JP2003302265A - Pulse doppler type ultrasonic flowmeter - Google Patents

Pulse doppler type ultrasonic flowmeter

Info

Publication number
JP2003302265A
JP2003302265A JP2002105109A JP2002105109A JP2003302265A JP 2003302265 A JP2003302265 A JP 2003302265A JP 2002105109 A JP2002105109 A JP 2002105109A JP 2002105109 A JP2002105109 A JP 2002105109A JP 2003302265 A JP2003302265 A JP 2003302265A
Authority
JP
Japan
Prior art keywords
ultrasonic
ultrasonic wave
pulse doppler
receiving means
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002105109A
Other languages
Japanese (ja)
Inventor
Tomoyoshi Okamura
共由 岡村
Yorimitsu Kuwabara
頼光 桑原
Shigeyoshi Ono
滋義 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industries Co Ltd filed Critical Hitachi Industries Co Ltd
Priority to JP2002105109A priority Critical patent/JP2003302265A/en
Publication of JP2003302265A publication Critical patent/JP2003302265A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pulse doppler type ultrasonic flowmeter easily installable also in existing fluid machinery. <P>SOLUTION: In this pulse doppler type ultrasonic flowmeter, the flow of fluid discharged from fluid machinery such as a drain pump 1 is measured by ultrasonic wave. An ultrasonic transmitting/receiving means 10 transmitting and receiving ultrasonic wave to and from the measured fluid is installed on a prefabricated pipe body 3, and the pipe body 3 is connected between the delivery side of the fluid machinery and the drain pipe 8 through a joint means 6 lengthwise adjustable in the axial direction of the pipe body 3. Since the installation of the ultrasonic transmitting/receiving means 10 is allowed by merely adjusting the length of the joint means 6 according to a distance between the discharge side of the fluid machinery and the drain pipe 8, the pulse doppler type ultrasonic flowmeter can be easily installed also in the existing fluid machinery. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は雨水や農業用水、工
業用水、下水道等の排水に用いられる排水ポンプのよう
な流体機械や、流体機械に接続された流路内を流れる流
体の流量を超音波により測定するパルスドップラ式超音
波流量計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluid machine such as a drainage pump used for draining rainwater, agricultural water, industrial water, sewer or the like, and a flow rate of a fluid flowing in a flow path connected to the fluid machine. The present invention relates to a pulse Doppler type ultrasonic flowmeter which measures by sound waves.

【0002】[0002]

【従来の技術】パルスドップラ式超音波方式の超音波流
量計は、例えば排水ポンプの吐出管など被測定流路の外
壁に取り付けた少なくとも1個の超音波送受波器からバ
ースト状(いくつかのパルス波)の超音波を発信し、被
測定流路である管内の微小粒子から散乱される超音波を
前記超音波送受波器で受信することにより、被測定流路
内を流通する流体の流量を測定するように構成されてお
り、その受信波には微小粒子の超音波の進行方向の移動
速度成分Vcosθ、すなわち流速に基づく周波数Δfの
ドップラシフトを受けた信号が入っているこいとから、
周波数分析によりΔfを求め、次式から流速Vを検出す
るようになっている。
2. Description of the Related Art An ultrasonic flowmeter of the pulse Doppler ultrasonic type is a burst type (some of which is composed of at least one ultrasonic wave transmitter / receiver attached to an outer wall of a flow passage to be measured such as a discharge pipe of a drainage pump). Pulse wave) ultrasonic waves are transmitted, and ultrasonic waves scattered from fine particles in the pipe, which is the flow path to be measured, are received by the ultrasonic transducer, so that the flow rate of the fluid flowing in the flow path to be measured. Is configured to measure the moving wave component Vcosθ in the traveling direction of the ultrasonic waves of the microparticles, that is, the received wave contains a signal subjected to the Doppler shift of the frequency Δf based on the flow velocity,
Δf is obtained by frequency analysis, and the flow velocity V is detected from the following equation.

【0003】[0003]

【数1】 ここに、C:水の音速、f0 :送信超音波の周波数、Δ
f:ドップラシフト周波数、θ:超音波の進行方向と管
壁とのなす角度であり、検出位置Lは次式により求めら
れる。
[Equation 1] Where C: sound velocity of water, f0: frequency of transmitted ultrasonic wave, Δ
f: Doppler shift frequency, θ: angle formed by the traveling direction of ultrasonic waves and the tube wall, and the detection position L is calculated by the following equation.

【0004】[0004]

【数2】 ここに、t:ゲート時間である。この信号取り込のゲー
ト時間を変化させると、超音波が送受波器から往復する
時間が変わり、測定する位置を変えることができる。こ
のように、管内の測定位置Lはゲート時間を変えること
により、その位置の流速はドップラ信号で検出すること
が可能なことから、管内の流速分布を測定測定し、得ら
れた流速分布を管断面に対して積分することにより、管
内を流通する流体の流量が得られるようなっている。
[Equation 2] Where t: gate time. When the gate time for signal acquisition is changed, the time required for the ultrasonic wave to make a round trip from the transmitter / receiver is changed, and the position to be measured can be changed. Thus, since the flow velocity at the measurement position L in the pipe can be detected by the Doppler signal by changing the gate time, the flow velocity distribution in the pipe is measured and measured, and the obtained flow velocity distribution is measured. By integrating with respect to the cross section, the flow rate of the fluid flowing in the pipe can be obtained.

【0005】またパルスドップラ式を用いた従来の超音
波流量計は、図7に示ようにポンプaの吐出管bの直後
に接続された長さの短い鋼管cの外壁にパルスドップラ
式超音波流量計の超音波送受波器dが取り付けられてお
り、超音波送受波器dの内部圧電素子eから放射された
超音波fは、図8に示すように鋼管cの肉厚部gを通過
して水中に放射されるが、この際超音波送受波器dの送
受波面と鋼管cの材質が異なり、また鋼管cと水の材質
が異なることから、それぞれの音響インピーダンスが異
なり、その結果媒質の異なる境界で音響エネルギーの損
失が生じるため、水中へ放射される音響エネルギーは、
超音波送受波器dより放射された超音波fよりも大幅に
低減すると共に、鋼管cに投入された超音波fの一部は
鋼管cの肉厚部gに残留し、残響ノイズとして超音波送
受波器dに戻ってくる。
Further, as shown in FIG. 7, a conventional ultrasonic flowmeter using the pulse Doppler type ultrasonic wave meter is equipped with a pulse Doppler type ultrasonic wave on the outer wall of a short steel pipe c connected immediately after the discharge pipe b of the pump a. The ultrasonic transducer d of the flowmeter is attached, and the ultrasonic wave f emitted from the internal piezoelectric element e of the ultrasonic transducer d passes through the thick portion g of the steel pipe c as shown in FIG. Radiated into the water, but at this time, because the transmitting / receiving surface of the ultrasonic transducer d and the material of the steel pipe c are different, and the material of the steel pipe c and the material of the water are different, the acoustic impedances of them are different and, as a result, the medium Since acoustic energy loss occurs at different boundaries of, the acoustic energy radiated into the water is
The ultrasonic wave f is significantly reduced as compared with the ultrasonic wave f emitted from the ultrasonic transducer d, and a part of the ultrasonic wave f injected into the steel pipe c remains in the thick portion g of the steel pipe c, and the ultrasonic wave is generated as reverberation noise. It returns to the transceiver d.

