JP2003295842A - Display device and its driving method - Google Patents

Display device and its driving method

Info

Publication number
JP2003295842A
JP2003295842A JP2003024327A JP2003024327A JP2003295842A JP 2003295842 A JP2003295842 A JP 2003295842A JP 2003024327 A JP2003024327 A JP 2003024327A JP 2003024327 A JP2003024327 A JP 2003024327A JP 2003295842 A JP2003295842 A JP 2003295842A
Authority
JP
Japan
Prior art keywords
voltage
display device
signal line
generation circuit
gradation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003024327A
Other languages
Japanese (ja)
Inventor
Tsutomu Ota
田 勉 太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Development and Engineering Corp
Original Assignee
Toshiba Corp
Toshiba Electronic Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Electronic Engineering Co Ltd filed Critical Toshiba Corp
Priority to JP2003024327A priority Critical patent/JP2003295842A/en
Publication of JP2003295842A publication Critical patent/JP2003295842A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Picture Signal Circuits (AREA)
  • Transforming Electric Information Into Light Information (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a display device capable of performing a gamma correction accurately. <P>SOLUTION: The driving circuit part 2 of a liquid crystal display device is provided with an input interface part 11 for inputting a synchronizing signal and digital pixel data and the like from a host computer which is not shown in the figure, a gate driver 12 for controlling the gate voltage of pixel TFTs (thin film transistors) 3, a gamma correction voltage generating circuit 13 for generating a gamma correction voltage, a gradation voltage generating circuit 14 for generating a gradation voltage, a common voltage generating circuit 15 for generating a common voltage Vcom to be applied to counter electrodes 6, a plurality of source drivers 16 each of which is connected to source terminals of the pixel TFTs and controls the voltage of signal lines and a control IC 17 for performing the control of entire bodies of the display device. Since the gamma correction voltage is made to be applied at least to a part of stage intervals of a plurality of resistance elements in the gradation voltage generating circuit 14, the circuit part 2 can perform the gamma correction accurately in accordance with the individual gamma value of the liquid crystal display device to improve the display quality of the display device. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、信号線に供給され
る信号線電圧に対してγ補正を行う表示装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a display device which performs γ correction on a signal line voltage supplied to a signal line.

【0002】[0002]

【従来の技術】一般に、液晶表示装置や有機EL表示装
置等の平面表示装置では、画素の輝度に応じた電圧を信
号線に供給して表示動作を行う。ところが、画面の明る
さは信号線電圧に正比例せず、信号線電圧に対して指数
関数的に変化する。例えば、一般の液晶表示装置にあっ
ては、信号線電圧が小さいときは明るさの変化が緩やか
で、信号線電圧が大きくなるほど明るさが急激に変化す
る。
2. Description of the Related Art Generally, in a flat display device such as a liquid crystal display device or an organic EL display device, a voltage corresponding to the brightness of a pixel is supplied to a signal line to perform a display operation. However, the brightness of the screen is not directly proportional to the signal line voltage and changes exponentially with respect to the signal line voltage. For example, in a general liquid crystal display device, when the signal line voltage is small, the change in brightness is gradual, and as the signal line voltage increases, the brightness changes rapidly.

【0003】個々の液晶表示装置は、固有のガンマ値を
持っているため、ガンマ値に合わせて明るさを調整する
ガンマ(γ)補正を行うのが一般的である。
Since each liquid crystal display device has a unique gamma value, it is general to perform gamma (γ) correction for adjusting the brightness according to the gamma value.

【0004】[0004]

【発明が解決しようとする課題】従来は、対向電極に供
給されるコモン電圧の振幅を調整することにより、γ補
正を行っていた。この方式では、その調整によっては、
ノーマリホワイト(電圧無印加時に最大輝度を表示する
モード)の場合、黒色が白っぽくなる等の不具合が生
じ、表示品質が劣化してしまう。
Conventionally, γ correction has been performed by adjusting the amplitude of the common voltage supplied to the counter electrode. With this method, depending on the adjustment,
In the case of normally white (a mode in which the maximum brightness is displayed when no voltage is applied), a defect such as a blackish whitish occurs and display quality deteriorates.

