FIGS. The state immediately after the reagent is sucked is shown in FIG. A diffusion region 23 exists between the stock solution reagent 22 and the water 24. Normally, if there is no 10 μl extra dilution push-back shown here, the reagent will diffuse with water in the connecting tube 12 and pass through the solenoid valve 13 and flow into the confluent pipe 14 when suction and discharge are repeated many times.

【0021】そうなったら吐出すべき試薬に、違う試薬
がわずかに混入することになる。これは試薬の相互汚染
と同じ状態となってしまい大きな問題となる。
If this happens, a different reagent will slightly mix with the reagent to be discharged. This is the same as the cross-contamination of reagents, which is a big problem.

【0022】これを防止するために、本発明では、吸引
量と吐出量をわずかに変えて分注しており、毎回10μ
l分の水押し戻しを行っていることになる。拡散領域2
3は一回の分注に付き約2μlである。吐出時に10μ
l余分に吐くのでいつも拡散領域を8μl押し戻してい
ることになる。十分な裕度を持っていることになる。吐
出後の状態を図3に示す。水の領域25がT字管内部に
入り込んでいることがわかる。本実施例では拡散量を2
μlと規定したが、分注量によって異なったり、チュー
ブ径によって異なったりするのでこれらをパラメータと
した変数にしておくのが良い。
In order to prevent this, in the present invention, the amount of suction and the amount of discharge are slightly changed to dispense, and 10 μm each time.
It means that 1 minute of water is pushed back. Diffusion area 2
3 is about 2 μl per dispense. 10μ at discharge
l Because it spits extra, it means that 8 μl of diffusion area is always pushed back. You have a sufficient margin. The state after ejection is shown in FIG. It can be seen that the water region 25 has entered the inside of the T-tube. In this embodiment, the diffusion amount is 2
Although it was defined as μl, it may be different depending on the dispensed amount or the tube diameter, so it is preferable to use these as parameters.

【0023】図4に別の方法で拡散防止を図った例を示
す。T字管内部にフィルム状の仕切り膜26を装着す
る。この仕切り膜は試薬吸引状態では実線のようにふく
らんでおり吐出後の状態では点線のように萎んでいる。
吸引量と吐出量は全く同じにはできないので(同じにし
ようとしても一回に0.5μl 程度のわずかな誤差が必
ず生ずる)、分注を繰返していくとこのフィルムがどん
どん膨らんでいったり、どんどん萎んでいったりする。
そのためにあるところでそれ以上膨張したり縮んだりし
ないようにストッパが必要である。膨らむ方のストッパ
はT字管の内壁で代用できる。縮む方のストッパはフィ
ルムの内側に多数の小さい穴の開いた細い筒を入れれば
よい。
FIG. 4 shows an example in which diffusion is prevented by another method. A film-shaped partition film 26 is mounted inside the T-tube. This partition film swells as shown by the solid line in the reagent suction state, and shrinks as shown by the dotted line in the state after discharging.
The amount of suction and the amount of discharge cannot be exactly the same (even if you try to make them the same, a slight error of about 0.5 μl will always occur at one time), so if you repeat dispensing, this film will swell more and more, It steadily shrinks.
For that reason, a stopper is necessary so that it does not expand or contract further in a certain place. The bulging stopper can be replaced by the inner wall of the T-shaped tube. The shrinking stopper may be a thin cylinder having many small holes inside the film.

【0024】図5に別の方法で拡散防止を図った例を示
す。T字管6と電磁弁13の間の連結チューブ12を逆
さU字管29のようにし、U字管の内部に非混和性液体
28を入れる。ここで言う非混和性液体とは、試薬とも
混ざらないし水とも混ざらない液体を言う。この非混和
性液体の比重は水や試薬より軽くしておく(油などが最
適)。そうすると必ずU字管上部に非混和性液体が滞在
することになる。非混和性液体までは試薬が拡散してく
るが非混和性液体のところで拡散はストップする。
FIG. 5 shows an example in which diffusion is prevented by another method. The connecting tube 12 between the T-tube 6 and the solenoid valve 13 is made like an inverted U-tube 29, and the immiscible liquid 28 is put inside the U-tube. The immiscible liquid mentioned here means a liquid that is neither mixed with a reagent nor mixed with water. The specific gravity of this immiscible liquid should be lighter than that of water or reagents (oil is the best choice). Then, the immiscible liquid always stays in the upper part of the U-shaped tube. The reagent diffuses to the immiscible liquid, but the diffusion stops at the immiscible liquid.