【0006】一方、水中へ放射された超音波fは水中の
散乱粒子により散乱し、その際散乱粒子の速度に応じた
ドップラ周波数の変化が超音波fにもたらされ、このド
ップラ信号が付加された超音波fは超音波送受波器dに
戻って信号波として受信されるが、水中から鋼管cへ、
また鋼管cから超音波送受波器dへと超音波fが通過す
る際、送波の場合と同様に超音波fにエネルギー損失が
発生して信号は減衰する。このためドップラ信号のS/
N比は極めて小さくなって、ドップラ信号の抽出が困難
となることから、精度の高い流量測定ができなくなる等
の問題がある。かかる問題を改善するため、例えば特開
平11−108721号公報で、超音波送受器を組み込
んだ測定プルーブを測定対象流体内に挿入し、送受波面
を流体中に露出させて金属管の壁面による超音波の減衰
をなくすことにより、測定精度を向上させたパルスドッ
プラ式超音波流量計が提案されている。
On the other hand, the ultrasonic wave f radiated into the water is scattered by the scattering particles in the water, and at that time, a change in the Doppler frequency according to the velocity of the scattering particles is brought to the ultrasonic wave f, and this Doppler signal is added. The ultrasonic wave f returns to the ultrasonic wave transmitter / receiver d and is received as a signal wave, but from the water to the steel pipe c,
Further, when the ultrasonic wave f passes from the steel pipe c to the ultrasonic wave transmitter / receiver d, energy loss occurs in the ultrasonic wave f and the signal is attenuated as in the case of the wave transmission. Therefore, S / of the Doppler signal
Since the N ratio becomes extremely small and it becomes difficult to extract the Doppler signal, there is a problem such that accurate flow rate measurement cannot be performed. In order to improve such a problem, for example, in Japanese Unexamined Patent Publication No. 11-108721, a measurement probe incorporating an ultrasonic transducer is inserted into a fluid to be measured, and a wave transmission / reception surface is exposed in the fluid, so A pulse Doppler ultrasonic flowmeter has been proposed which improves measurement accuracy by eliminating sound wave attenuation.

【0007】[0007]

【発明が解決しようとする課題】しかし前記公報のパル
スドップラ式超音波流量計のように、金属管の壁面に孔
を明けて超音波送受波器の送受波面を流量測定対象流体
中に露出させたり、測定プルーブを測定対象流体内に挿
入して流量を測定する方法では、既存の排水設備等に設
けられた流体機械に実施する場合、現場で金属管の壁面
に孔を明ける等の現場作業を必要とするため、工事に手
間と時間がかかると共に、現場では精度の高い機械加工
が困難なことから、設置されたパルスドップラ式超音波
流量計の測定精度が低下する等の問題がある。
However, like the pulse Doppler ultrasonic flowmeter disclosed in the above publication, a hole is made in the wall surface of the metal tube to expose the transmitting / receiving surface of the ultrasonic transmitter / receiver in the fluid to be measured. In addition, the method of measuring the flow rate by inserting the measurement probe into the fluid to be measured, when performing it on a fluid machine installed in the existing drainage facility, etc., on-site work such as making a hole in the wall surface of the metal pipe on site. Since it requires time and labor for construction, and it is difficult to perform high-precision machining in the field, there is a problem that the accuracy of measurement of the installed pulse Doppler ultrasonic flowmeter decreases.

【0008】本発明はかかる従来の問題を改善するため
になされたもので、測定精度が高く、かつ既存の流体機
械にも容易に接続が可能なパルスドップラ式超音波流量
計を提供することを目的とするものである。
The present invention has been made to solve the above-mentioned conventional problems, and it is an object of the present invention to provide a pulse Doppler ultrasonic flowmeter which has a high measurement accuracy and can be easily connected to an existing fluid machine. It is intended.

【0009】[0009]

【課題を解決するための手段】前記目的を達成するため
本発明のパルスドップラ式超音波流量計は、排水ポンプ
のような流体機械より吐出される流体の流量を、超音波
により測定するパルスドップラ式超音波流量計であっ
て、流量を測定すべき流体に向かって超音波を送受信す
る超音波送受信手段を、予め製作された管体に装着し、
かつ管体を、該管体の軸線方向に長さ調整自在な継手手
段介して流体機械の吐出側と排水管の間に接続するよう
にしたものである。
In order to achieve the above object, a pulse Doppler ultrasonic flowmeter of the present invention is a pulse Doppler for measuring the flow rate of fluid discharged from a fluid machine such as a drainage pump by ultrasonic waves. A type ultrasonic flowmeter, wherein ultrasonic wave transmitting / receiving means for transmitting / receiving ultrasonic waves to / from a fluid whose flow rate is to be measured is attached to a prefabricated pipe body,
In addition, the pipe body is connected between the discharge side of the fluid machine and the drain pipe via a joint means whose length is adjustable in the axial direction of the pipe body.

【0010】前記構成により、既存の流体機械にパルス
ドップラ式超音波流量計を設置する場合、流体機械の吐
出側と排水管の距離に応じて継手手段の長さを調整する
だけで超音波送受信手段の装着が可能となるため、従来
の金属管の壁面に孔を明けて超音波送受信手段を取り付
ける等の現場作業が不要となり、これによって工事期間
及び工事費の削減が図れるようになる。また予め工場等
で超音波送受信手段が高精度で取り付けられた管体を、
現場で流体機械に装着するようにしたことから、現場で
管体に孔を明けて超音波送受信手段を取り付ける場合に
比べて取り付け精度が向上するため、測定精度の大幅な
向上が図れるようになる。
With the above structure, when a pulse Doppler type ultrasonic flowmeter is installed in an existing fluid machine, ultrasonic transmission / reception is performed only by adjusting the length of the joint means according to the distance between the discharge side of the fluid machine and the drain pipe. Since it is possible to mount the means, it is not necessary to perform a site work such as forming a hole in the wall surface of a conventional metal tube and attaching an ultrasonic wave transmitting / receiving means, thereby reducing the construction period and construction cost. In addition, the tube body to which ultrasonic wave transmitting and receiving means is attached with high precision in a factory, etc.
Since it is mounted on the fluid machine at the site, the mounting accuracy is improved compared to the case where the ultrasonic transmission / reception means is mounted by drilling a hole in the tube at the site, so the measurement accuracy can be greatly improved. .

【0011】前記目的を達成するため本発明のパルスド
ップラ式超音波流量計は、超音波送受波手段の送受波面
が、管体内を流れる流体と直接接するように管体に超音
波送受波手段を装着したものである。
In order to achieve the above-mentioned object, the pulse Doppler ultrasonic flowmeter of the present invention is provided with an ultrasonic wave transmitting / receiving means for the tube body so that the wave transmitting / receiving surface of the ultrasonic wave transmitting / receiving means is in direct contact with the fluid flowing in the tube body. It is attached.

【0012】前記構成により、超音波送受波手段から送
波される超音波は、鉄鋼や鋳鉄等の金属壁を経ることな
く直接流体中へ送波されて、金属壁での透過損失による
送信超音波の減衰がなくなるため、より強力な超音波を
測定対象の流体に放射することができ、これによって水
中の粒子からの散乱されるドップラ信号を含んだ超音波
信号レベルは大幅に向上する。またこのドップラ信号を
含んだ超音波は、流体中から超音波送受波手段へ直接入
るので強いドップラ信号を受信することができ、これに
よってS/N比の高いドップラ信号が得らるため、得られ
たドップラ信号を含む流速信号の流速分布を積分するこ
とにより、より測定精度の高い流量測定が可能になる。
With the above structure, the ultrasonic wave transmitted from the ultrasonic wave transmitting / receiving means is directly transmitted into the fluid without passing through the metal wall of steel, cast iron or the like, and is transmitted by the transmission loss at the metal wall. Since there is no sound wave attenuation, more powerful ultrasonic waves can be radiated to the fluid to be measured, which greatly improves the ultrasonic signal level including the Doppler signal scattered from the particles in the water. In addition, since the ultrasonic wave containing this Doppler signal directly enters the ultrasonic wave transmitting / receiving means from the fluid, it is possible to receive a strong Doppler signal, which gives a Doppler signal with a high S / N ratio. By integrating the flow velocity distribution of the flow velocity signal including the obtained Doppler signal, it is possible to measure the flow rate with higher measurement accuracy.

【0013】前記目的を達成するため本発明のパルスド
ップラ式超音波流量計は、継手手段を、管体の軸線方向
に移動自在な可動フランジを有するルーズフランジによ
り構成したものである。
To achieve the above object, in the pulse Doppler ultrasonic flowmeter of the present invention, the joint means is constituted by a loose flange having a movable flange movable in the axial direction of the tubular body.

【0014】前記構成により、長さ調整の自在な継手手
段が容易かつ安価に得られるようになる。
With the above construction, the joint means whose length can be freely adjusted can be easily and inexpensively obtained.

【0015】前記目的を達成するため本発明のパルスド
ップラ式超音波流量計は、管体に設けた点検孔に超音波
送受波手段を装着したものである。
In order to achieve the above-mentioned object, the pulse Doppler type ultrasonic flowmeter of the present invention is one in which an ultrasonic wave transmitting / receiving means is attached to an inspection hole provided in a pipe body.

【0016】前記構成により、管体に超音波送受波手段
を取り付けるための取り付け座を設ける必要がないた
め、管体の製作が容易になる。
With the above construction, since it is not necessary to provide a mounting seat for mounting the ultrasonic wave transmitting / receiving means on the pipe body, the pipe body can be easily manufactured.

【0017】前記目的を達成するため本発明のパルスド
ップラ式超音波流量計は、管体を超音波の残響が少ない
樹脂材料により形成したものである。
In order to achieve the above-mentioned object, the pulse Doppler type ultrasonic flowmeter of the present invention has a tubular body made of a resin material having a small reverberation of ultrasonic waves.

【0018】前記構成により、管体の内面で超音波が反
射することにより発生する残響ノイズを削減できるた
め、残響ノイズによるドップラ信号のS/N比の低下を
防止することができる。
With the above structure, the reverberation noise generated by the reflection of the ultrasonic waves on the inner surface of the tubular body can be reduced, so that the reduction of the S / N ratio of the Doppler signal due to the reverberation noise can be prevented.

【0019】[0019]

【発明の実施の形態】本発明の第1の実施の形態を、図
面を参照して詳述する。図1は排水施設等のポンプ機場
に設置された流体機械の側面図、図2は図1のA−A線
に沿う断面図、図3は超音波送受波手段の拡大図であ
る。前記流体機械は、例えば縦軸の排水ポンプ1であっ
て、吸込み口1aを下方に向けて水槽2内に設置されて
いる。排水ポンプ1の吐出管1bは、ほぼ逆L字形に屈
曲されていて、吐出管1bの吐出口1cに突設されたフ
ランジ1dに、後述するパルスドップラ式超音波流量計
9の超音波送受信手段10が取り付けられた管体3が接
続されている。
BEST MODE FOR CARRYING OUT THE INVENTION A first embodiment of the present invention will be described in detail with reference to the drawings. 1 is a side view of a fluid machine installed in a pumping station such as a drainage facility, FIG. 2 is a sectional view taken along the line AA of FIG. 1, and FIG. 3 is an enlarged view of ultrasonic wave transmitting / receiving means. The fluid machine is, for example, a drainage pump 1 having a vertical axis, and is installed in a water tank 2 with a suction port 1a facing downward. The discharge pipe 1b of the drainage pump 1 is bent into a substantially inverted L shape, and a flange 1d protruding from the discharge port 1c of the discharge pipe 1b is provided with an ultrasonic transmitting / receiving means of a pulse Doppler ultrasonic flowmeter 9 described later. The pipe body 3 to which 10 is attached is connected.

【0020】管体3は両端部にフランジ3a,3bが突
設されていて、一端側に突設されたフランジ3aが、吐
出管1bの吐出口1cに突設されたフランジ1dにパッ
キン4を介して接続されており、各フランジ1d,3a
の間は、ボルトのような複数の固着具5により締結され
ている。管体3は、少なくともフランジ3a,3bを除
く部分が超音波の残響が少ない例えば樹脂等により一体
成形されており、他端側に突設されたフランジ3bは、
後述する継手手段6及び排水弁7を介して図1に示すよ
うに排水管8に接続されている。
The tubular body 3 has flanges 3a and 3b projecting from both ends thereof, and the flange 3a projecting from one end side has the packing 4 attached to the flange 1d projecting from the discharge port 1c of the discharge pipe 1b. Are connected via the respective flanges 1d, 3a
Between them are fastened by a plurality of fasteners 5 such as bolts. The tubular body 3 is formed integrally with, for example, a resin having a small reverberation of ultrasonic waves except at least the flanges 3a and 3b, and the flange 3b protruding on the other end side is
As shown in FIG. 1, it is connected to a drain pipe 8 via a joint means 6 and a drain valve 7 described later.