【0005】本発明は、このような点に鑑みてなされた
ものであり、その目的は、ガンマ補正を精度よく行える
表示装置を提供することにある。
The present invention has been made in view of the above points, and an object thereof is to provide a display device capable of performing gamma correction with high accuracy.

【0006】[0006]

【課題を解決するための手段】上述した課題を解決する
ために、本発明は、列設された信号線および走査線と、
前記信号線および走査線の交点付近に形成される表示画
素と、2種類の基準電圧を複数の抵抗素子で抵抗分圧し
て、前記信号線に供給される階調電圧を生成する階調電
圧生成回路と、前記複数の抵抗素子間の少なくとも一つ
の接続経路に印加されるγ補正用電圧を生成するγ補正
電圧生成回路と、前記階調電圧生成回路で生成された階
調電圧の中から、デジタル画素データに応じた階調電圧
を選択して対応する信号線に供給する信号線電圧生成回
路と、を備える。
In order to solve the above-mentioned problems, the present invention provides a signal line and a scanning line arranged in a row,
A display pixel formed in the vicinity of the intersection of the signal line and the scanning line, and a gradation voltage generation for generating a gradation voltage to be supplied to the signal line by resistance-dividing two kinds of reference voltages with a plurality of resistance elements. A circuit, a γ correction voltage generation circuit that generates a γ correction voltage applied to at least one connection path between the plurality of resistance elements, and a gradation voltage generated by the gradation voltage generation circuit, And a signal line voltage generation circuit that selects a gradation voltage according to digital pixel data and supplies the selected gradation voltage to a corresponding signal line.

【0007】[0007]

【発明の実施の形態】以下、本発明に係る表示装置につ
いて、図面を参照しながら具体的に説明する。図1は本
発明に係る表示装置の一実施形態の概略構成を示すブロ
ック図であり、液晶表示装置の構成を示している。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a display device according to the present invention will be specifically described with reference to the drawings. FIG. 1 is a block diagram showing a schematic configuration of an embodiment of a display device according to the present invention, showing a configuration of a liquid crystal display device.

【0008】図1の液晶表示装置は、画素アレイ部1と
駆動回路部2とに大きく分けられる。画素アレイ部1
は、例えばガラス基板上に複数本列設された信号線Sお
よび走査線Gと、信号線Sおよび走査線Gの交点付近に
形成される画素TFT3と、画素TFT3に接続される
画素電極5と、画素電極5と対向電極6との間に形成さ
れる液晶容量C1と、画素電極5と補助容量電極7との
間に形成される補助容量C2とを有する。
The liquid crystal display device of FIG. 1 is roughly divided into a pixel array section 1 and a drive circuit section 2. Pixel array section 1
Are, for example, a plurality of signal lines S and scanning lines G arranged in a row on a glass substrate, a pixel TFT 3 formed near the intersection of the signal lines S and scanning lines G, and a pixel electrode 5 connected to the pixel TFT 3. The liquid crystal capacitor C1 is formed between the pixel electrode 5 and the counter electrode 6, and the auxiliary capacitor C2 is formed between the pixel electrode 5 and the auxiliary capacitor electrode 7.

【0009】駆動回路部2は、不図示のホストコンピュ
ータから同期信号やデジタル画素データ等を取り込む入
力インタフェース回路11と、画素TFT3のゲート電
圧を制御するゲートドライバ12と、γ補正電圧を生成
するγ補正電圧生成回路13と、階調電圧を生成する階
調電圧生成回路14と、対向電極6に印加するコモン電
圧Vcomを生成するコモン電圧生成回路15と、画素T
FT3のソース端子に接続され信号線の電圧を制御する
ソースドライバ16と、全体の制御を行う制御IC17
とを備えている。
The drive circuit section 2 has an input interface circuit 11 for taking in a synchronizing signal, digital pixel data, etc. from a host computer (not shown), a gate driver 12 for controlling the gate voltage of the pixel TFT 3, and a γ correction voltage γ. A correction voltage generation circuit 13, a gradation voltage generation circuit 14 that generates a gradation voltage, a common voltage generation circuit 15 that generates a common voltage Vcom applied to the counter electrode 6, and a pixel T.
A source driver 16 connected to the source terminal of the FT3 to control the voltage of the signal line, and a control IC 17 for overall control
It has and.