【0025】図6に本発明を実際の装置に実装した時を
示す。試薬ボトル/T字管チェック弁/試薬ノズル類は
多数サークル状をなして保冷庫30の内部に配置する。
チェック弁を用いているので、分注装置が非常に小形に
できるので、保冷庫も小形になる。保冷庫の底には小さ
な穴31が開けられており、そこに分注したいチャンネ
ルの試薬ボトル/T字管チェック弁/試薬ノズル類を回
転移動させる。チェック弁を用いているので、分注装置
が非常に小形にできているので、回転移動が容易であ
る。その後分注したいチャンネルのみを下降させて穴3
1より試薬ノズル先端が顔を出すようにして反応容器に
接近して分注できるようにした。ノズル先端を反応容器
に近づけて吐出しないと反応容器の壁に試薬が液滴とし
て付着したりして測定に誤差が生ずるからである。
FIG. 6 shows a case where the present invention is mounted on an actual device. A large number of reagent bottles / T-shaped tube check valves / reagent nozzles form a circle and are arranged inside the cool box 30.
Since a check valve is used, the dispenser can be made extremely small, and the cold storage can also be made small. A small hole 31 is formed in the bottom of the cool box, and the reagent bottle / T-shaped tube check valve / reagent nozzles of the channel to be dispensed are rotationally moved therein. Since the check valve is used, the dispensing device can be made very small, so that it can be easily rotated and moved. After that, lower only the channels you want to dispense and make holes 3
From No. 1, the tip of the reagent nozzle was exposed so that it could approach the reaction container and dispense. This is because if the tip of the nozzle is not brought close to the reaction container and is discharged, the reagent adheres to the wall of the reaction container as a droplet and an error occurs in the measurement.

【0026】このように分注系を保冷庫の中に格納する
ことによってノズル先端まで新鮮な試薬状態が維持でき
る。そうすると毎朝の試薬プライムが必要無いため、即
分注分析が開始できる。試薬プライムが必要なのは、ボ
トルが空になって新しい試薬ボトルに交換した時だけで
ある。したがって試薬の無駄を大幅に低減できる。この
ようなノズルと試薬ボトルが上下する方式というのは、
本実施例に記載したような分注流路がチェック弁方式で
なくてもよい。たとえば、ボトルの底にシリコンチップ
上に構成されたマイクロポンプを貼付け、マイクロポン
プには吐出ノズルが取り付けられてボトルとノズルが上
下するようにした場合でも本発明請求項5に含まれる。
電磁弁13を使った例を示したが、電磁弁の代わりにマ
イクロファブリケーション技術を利用してシリコンチッ
プ内に構成されたマイクロ弁を使用した場合でも本発明
に含まれる。
By thus storing the dispensing system in the cool box, a fresh reagent state can be maintained up to the nozzle tip. Then, since no reagent priming is required every morning, immediate dispensing analysis can be started. Reagent primes are needed only when the bottle is empty and replaced with a new reagent bottle. Therefore, the waste of the reagent can be significantly reduced. The method of moving the nozzle and reagent bottle up and down is
The dispensing channel as described in the present embodiment does not have to be the check valve system. For example, even when a micro pump configured on a silicon chip is attached to the bottom of a bottle, and a discharge nozzle is attached to the micro pump so that the bottle and the nozzle move up and down, the present invention is included in claim 5.
Although the example using the solenoid valve 13 is shown, the present invention also includes a case where a microvalve configured in a silicon chip by using a microfabrication technique is used instead of the solenoid valve.

【0027】ノズル/ボトルの回転上下移動中に試薬の
吸引動作が可能なので、分注サイクルタイムが短縮でき
る。
Since the reagent can be sucked while the nozzle / bottle is rotating and moving up and down, the dispensing cycle time can be shortened.

【0028】試薬ピペッティング方式のように多量の水
でプローブを洗浄する必要がないので純水の使用量が少
なくてすむ。試薬コンタミネーションは皆無である。
Since it is not necessary to wash the probe with a large amount of water as in the reagent pipetting method, the amount of pure water used can be small. There is no reagent contamination.

【0029】図6に示されたように反応ラインの上に試
薬を立体的に配置できるので、装置の設置面積が極端に
小さくできる。
Since the reagents can be three-dimensionally arranged on the reaction line as shown in FIG. 6, the installation area of the device can be extremely reduced.