【0021】また管体3外周面には、円周方向に間隔を
存して複数、例えば2個の取り付け座3cが突設されて
いる。これら取り付け座3cは、図2に示すようにボス
状となっていて、これら取り付け座3cにパルスドップ
ラ式超音波流量計9の超音波送受信手段10が取り付け
られている。超音波流量計9の超音波送受信手段10
は、図3に示すように、取り付け座3c内に挿脱自在な
筒状部10aと、筒状部10aの一端側に突設されたフ
ランジ部10bよりなり、全体が流体の音響インピーダ
ンスとほぼ同等の音響インピーダンスを有する樹脂によ
り一体成形されていると共に、筒状部10aの先端面は
超音波の送受波面10dとなっていて、この送受波面1
0dが管体3の内周面と同一平面で、かつ流体と接する
ように筒状部10aが取り付け座3c内に嵌合されてお
り、フランジ部10bは図示しないビス等の固着具によ
り取り付け座3cの端面に着脱自在に取り付けられてい
る。
A plurality of, for example, two mounting seats 3c are provided on the outer peripheral surface of the tubular body 3 at intervals in the circumferential direction. The mounting seats 3c are boss-shaped as shown in FIG. 2, and the ultrasonic wave transmitting / receiving means 10 of the pulse Doppler ultrasonic flowmeter 9 is mounted on the mounting seats 3c. Ultrasonic wave transmitting / receiving means 10 of the ultrasonic flowmeter 9
As shown in FIG. 3, is composed of a tubular portion 10a that can be freely inserted into and removed from the mounting seat 3c, and a flange portion 10b that projects from one end of the tubular portion 10a. The cylindrical portion 10a is integrally formed of resin having the same acoustic impedance, and the tip end surface of the cylindrical portion 10a serves as an ultrasonic wave transmitting / receiving surface 10d.
0d is flush with the inner peripheral surface of the tubular body 3, and the tubular portion 10a is fitted in the mounting seat 3c so as to come into contact with the fluid, and the flange portion 10b is mounted by a fastener such as a screw (not shown). It is detachably attached to the end face of 3c.

【0022】そして前記筒状部10a内に電気信号を超
音波に変換して送受波面10dより管体3内に発信し、
また管体3内を流れる流体より反射する超音波を受信す
る圧電素子10cが埋設されている。圧電素子10c
は、管体3内を流れる流体の上流側に向けて角度θで超
音波が発信できるよう予め傾斜されて筒状部10a内に
埋設されており、圧電素子10cより延出された信号線
14は、超音波送受信手段10より離れた位置、例えば
監視室等に設置された超音波流量計9の信号処理手段に
接続されている。
Then, an electric signal is converted into an ultrasonic wave in the cylindrical portion 10a, and the ultrasonic wave is transmitted from the transmitting / receiving surface 10d into the tube body 3,
Further, a piezoelectric element 10c that receives ultrasonic waves reflected from the fluid flowing in the tube body 3 is embedded. Piezoelectric element 10c
Is embedded beforehand in the cylindrical portion 10a so that ultrasonic waves can be transmitted at an angle θ toward the upstream side of the fluid flowing in the tubular body 3, and the signal line 14 extended from the piezoelectric element 10c. Is connected to the signal processing means of the ultrasonic flowmeter 9 installed in a position away from the ultrasonic wave transmitting / receiving means 10, for example, in a monitoring room or the like.

【0023】一方超音波送受信手段10の他端側に接続
された継手手段6は、管体3および排水管8の軸線方向
に長さ調整自在な例えばルーズフランジ6aより構成さ
れている。ルーズフランジ6aは図2に示すように、一
端側が管体3内に摺動自在に嵌挿された直管部6bと、
この直管部6bに軸線方向に移動自在に嵌合された可動
フランジ6cと、直管部6bの他端側に突設された一対
の固定フランジ6d,6eとよりなり、直管部6bの他
端部に突設された固定フランジ6eが、排水弁7の一端
に突設されたフランジ7aにパッキン11を介して接続
されており、各フランジ6e,7aの間はボルトのよう
な複数の固着具12により締結されている。
On the other hand, the joint means 6 connected to the other end of the ultrasonic wave transmitting / receiving means 10 is composed of, for example, a loose flange 6a whose lengths are adjustable in the axial direction of the pipe body 3 and the drainage pipe 8. As shown in FIG. 2, the loose flange 6a includes a straight pipe portion 6b whose one end side is slidably fitted in the pipe body 3, and
The straight pipe portion 6b includes a movable flange 6c movably fitted in the axial direction and a pair of fixed flanges 6d and 6e projecting from the other end of the straight pipe portion 6b. A fixed flange 6e protruding from the other end is connected to a flange 7a protruding from one end of the drain valve 7 via a packing 11, and a plurality of gaps such as bolts are provided between the flanges 6e and 7a. It is fastened by a fastener 12.

【0024】また管体3のフランジ3bと可動フランジ
6c及び固定フランジ6dを貫通するようにボルトのよ
うな複数の固着具13が設けられている。固着具13の
一端側はナット13aにより固定フランジ6dに固定さ
れており、固着具13の他端側は、ナット13bにより
管体3のフランジ3bと可動フランジ6cの間を締結し
ていると共に、可動フランジ6cの内周面と直管部6b
の外周面の間には、液漏れを防止するOリング等のシー
ル部材15が設けられている。
A plurality of fasteners 13 such as bolts are provided so as to penetrate the flange 3b of the tubular body 3, the movable flange 6c and the fixed flange 6d. One end of the fixture 13 is fixed to the fixed flange 6d by a nut 13a, and the other end of the fixture 13 is fastened between the flange 3b of the tubular body 3 and the movable flange 6c by a nut 13b. Inner peripheral surface of movable flange 6c and straight pipe portion 6b
A seal member 15 such as an O-ring for preventing liquid leakage is provided between the outer peripheral surfaces of the.

【0025】次に前記構成されたパルスドップラ式超音
波流量計9の作用を説明する。工場で予め製作した管体
3の取り付け座3cに、超音波流量計9の超音波送受信
手段10を精度よく取り付け、超音波流量計9を設置す
る現場では、管体3の取り付けのみを行うもので、これ
によって既存の排水ポンプ1にも超音波流量計9の設置
を可能にしている。超音波流量計9の設置に当っては、
超音波送受信手段10の取り付けられた管体3を現場作
業により排水ポンプ1の吐出口1cと排水弁7の間に接
続するが、吐出口1cと排水弁7の間にすでに既存の流
量計の超音波送受信手段が取り付けられていて、この超
音波送受信手段を新たな超音波流量計9の超音波送受信
手段10と交換する場合や、吐出口1cと排水弁7の間
が配管により接続されている場合、吐出口1cから排水
弁7までの距離が新たに装着しようとする管体3の長さ
と異なることが多い。
Next, the operation of the pulse Doppler type ultrasonic flowmeter 9 constructed as described above will be described. The ultrasonic transmission / reception means 10 of the ultrasonic flowmeter 9 is accurately attached to the mounting seat 3c of the tubular body 3 prefabricated in the factory, and only the tubular body 3 is attached at the site where the ultrasonic flowmeter 9 is installed. Thus, the ultrasonic flowmeter 9 can be installed in the existing drainage pump 1 as well. When installing the ultrasonic flowmeter 9,
The pipe body 3 to which the ultrasonic wave transmitting / receiving means 10 is attached is connected between the discharge port 1c of the drainage pump 1 and the drainage valve 7 by site work. When the ultrasonic wave transmitting / receiving means is attached and the ultrasonic wave transmitting / receiving means is replaced with the ultrasonic wave transmitting / receiving means 10 of the new ultrasonic flow meter 9, or when the discharge port 1c and the drain valve 7 are connected by a pipe. If there is, the distance from the discharge port 1c to the drain valve 7 often differs from the length of the pipe body 3 to be newly mounted.

【0026】そこでこの距離を調整するため、管体3と
排水弁7の間にルーズフランジ6aよりなる継手手段6
を次のように介在させる。まず管体3の他端側にルーズ
フランジ6aの直管部6bを図2に示すように挿入した
状態で、管体3の一端側に突設されたフランジ3aを吐
出管1cのフランジ1dにパッキン4を介して接続し、
固着具5により締結する。次に直管部6bの他端部に突
設された固定フランジ6eをパッキン11を介して排水
弁7のフランジ7aに接続し、固着具12により締結す
る。このとき吐出口1cと排水弁7間の距離に対し、管
体3及び継手手段6の長さに差があっても、管体3に対
しルーズフランジ6aの直管部6bを摺動させてフラン
ジ3b,6d間の距離Dを調整することにより、管体3
の接続が可能になる。
Therefore, in order to adjust this distance, the joint means 6 composed of the loose flange 6a between the pipe body 3 and the drain valve 7 is provided.
Are intervened as follows. First, with the straight pipe portion 6b of the loose flange 6a inserted in the other end side of the pipe body 3 as shown in FIG. 2, the flange 3a projecting from one end side of the pipe body 3 becomes the flange 1d of the discharge pipe 1c. Connect via packing 4,
Fasten with the fastener 5. Next, the fixing flange 6e protruding from the other end of the straight pipe portion 6b is connected to the flange 7a of the drain valve 7 via the packing 11, and is fastened by the fastener 12. At this time, even if there is a difference in the lengths of the pipe body 3 and the joint means 6 with respect to the distance between the discharge port 1c and the drain valve 7, the straight pipe portion 6b of the loose flange 6a is slid with respect to the pipe body 3. By adjusting the distance D between the flanges 3b and 6d,
Can be connected.

【0027】次に直管部6bの外周面に嵌合された可動
フランジ6cを管体3側へ移動させて、管体3のフラン
ジ3bと可動フランジ6cを固着具13により締結する
ことにより、超音波送受信手段10の設けられた管体3
を既存の排水ポンプ1に接続するもので、超音波送受信
手段10と、超音波送受信手段10より離れた位置に設
置された超音波流量計9の間は信号線14により接続す
る。
Next, the movable flange 6c fitted to the outer peripheral surface of the straight pipe portion 6b is moved to the pipe body 3 side, and the flange 3b of the pipe body 3 and the movable flange 6c are fastened by the fastener 13, Tube body 3 provided with ultrasonic wave transmitting / receiving means 10
Is connected to the existing drainage pump 1, and the ultrasonic transmission / reception means 10 and the ultrasonic flowmeter 9 installed at a position distant from the ultrasonic transmission / reception means 10 are connected by a signal line 14.

【0028】以上のようにして超音波送受信手段10及
び超音波流量計9の設置を完了した後排水ポンプ1の運
転を開始すると、排水ポンプ1より吐出された流体は、
管体3内を通過して排水弁7より排水管8へ排出される
が、管体3内を矢印B方向へ流れる流体の流速B1は図
3に示すように場所によって速度分布が異なる。このよ
うな流れに対して、超音波流量計9の超音波送受信手段
10より流れの上流側に向けて角度θでパルス状の超音
波16が発信されると、この超音波16は、流れの中の
微小散乱粒子によりその周波数にドップラシフトを受け
て散乱し、流速信号が重畳された超音波16aとなって
超音波送受信手段10へ反射され、超音波送受信手段1
0の送受波面10dより圧電素子10cに受信されて、
圧電素子10cにより電気信号に変換された後信号線1
4により超音波流量計9へ送られる。
When the operation of the drainage pump 1 is started after the installation of the ultrasonic wave transmitting / receiving means 10 and the ultrasonic flowmeter 9 is completed as described above, the fluid discharged from the drainage pump 1 is
Although it passes through the pipe body 3 and is discharged from the drain valve 7 to the drain pipe 8, the flow velocity B1 of the fluid flowing in the pipe body 3 in the direction of arrow B has a different velocity distribution depending on the place. In response to such a flow, when a pulsed ultrasonic wave 16 is transmitted from the ultrasonic wave transmitting / receiving means 10 of the ultrasonic flow meter 9 toward the upstream side of the flow at an angle θ, the ultrasonic wave 16 is generated. The minute scattering particles in the inside scatter by receiving the Doppler shift to the frequency, and become ultrasonic waves 16a on which the flow velocity signal is superposed and reflected by the ultrasonic wave transmitting / receiving means 10, and the ultrasonic wave transmitting / receiving means 1
Received by the piezoelectric element 10c from the wave transmission / reception surface 10d of 0,
The signal line 1 after being converted into an electric signal by the piezoelectric element 10c
4 to the ultrasonic flowmeter 9.

【0029】また超音波送受信手段10より送信される
超音波は、管体3内に露出する送受波面10dより直接
水中へ送信され、水流より反射された超音波は、送受波
面10dより直接圧電素子10cに受信されるため、水
中を伝わる超音波をほとんど減衰なしで送受信すること
ができ、これによって従来の超音波流量計に比べて、よ
りS/N比の高いドップラ信号を得ることができること
から、流速の測定精度が向上すると共に、得られた流速
分布を超音波流量計9の信号処理手段で積分することに
より流量を算出するもので、得られた流量は従来の超音
波流量計に比べて測定精度が大幅に向上する。
The ultrasonic wave transmitted from the ultrasonic wave transmitting / receiving means 10 is directly transmitted into the water from the wave transmitting / receiving surface 10d exposed in the tube body 3, and the ultrasonic wave reflected from the water flow is directly transmitted from the wave transmitting / receiving surface 10d to the piezoelectric element. Since it is received by 10c, it is possible to transmit and receive ultrasonic waves that propagate in water with almost no attenuation, and as a result, it is possible to obtain a Doppler signal having a higher S / N ratio than the conventional ultrasonic flowmeter. In addition to improving the measurement accuracy of the flow velocity, the flow rate is calculated by integrating the obtained flow velocity distribution by the signal processing means of the ultrasonic flow meter 9, and the obtained flow rate is higher than that of the conventional ultrasonic flow meter. Measurement accuracy is greatly improved.

【0030】なお前記実施の形態では、超音波送受信手
段10の筒状部10a内に埋設した圧電素子10cを、
予め管体3内を流れる流体の上流側に向けて角度θ傾斜
させて設けたが、図4に示すように、取り付け座3cを
予め上流側に向けて角度θ傾斜するよう管体3に突設す
れば、超音波送受信手段10の筒状部10a内に圧電素
子10cを予め傾斜させて埋設する必要がないため、超
音波送受信手段10の製作が容易になる。またこの場
合、取り付け座3cに超音波送受信手段10を取り付け
ると、送受波面10dと管体3内面との間に隙間17が
発生して水流を乱したり、キャビティ‐ションを起こす
原因となるため、この隙間17に予め流体の音響インピ
ーダンスとほぼ同等の音響インピーダンスを有する材
料、例えば樹脂等を充填して隙間17を埋めており、こ
れによって隙間17により水流が乱されたり、キャビテ
ィ‐ションが発生するのを防止することができるため、
これらに起因する超音波ノイズの低減と、これに伴う測
定精度の向上が図れるようになる。
In the above embodiment, the piezoelectric element 10c embedded in the cylindrical portion 10a of the ultrasonic wave transmitting / receiving means 10 is
Although it was provided in advance by inclining the angle θ toward the upstream side of the fluid flowing in the pipe body 3, as shown in FIG. 4, the mounting seat 3c projects in advance toward the upstream side of the pipe body 3 by the angle θ. If it is provided, it is not necessary to incline and embed the piezoelectric element 10c in the tubular portion 10a of the ultrasonic wave transmitting / receiving means 10, so that the ultrasonic wave transmitting / receiving means 10 can be easily manufactured. Further, in this case, when the ultrasonic wave transmitting / receiving means 10 is attached to the mounting seat 3c, a gap 17 is generated between the wave transmitting / receiving surface 10d and the inner surface of the tubular body 3, which may disturb the water flow or cause cavitation. The gap 17 is filled in advance with a material having an acoustic impedance substantially equal to the acoustic impedance of the fluid, such as resin, to fill the gap 17, whereby the water flow is disturbed by the gap 17 or a cavity is generated. Because it can prevent
Ultrasonic noise resulting from these can be reduced and the measurement accuracy can be improved accordingly.

【0031】一方図5は管体3に設けられたハンドホー
ル等の点検孔18を利用して超音波送受信手段10を取
り付けた第2の実施の形態を示すもので、点検孔18に
流体とほぼ同等の音響インピーダンスを有する樹脂より
なる盲板19を液密に取り付けて、この盲板19の外側
面に超音波送受信手段10を装着する。
On the other hand, FIG. 5 shows a second embodiment in which the ultrasonic wave transmitting / receiving means 10 is attached by utilizing the inspection hole 18 such as a handhole provided in the pipe body 3. A blind plate 19 made of resin having substantially the same acoustic impedance is liquid-tightly attached, and the ultrasonic wave transmitting / receiving means 10 is attached to the outer surface of the blind plate 19.

【0032】超音波送受信手段10は盲板19に容易に
取り付けられるよう、盲板19側が開口するケース10
f内に斜めに圧電素子10cを収容して、流体と音響イ
ンピーダンスがほぼ同等の樹脂10gを充填することに
より圧電素子10cを固定した構造となっており、送受
波面10dが盲板19と密着するようゴムバンドなどの
緊締手段やビス等の固着手段(ともに図示せず)により
ケース10fが盲板19に装着されている。前記第2の
実施の形態も、前記第1の実施の形態と作用は同様なの
でその説明は省略するが、点検孔18を利用して超音波
送受信手段10を管体3に装着することができるため、
管体3に取り付け座3cを突設する必要がなくなる。
The ultrasonic transmitting / receiving means 10 is mounted on the blind plate 19 so that the blind plate 19 can be easily attached to the case 10.
The piezoelectric element 10c is housed obliquely in f, and the piezoelectric element 10c is fixed by filling with a resin 10g whose acoustic impedance is almost equal to that of the fluid. The wave transmitting / receiving surface 10d is in close contact with the blind plate 19. The case 10f is attached to the blind plate 19 by tightening means such as a rubber band or fixing means such as a screw (both not shown). The operation of the second embodiment is similar to that of the first embodiment, and therefore its explanation is omitted, but the ultrasonic transmitting / receiving means 10 can be attached to the tubular body 3 by utilizing the inspection hole 18. For,
It is not necessary to project the mounting seat 3c on the tube body 3.

【0033】なお図6は管体3より超音波送受信手段1
0を取り外した後の取り付け座3cを、栓体20で閉鎖
した状態を示すもので、排水ポンプ1の吐出流量を測定
する必要がない場合は、管体3より超音波送受信手段1
0を取り外した後の取り付け座3cに、超音波送受信手
段10とほぼ同一形状の栓体20を取り付けておけば、
超音波送受信手段10が管体3内を流れる流体に長期間
さらされることがないので、金属部が腐食したり、樹脂
部が膨潤して、超音波送受信手段10の寿命が早期に低
下するのを防止することができる。また前記実施の形態
では、排水ポンプ1に実施した場合について説明した
が、流量測定が必要な流体機械全般に適用できるもので
る。
In FIG. 6, the ultrasonic wave transmitting / receiving means 1 is provided from the tube body 3.
It shows a state in which the mounting seat 3c after removing 0 is closed by the plug body 20, and when it is not necessary to measure the discharge flow rate of the drainage pump 1, the ultrasonic wave transmitting / receiving means 1 is connected from the pipe body 3.
If the stopper 20 having substantially the same shape as the ultrasonic wave transmitting / receiving means 10 is attached to the attachment seat 3c after removing 0,
Since the ultrasonic wave transmitting / receiving means 10 is not exposed to the fluid flowing in the tube body 3 for a long period of time, the metal part is corroded or the resin part is swollen, so that the life of the ultrasonic wave transmitting / receiving means 10 is reduced early. Can be prevented. Moreover, although the said embodiment demonstrated the case where it implemented in the drainage pump 1, it can apply to all the fluid machines which require flow measurement.

【0034】[0034]

【発明の効果】本発明は以上詳述したように、流量を測
定すべき流体に向かって超音波を送受信する超音波送受
信手段を、予め製作された管体に装着し、かつ管体を、
該管体の軸線方向に長さ調整自在な継手手段介して流体
機械の吐出側と排水管の間に接続するようにしたことか
ら、既存の流体機械にパルスドップラ式超音波流量計を
設置する場合、流体機械の吐出側と排水管の距離に応じ
て継手手段の長さを調整するだけで超音波送受信手段の
装着が可能となるため、従来の金属管の壁面に孔を明け
て超音波送受信手段を取り付ける等の現場作業が不要と
なり、これによって工事期間及び工事費の削減が図れる
と共に、予め工場等で超音波送受信手段を高精度に取り
付けた管体を、現場で流体機械に装着するようにしたこ
とから、現場で管体に孔を明けて超音波送受信手段を取
り付ける場合に比べて取り付け精度が向上するため、測
定精度の大幅な向上が図れるようになる。
As described in detail above, according to the present invention, an ultrasonic wave transmitting / receiving means for transmitting / receiving ultrasonic waves to / from a fluid whose flow rate is to be measured is attached to a prefabricated pipe body, and the pipe body is
Since the connection is made between the discharge side of the fluid machine and the drainage pipe through the joint means whose length is adjustable in the axial direction of the pipe body, the pulse Doppler ultrasonic flowmeter is installed in the existing fluid machine. In this case, the ultrasonic transmission / reception means can be mounted simply by adjusting the length of the joint means according to the distance between the discharge side of the fluid machine and the drain pipe. On-site work such as attaching the transmitting / receiving means is not necessary, which can reduce the construction period and construction cost, and at the same time, attach the tube body to which the ultrasonic transmitting / receiving means is installed with high precision in the factory to the fluid machine. By doing so, the mounting accuracy is improved as compared with the case where the ultrasonic transmitting / receiving means is mounted by making a hole in the tubular body in the field, so that the measurement accuracy can be greatly improved.

【0035】また超音波送受波手段の送受波面が、管体
内を流れる流体と直接接するように管体に超音波送受波
手段を装着したことから、超音波送受波手段から送波さ
れる超音波は、鉄鋼や鋳鉄等の金属壁を経ることなく直
接流体中へ送波されて、金属壁での透過損失による送信
超音波の減衰がなくなるため、より強力な超音波を測定
対象の流体に放射することができ、これによって水中の
粒子からの散乱されるドップラ信号を含んだ超音波信号
レベルは大幅に向上すると共に、このドップラ信号を含
んだ超音波は、流体中から超音波送受波手段へ直接入る
ので強いドップラ信号を受信することができ、これによ
ってS/N比の高いドップラ信号が得らるため、得られた
ドップラ信号を含む流速信号の流速分布を積分すること
により、より測定精度の高い流量測定が可能になる。
Further, since the ultrasonic wave transmitting / receiving means is attached to the pipe body so that the transmitting / receiving surface of the ultrasonic wave transmitting / receiving means is in direct contact with the fluid flowing in the pipe body, the ultrasonic wave transmitted from the ultrasonic wave transmitting / receiving means is transmitted. Is transmitted directly into the fluid without passing through a metal wall such as steel or cast iron, and the attenuation of the transmitted ultrasonic wave due to transmission loss at the metal wall is eliminated, so a stronger ultrasonic wave is radiated to the fluid to be measured. The ultrasonic signal level including the Doppler signal scattered from the particles in the water is significantly improved, and the ultrasonic wave including the Doppler signal is transmitted from the fluid to the ultrasonic wave transmitting / receiving means. Since it directly enters, a strong Doppler signal can be received, and this gives a Doppler signal with a high S / N ratio.Therefore, by integrating the flow velocity distribution of the flow velocity signal including the obtained Doppler signal, more accurate measurement can be performed. It becomes possible to high flow rate measurement.

【0036】さらに継手手段を、管体の軸線方向に移動
自在な可動フランジを有するルーズフランジにより構成
したことから、長さ調整の自在な継手手段が容易かつ安
価に得られる上、管体に設けた点検孔に超音波送受波手
段を装着したことから、管体に超音波送受波手段を取り
付けるための取り付け座を設ける必要がないため、管体
の製作が容易になると共に、管体を超音波の残響が少な
い樹脂材料により形成すれば、管体の内面で超音波が反
射することにより発生する残響ノイズを削減できるた
め、残響ノイズによるドップラ信号のS/N比の低下を
防止することができる。
Further, since the joint means is constituted by the loose flange having the movable flange which is movable in the axial direction of the pipe body, the joint means whose length can be freely adjusted is easily and inexpensively obtained, and is provided on the pipe body. Since the ultrasonic transmission / reception means is attached to the inspection hole, it is not necessary to provide a mounting seat for attaching the ultrasonic transmission / reception means to the pipe body, so that the pipe body can be easily manufactured and the pipe body Since the reverberation noise generated by the reflection of the ultrasonic waves on the inner surface of the tubular body can be reduced by forming the resin material with less reverberation of the sound wave, it is possible to prevent the S / N ratio of the Doppler signal from decreasing due to the reverberation noise. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施の形態になるパルスドップ
ラ式超音波流量計を排水ポンプに装着した状態の側面図
である。
FIG. 1 is a side view showing a state in which a pulse Doppler ultrasonic flowmeter according to a first embodiment of the present invention is attached to a drainage pump.

【図2】図1のA−A線に沿う断面図である。FIG. 2 is a sectional view taken along the line AA of FIG.

【図3】本発明の第1の実施の形態になるパルスドップ
ラ式超音波流量計の作用説明図である。
FIG. 3 is an operation explanatory view of the pulse Doppler ultrasonic flow meter according to the first embodiment of the present invention.

【図4】本発明の第1の実施の形態になるパルスドップ
ラ式超音波流量計の変形例を示す説明図である。
FIG. 4 is an explanatory diagram showing a modified example of the pulse Doppler ultrasonic flow meter according to the first embodiment of the present invention.

【図5】本発明の第2の実施の形態になるパルスドップ
ラ式超音波流量計の説明図である。
FIG. 5 is an explanatory diagram of a pulse Doppler ultrasonic flow meter according to a second embodiment of the present invention.

【図6】本発明の実施の形態になるパルスドップラ式超
音波流量計の不使用状態を示す説明図である。
FIG. 6 is an explanatory diagram showing a non-use state of the pulse Doppler ultrasonic flow meter according to the embodiment of the present invention.

【図7】従来のパルスドップラ式超音波流量計を排水ポ
ンプに装着した状態の側面図である。
FIG. 7 is a side view showing a state in which a conventional pulse Doppler ultrasonic flowmeter is attached to a drainage pump.

【図8】従来のパルスドップラ式超音波流量計の作用説
明図である。
FIG. 8 is an operation explanatory view of a conventional pulse Doppler ultrasonic flow meter.

【符号の説明】[Explanation of symbols]

1 排水ポンプ 3 管体 6 継手手段 6a ルーズフランジ 6c 可動フランジ 8 排水管 9 パルスドップラ式超音波流量計 10 超音波送受信手段 10d 送受波面 18 点検孔 1 drainage pump 3 tube 6 joint means 6a loose flange 6c Movable flange 8 drainage pipes 9 Pulse Doppler type ultrasonic flowmeter 10 Ultrasonic transmitting / receiving means 10d Wave front / reception 18 Inspection hole

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小野 滋義 茨城県土浦市神立町603番地 株式会社テ ィーテック内 Fターム(参考) 2F035 DA12    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Shigeyoshi Ono             603 Kintatemachi, Tsuchiura City, Ibaraki Prefecture             Within Tech F-term (reference) 2F035 DA12

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 排水ポンプのような流体機械より吐出さ
れる流体の流量を、超音波により測定するパルスドップ
ラ式超音波流量計であって、流量を測定すべき流体に向
かって超音波を送受信する超音波送受信手段を、予め製
作された管体に装着し、かつ前記管体を、該管体の軸線
方向に長さ調整自在な継手手段介して前記流体機械の吐
出側と排水管の間に接続するようにしたことを特徴とす
るパルスドップラ式超音波流量計。
1. A pulse Doppler ultrasonic flowmeter for measuring the flow rate of fluid discharged from a fluid machine such as a drainage pump by ultrasonic waves, and transmitting and receiving ultrasonic waves to and from the fluid whose flow rate is to be measured. Between the discharge side of the fluid machine and the drain pipe through the joint means whose length is adjustable in the axial direction of the tubular body. A pulsed Doppler ultrasonic flowmeter characterized by being connected to the.
【請求項2】 前記超音波送受波手段の送受波面が、管
体内を流れる流体と直接接するように前記管体に超音波
送受波手段を装着してなる請求項1に記載のパルスドッ
プラ式超音波流量計。
2. The pulse Doppler type ultrasonic transducer according to claim 1, wherein the ultrasonic wave transmitting / receiving means is attached to the pipe body so that the wave transmitting / receiving surface of the ultrasonic wave transmitting / receiving means is in direct contact with the fluid flowing in the pipe body. Sonic flow meter.
【請求項3】 前記継手手段を、前記管体の軸線方向に
移動自在な可動フランジを有するルーズフランジにより
構成してなる請求項1に記載のパルスドップラ式超音波
流量計。
3. The pulse Doppler ultrasonic flowmeter according to claim 1, wherein the joint means is constituted by a loose flange having a movable flange that is movable in the axial direction of the tubular body.
【請求項4】 前記管体に設けた点検孔に、前記超音波
送受波手段を装着してなる請求項1ないし3の何れかに
記載のパルスドップラ式超音波流量計。
4. The pulse Doppler ultrasonic flowmeter according to claim 1, wherein the ultrasonic wave transmitting / receiving means is attached to an inspection hole provided in the pipe body.
【請求項5】 前記管体を、超音波の残響が少ない樹脂
材料により形成してなる請求項1ないし4の何れかに記
載のパルスドップラ式超音波流量計。
5. The pulse Doppler ultrasonic flowmeter according to claim 1, wherein the tubular body is formed of a resin material having a small reverberation of ultrasonic waves.
JP2002105109A 2002-04-08 2002-04-08 Pulse doppler type ultrasonic flowmeter Pending JP2003302265A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002105109A JP2003302265A (en) 2002-04-08 2002-04-08 Pulse doppler type ultrasonic flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002105109A JP2003302265A (en) 2002-04-08 2002-04-08 Pulse doppler type ultrasonic flowmeter

Publications (1)

Publication Number Publication Date
JP2003302265A true JP2003302265A (en) 2003-10-24

Family

ID=29389961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002105109A Pending JP2003302265A (en) 2002-04-08 2002-04-08 Pulse doppler type ultrasonic flowmeter

Country Status (1)

Country Link
JP (1) JP2003302265A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005054684A1 (en) * 2003-12-03 2005-06-16 Ebara Corporation Pump system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005054684A1 (en) * 2003-12-03 2005-06-16 Ebara Corporation Pump system

Similar Documents

Publication Publication Date Title
US8806734B2 (en) Flowmeter and method
EP2769185B1 (en) Method and apparatus for providing real time air measurement applications in wet concrete
KR101622543B1 (en) Clamp-on type ultrasonic flow meter comprising automatic measurement of pipe thickness
US20150177036A1 (en) Ultrasonic Measurement Apparatus and Method for Determining a Fluid Velocity
GB2363455A (en) Ultrasonic flowmeter
JP2004271496A (en) Ultrasonic flow measuring method
WO2020119468A1 (en) Method for detecting grout plumpness of sleeve cylinder with single-sided ultrasound detection along grout outlet channel
EP3087387A1 (en) Device for determining a speed of sound of a sound signal in a fluid
US20040123674A1 (en) Single-body dual-chip orthogonal sensing transit-time flow device
JP2001141533A (en) Ultrasonic measuring instrument for measuring flow rate
CN114787592A (en) Flow rate measuring device for sewer pipe
JP6221624B2 (en) Fluid type discrimination device and fluid type discrimination method
US10677757B2 (en) Method for acoustically determining properties of a medium, and device for acoustically determining properties of a medium, comprising a reflective element
JP2003302265A (en) Pulse doppler type ultrasonic flowmeter
US20050154307A1 (en) Apparatus and method for measuring a fluid velocity profile using acoustic doppler effect
US20040129088A1 (en) Single-body dual-chip orthogonal sensing transit-time flow device using a parabolic reflecting surface
JPH06201534A (en) Device and method for detecting blocked position inside pipe and method for controlling amount of unloaded oil
JPH10281832A (en) Pulse doppler type ultrasonic flowmeter
JP3401613B2 (en) Flow measurement method for fluid machinery
JP2654496B2 (en) Pump discharge flow rate measuring device and measuring method
JP4827007B2 (en) Ultrasonic flow meter
CN205562077U (en) Ultrasonic wave calorimeter pipeline and ultrasonic wave calorimeter
JP2005180988A (en) Ultrasonic flowmeter
RU2517996C1 (en) Ultrasonic flowmeter sensor
JP4827008B2 (en) Ultrasonic flow meter, ultrasonic transducer, ultrasonic transmission / reception unit, and flow measurement method using ultrasonic flow meter