【0010】ソースドライバ16は、画素アレイ部1の
複数の信号線ごとに複数個設けられる、例えばTCP
(テープ・キャリア・パッケージ)で構成される。各ソー
スドライバ16には、階調電圧生成回路14から出力さ
れた階調基準電圧V0〜V9と、入力インタフェース回
路11で取り込んだデジタル画素データとが入力され
る。各ソースドライバ16は、デジタル画素データの値
に応じた階調電圧を階調基準電圧に基づいて生成し、所
望の電圧を対応信号線に供給する。
A plurality of source drivers 16 are provided for each of the plurality of signal lines of the pixel array section 1, for example, TCP.
(Tape carrier package). The gradation reference voltages V0 to V9 output from the gradation voltage generation circuit 14 and the digital pixel data captured by the input interface circuit 11 are input to each source driver 16. Each source driver 16 generates a gradation voltage according to the value of the digital pixel data based on the gradation reference voltage, and supplies a desired voltage to the corresponding signal line.

【0011】図2は階調電圧生成回路14の内部構成を
示す回路図である。図示のように、階調電圧生成回路1
4は、直列接続された複数の抵抗素子からなる抵抗アレ
イ18を有し、抵抗アレイ18の両端には互いに反転す
る基準電圧Vref1,Vref2(例えば、一方が0Vで他方
が5V)が供給される。これら基準電圧Vref1,Vref2
の電圧レベルは、液晶表示装置の焼き付き、あるいはフ
リッカを低減するために1水平ライン等の所定の水平ラ
インごとや1フレームごとに反転する。
FIG. 2 is a circuit diagram showing the internal structure of the gradation voltage generating circuit 14. As shown, the gradation voltage generation circuit 1
Reference numeral 4 denotes a resistance array 18 including a plurality of resistance elements connected in series, and reference voltages Vref1 and Vref2 (for example, one of which is 0V and the other of which is 5V) that are mutually inverted are supplied to both ends of the resistance array 18. . These reference voltages Vref1 and Vref2
The voltage level is inverted every predetermined horizontal line such as one horizontal line or every frame in order to reduce burn-in or flicker of the liquid crystal display device.

【0012】図2の複数の直列接続された抵抗素子の段
間から階調電圧V0〜V9が抵抗分圧されて出力され
る。階調電圧V0〜V9は、複数の抵抗素子の抵抗比に
応じた電圧レベルになる。
The gradation voltages V0 to V9 are resistance-divided and output from between the stages of the plurality of resistance elements connected in series in FIG. The gradation voltages V0 to V9 have voltage levels according to the resistance ratio of the plurality of resistance elements.

【0013】複数の抵抗素子の段間のうち、少なくとも
一箇所に対して、γ補正電圧生成回路13からのγ補正
電圧が印加される。図2では、階調電圧V1,V2を出力す
るノードa,bにγ補正電圧を印加する例を示してい
る。
The γ correction voltage from the γ correction voltage generation circuit 13 is applied to at least one of the stages of the plurality of resistance elements. FIG. 2 shows an example in which the γ correction voltage is applied to the nodes a and b that output the gradation voltages V1 and V2.