【0030】[0030]

【発明の効果】本発明によれば、1本のシリンジで多数
の試薬の分注が可能で、1つの試薬を分注するサイクル
タイムを大幅に短縮でき、純水の消費量が極端に少な
く、試薬コンタミネーションも皆無で、流路構造が簡単
で安価で信頼性が高く、無駄になる試薬量が少なく、自
動分析装置に組み込んでも装置の設置面積が極端に小さ
くできる試薬分注装置が実現できる。
According to the present invention, a large number of reagents can be dispensed with a single syringe, the cycle time for dispensing a single reagent can be significantly shortened, and the consumption of pure water is extremely small. Realizing a reagent dispenser that has no reagent contamination, has a simple flow path structure, is inexpensive, has high reliability, wastes a small amount of reagent, and can be installed in an automatic analyzer with an extremely small installation area. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の流路説明図。FIG. 1 is an explanatory view of a flow channel of the present invention.

【図2】試薬吸引後のT字管内部の試薬拡散状態を示し
た図。
FIG. 2 is a diagram showing a reagent diffusion state inside a T-shaped tube after aspiration of a reagent.

【図3】試薬吐出後のT字管内部の試薬拡散状態を示し
た図。
FIG. 3 is a diagram showing a reagent diffusion state inside a T-shaped tube after a reagent is discharged.

【図4】試薬拡散防止としてフィルムを用いた実施例。FIG. 4 is an example in which a film is used to prevent reagent diffusion.

【図5】試薬拡散防止として非混和性液体を用いた実施
例。
FIG. 5: Example using immiscible liquid as a reagent diffusion prevention.

【図6】本発明を自動分析装置に適用した例。FIG. 6 shows an example in which the present invention is applied to an automatic analyzer.

【符号の説明】[Explanation of symbols]

1…試薬ボトル、6…T字管、10…試薬ノズル、12
…連結チューブ、13…電磁弁、14…合流管、15…
シリンジ、23…拡散領域、26…仕切り膜、30…保
冷庫。
1 ... Reagent bottle, 6 ... T-tube, 10 ... Reagent nozzle, 12
... Connection tube, 13 ... Solenoid valve, 14 ... Confluence pipe, 15 ...
Syringe, 23 ... Diffusion area, 26 ... Partition film, 30 ... Cooling box.

フロントページの続き (72)発明者 山崎 創 茨城県ひたちなか市大字市毛882番地 株 式会社日立ハイテクノロジーズ設計・製造 統括本部那珂事業所内 Fターム(参考) 2G052 AD26 CA03 CA20 CA29 CA30 CA32 CA35 EB13 JA01 JA07 JA08 2G058 BB02 BB07 BB12 CD04 CE08 CE10 CF02 EA05 EA14 EB02 EB08 EC03 EC11 ED03 ED07 ED10 ED20 ED31 Continued front page    (72) Inventor Hajime Yamazaki             882 Ichige, Ichima, Hitachinaka City, Ibaraki Prefecture             Ceremony company Hitachi High Technologies Design and manufacturing             Headquarters Naka Operations F term (reference) 2G052 AD26 CA03 CA20 CA29 CA30                       CA32 CA35 EB13 JA01 JA07                       JA08                 2G058 BB02 BB07 BB12 CD04 CE08                       CE10 CF02 EA05 EA14 EB02                       EB08 EC03 EC11 ED03 ED07                       ED10 ED20 ED31