【0014】図3はγ補正電圧生成回路13の内部構成
の一例を示す回路図である。図3のγ補正電圧生成回路
13は、オペアンプop1,op2と、入力端子CONTと
オペアンプop1の出力端子との間に接続される抵抗素
子R11,R12と、オペアンプop1の正入力端子に接続
される抵抗R13,R14と、オペアンプop1の出力端子
とオペアンプop2の負入力端子との間に直列接続され
る抵抗素子R15、キャパシタC3および抵抗素子R16
と、オペアンプop1の出力電圧を極性POLに応じた
電圧に変換するトランジスタTr1、ダイオードD1お
よび抵抗素子R17,R18と、オペアンプop2の負入力
端子と出力端子との間に接続される抵抗調整回路21
と、オペアンプop2の正入力端子に接続される抵抗調
整回路22と、オペアンプop2の出力端子に接続され
るプシュプル回路23とを有する。抵抗調整回路22に
は、コモン電圧生成回路15に供給される外部電源電圧
Vccと同じ電圧が印加される。
FIG. 3 is a circuit diagram showing an example of the internal configuration of the γ correction voltage generation circuit 13. The γ-correction voltage generation circuit 13 in FIG. 3 is connected to operational amplifiers op1 and op2, resistance elements R11 and R12 connected between the input terminal CONT and the output terminal of the operational amplifier op1, and the positive input terminal of the operational amplifier op1. A resistor element R15, a capacitor C3, and a resistor element R16 connected in series between the resistors R13 and R14 and the output terminal of the operational amplifier op1 and the negative input terminal of the operational amplifier op2.
A transistor Tr1, a diode D1 and resistance elements R17 and R18 for converting the output voltage of the operational amplifier op1 into a voltage according to the polarity POL, and a resistance adjusting circuit 21 connected between the negative input terminal and the output terminal of the operational amplifier op2.
And a resistance adjustment circuit 22 connected to the positive input terminal of the operational amplifier op2, and a push-pull circuit 23 connected to the output terminal of the operational amplifier op2. The same voltage as the external power supply voltage Vcc supplied to the common voltage generation circuit 15 is applied to the resistance adjustment circuit 22.

【0015】図3の回路において、入力端子CONTには0
〜3.3Vの範囲内の直流電圧が印加される。オペアン
プop1の出力電圧(ノードc)は、図4に示すように
入力端子CONTの電圧により決まる直流電圧になる。キャ
パシタC3の両端のノードd,eはそれぞれ図5および
図6に示すように、極性信号POLにより変化する矩形
波電圧になる。オペアンプop2の出力電圧(ノード
f)は、図7に示すように入力端子CONTが0Vと3.3
Vのときは同一電圧になり、CONTが1.65Vのときは極性
信号POLに依存しない直流電圧になる。
In the circuit of FIG. 3, 0 is input to the input terminal CONT.
A DC voltage in the range of -3.3V is applied. The output voltage (node c) of the operational amplifier op1 becomes a DC voltage determined by the voltage of the input terminal CONT as shown in FIG. The nodes d and e on both ends of the capacitor C3 become a rectangular wave voltage that changes according to the polarity signal POL, as shown in FIGS. 5 and 6, respectively. The output voltage (node f) of the operational amplifier op2 is 3.3V when the input terminal CONT is 0V and 3.3V as shown in FIG.
When it is V, it becomes the same voltage, and when CONT is 1.65V, it becomes a DC voltage which does not depend on the polarity signal POL.

【0016】入力端子CONTには、コモン電圧生成回路1
5に供給されるコモン電圧生成用の外部電圧が印加され
る。すなわち、γ補正電圧生成回路13は、コモン電圧
生成回路15に供給されるコモン電圧生成用の外部電圧
を用いてγ補正電圧を生成する。このため、γ補正電圧
を生成するための専用の電源電圧を設ける必要がなく、
回路構成を簡略化できる。
The common voltage generating circuit 1 is connected to the input terminal CONT.
An external voltage for generating a common voltage supplied to 5 is applied. That is, the γ correction voltage generation circuit 13 generates the γ correction voltage using the external voltage for common voltage generation supplied to the common voltage generation circuit 15. Therefore, there is no need to provide a dedicated power supply voltage for generating the γ correction voltage,
The circuit configuration can be simplified.

【0017】図4〜図7に示すように、γ補正電圧生成
回路13から出力されるγ補正電圧は、入力端子CONTに
印加される電圧に応じて変化する電圧である。γ補正電
圧は、階調電圧生成回路14内の複数の抵抗素子の段間
(例えば、図2では、ノードa,b)に印加される。こ
れにより、複数の抵抗素子から出力される階調電圧の電
圧レベルを個別に調整できる。
As shown in FIGS. 4 to 7, the γ correction voltage output from the γ correction voltage generating circuit 13 is a voltage that changes according to the voltage applied to the input terminal CONT. The γ correction voltage is applied between the stages of the plurality of resistance elements in the gradation voltage generation circuit 14 (for example, nodes a and b in FIG. 2). As a result, the voltage level of the gradation voltage output from the plurality of resistance elements can be individually adjusted.

【0018】図8はデジタル画素データの値と階調電圧
との関係を示す図である。本実施形態の場合、点線のよ
うな線形な特性にはならず、実線のように非線形な特性
になる。これにより、中間調での表示特性を向上でき
る。
FIG. 8 is a diagram showing the relationship between the value of digital pixel data and the gradation voltage. In the case of the present embodiment, the characteristic does not have a linear characteristic like a dotted line but has a nonlinear characteristic like a solid line. As a result, the display characteristics in the halftone can be improved.

【0019】図2では、ノードa,bにγ補正電圧を印
加する例を示しているが、γ補正電圧を印加する場所は
特に制限されない。実際には、個々の液晶表示装置の特
性に合わせてγ補正電圧を印加する場所を決定するのが
望ましい。
Although FIG. 2 shows an example in which the γ correction voltage is applied to the nodes a and b, the place where the γ correction voltage is applied is not particularly limited. In practice, it is desirable to determine the place to apply the γ correction voltage according to the characteristics of each liquid crystal display device.

【0020】このように、本実施形態では、階調電圧生
成回路14内の複数の抵抗素子の段間の少なくとも一部
に、γ補正電圧を印加するようにしたため、個々の液晶
表示装置のガンマ値に合わせてγ補正を精度よく行うこ
とができ、表示品質を向上できる。このため、個々の液
晶表示装置ごとにガンマ値にばらつきがあっても、ガン
マ補正電圧を印加する場所と電圧レベルを制御すること
により、そのばらつきの影響を受けなくなる。
As described above, in the present embodiment, since the γ correction voltage is applied to at least a part of the stages of the plurality of resistance elements in the grayscale voltage generation circuit 14, the γ correction voltage of each liquid crystal display device is applied. Γ correction can be performed accurately according to the value, and the display quality can be improved. Therefore, even if the gamma value varies among the individual liquid crystal display devices, it is not affected by the variation by controlling the location to apply the gamma correction voltage and the voltage level.

【0021】上述した実施形態では、γ補正電圧生成回
路13と階調電圧生成回路14をソースドライバ16と
は別個に設ける例を説明したが、γ補正電圧生成回路1
3と階調電圧生成回路14の少なくとも一方をソースド
ライバ16の内部に設けてもよい。
In the above-described embodiment, an example in which the γ correction voltage generation circuit 13 and the gradation voltage generation circuit 14 are provided separately from the source driver 16 has been described, but the γ correction voltage generation circuit 1
At least one of 3 and the gradation voltage generation circuit 14 may be provided inside the source driver 16.

【0022】また、上述した実施形態では、本発明に係
る表示装置を液晶表示装置に適用した例を説明したが、
本発明は列設された信号線を駆動制御する他の表示装置
(例えば、プラズマディスプレイやEL表示装置など)
にも適用可能である。
Further, in the above-described embodiment, an example in which the display device according to the present invention is applied to a liquid crystal display device has been described.
The present invention is another display device (for example, a plasma display or an EL display device) that drives and controls signal lines arranged in a row.
It is also applicable to.

【0023】[0023]

【発明の効果】以上詳細に説明したように、本発明によ
れば、複数の抵抗素子間の接続ノードの少なくとも一部
にγ補正電圧を印加した状態で階調電圧を生成するた
め、個々の表示装置の特性に合わせた精度のよいγ補正
を行うことができる。
As described above in detail, according to the present invention, since the gray scale voltage is generated in the state where the γ correction voltage is applied to at least a part of the connection nodes between the plurality of resistance elements, the individual gray scale voltages are generated. It is possible to perform accurate γ correction according to the characteristics of the display device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る表示装置の一実施形態の概略構成
を示すブロック図。
FIG. 1 is a block diagram showing a schematic configuration of an embodiment of a display device according to the present invention.

【図2】階調電圧生成回路の内部構成を示す回路図。FIG. 2 is a circuit diagram showing an internal configuration of a grayscale voltage generation circuit.

【図3】γ補正電圧生成回路13の内部構成の一例を示
す回路図。
FIG. 3 is a circuit diagram showing an example of an internal configuration of a γ correction voltage generation circuit 13.

【図4】ノードcの電圧波形図。FIG. 4 is a voltage waveform diagram of a node c.

【図5】ノードdの電圧波形図。FIG. 5 is a voltage waveform diagram of a node d.

【図6】ノードeの電圧波形図。FIG. 6 is a voltage waveform diagram of a node e.

【図7】ノードfの電圧波形図。FIG. 7 is a voltage waveform diagram of a node f.

【図8】デジタル画素データの値と階調電圧との関係を
示す図。
FIG. 8 is a diagram showing a relationship between digital pixel data values and gradation voltages.

【符号の説明】[Explanation of symbols]

1 画素アレイ部 2 駆動回路部 3 画素TFT 11 入力インタフェース回路 12 ゲートドライバ 13 ソースドライバ 14 階調電圧生成回路 15 コモン電圧生成回路 16 ソースドライバ 17 制御IC 1 Pixel array section 2 drive circuit section 3 pixel TFT 11 Input interface circuit 12 Gate driver 13 Source driver 14 Grayscale voltage generation circuit 15 Common voltage generation circuit 16 Source driver 17 Control IC

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G09G 3/20 624 G09G 3/20 624D 641 641C 641Q H04N 5/202 H04N 5/202 5/66 102 5/66 102B Fターム(参考) 2H093 NA16 NA32 NA51 NC03 NC13 NC16 ND06 ND58 5C006 AA16 AC21 AC25 AF46 AF51 AF52 AF53 AF61 AF71 AF83 BB16 BC03 BC12 BF25 BF43 FA18 FA56 5C021 PA95 PA99 XA34 XA35 5C058 AA09 BA01 BA13 5C080 AA10 BB05 DD04 EE29 FF03 JJ02 JJ03 JJ04 JJ05 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) G09G 3/20 624 G09G 3/20 624D 641 641C 641Q H04N 5/202 H04N 5/202 5/66 102 5 / 66 102B F term (reference) 2H093 NA16 NA32 NA51 NC03 NC13 NC16 ND06 ND58 5C006 AA16 AC21 AC25 AF46 AF51 AF52 AF53 AF61 AF71 AF83 BB16 BC03 BC12 BF25 BF43 FA18 FA56 5C021 PA95 PA99 XA34 XA35 5C013 BB05A01 BA01 BA0508ABB0901 JJ03 JJ04 JJ05

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】列設された信号線および走査線と、 前記信号線および走査線の交点付近に形成される表示画
素と、 2種類の基準電圧を複数の抵抗素子で抵抗分圧して、前
記信号線に供給される階調電圧を生成する階調電圧生成
回路と、 前記複数の抵抗素子間の少なくとも一つの接続経路に印
加されるγ補正用電圧を生成するγ補正電圧生成回路
と、 前記階調電圧生成回路で生成された階調電圧の中から、
デジタル画素データに応じた階調電圧を選択して対応す
る信号線に供給する信号線電圧生成回路と、を備えるこ
とを特徴とする表示装置。
1. A signal line and a scanning line arranged in a row, a display pixel formed near an intersection of the signal line and the scanning line, and two types of reference voltages are resistance-divided by a plurality of resistance elements, A gradation voltage generating circuit for generating a gradation voltage supplied to a signal line; a γ correction voltage generating circuit for generating a γ correction voltage applied to at least one connection path between the plurality of resistance elements; From the gradation voltages generated by the gradation voltage generation circuit,
A signal line voltage generation circuit that selects a gradation voltage according to digital pixel data and supplies the selected signal line to a corresponding signal line.
【請求項2】前記複数の抵抗素子は直列接続されて、隣
接する前記抵抗素子間の接続経路のうち、少なくとも一
つの接続経路に前記γ補正用電圧が印加されることを特
徴とする請求項1に記載の表示装置。
2. The plurality of resistance elements are connected in series, and the γ correction voltage is applied to at least one connection path among connection paths between the adjacent resistance elements. The display device according to 1.
【請求項3】前記複数の抵抗素子は直列接続されて、隣
接する前記抵抗素子間の接続経路のうち、少なくとも二
つの接続経路に前記γ補正用電圧が印加され、 前記γ補正電圧生成回路は、前記少なくとも二つの接続
経路のそれぞれに印加される前記γ補正用電圧の電圧レ
ベルを個別に制御することを特徴とする請求項1に記載
の表示装置。
3. The plurality of resistance elements are connected in series, and the γ correction voltage is applied to at least two connection paths among connection paths between the adjacent resistance elements, and the γ correction voltage generation circuit is 2. The display device according to claim 1, wherein the voltage level of the γ correction voltage applied to each of the at least two connection paths is individually controlled.
【請求項4】前記γ補正用電圧は、デジタル画素データ
と階調電圧とが非線形な関係になるような電圧値に設定
されることを特徴とする請求項1及至3のいずれかに記
載の表示装置。
4. The gamma correction voltage is set to a voltage value such that the digital pixel data and the gradation voltage have a non-linear relationship. Display device.
【請求項5】前記γ補正電圧生成回路は、入力制御信号
および極性信号に応じた電圧レベルの前記γ補正用電圧
を生成することを特徴とする請求項1及至4のいずれか
に記載の表示装置。
5. The display according to claim 1, wherein the γ correction voltage generation circuit generates the γ correction voltage having a voltage level according to an input control signal and a polarity signal. apparatus.
【請求項6】前記入力制御信号は、前記階調電圧生成回
路に供給される前記2種類の基準電圧の間の電圧である
ことを特徴とする請求項5に記載の表示装置。
6. The display device according to claim 5, wherein the input control signal is a voltage between the two types of reference voltages supplied to the grayscale voltage generation circuit.
【請求項7】前記入力制御信号は、予め設定された複数
種類の直流電圧信号のいずれかであることを特徴とする
請求項5または6に記載の表示装置。
7. The display device according to claim 5, wherein the input control signal is one of a plurality of preset DC voltage signals.
【請求項8】前記表示装置に対向配置される対向電極の
電圧は前記入力制御信号に基づいて設定されることを特
徴とする請求項5及至7のいずれかに記載の表示装置。
8. The display device according to claim 5, wherein a voltage of a counter electrode arranged to face the display device is set based on the input control signal.
【請求項9】画素アレイ基板と、 前記画素アレイ基板に対向配置され、対向電極が形成さ
れる対向基板と、を備え、 前記画素アレイ基板は、 列設された信号線および走査線と、 前記信号線および走査線の交点付近に形成される表示画
素と、 2種類の基準電圧を複数の抵抗素子で抵抗分圧して、前
記信号線に供給される階調電圧を生成する階調電圧生成
回路と、 前記複数の抵抗素子間の少なくとも一つの接続経路に印
加されるγ補正用電圧を生成するγ補正電圧生成回路
と、 前記階調電圧生成回路で生成された階調電圧の中から、
デジタル画素データに応じた階調電圧を選択して対応す
る信号線に供給する信号線電圧生成回路と、を有するこ
とを特徴とする表示装置。
9. A pixel array substrate, and a counter substrate which is arranged to face the pixel array substrate and has a counter electrode formed thereon, wherein the pixel array substrate includes signal lines and scan lines arranged in a row, A display pixel formed near the intersection of the signal line and the scanning line, and a gradation voltage generation circuit for generating a gradation voltage supplied to the signal line by resistance-dividing two kinds of reference voltages with a plurality of resistance elements. A γ correction voltage generation circuit for generating a γ correction voltage applied to at least one connection path between the plurality of resistance elements, and a gray scale voltage generated by the gray scale voltage generation circuit,
And a signal line voltage generation circuit that selects a gradation voltage according to digital pixel data and supplies the selected signal to a corresponding signal line.
【請求項10】列設された信号線および走査線と、 前記信号線および走査線の交点付近に形成される表示画
素と、を備えた表示装置の駆動方法は、 2種類の基準電圧を複数の抵抗素子で抵抗分圧して、前
記信号線に供給される階調電圧を生成し、 前記複数の抵抗素子間の少なくとも一つの接続経路に印
加されるγ補正用電圧を生成し、 前記生成された階調電圧の中から、デジタル画素データ
に応じた階調電圧を選択して対応する信号線に供給する
ことを特徴とする表示装置の駆動方法。
10. A method of driving a display device, comprising: a signal line and a scanning line arranged in a row; and a display pixel formed near an intersection of the signal line and the scanning line. Resistance-dividing the resistance element to generate a gradation voltage to be supplied to the signal line, generate a γ-correction voltage applied to at least one connection path between the plurality of resistance elements, and A method of driving a display device, wherein a grayscale voltage corresponding to digital pixel data is selected from the grayscale voltages and supplied to a corresponding signal line.
JP2003024327A 2002-01-31 2003-01-31 Display device and its driving method Pending JP2003295842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003024327A JP2003295842A (en) 2002-01-31 2003-01-31 Display device and its driving method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002-24257 2002-01-31
JP2002024257 2002-01-31
JP2003024327A JP2003295842A (en) 2002-01-31 2003-01-31 Display device and its driving method

Publications (1)

Publication Number Publication Date
JP2003295842A true JP2003295842A (en) 2003-10-15

Family

ID=29253410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003024327A Pending JP2003295842A (en) 2002-01-31 2003-01-31 Display device and its driving method

Country Status (1)

Country Link
JP (1) JP2003295842A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005081218A1 (en) * 2004-02-23 2005-09-01 Toshiba Matsushita Display Technology Co., Ltd. Display signal processing apparatus and display apparatus
JP2008102235A (en) * 2006-10-18 2008-05-01 Sony Corp Display device
US8847941B2 (en) 2008-09-30 2014-09-30 Fujitsu Ten Limited Display device and display control device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005081218A1 (en) * 2004-02-23 2005-09-01 Toshiba Matsushita Display Technology Co., Ltd. Display signal processing apparatus and display apparatus
KR100766632B1 (en) * 2004-02-23 2007-10-15 도시바 마쯔시따 디스플레이 테크놀로지 컴퍼니, 리미티드 Display signal processing apparatus and display apparatus
US8698720B2 (en) 2004-02-23 2014-04-15 Japan Display Inc. Display signal processing device and display device
JP2008102235A (en) * 2006-10-18 2008-05-01 Sony Corp Display device
US8847941B2 (en) 2008-09-30 2014-09-30 Fujitsu Ten Limited Display device and display control device

Similar Documents

Publication Publication Date Title
US6731259B2 (en) Driving circuit of a liquid crystal display device
JP4278510B2 (en) Liquid crystal display device and driving method
KR0136966B1 (en) A gray voltage generator for a liquid crystal display equiped with a function of controlling viewing angle
JP4193771B2 (en) Gradation voltage generation circuit and drive circuit
KR0176295B1 (en) Liquid crystal display device
KR101361621B1 (en) Display device and method for driving the same
JP2989952B2 (en) Active matrix liquid crystal display
JP3068465B2 (en) Liquid crystal display
JP2004177827A (en) Device for driving liquid crystal
JPH0540451A (en) Liquid crystal driving voltage generating circuit
US6798146B2 (en) Display apparatus and method of driving the same
JP2008145496A (en) Liquid crystal display device, and common electrode driving circuit therefor
JP4373914B2 (en) Driving device for liquid crystal display device
KR100485508B1 (en) Liquid crystal display device and driving method thereof
JP2003295842A (en) Display device and its driving method
JP4877477B2 (en) Display drive device and drive control method thereof
KR102526019B1 (en) Display device
KR101097585B1 (en) Voltage Generating Circuit For Liquid Crystal Display And Liquid Crystal Display Using The Same
KR20030093835A (en) Gamma-correction method and apparatus of liquid crystal display device
JP2009109924A (en) Liquid crystal display device, common electrode driving circuit and method for driving liquid crystal display device
KR20100060202A (en) Liquid crystal display device
KR20070063737A (en) Apparatus and method for driving lcd
KR20040100559A (en) Gamma reference voltage generation of Liquid Crystal Display Device
KR100803725B1 (en) Common voltage generator
KR101123332B1 (en) device and method for gamma voltage supply

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060120

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090703