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】シリンジと、 該シリンジに水を供給する水供給装置と、 該シリンジに接続された複数の配管と、 該複数の配管と弁を介してT字管の第1の出口が接続さ
れ、 該T字管の第2の出口には弁を介して試薬を収容する試
薬ボトルが接続され、 該T字管の第3の出口には弁を介して試薬吐出ノズルが
接続され、 かつ前記複数の配管の少なくとも1つは前記T字管が接
続されていない、構成を備えたことを特徴とする試薬分
注装置。
1. A syringe, a water supply device for supplying water to the syringe, a plurality of pipes connected to the syringe, and a first outlet of a T-shaped pipe connected to the plurality of pipes and a valve. A reagent bottle containing a reagent is connected to the second outlet of the T-tube via a valve, and a reagent discharge nozzle is connected to the third outlet of the T-tube via a valve; A reagent dispensing apparatus having a configuration in which at least one of the plurality of pipes is not connected to the T-shaped pipe.
【請求項2】請求項1記載の試薬分注装置において、 前記試薬ボトルから前記T字管を介して吸引した試薬量
に比べ、前記試薬吐出ノズルから吐出される液体の量が
多くなるように制御する機構を備えたことを特徴とする
試薬分注装置。
2. The reagent dispensing apparatus according to claim 1, wherein the amount of liquid discharged from the reagent discharge nozzle is larger than the amount of reagent sucked from the reagent bottle through the T-shaped tube. A reagent dispensing apparatus having a control mechanism.
【請求項3】請求項1記載の試薬分注装置において、 前記シリンジに供給された水と、前記試薬ボトルから前
記T字管に供給された試薬が混じらないような機構を備
えたことを特徴とする試薬分注装置。
3. The reagent dispensing apparatus according to claim 1, further comprising a mechanism for preventing the water supplied to the syringe from mixing with the reagent supplied from the reagent bottle to the T-shaped tube. And a reagent dispensing device.
【請求項4】単数のシリンジで複数の試薬を各々異なる
試薬吐出ノズルより吐出する分注装置において、 試薬ボトルに接続されたチェック弁と、吐出ノズルに接
続されたもうひとつのチェック弁とをT字管で結び、該
T字管の第三の分岐部には単数のシリンジが配管と分岐
管,第三の弁なる電磁弁を介して接続され、該分岐管に
は分注したい数だけの試薬流路が接続されており、シリ
ンジでの試薬吸入量より吐出量のほうが多いことを特徴
とする分注装置。
4. In a dispensing apparatus for discharging a plurality of reagents from different reagent discharge nozzles by a single syringe, a check valve connected to a reagent bottle and another check valve connected to the discharge nozzle are A single syringe is connected to the third branch portion of the T-shaped tube through a pipe, a branch tube, and a solenoid valve that is a third valve, and the branch tube is connected to the third branch section by the number of pipes to be dispensed. A dispenser, which is connected to a reagent flow path and has a larger discharge amount than a reagent suction amount by a syringe.
【請求項5】単数のシリンジで複数の試薬を試薬吐出ノ
ズルより吐出する分注装置で、試薬ボトルに接続された
チェック弁と、吐出ノズルに接続されたもうひとつのチ
ェック弁とをT字管で結び、該T字管の第三の分岐部に
は単数のシリンジが配管と分岐管,第三の弁なる電磁弁
を介して接続され、該分岐管には分注したい数だけの試
薬流路が接続されている分注装置において、該T字管の
中あるいはその近傍の流路内に薄い膜状の仕切り管膜が
存在し、該仕切り管膜によって、試薬流路とシリンジ内
液体とが隔離されている構造を備えたことを特徴とする
分注装置。
5. A dispensing device for discharging a plurality of reagents from a reagent discharge nozzle with a single syringe, and a T-shaped tube having a check valve connected to a reagent bottle and another check valve connected to the discharge nozzle. And a single syringe is connected to the third branch portion of the T-shaped pipe through a pipe, a branch pipe, and a solenoid valve that is a third valve, and the branch pipe is provided with the reagent flow of the desired number. In a pipetting device having a passage connected thereto, a thin film-shaped partition tube membrane exists in the flow path in or near the T-shaped tube, and the partition tube film allows the reagent flow path and the liquid in the syringe to be separated. Dispensing device having a structure in which is isolated.
【請求項6】請求項5の分注装置において、仕切り管膜
が最大に拡張されるまでの間に、膜が伸びて破裂しない
ようにした構造、あるいは仕切り管膜が最小に縮小され
るまでの間に膜が伸びて破裂するのを防止する構造を備
えたことを特徴とする分注装置。
6. The dispensing device according to claim 5, wherein the partition tube membrane has a structure in which it does not expand and burst before the partition tube membrane is expanded to the maximum, or the partition tube membrane is contracted to the minimum. A dispensing device having a structure for preventing a film from extending and bursting between the two.
【請求項7】単数のシリンジで複数の試薬を試薬吐出ノ
ズルより吐出する分注装置で、試薬ボトルに接続された
チェック弁と、吐出ノズルに接続されたもうひとつのチ
ェック弁とをT字管で結び、該T字管の第三の分岐部に
は単数のシリンジが配管と分岐管,第三の弁なる電磁弁
を介して接続され、該分岐管には分注したい数だけの試
薬流路が接続されている分注装置において、該T字管と
分岐管の間に試薬や水とに混ざり合わない非混和性液体
が存在することを特徴とする分注装置。
7. A pipetting device for discharging a plurality of reagents from a reagent discharge nozzle with a single syringe, a T-shaped tube comprising a check valve connected to a reagent bottle and another check valve connected to the discharge nozzle. And a single syringe is connected to the third branch portion of the T-shaped pipe through a pipe, a branch pipe, and a solenoid valve that is a third valve, and the branch pipe is provided with the reagent flow of the desired number. In the pipetting device in which a passage is connected, an immiscible liquid immiscible with a reagent or water is present between the T-shaped pipe and the branch pipe.
【請求項8】上記請求項4〜7のいずれかに記載の分注
装置において、試薬ボトル,弁,T字管,試薬ノズルが
試薬庫の中に入れられており、該試薬庫内にて試薬ノズ
ルが上下する構造を備えたことを特徴とする分注装置。
8. The dispensing apparatus according to any one of claims 4 to 7, wherein a reagent bottle, a valve, a T-shaped tube, and a reagent nozzle are placed in a reagent container, and the reagent container is placed in the reagent container. A dispenser having a structure in which a reagent nozzle moves up and down.
JP2002105916A 2002-04-09 2002-04-09 Reagent dispensing device Expired - Fee Related JP4095819B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002105916A JP4095819B2 (en) 2002-04-09 2002-04-09 Reagent dispensing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002105916A JP4095819B2 (en) 2002-04-09 2002-04-09 Reagent dispensing device

Publications (2)

Publication Number Publication Date
JP2003302410A true JP2003302410A (en) 2003-10-24
JP4095819B2 JP4095819B2 (en) 2008-06-04

Family

ID=29390386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002105916A Expired - Fee Related JP4095819B2 (en) 2002-04-09 2002-04-09 Reagent dispensing device

Country Status (1)

Country Link
JP (1) JP4095819B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006090854A (en) * 2004-09-24 2006-04-06 Institute Of Physical & Chemical Research Dispensing device for chemical or the like
JP2006189259A (en) * 2004-12-28 2006-07-20 Aloka Co Ltd Method and apparatus for detecting state of piping
JP2016015922A (en) * 2014-07-09 2016-02-01 株式会社日立ハイテクノロジーズ Nucleic acid analyzer
CN113049764A (en) * 2021-03-09 2021-06-29 王书英 Water quality detection table for multi-sample detection

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006090854A (en) * 2004-09-24 2006-04-06 Institute Of Physical & Chemical Research Dispensing device for chemical or the like
JP2006189259A (en) * 2004-12-28 2006-07-20 Aloka Co Ltd Method and apparatus for detecting state of piping
JP2016015922A (en) * 2014-07-09 2016-02-01 株式会社日立ハイテクノロジーズ Nucleic acid analyzer
CN113049764A (en) * 2021-03-09 2021-06-29 王书英 Water quality detection table for multi-sample detection
CN113049764B (en) * 2021-03-09 2023-05-23 王书英 Water quality detection table for multi-sample detection

Also Published As

Publication number Publication date
JP4095819B2 (en) 2008-06-04

Similar Documents

Publication Publication Date Title
JP5213269B2 (en) Device for aspirating and dispensing liquids in automated analyzers
US7378058B2 (en) Method and apparatus for modifying pressure within a fluid dispenser
CA2392943A1 (en) Chemistry system for a clinical analyzer
US6537505B1 (en) Reagent dispensing valve
EP2662671B1 (en) Cartridge for dispensing a fluid
US7727472B2 (en) Chemical analysis apparatus and chemical analysis cartridge
US8114351B2 (en) Analysis system and method for the analysis of a body fluid sample for an analyte contained therein
US7459128B2 (en) Microfluidic mixing and dispensing
EP1464398A2 (en) Chemical analyzer and structure for chemical analysis
US7820109B2 (en) Testing chip and micro analysis system
EP1645882A1 (en) Chemical analyzer and a structure to be used in the analyzer
JPH0437952B2 (en)
JP2010526293A5 (en)
WO2020261659A1 (en) Automated analyzer
JP2011033426A (en) Automatic analyzer and method of controlling the same
JP2003302410A (en) Reagent dispensing device
JP3418329B2 (en) Sample dispensing method and automatic analyzer
EP1335853B1 (en) Sample dispensing with liquid delivery without crossover
JP2006343164A (en) Autoanalyzer
EP4012419A1 (en) Liquid dispensing device
JP7052435B6 (en) Dilution / Dispensing Nozzle Cleaning Container, Dispensing / Diluting System, and Automatic Analyzer
US20110274585A1 (en) Mixing cartridge and sample testing device
JP2006317365A (en) Chemical analyzer
CN111500425A (en) Fluid control and processing cartridge
JPH11174062A (en) Chemical analyzer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050408

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060515

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080310

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4095819

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees