JP2003294346A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JP2003294346A
JP2003294346A JP2002097628A JP2002097628A JP2003294346A JP 2003294346 A JP2003294346 A JP 2003294346A JP 2002097628 A JP2002097628 A JP 2002097628A JP 2002097628 A JP2002097628 A JP 2002097628A JP 2003294346 A JP2003294346 A JP 2003294346A
Authority
JP
Japan
Prior art keywords
evaporator
refrigerating
refrigerant
refrigerator
stage compression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002097628A
Other languages
Japanese (ja)
Inventor
Takashi Doi
隆司 土井
Akihiro Noguchi
明裕 野口
Koji Kashima
弘次 鹿島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002097628A priority Critical patent/JP2003294346A/en
Publication of JP2003294346A publication Critical patent/JP2003294346A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control
    • F25B2600/112Fan speed control of evaporator fans
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerator for surely performing a cooling net of a refrigerating room when starting a two-stage compression compressor. <P>SOLUTION: A refrigerating cycle 22 has the two-stage compression compressor 18, a condenser 24, an R evaporator 10, an F evaporator 14, and a gas-liquid separator 28. When starting the compressor 18, after waiting time of one minute passes from its starting time, an R fan 12 and an F fan 16 are rotated for the first time when a temperature of the F evaporator 14 becomes an air blower rotating temperature being a temperature lower by 2°C than an F target temperature. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、2段圧縮コンプレ
ッサを用いて2つの蒸発器に冷媒を送る冷凍サイクルを
有する冷蔵庫に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerator having a refrigeration cycle for sending a refrigerant to two evaporators by using a two-stage compression compressor.

【0002】[0002]

【従来の技術】2段圧縮コンプレッサ(以下、単にコン
プレッサという)と2つの蒸発器を持つ冷凍サイクルを
有する冷蔵庫としては、次のような構成を持つものが提
案されている(特開平3−164664号)。
2. Description of the Related Art As a refrigerator having a two-stage compression compressor (hereinafter, simply referred to as a compressor) and a refrigeration cycle having two evaporators, a refrigerator having the following structure has been proposed (Japanese Patent Laid-Open No. 3-164664). issue).

【0003】この従来の冷蔵庫について、図13の冷凍
サイクル100の各段階を説明する。
With respect to this conventional refrigerator, each stage of the refrigeration cycle 100 shown in FIG. 13 will be described.

【0004】(1)コンプレッサ102の高圧側吐出口
から吐出された高圧ガス冷媒は、凝縮器104内部で凝
縮され、ガス冷媒と液冷媒よりなる高圧の二相冷媒とな
る。
(1) The high-pressure gas refrigerant discharged from the high-pressure side discharge port of the compressor 102 is condensed inside the condenser 104 and becomes a high-pressure two-phase refrigerant composed of a gas refrigerant and a liquid refrigerant.

【0005】(2)この高圧二相冷媒は、冷蔵用キャピ
ラリーチューブ106で減圧され、中間圧の二相冷媒と
なって冷蔵室用蒸発器(以下、Rエバという)108に
入る。
(2) This high-pressure two-phase refrigerant is decompressed by the refrigerating capillary tube 106 to become an intermediate-pressure two-phase refrigerant and enters the refrigerating compartment evaporator (hereinafter referred to as R-eva) 108.

【0006】(3)Rエバ108内部で冷媒は一部蒸発
し、二相状態で気液分離器110に入り、液冷媒とガス
冷媒に分離される。Rエバ108の冷気は冷蔵室用送風
機(Rファンという)108で冷蔵室に送られる。
(3) The refrigerant partially evaporates inside the R evaporator 108, enters the gas-liquid separator 110 in a two-phase state, and is separated into a liquid refrigerant and a gas refrigerant. The cool air from the R evaporator 108 is sent to the refrigerating compartment by a refrigerating compartment blower (referred to as R fan) 108.

【0007】(4)気液分離器110で分離されたガス
冷媒は、中間圧サクションパイプ112を経てコンプレ
ッサ102の中間圧側吸込口に戻る。
(4) The gas refrigerant separated by the gas-liquid separator 110 returns to the intermediate pressure side suction port of the compressor 102 through the intermediate pressure suction pipe 112.

【0008】(5)気液分離器110内部で分離された
液冷媒は、冷凍用キャピラリーチューブ114で減圧さ
れ、低圧の二相冷媒となって冷凍室用蒸発器(以下、F
エバという)116に入る。
(5) The liquid refrigerant separated inside the gas-liquid separator 110 is decompressed by the freezing capillary tube 114 to become a low-pressure two-phase refrigerant, and a freezer evaporator (hereinafter, referred to as F).
Enter Eva) 116.

【0009】(6)Fエバ116内部で冷媒は蒸発して
ガス冷媒となって、低圧サクションパイプ118を経て
コンプレッサ102の低圧側吸込口に戻る。Fエバ11
6の冷気は冷凍室用送風機120で冷凍室に送られる。
(6) The refrigerant evaporates inside the F-eva 116 to become a gas refrigerant, and returns to the low-pressure side suction port of the compressor 102 through the low-pressure suction pipe 118. F Eva 11
The cool air of No. 6 is sent to the freezer by the freezer fan 120.

【0010】[0010]

【発明が解決しようとする課題】上記の冷凍サイクル1
00において、Rエバ108とFエバ116の蒸発温度
と能力の関係で、Rエバ108には、Fエバ116の3
倍程度の冷媒が流れることが分かっている。例えば、冷
凍サイクル100に3kgの冷媒が流れているとする
と、Rエバ108で蒸発しきれなかった冷媒がFエバ1
16に流れるため、Rエバ108では実質的に2kgの
冷媒が蒸発して冷却し、残りの1kgの冷媒はそのまま
Rエバ108内部を流れてFエバ116に流れて冷却す
る。従って、Rエバ108には冷却に全く寄与していな
い冷媒があり、この状態でコンプレッサ102が停止す
ると、Rエバ108とFエバ116に冷媒が溜まること
となる。特に、Rエバ108には多くの冷媒が溜まり易
い傾向となる。
The above refrigeration cycle 1
At the time of 00, due to the relationship between the evaporation temperatures and the capacities of the R-evaporator 108 and the F-evaporator 116, the R-evaporator 108 has three
It is known that about twice as much refrigerant flows. For example, if 3 kg of refrigerant flows in the refrigeration cycle 100, the refrigerant that could not be completely evaporated by the R-evaporator 108 is F-evaporator 1.
Since it flows to 16, the refrigerant of substantially 2 kg is evaporated and cooled in the R-evaporator 108, and the remaining 1 kg of refrigerant flows inside the R-evaporator 108 as it is and flows to the F-evaporator 116 for cooling. Therefore, there is a refrigerant that does not contribute to cooling at all in the R-evaporator 108, and if the compressor 102 stops in this state, the refrigerant will accumulate in the R-evaluator 108 and the F-evaluator 116. In particular, a large amount of refrigerant tends to accumulate in the R-evaporator 108.

【0011】すなわち、冷却に寄与していない冷媒がR
エバ108に存在し、この圧力も低いため溜まり易い。
That is, the refrigerant that does not contribute to cooling is R
Since it exists in the evaporator 108 and this pressure is low, it easily accumulates.

【0012】Fエバ116にも溜まる冷媒があるが、も
ともと流れている冷媒量が少ないことと、冷凍用キャピ
ラリーチューブ106がRエバ108からの流れを阻害
していることなどにより、Fエバ116に溜まる冷媒の
量は少ない。
Although there is some refrigerant that also collects in the F-evaporator 116, the amount of the refrigerant that originally flows is small, and the freezing capillary tube 106 blocks the flow from the R-evaporator 108. The amount of accumulated refrigerant is small.

【0013】この状態でコンプレッサ102を起動する
と冷媒の挙動は次のような内容となる。
When the compressor 102 is started in this state, the behavior of the refrigerant becomes as follows.

【0014】第1に、Rエバ108の冷媒が蒸発してコ
ンプレッサ102に戻り、凝縮器104内部の冷媒はそ
のままRエバ108に流れる。
First, the refrigerant in the R-evaporator 108 evaporates and returns to the compressor 102, and the refrigerant in the condenser 104 flows to the R-evaporator 108 as it is.

【0015】第2に、Fエバ116内部の冷媒は蒸発し
てコンプレッサ102に戻り、Rエバ108からの冷媒
の流れに対しては冷凍用キャピラリーチューブ114が
その流れを阻害し、Fエバ116内部の冷媒がなくなり
乾き気味となり、ガス化して冷却できなくなり、最終的
にFエバ116による冷却が行えない。
Second, the refrigerant inside the F-eva 116 evaporates and returns to the compressor 102, and the freezing capillary tube 114 blocks the flow of the refrigerant from the R-eva 108, and the inside of the F-eva 116 is blocked. The refrigerant of No. 2 disappears and it becomes dry, so that it cannot be cooled by being gasified, and finally the cooling by the F-eva 116 cannot be performed.

【0016】以上のように、通常の冷却を終了してコン
プレッサ102が停止した後、再度冷却が必要になった
時にコンプレッサ102を起動すると、Fエバ116に
よる冷却ができなくなるという問題点がある。
As described above, if the compressor 102 is started when the cooling is required again after the normal cooling is completed and the compressor 102 is stopped, there is a problem that the cooling by the F-eva 116 cannot be performed.

【0017】そこで、本発明は上記問題点に鑑み、2段
圧縮コンプレッサが起動する時に、冷凍室の冷却網を確
実に行うことができる冷蔵庫を提供するものである。
Therefore, in view of the above problems, the present invention provides a refrigerator capable of reliably performing a cooling network of a freezing chamber when a two-stage compression compressor is activated.

【0018】[0018]

【課題を解決するための手段】請求項1の発明は、2段
圧縮コンプレッサ、凝縮器、冷蔵室用蒸発器、冷凍室用
蒸発器、気液分離手段、冷蔵用絞り手段、冷凍用絞り手
段を含み、前記2段圧縮コンプレッサの高圧側吐出口か
ら吐出された冷媒が、前記凝縮器、前記冷蔵用絞り手
段、前記冷蔵室用蒸発器を経て前記気液分離手段に流入
し、この前記気液分離手段で分離されたガス冷媒が、中
間圧サクションパイプを経て前記2段圧縮コンプレッサ
の中間圧側吸込口から吸い込まれ、前記気液分離手段で
分離された液冷媒が、前記冷凍用絞り手段、前記冷凍室
用蒸発器、低圧サクションパイプを経て前記2段圧縮コ
ンプレッサの低圧側吸込口から吸い込まれるように冷凍
サイクルを構成し、前記冷蔵室用蒸発器からの冷気を冷
蔵室へ送る冷蔵室用送風機と、前記冷凍室用蒸発器から
の冷気を冷凍室へ送る冷凍室用送風機と、を有する冷蔵
庫において、前記冷蔵庫の制御手段は、前記2段圧縮コ
ンプレッサを起動した時から所定の待機時間経過後に、
前記冷凍室用蒸発器の温度が送風機回転温度まで低くな
った時に、前記冷蔵室用送風機と前記冷蔵室用送風機と
を回転させることを特徴とする冷蔵庫である。
According to a first aspect of the present invention, a two-stage compression compressor, a condenser, a refrigerating compartment evaporator, a freezing compartment evaporator, a gas-liquid separating means, a refrigerating restricting means, and a freezing restricting means. The refrigerant discharged from the high-pressure side discharge port of the two-stage compression compressor flows into the gas-liquid separation means through the condenser, the refrigerating expansion means, and the refrigerating compartment evaporator, and the gas is separated. The gas refrigerant separated by the liquid separating means is sucked from the intermediate pressure side suction port of the two-stage compression compressor via the intermediate pressure suction pipe, and the liquid refrigerant separated by the gas-liquid separating means is the refrigerating expansion means, For a refrigerating room, in which a refrigerating cycle is configured so as to be sucked from a low pressure side suction port of the two-stage compression compressor through the freezing chamber evaporator and a low pressure suction pipe, and cool air from the refrigerating room evaporator is sent to a refrigerating room. In a refrigerator having an air blower and a blower for the freezer compartment that sends the cool air from the evaporator for the freezer compartment to the freezer compartment, the control means of the refrigerator has a predetermined standby time from when the two-stage compression compressor is activated. later,
A refrigerator characterized in that, when the temperature of the evaporator for the freezer compartment becomes lower than the rotation temperature of the blower, the blower for the refrigerating compartment and the blower for the refrigerating compartment are rotated.

【0019】請求項2の発明は、2段圧縮コンプレッ
サ、凝縮器、冷蔵室用蒸発器、冷凍室用蒸発器、気液分
離手段、冷蔵用絞り手段、冷凍用絞り手段を含み、前記
2段圧縮コンプレッサの高圧側吐出口から吐出された冷
媒が、前記凝縮器、前記冷蔵用絞り手段、前記冷蔵室用
蒸発器を経て前記気液分離手段に流入し、前記気液分離
手段で分離されたガス冷媒が、中間圧サクションパイプ
を経て前記2段圧縮コンプレッサの中間圧側吸込口から
吸い込まれ、前記気液分離手段で分離された液冷媒が、
前記冷凍用絞り手段、前記冷凍室用蒸発器、低圧サクシ
ョンパイプを経て前記2段圧縮コンプレッサの低圧側吸
込口から吸い込まれるように冷凍サイクルを構成し、前
記冷蔵室用蒸発器からの冷気を冷蔵室へ送る冷蔵室用送
風機と、前記冷凍室用蒸発器からの冷気を冷凍室へ送る
冷凍室用送風機と、を有する冷蔵庫において、前記冷蔵
用絞り手段が、膨張量を可変制御できる可変式膨張弁で
あり、前記冷蔵庫の制御手段は、前記2段圧縮コンプレ
ッサを起動すると共に前記可変式膨張弁を最大開度にし
た時から所定の待機時間経過後に、前記冷凍室用蒸発器
の温度が送風機回転温度まで低くなった時に、前記可変
式膨張弁の開度を通常の冷却状態の開度にすると共に前
記冷蔵室用送風機と前記冷蔵室用送風機とを回転させる
ことを特徴とする冷蔵庫である。
The invention of claim 2 includes a two-stage compression compressor, a condenser, an evaporator for a refrigerating compartment, an evaporator for a freezing compartment, a gas-liquid separating means, a refrigerating squeezing means, and a freezing squeezing means. The refrigerant discharged from the high-pressure side discharge port of the compression compressor flows into the gas-liquid separating means via the condenser, the refrigerating expansion means, and the refrigerator compartment evaporator, and is separated by the gas-liquid separating means. The gas refrigerant is sucked from the intermediate pressure side suction port of the two-stage compression compressor through the intermediate pressure suction pipe, and the liquid refrigerant separated by the gas-liquid separation means is
A refrigeration cycle is configured such that the refrigeration cycle is configured to be sucked from the low-pressure side suction port of the two-stage compression compressor via the refrigerating expansion means, the freezer compartment evaporator, and the low-pressure suction pipe, and cool air from the refrigerating compartment evaporator is refrigerated. In a refrigerator having a refrigerating room blower for sending to a cold room and a freezing room blower for sending cold air from the freezing room evaporator to the freezing room, the refrigerating expansion means is capable of variably controlling an expansion amount. The control means of the refrigerator controls the temperature of the freezer compartment evaporator after a lapse of a predetermined waiting time from the time when the two-stage compression compressor is started and the variable expansion valve is set to the maximum opening degree. When the temperature is lowered to the rotation temperature, the opening degree of the variable expansion valve is set to an opening degree in a normal cooling state, and the cooling room blower and the cooling room blower are rotated. It is a storehouse warehouse.

【0020】請求項3の発明は、2段圧縮コンプレッ
サ、凝縮器、三方弁、冷蔵室用蒸発器、冷凍室用蒸発
器、気液分離手段、冷蔵用絞り手段、冷凍用絞り手段を
含み、前記2段圧縮コンプレッサの高圧側吐出口から吐
出された冷媒が、前記凝縮器、前記三方弁の一方の出
口、前記冷蔵用絞り手段、前記冷蔵室用蒸発器を経て前
記気液分離手段に流入し、前記気液分離手段で分離され
たガス冷媒が、中間圧サクションパイプを経て前記2段
圧縮コンプレッサの中間圧側吸込口から吸い込まれ、前
記気液分離手段で分離された液冷媒が、前記冷凍用絞り
手段、前記冷凍室用蒸発器、低圧サクションパイプを経
て前記2段圧縮コンプレッサの低圧側吸込口から吸い込
まれるようになし、また、前記三方弁の他方の出口はバ
イパス用絞り手段を介して前記冷凍室用蒸発器に接続さ
れた冷凍サイクルを構成し、前記冷蔵室用蒸発器からの
冷気を冷蔵室へ送る冷蔵室用送風機と、前記冷凍室用蒸
発器からの冷気を冷凍室へ送る冷凍室用送風機と、を有
する冷蔵庫において、前記冷蔵庫の制御手段は、前記2
段圧縮コンプレッサを起動すると共に前記三方弁の他方
の出口から前記冷凍室用蒸発器にのみ冷媒を送った時か
ら所定の待機時間経過後に、前記冷凍室用蒸発器の温度
が送風機回転温度まで低くなった時に、前記三方弁の一
方の出口から前記冷蔵室用蒸発器に冷媒を送ると共に前
記冷蔵室用送風機と前記冷蔵室用送風機とを回転させる
ことを特徴とする冷蔵庫である。
The invention according to claim 3 includes a two-stage compression compressor, a condenser, a three-way valve, a refrigerator evaporator, a freezer evaporator, a gas-liquid separating means, a refrigerating throttle means, and a freezing throttle means. The refrigerant discharged from the high-pressure side discharge port of the two-stage compression compressor flows into the gas-liquid separation unit via the condenser, one outlet of the three-way valve, the refrigerating expansion unit, and the refrigerator compartment evaporator. Then, the gas refrigerant separated by the gas-liquid separating means is sucked from the intermediate pressure side suction port of the two-stage compression compressor through the intermediate pressure suction pipe, and the liquid refrigerant separated by the gas-liquid separating means is cooled by the refrigeration. Suction means from the low-pressure side suction port of the two-stage compression compressor via the throttle means for freezing chamber, the evaporator for the freezer compartment, and the low-pressure suction pipe, and the other outlet of the three-way valve is connected through the throttle means for bypass. A refrigeration cycle connected to the evaporator for the freezer compartment is configured, and a blower for the refrigerating compartment that sends cold air from the evaporator for the refrigerating compartment to the refrigerating compartment and a cool air from the evaporator for the freezer compartment to the freezing compartment In the refrigerator having a blower for a freezer, the control means of the refrigerator has the above-mentioned 2
After a predetermined waiting time has elapsed since the refrigerant was sent from the other outlet of the three-way valve only to the freezer compartment evaporator while the three-way compression compressor was started, the temperature of the freezer compartment evaporator was lowered to the blower rotation temperature. When the temperature becomes low, a refrigerant is sent from one outlet of the three-way valve to the refrigerating compartment evaporator, and the refrigerating compartment blower and the refrigerating compartment blower are rotated.

【0021】請求項4の発明は、前記制御手段は、前記
2段圧縮コンプレッサを運転した状態で前記三方弁を全
閉状態にして冷媒回収を行った後に、前記2段圧縮コン
プレッサを停止させることを特徴とする請求項3記載の
冷蔵庫である。
According to a fourth aspect of the invention, the control means stops the two-stage compression compressor after the three-way valve is fully closed and the refrigerant is recovered while the two-stage compression compressor is operating. The refrigerator according to claim 3, wherein:

【0022】請求項5の発明は、前記制御手段は、前記
三方弁と前記冷蔵用絞り手段とが、一体の三方弁タイプ
の可変式膨張弁であることを特徴とする請求項3または
4記載の冷蔵庫である。
According to a fifth aspect of the present invention, the control means is a variable expansion valve of a three-way valve type in which the three-way valve and the refrigerating throttle means are integrated. The refrigerator.

【0023】請求項6の発明は、2段圧縮コンプレッ
サ、凝縮器、三方弁タイプの可変式膨張弁、冷蔵室用蒸
発器、冷凍室用蒸発器、気液分離手段、冷凍用絞り手段
を含み、前記2段圧縮コンプレッサの高圧側吐出口から
吐出された冷媒が、前記凝縮器、前記可変式膨張弁の一
方の出口、前記冷蔵室用蒸発器を経て前記気液分離手段
に流入し、前記気液分離手段で分離されたガス冷媒が、
中間圧サクションパイプを経て前記2段圧縮コンプレッ
サの中間圧側吸込口から吸い込まれ、前記気液分離手段
で分離された液冷媒が、前記冷凍用絞り手段、前記冷凍
室用蒸発器、低圧サクションパイプを経て前記2段圧縮
コンプレッサの低圧側吸込口から吸い込まれるようにな
し、また、前記可変式膨張弁の他方の出口はバイパス用
絞り手段を介して前記冷凍室用蒸発器に接続される冷凍
サイクルを構成し、前記冷蔵室用蒸発器からの冷気を冷
蔵室へ送る冷蔵室用送風機と、前記冷凍室用蒸発器から
の冷気を冷凍室へ送る冷凍室用送風機と、を有する冷蔵
庫において、前記冷蔵庫の制御手段は、前記2段圧縮コ
ンプレッサを起動すると共に前記可変式膨張弁が最大開
度で他方の出口から前記冷凍室用蒸発器にのみ冷媒を送
った時から所定の第1待機時間経過後に、前記冷凍室用
蒸発器の温度が設定温度まで低くなった時に、前記可変
式膨張弁が最大開度で一方の出口から前記冷蔵室用蒸発
器に冷媒を送り、さらに、この時から所定の第2待機時
間経過後に、前記冷凍室用蒸発器の温度が送風機回転温
度まで低くなった時に、前記可変式膨張弁が通常の冷却
状態における開度で前記一方の出口から前記冷蔵室用蒸
発器に冷媒を送ると共に前記冷蔵室用送風機と前記冷蔵
室用送風機とを回転させることを特徴とする冷蔵庫であ
る。
The invention of claim 6 includes a two-stage compression compressor, a condenser, a three-way valve type variable expansion valve, a refrigerator compartment evaporator, a freezer compartment evaporator, a gas-liquid separation means, and a freezing throttle means. The refrigerant discharged from the high-pressure side discharge port of the two-stage compression compressor flows into the gas-liquid separation means via the condenser, one outlet of the variable expansion valve, and the refrigerator compartment evaporator, The gas refrigerant separated by the gas-liquid separation means,
The liquid refrigerant sucked from the intermediate pressure side suction port of the two-stage compression compressor through the intermediate pressure suction pipe and separated by the gas-liquid separation means is passed through the freezing throttle means, the freezer compartment evaporator, and the low pressure suction pipe. Through the low-pressure side suction port of the two-stage compression compressor, and the other outlet of the variable expansion valve is connected to the freezer compartment evaporator via the bypass throttling means. A refrigerator comprising a refrigerating room blower configured to send cold air from the refrigerating room evaporator to a refrigerating room, and a freezing room blower to send cold air from the freezing room evaporator to a freezing room, wherein the refrigerator The control means of (1) activates the two-stage compression compressor, and when the variable expansion valve sends the refrigerant from the other outlet only to the freezer compartment evaporator at the maximum opening degree, When the temperature of the freezer compartment evaporator has decreased to a set temperature after one waiting time has elapsed, the variable expansion valve sends the refrigerant from one outlet to the refrigerating compartment evaporator at the maximum opening degree, and further, After the elapse of a predetermined second standby time from this time, when the temperature of the freezer compartment evaporator temperature becomes low to the blower rotation temperature, the variable expansion valve is opened from the one outlet at the opening degree in the normal cooling state. It is a refrigerator characterized in that a refrigerant is sent to a refrigerator evaporator and the refrigerator fan and the refrigerator fan are rotated.

【0024】請求項7の発明は、前記制御手段は、前記
2段圧縮コンプレッサを運転した状態で前記可変式膨張
弁を全閉状態にして冷媒回収を行った後に、前記2段圧
縮コンプレッサを停止させることを特徴とする請求項6
記載の冷蔵庫である。
According to a seventh aspect of the present invention, the control means stops the two-stage compression compressor after the variable expansion valve is fully closed and the refrigerant is recovered while the two-stage compression compressor is operating. 7. The method according to claim 6, wherein
It is the described refrigerator.

【0025】請求項8の発明は、前記送風機回転温度
が、前記冷凍室の目標温度より所定温度低い温度に設定
されていることを特徴とする請求項1から7のうちいず
れか一項に記載の冷蔵庫である。
The invention of claim 8 is characterized in that the blower rotation temperature is set to a temperature lower by a predetermined temperature than the target temperature of the freezer compartment. The refrigerator.

【0026】本発明であると、冷却を開始する時に冷凍
用蒸発器に冷媒が多く存在するため、いち早く冷凍室の
冷却が可能となる。
According to the present invention, since a large amount of refrigerant exists in the freezing evaporator when cooling is started, it is possible to quickly cool the freezing compartment.

【0027】[0027]

【発明の実施の形態】(第1の実施例)以下、本発明の
第1の実施例を図1から図5に基づいて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION (First Embodiment) A first embodiment of the present invention will be described below with reference to FIGS.

【0028】(1)冷蔵庫1の構造 図2は、本実施例を示す冷蔵庫1の縦断面図である。(1) Structure of refrigerator 1 FIG. 2 is a vertical cross-sectional view of the refrigerator 1 showing this embodiment.

【0029】この冷蔵庫1は、上段から冷蔵室2、野菜
室3、製氷室4、冷凍室5が設けられ、冷凍室5の背面
には機械室6が設けられている。
This refrigerator 1 is provided with a refrigerating compartment 2, a vegetable compartment 3, an ice making compartment 4 and a freezing compartment 5 from the top, and a machine compartment 6 is provided on the back side of the freezing compartment 5.

【0030】そして、冷蔵室2と野菜室3とによって冷
蔵空間7が形成され、製氷室4と冷凍室5とによって冷
凍空間8が形成されている。この冷蔵空間7と冷凍空間
8とは、断熱壁9によって仕切られている。
A refrigerating space 7 is formed by the refrigerating compartment 2 and the vegetable compartment 3, and a freezing space 8 is formed by the ice making compartment 4 and the freezing compartment 5. The refrigerating space 7 and the freezing space 8 are separated by a heat insulating wall 9.

【0031】野菜室3の背面には、冷蔵空間7を冷却す
るための冷蔵室用蒸発器(以下、Rエバという)10が
配され、Rエバ10の上方には、Rエバ10の冷気を冷
蔵空間7に送風する冷蔵室用送風機(以下、Rファンと
いう)12が配されている。製氷室4から冷凍室5の背
面にかけては、冷凍室用蒸発器(以下、Fエバという)
14が配され、このFエバ14の上方にはFエバ14の
冷気を冷凍空間8に送風する冷凍室用送風機(以下、F
ファンという)16が配されている。
On the back surface of the vegetable compartment 3, a refrigerating compartment evaporator (hereinafter, referred to as R evaporator) 10 for cooling the refrigerating space 7 is arranged. Above the R evaporator 10, cool air of the R evaporator 10 is arranged. A refrigerating room blower (hereinafter, referred to as R fan) 12 that blows air into the refrigerating space 7 is arranged. From the ice making chamber 4 to the back of the freezing chamber 5, a freezing chamber evaporator (hereinafter referred to as F evaporator)
14 is arranged above the F-evaporator 14 and blows the cool air of the F-evaporator 14 into the freezing space 8 (hereinafter, referred to as F-equipment).
16 are called fans.

【0032】機械室6には、2段圧縮コンプレッサ(以
下、単にコンプレッサという)18が配されている。
A two-stage compression compressor (hereinafter, simply referred to as compressor) 18 is arranged in the machine room 6.

【0033】冷蔵室2の背面上部には、冷蔵庫1を制御
するためのマイクロコンピュータよりなる制御装置20
が配されている。
At the upper part of the rear surface of the refrigerating compartment 2, a control device 20 including a microcomputer for controlling the refrigerator 1 is provided.
Are arranged.

【0034】(2)冷凍サイクル22の構成 図1に基づいて冷蔵庫1の冷凍サイクル22の構成及び
その動作状態について説明する。
(2) Structure of Refrigeration Cycle 22 The structure of the refrigeration cycle 22 of the refrigerator 1 and its operating state will be described with reference to FIG.

【0035】図1は、冷凍サイクル22の構成図であ
る。
FIG. 1 is a block diagram of the refrigeration cycle 22.

【0036】(2−1) コンプレッサ18の高圧側吐
出口から吐出された高圧ガス冷媒は、凝縮器24内部で
凝縮され、ガス冷媒と液冷媒よりなる高圧の二相冷媒と
なる。
(2-1) The high-pressure gas refrigerant discharged from the high-pressure side discharge port of the compressor 18 is condensed inside the condenser 24 and becomes a high-pressure two-phase refrigerant composed of a gas refrigerant and a liquid refrigerant.

【0037】(2−2) この高圧二相冷媒は、冷蔵用
キャピラリーチューブ25で減圧され、中間圧の二相冷
媒となってRエバ10に入る。
(2-2) This high-pressure two-phase refrigerant is decompressed by the refrigerating capillary tube 25 and becomes an intermediate-pressure two-phase refrigerant and enters the R evaporator 10.

【0038】(2−3) Rエバ10内部で冷媒は一部
蒸発し、二相状態で気液分離器28に入り、液冷媒とガ
ス冷媒に分離される。
(2-3) The refrigerant partially evaporates inside the R evaporator 10, enters the gas-liquid separator 28 in a two-phase state, and is separated into a liquid refrigerant and a gas refrigerant.

【0039】(2−4) 気液分離器28で分離された
ガス冷媒は、中間圧サクションパイプ30を経てコンプ
レッサ18の中間圧側吸込口に戻る。
(2-4) The gas refrigerant separated by the gas-liquid separator 28 returns to the intermediate pressure side suction port of the compressor 18 through the intermediate pressure suction pipe 30.

【0040】(2−5) 気液分離器28内部で分離さ
れた液冷媒は、冷凍用キャピラリーチューブ32で減圧
され、低圧の二相冷媒となってFエバ14に入る。
(2-5) The liquid refrigerant separated inside the gas-liquid separator 28 is decompressed by the freezing capillary tube 32 and becomes a low-pressure two-phase refrigerant and enters the F evaporator 14.

【0041】(2−6) Fエバ14内部で冷媒は蒸発
してガス冷媒となって、低圧サクションパイプ34を経
てコンプレッサ18の低圧側吸込口に戻る。
(2-6) The refrigerant in the F-evaporator 14 is evaporated to become a gas refrigerant, and returns to the low pressure side suction port of the compressor 18 through the low pressure suction pipe 34.

【0042】(3)冷蔵庫1の電気系統の構成 図3は、冷凍サイクル22における電気系統のブロック
図である。
(3) Configuration of Electric System of Refrigerator 1 FIG. 3 is a block diagram of the electric system in the refrigeration cycle 22.

【0043】図3に示すように、制御装置22は、コン
プレッサ18、Rファン12、Fファン16、製氷装置
45が接続されている。
As shown in FIG. 3, the control device 22 is connected to the compressor 18, the R fan 12, the F fan 16, and the ice making device 45.

【0044】制御装置22は、冷蔵庫1が設置されてい
る周囲温度を検知するための外気温センサ36、冷蔵室
2の庫内温度を検知するRセンサ38、冷凍室5の庫内
温度を検知するFセンサ40が接続されている。また、
Rエバ10の温度を検知するRエバセンサ42、Fエバ
14の温度を検知するFエバセンサ44も接続されてい
る。
The control device 22 detects the outside air temperature sensor 36 for detecting the ambient temperature in which the refrigerator 1 is installed, the R sensor 38 for detecting the temperature inside the refrigerator compartment 2, and the temperature inside the refrigerator compartment 5. F sensor 40 is connected. Also,
An R evaporation sensor 42 that detects the temperature of the R evaporation 10 and an F evaporation sensor 44 that detects the temperature of the F evaporation 14 are also connected.

【0045】さらに、製氷室4の製氷装置45と、製氷
皿46の温度を検知する製氷センサ48が接続されてい
る。
Further, an ice making device 45 of the ice making chamber 4 and an ice making sensor 48 for detecting the temperature of the ice making tray 46 are connected.

【0046】(4)冷蔵庫1の制御方法 以下、上記の構造の冷蔵庫1において、Rセンサ38が
検知した冷蔵室の庫内温度が所定温度まで低くなり、か
つ、Fセンサ40の検知した冷凍室5の庫内温度が所定
温度まで低くなり、冷却過多の状態になって、コンプレ
ッサ18が停止した後に、再びコンプレッサ18を起動
させ、通常の冷却を開始する場合の制御方法について、
図4のフローチャートと、図5のグラフに基づいて説明
する。
(4) Control Method of Refrigerator 1 In the refrigerator 1 having the above structure, the temperature inside the refrigerating compartment detected by the R sensor 38 is lowered to a predetermined temperature, and the freezer compartment detected by the F sensor 40. Regarding the control method in the case where the internal temperature of the chamber 5 is lowered to a predetermined temperature, the cooling is excessive and the compressor 18 is stopped, the compressor 18 is restarted, and normal cooling is started,
This will be described based on the flowchart of FIG. 4 and the graph of FIG.

【0047】ステップa1において、冷却終了の条件が
具備されたかどうかを判断する。すなわち、上記したよ
うに、Rセンサ38の冷蔵室2の庫内温度が所定温度よ
り低くなり、かつ、Fセンサ40の検知した冷凍室5の
庫内温度が所定温度より低くなった時に条件が具備され
たものとする。
At step a1, it is judged whether or not the condition for ending the cooling is satisfied. That is, as described above, the condition is satisfied when the temperature inside the refrigerator compartment 2 of the R sensor 38 becomes lower than the predetermined temperature and the inside temperature of the freezer compartment 5 detected by the F sensor 40 becomes lower than the predetermined temperature. It shall be provided.

【0048】ステップa2において、コンプレッサ18
を停止させ、Rファン12及びFファン16も停止させ
る。これによって冷蔵庫1の冷却状態が完全に停止す
る。
In step a2, the compressor 18
And the R fan 12 and the F fan 16 are also stopped. This completely stops the cooling state of the refrigerator 1.

【0049】ステップa3において、冷蔵室2の庫内温
度が上昇してRセンサ38の検知温度が所定温度以上に
なった時、または、冷凍室5の庫内温度が上昇してFセ
ンサ40の検知温度が所定温度以上になった時に、冷却
開始の条件が具備されたものとする。
In step a3, when the temperature inside the refrigerator compartment 2 rises and the temperature detected by the R sensor 38 exceeds a predetermined temperature, or when the inside temperature of the freezer compartment 5 rises, the temperature of the F sensor 40 increases. It is assumed that the condition for starting cooling is satisfied when the detected temperature exceeds a predetermined temperature.

【0050】ステップa4においてコンプレッサ18の
みを起動させる。この時に、Rファン12及びFファン
16は停止した状態のままとする。
Only the compressor 18 is activated in step a4. At this time, the R fan 12 and the F fan 16 remain in a stopped state.

【0051】ステップa5において、コンプレッサ18
のみを起動した時から待機時間が経過するかどうかを制
御装置20内部に内蔵しているタイマでカウントする。
この待機時間としては1分とする。
At step a5, the compressor 18
A timer built in the control device 20 counts whether or not the standby time has elapsed from the time when only one of them was activated.
The waiting time is 1 minute.

【0052】このように1分の待機時間を設定するの
は、Fエバ14内部の冷媒が入っている量よりもコンプ
レッサ18に戻る冷媒の量が多いため、Fエバ14内部
が一旦真空状態になり、Fエバ14の温度が低下する
(図5の第1の状態)。その後、冷媒が抜けると温度が
上昇して流入量が増える(図5の第2の状態)。そし
て、Fエバ14内部に冷媒が流れてくると、再び温度が
下降する(図5の第3の状態)。すなわち、待機時間に
おいてはFエバ温度が大きく変化するため、この時間の
間は、Fファン16を停止させて、Fエバ14内部で冷
媒がガス化しないようにしている。
The waiting time of 1 minute is set in this way because the amount of the refrigerant returning to the compressor 18 is larger than the amount of the refrigerant inside the F-evaporator 14, so that the inside of the F-evaporator 14 is once in a vacuum state. Then, the temperature of the F evaporator 14 decreases (first state in FIG. 5). After that, when the refrigerant escapes, the temperature rises and the inflow increases (second state in FIG. 5). Then, when the refrigerant flows into the inside of the F evaporator 14, the temperature falls again (the third state in FIG. 5). That is, since the F-evaporator temperature changes significantly during the standby time, the F-fan 16 is stopped during this time so that the refrigerant is not gasified inside the F-evaporator 14.

【0053】ステップa6において、1分の待機時間が
経過すると、図5のグラフに示すようにFエバ温度の変
化が落ちついて低下気味となる。そして、Fエバ温度が
冷凍室5の庫内温度の冷却目標温度(以下、F目標温度
という)より更に2℃低い温度(以下、送風機回転温度
という)になるかどうかをFエバセンサ44で検知す
る。そして、送風機回転温度になった時にステップa7
に進む。このようにF目標温度より2℃低いところまで
Fエバ温度を低下させるのは、F目標温度より低い冷気
を冷凍室5に送風しないと、冷凍室5の庫内温度がF目
標温度まで冷却されないからである。
In step a6, when the waiting time of 1 minute elapses, the change in the F-evaporation temperature is stabilized and tends to decrease as shown in the graph of FIG. Then, the F evaporation sensor 44 detects whether or not the F evaporation temperature becomes a temperature (hereinafter, referred to as blower rotation temperature) lower by 2 ° C. than the cooling target temperature (hereinafter, referred to as F target temperature) of the freezer compartment temperature. . Then, when the blower rotation temperature is reached, step a7
Proceed to. In this way, the F evaporation temperature is lowered to a temperature lower than the F target temperature by 2 ° C. in order to cool the inside temperature of the freezing chamber 5 to the F target temperature unless the cool air lower than the F target temperature is blown into the freezing chamber 5. Because.

【0054】ステップa7において、Rファン12とF
ファン16を回転させ、Rエバ10の冷気及びFエバ1
4の冷気を冷蔵室2と冷凍室5にそれぞれ送風する。こ
れによって、冷蔵室2のみならず冷凍室5も十分に冷え
た冷気がいきわたり、冷凍室5内部を冷却することがで
きる。
In step a7, the R fan 12 and the F fan
Rotate the fan 16 to cool the R evaporator 10 and the F evaporator 1
The cold air of No. 4 is blown to the refrigerating room 2 and the freezing room 5, respectively. As a result, not only the refrigerating compartment 2 but also the freezing compartment 5 can be sufficiently cooled and the inside of the freezing compartment 5 can be cooled.

【0055】そして、ステップa8において、通常の冷
却制御運転を行う。
Then, in step a8, a normal cooling control operation is performed.

【0056】以上の制御方法であると、コンプレッサ1
8のみを回転させ、待機時間経過後にFエバ温度がF目
標温度より下がった状態でFファン16を初めて回転さ
せるため、Fエバ14内部の冷媒が乾くことなく、Fエ
バ14内部の冷媒が多い状態で冷却を開始することがで
きる。
According to the above control method, the compressor 1
Only the fan 8 is rotated, and the F fan 16 is rotated for the first time in a state where the F evaporator temperature is lower than the F target temperature after the lapse of the waiting time. Therefore, the refrigerant inside the F evaporator 14 does not dry, and the refrigerant inside the F evaporator 14 is large. Cooling can be started in the state.

【0057】(第2の実施例)以下、本発明の第2の実
施例について図6と図7に基づいて説明する。
(Second Embodiment) A second embodiment of the present invention will be described below with reference to FIGS. 6 and 7.

【0058】図6は、第2の実施例の冷凍サイクル22
の構成図である。
FIG. 6 shows the refrigerating cycle 22 of the second embodiment.
It is a block diagram of.

【0059】本実施例と第1の実施例の異なる点は、第
1の実施例における冷凍キャピラリーチューブ25に代
えて、膨張量を可変制御することができる可変式膨張弁
である電子膨張弁26を設けた点にある。
The difference between this embodiment and the first embodiment is that, instead of the refrigeration capillary tube 25 in the first embodiment, an electronic expansion valve 26 which is a variable expansion valve capable of variably controlling the expansion amount. There is a point.

【0060】この電子膨張弁26は、制御装置20から
のパルス制御によって、全開、全閉、または第1の実施
例における冷蔵キャピラリーチューブの絞り状態と同じ
ような絞り状態を実現することができる。
The electronic expansion valve 26 can be fully opened, fully closed, or a throttled state similar to the throttled state of the refrigerating capillary tube in the first embodiment by pulse control from the controller 20.

【0061】次に、本実施例における冷却を開始する時
の制御方法について、図7のフローチャートに基づいて
説明する。
Next, a control method for starting cooling in this embodiment will be described with reference to the flowchart of FIG.

【0062】ステップb1において、第1の実施例の制
御方法と同様に冷却終了の条件が具備されると、ステッ
プb2に進む。
When the condition for ending the cooling is satisfied in step b1 as in the control method of the first embodiment, the process proceeds to step b2.

【0063】ステップb2において、コンプレッサ1
8、Rファン12、Fファン16を停止させ、冷蔵庫1
の冷却状態が完全に停止させる。
In step b2, the compressor 1
8, the R fan 12, the F fan 16 are stopped, and the refrigerator 1
The cooling state of is completely stopped.

【0064】ステップb3において、冷蔵室2または冷
凍室5の庫内温度が上昇し、冷却開始の条件が具備され
るとステップb4に進む。
At step b3, when the temperature inside the refrigerating compartment 2 or the freezing compartment 5 rises and the condition for starting cooling is satisfied, the routine proceeds to step b4.

【0065】ステップb4において、電子膨張弁26を
全開にする。これによって、凝縮器24からの冷媒が最
大量流れることとなる。
At step b4, the electronic expansion valve 26 is fully opened. With this, the maximum amount of the refrigerant from the condenser 24 flows.

【0066】ステップb5においてコンプレッサ18の
みを起動させ、Rファン12、Fファン16は停止した
ままの状態とする。
In step b5, only the compressor 18 is started, and the R fan 12 and the F fan 16 are kept stopped.

【0067】ステップb6において、コンプレッサ18
が起動してから待機時間(1分間)が経過するかどうか
をカウントして、待機時間が経過すればステップb7に
進む。
In step b6, the compressor 18
It is counted whether or not the waiting time (1 minute) has elapsed since the start of, and if the waiting time has elapsed, the process proceeds to step b7.

【0068】ステップb7において、Fエバ温度がF目
標温度より−2℃低くなるかどうかを検知し、Fエバ温
度がF目標温度から2℃低い温度である送風機回転温度
になるとステップb8に進む。
At step b7, it is detected whether the F-evaporator temperature is lower than the F-target temperature by -2 ° C or not.

【0069】ステップb8において、Rファン12及び
Fファン16を回転させると共に、電子膨張弁26を適
正な開度にする。この適正な開度とは、冷却開始条件に
対応した開度とし、例えばFエバ14で冷凍室5を冷却
する場合や、Rエバ10で冷蔵室2を冷却する時などそ
れぞれに対応した開度にする。
At step b8, the R fan 12 and the F fan 16 are rotated, and the electronic expansion valve 26 is set to an appropriate opening. The appropriate opening degree is an opening degree corresponding to the cooling start condition, and for example, an opening degree corresponding to each of the case where the freezer compartment 5 is cooled by the F evaporator 14 and the refrigerating compartment 2 is cooled by the R evaporator 10. To

【0070】そして、ステップb9において、通常の冷
却制御運転を行う。
Then, in step b9, normal cooling control operation is performed.

【0071】この制御方法であると、コンプレッサ18
を起動した時に、電子膨張弁26が全開状態であるた
め、最大量の冷媒がRエバ10を経てFエバ14に流れ
るため、いち早くFエバ14による冷却を行うことがで
きる。
According to this control method, the compressor 18
Since the electronic expansion valve 26 is in the fully open state at the time of activating, the maximum amount of the refrigerant flows to the F eva 14 via the R eva 10, so that the F eva 14 can quickly perform the cooling.

【0072】また、第1の実施例と同様に、待機時間を
経過した後、更にFエバ温度がF目標温度より2℃低い
状態になってからFファン16を回転させるため、Fエ
バ14内部で冷媒が蒸発することなく、液状の冷媒が溜
まって、その冷却をいち早く開始することができる。
As in the first embodiment, after the waiting time has elapsed, the F fan 16 is rotated after the F evaporator temperature becomes 2 ° C. lower than the F target temperature. Therefore, the liquid refrigerant is accumulated without cooling the refrigerant, and the cooling can be started quickly.

【0073】(第3の実施例)以下、本発明の第3の実
施例について図8と図9に基づいて説明する。
(Third Embodiment) A third embodiment of the present invention will be described below with reference to FIGS. 8 and 9.

【0074】図8は、第3の実施例の冷凍サイクル22
の構成図である。
FIG. 8 shows the refrigerating cycle 22 of the third embodiment.
It is a block diagram of.

【0075】本実施例と第1の実施例の異なる点は、凝
縮器24と冷蔵用キャピラリーチューブ25との間に三
方弁50を設け、この三方弁50からFエバ14の入口
側に向かってバイパスを設け、この途中にバイパス用キ
ャピラリーチューブ52を設けたものである。
The difference between this embodiment and the first embodiment is that a three-way valve 50 is provided between the condenser 24 and the refrigerating capillary tube 25, and from this three-way valve 50 toward the inlet side of the F-eva 14 A bypass is provided, and a bypass capillary tube 52 is provided in the middle thereof.

【0076】次に、この冷凍サイクル22を用いてコン
プレッサ18が起動する場合の制御方法について、図9
のフローチャートに基づいて説明する。
Next, the control method when the compressor 18 is started by using this refrigeration cycle 22 will be described with reference to FIG.
A description will be given based on the flowchart.

【0077】図9のフローチャートにおいて、ステップ
c1からc4においては第1の実施例のステップa1か
らa4と同様に、冷却終了の条件が具備されると、コン
プレッサ18、Rファン12、Fファン16が停止し、
冷却開始の条件が具備されると、コンプレッサ18のみ
が起動する。
In the flowchart of FIG. 9, in steps c1 to c4, as in steps a1 to a4 of the first embodiment, when the condition for ending cooling is satisfied, the compressor 18, the R fan 12, and the F fan 16 are operated. Stop and
When the cooling start condition is satisfied, only the compressor 18 is activated.

【0078】ステップc5において、三方弁50は、冷
蔵用キャピラリーチューブ25には冷媒が流れないよう
にし、バイパス用キャピラリーチューブ52にのみ冷媒
が流れるようにして、Fエバ14に冷媒が流れるように
する。すなわち、Fバイパス流しを行う。これによっ
て、Fエバ14内部に冷媒が流入する。
In step c5, the three-way valve 50 prevents the refrigerant from flowing into the refrigerating capillary tube 25, allows the refrigerant to flow only into the bypass capillary tube 52, and causes the refrigerant to flow into the F-evaporator 14. . That is, the F bypass flow is performed. As a result, the refrigerant flows into the F evaporator 14.

【0079】ステップc6において、コンプレッサ18
が起動してから待機時間(1分間)を経過したかどうか
をカウントし、経過すればステップc7に進む。
At step c6, the compressor 18
It is counted whether or not the waiting time (1 minute) has elapsed since the start of, and if it has elapsed, the process proceeds to step c7.

【0080】ステップc7において、Fエバ温度がF目
標温度より2℃低い送風機回転温度になるかどうかを検
知し、この送風機回転温度になればステップc8に進
む。
In step c7, it is detected whether or not the F evaporator temperature reaches the fan rotation temperature which is lower than the F target temperature by 2 ° C. When the fan rotation temperature is reached, the process proceeds to step c8.

【0081】ステップc8において、Rファン12とF
ファン16を回転させ、Rエバ10とFエバ14の両方
に冷媒が流れるRF流しの状態とする。これによって、
冷蔵室2と冷凍室5が冷却される。
At step c8, the R fan 12 and the F fan
The fan 16 is rotated so that the refrigerant flows in both the R-evaluator 10 and the F-evaluator 14 in an RF flow state. by this,
The refrigerator compartment 2 and the freezer compartment 5 are cooled.

【0082】そして、ステップc9において、通常の冷
却制御運転を行う。
Then, in step c9, a normal cooling control operation is performed.

【0083】以上の制御方法であると、コンプレッサ1
8の起動時に、Fバイパス流しによりFエバ14に冷媒
を直接流すため、Rエバ10を流れる時間差がなく、F
エバ14をいち早く冷却することができる。
According to the above control method, the compressor 1
At the time of startup of F8, since the refrigerant is caused to flow directly to the F evaporator 14 by the F bypass flow, there is no time difference in flowing through the R evaporator 10,
The evaporator 14 can be cooled quickly.

【0084】なお、第3の実施例の変更例としては、三
方弁50と冷蔵用キャピラリーチューブ25とを一体に
した、三方弁タイプの電子膨張弁を用いることもでき
る。
As a modification of the third embodiment, it is possible to use a three-way valve type electronic expansion valve in which the three-way valve 50 and the refrigerating capillary tube 25 are integrated.

【0085】(第4の実施例)本発明の第4の実施例に
ついて、図10のフローチャートに基づいて説明する。
なお、冷凍サイクル22は、図8に示す第3の実施例の
ものと同じである。
(Fourth Embodiment) A fourth embodiment of the present invention will be described with reference to the flowchart of FIG.
The refrigeration cycle 22 is the same as that of the third embodiment shown in FIG.

【0086】第3の実施例と本実施例の異なる点は、コ
ンプレッサ18を停止させる前に、冷媒回収を行うもの
である。
The difference between the third embodiment and this embodiment is that the refrigerant is recovered before the compressor 18 is stopped.

【0087】すなわち、ステップd1において、冷却終
了の条件が具備されると、ステップd2において、コン
プレッサ18が起動した状態のまま、三方弁50を全閉
状態にする。これによって、Rエバ10とFエバ14に
溜まっている冷媒が回収されて全て凝縮器24に送られ
ることとなる。
That is, when the condition for ending the cooling is satisfied in step d1, the three-way valve 50 is fully closed in step d2 while the compressor 18 remains activated. As a result, the refrigerant accumulated in the R-evaporator 10 and the F-evaporator 14 is recovered and all of the refrigerant is sent to the condenser 24.

【0088】ステップd4からステップd10の制御
は、第3の実施例のステップc2からc9と同じであ
る。
The control of steps d4 to d10 is the same as steps c2 to c9 of the third embodiment.

【0089】この制御方法であると、凝縮器24に回収
した冷媒がF流しによってFエバ14に流れるため、F
エバ14内部に冷媒がいち早く溜まり、Rエバ10との
時間差がなくいち早く冷却することができる。
According to this control method, the refrigerant collected in the condenser 24 flows to the F evaporator 14 by the F flow, so that the F
The refrigerant accumulates in the evaporator 14 quickly, and there is no time difference with the R evaporator 10, so that the refrigerant can be cooled quickly.

【0090】なお、冷媒回収の終了のタイミングとして
は、冷媒回収を行ってから一定時間行うか、または、R
エバ温度が所定温度以上になった時に冷媒回収を終了す
る。Rエバ温度を検知するのは、Rエバ10に溜まって
いる冷媒量が多いためである。
It should be noted that the timing of the end of the refrigerant recovery may be a fixed time after the refrigerant recovery, or R
Refrigerant recovery is completed when the evaporation temperature exceeds a predetermined temperature. The R-evaporator temperature is detected because the amount of refrigerant accumulated in the R-evaporator 10 is large.

【0091】(第5の実施例)以下、第5の実施例につ
いて図11及び図12に基づいて説明する。
(Fifth Embodiment) A fifth embodiment will be described below with reference to FIGS. 11 and 12.

【0092】図11は、第5の実施例の冷凍サイクルの
構成図である。
FIG. 11 is a block diagram of the refrigerating cycle of the fifth embodiment.

【0093】本実施例と第3の実施例の冷凍サイクルの
異なる点は、第3の実施例における三方弁と冷蔵用キャ
ピラリーチューブ25とを一体にし、三方弁タイプの電
子膨張弁54を設けた点にある。
The difference between this embodiment and the refrigeration cycle of the third embodiment is that the three-way valve and the refrigerating capillary tube 25 in the third embodiment are integrated and the three-way valve type electronic expansion valve 54 is provided. In point.

【0094】この冷凍サイクル22を用いて、コンプレ
ッサ18を停止し、その後起動させる場合の制御方法に
ついて説明する。
A control method when the compressor 18 is stopped and then started using the refrigeration cycle 22 will be described.

【0095】ステップe1において、冷蔵室2及び冷凍
室5の庫内温度が所定温度より下がると、冷却終了の条
件が具備されたとしてステップe2に進む。
In step e1, when the internal temperatures of the refrigerating compartment 2 and the freezing compartment 5 fall below a predetermined temperature, it is determined that the condition for ending the cooling is satisfied, and the process proceeds to step e2.

【0096】ステップe2において、コンプレッサ18
を運転させたまま電子膨張弁54を全閉状態にして、R
エバ10とFエバ14から冷媒回収を行い、ステップe
3に進む。
At step e2, the compressor 18
The electronic expansion valve 54 is fully closed while operating the
Refrigerant is recovered from the evaporator 10 and the F evaporator 14, and step e
Go to 3.

【0097】ステップe3において、コンプレッサ1
8、Rファン12、Fファン16を停止させ冷蔵庫1の
冷却が完全に終了した状態とする。
At step e3, the compressor 1
8, the R fan 12, and the F fan 16 are stopped so that the refrigerator 1 is completely cooled.

【0098】ステップe4において、冷蔵室2または冷
凍室5の庫内温度が上昇して、冷却開始の条件が具備さ
れたとするとステップe5に進む。
At step e4, if the internal temperature of the refrigerating compartment 2 or the freezing compartment 5 rises and the condition for starting cooling is satisfied, the routine proceeds to step e5.

【0099】ステップe5において、コンプレッサ18
のみを起動させ、Rファン12とFファン16を停止さ
せたままの状態とする。
At step e5, the compressor 18
Only the R fan 12 and the F fan 16 are stopped, and only the R fan 12 and the F fan 16 are stopped.

【0100】ステップe6において電子膨張弁54を、
バイパス用キャピラリーチューブ52にのみ冷媒が最大
に流れるFのみ流しになるように、最大開度としステッ
プe7に進む。
At step e6, the electronic expansion valve 54 is
The flow rate is set to the maximum opening so that the refrigerant flows to the bypass capillary tube 52 only at the maximum, and the flow proceeds to step e7.

【0101】ステップe7において、コンプレッサ18
が起動してから待機時間(1分間)が経過したかどうか
をカウントし、経過していればステップe8に進む。
At step e7, the compressor 18
It is counted whether or not the waiting time (1 minute) has elapsed since the start of, and if it has elapsed, the process proceeds to step e8.

【0102】ステップe8において、Fエバ温度がF目
標温度より2℃低い温度になればステップe9に進む。
At step e8, if the F evaporation temperature becomes 2 ° C. lower than the F target temperature, the process proceeds to step e9.

【0103】ステップe9において、電子膨張弁54を
制御し、バイパス用キャピラリーチューブ52及びRエ
バ10に最大量の冷媒が流れるようにする、RF流しで
最大開度の状態として、ステップe10に進む。
In step e9, the electronic expansion valve 54 is controlled so that the maximum amount of the refrigerant flows through the bypass capillary tube 52 and the R-evaporator 10, and the state is set to the maximum opening degree by RF flow, and the process proceeds to step e10.

【0104】ステップe10において、再び待機時間
(1分間)が経過するか否かをカウントして、経過すれ
ばステップe11に進む。
In step e10, it is counted again whether or not the waiting time (1 minute) has elapsed, and if it has elapsed, the process proceeds to step e11.

【0105】ステップe11において、RF流しで再び
Fエバの温度が上昇するため、Fエバ温度が再びF目標
温度より2℃低い温度である送風機回転温度になるかど
うかを検知し、この送風機回転温度になればステップe
12に進む。
At step e11, since the temperature of the F evaporator again rises due to the RF flow, it is detected whether or not the F evaporator temperature becomes the fan rotation temperature which is 2 ° C. lower than the F target temperature again, and this fan rotation temperature is detected. If it becomes step e
Proceed to 12.

【0106】ステップe12において、Rファン12と
Fファン16を回転させ、電子膨張弁54を冷却開始の
条件に対応する開度に調整しステップe13に進む。
At step e12, the R fan 12 and the F fan 16 are rotated, the electronic expansion valve 54 is adjusted to an opening degree corresponding to the cooling start condition, and the routine proceeds to step e13.

【0107】そして、ステップe13においては、通常
の冷却制御運転を行う。
Then, in step e13, normal cooling control operation is performed.

【0108】この制御方法であると、回収した冷媒がま
ずFエバ14に流れるため、Fエバ14内部にいち早く
冷媒が溜まり、その後、電子膨張弁54の開度を制御し
て、全体の冷媒循環量をFエバ14とRエバ10に冷媒
が溜まるような運転とするため、全体の冷却運転をいち
早くかつ効率よく行うことができる。
According to this control method, since the recovered refrigerant first flows into the F evaporator 14, the refrigerant accumulates in the F evaporator 14 quickly, and then the opening of the electronic expansion valve 54 is controlled to circulate the entire refrigerant. Since the operation is performed such that the refrigerant accumulates in the F-evaporator 14 and the R-evaluator 10, the entire cooling operation can be performed quickly and efficiently.

【0109】[0109]

【発明の効果】以上により本発明であると、冷凍室用送
風機と冷蔵用送風機が停止した状態で2段圧縮コンプレ
ッサのみを起動し、この起動した時から待機時間経過後
に冷凍室用蒸発器の温度が送風機回転温度まで低くなっ
た時に、冷蔵室用送風機と冷凍室用送風機とを回転させ
るので、冷凍室用蒸発器内部に冷媒が溜まり、冷凍室を
いち早く冷却することができる。
As described above, according to the present invention, only the two-stage compression compressor is started in a state in which the blower for the freezer compartment and the blower for the refrigerating room are stopped, and after the standby time elapses from the start, the evaporator for the freezer compartment is When the temperature is lowered to the fan rotation temperature, the refrigerator air blower and the freezer air blower are rotated, so that the refrigerant accumulates inside the evaporator for the freezer compartment and the freezer compartment can be cooled quickly.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を示す冷凍サイクルの構
成図である。
FIG. 1 is a configuration diagram of a refrigeration cycle showing a first embodiment of the present invention.

【図2】同じく冷蔵庫の縦断面図である。FIG. 2 is a vertical sectional view of the same refrigerator.

【図3】同じく冷蔵庫の電気系統のブロック図である。FIG. 3 is a block diagram of an electric system of the refrigerator.

【図4】第1の実施例における制御方法のフローチャー
トである。
FIG. 4 is a flowchart of a control method in the first embodiment.

【図5】第1の実施例におけるFエバ温度の変化状態を
示すグラフである。
FIG. 5 is a graph showing a change state of the F-evaporation temperature in the first example.

【図6】第2の実施例の冷凍サイクルの構成図である。FIG. 6 is a configuration diagram of a refrigeration cycle according to a second embodiment.

【図7】第2の実施例の制御方法のフローチャートであ
る。
FIG. 7 is a flowchart of the control method of the second embodiment.

【図8】第3の実施例の冷凍サイクルの構成図である。FIG. 8 is a configuration diagram of a refrigeration cycle of a third embodiment.

【図9】第3の実施例の制御方法のフローチャートであ
る。
FIG. 9 is a flowchart of a control method according to a third embodiment.

【図10】第4の実施例の制御方法のフローチャートで
ある。
FIG. 10 is a flow chart of a control method of a fourth embodiment.

【図11】第5の実施例の冷凍サイクルの構成図であ
る。
FIG. 11 is a configuration diagram of a refrigeration cycle of a fifth embodiment.

【図12】第5の実施例の制御方法のフローチャートで
ある。
FIG. 12 is a flow chart of a control method of a fifth embodiment.

【図13】従来の冷凍サイクルの構成図である。FIG. 13 is a configuration diagram of a conventional refrigeration cycle.

【符号の説明】[Explanation of symbols]

1 冷蔵庫 2 冷蔵室 3 野菜室 4 製氷室 5 冷凍室 6 機械室 10 Rエバ 12 Rファン 14 Fエバ 16 Fファン 18 コンプレッサ 20 制御装置 22 冷凍サイクル 24 凝縮器 25 冷蔵用キャピラリーチューブ 26 電子膨張弁 28 気液分離器 32 冷凍用キャピラリーチューブ 1 refrigerator 2 refrigerating room 3 vegetable room 4 ice making room 5 Freezer 6 Machine room 10 R Eva 12 R fan 14 F Eva 16 F fan 18 compressor 20 Control device 22 Refrigeration cycle 24 condenser 25 Capillary tube for refrigeration 26 Electronic expansion valve 28 Gas-liquid separator 32 Freezing capillary tube

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鹿島 弘次 大阪府茨木市太田東芝町1番6号 株式会 社東芝大阪工場内 Fターム(参考) 3L045 AA02 CA02 CA03 DA02 HA02 HA06 LA09 MA04 MA12 NA16   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Koji Kashima             No. 6 Ota-Toshiba-cho, Ibaraki City, Osaka Prefecture Stock Association             Company Toshiba Osaka factory F-term (reference) 3L045 AA02 CA02 CA03 DA02 HA02                       HA06 LA09 MA04 MA12 NA16

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】2段圧縮コンプレッサ、凝縮器、冷蔵室用
蒸発器、冷凍室用蒸発器、気液分離手段、冷蔵用絞り手
段、冷凍用絞り手段を含み、 前記2段圧縮コンプレッサの高圧側吐出口から吐出され
た冷媒が、前記凝縮器、前記冷蔵用絞り手段、前記冷蔵
室用蒸発器を経て前記気液分離手段に流入し、 この前記気液分離手段で分離されたガス冷媒が、中間圧
サクションパイプを経て前記2段圧縮コンプレッサの中
間圧側吸込口から吸い込まれ、 前記気液分離手段で分離された液冷媒が、前記冷凍用絞
り手段、前記冷凍室用蒸発器、低圧サクションパイプを
経て前記2段圧縮コンプレッサの低圧側吸込口から吸い
込まれるように冷凍サイクルを構成し、 前記冷蔵室用蒸発器からの冷気を冷蔵室へ送る冷蔵室用
送風機と、 前記冷凍室用蒸発器からの冷気を冷凍室へ送る冷凍室用
送風機と、 を有する冷蔵庫において、 前記冷蔵庫の制御手段は、 前記2段圧縮コンプレッサを起動した時から所定の待機
時間経過後に、前記冷凍室用蒸発器の温度が送風機回転
温度まで低くなった時に、前記冷蔵室用送風機と前記冷
蔵室用送風機とを回転させることを特徴とする冷蔵庫。
1. A high-pressure side of the two-stage compression compressor, including a two-stage compression compressor, a condenser, a refrigerator compartment evaporator, a freezer compartment evaporator, a gas-liquid separation means, a refrigeration throttle means, and a freezing throttle means. Refrigerant discharged from the discharge port, the condenser, the refrigeration throttle means, the refrigerating compartment evaporator flows into the gas-liquid separation means, the gas refrigerant separated by the gas-liquid separation means, The liquid refrigerant sucked from the intermediate pressure side suction port of the two-stage compression compressor through the intermediate pressure suction pipe and separated by the gas-liquid separation means is passed through the freezing throttle means, the freezer compartment evaporator, and the low pressure suction pipe. A refrigerating cycle is configured so as to be sucked through the low pressure side suction port of the two-stage compression compressor, and a blower for a refrigerating compartment that sends cold air from the evaporator for the refrigerating compartment to a refrigerating compartment; In a refrigerator having a freezer air blower for sending cold air to the freezer room, the control means of the refrigerator has a temperature of the freezer compartment evaporator after a predetermined waiting time has elapsed since the two-stage compression compressor was started. A refrigerator for rotating the refrigerating room blower and the refrigerating room blower when the temperature of the fan falls to a fan rotation temperature.
【請求項2】2段圧縮コンプレッサ、凝縮器、冷蔵室用
蒸発器、冷凍室用蒸発器、気液分離手段、冷蔵用絞り手
段、冷凍用絞り手段を含み、 前記2段圧縮コンプレッサの高圧側吐出口から吐出され
た冷媒が、前記凝縮器、前記冷蔵用絞り手段、前記冷蔵
室用蒸発器を経て前記気液分離手段に流入し、 前記気液分離手段で分離されたガス冷媒が、中間圧サク
ションパイプを経て前記2段圧縮コンプレッサの中間圧
側吸込口から吸い込まれ、 前記気液分離手段で分離された液冷媒が、前記冷凍用絞
り手段、前記冷凍室用蒸発器、低圧サクションパイプを
経て前記2段圧縮コンプレッサの低圧側吸込口から吸い
込まれるように冷凍サイクルを構成し、 前記冷蔵室用蒸発器からの冷気を冷蔵室へ送る冷蔵室用
送風機と、 前記冷凍室用蒸発器からの冷気を冷凍室へ送る冷凍室用
送風機と、 を有する冷蔵庫において、 前記冷蔵用絞り手段が、膨張量を可変制御できる可変式
膨張弁であり、 前記冷蔵庫の制御手段は、 前記2段圧縮コンプレッサを起動すると共に前記可変式
膨張弁を最大開度にした時から所定の待機時間経過後
に、前記冷凍室用蒸発器の温度が送風機回転温度まで低
くなった時に、前記可変式膨張弁の開度を通常の冷却状
態の開度にすると共に前記冷蔵室用送風機と前記冷蔵室
用送風機とを回転させることを特徴とする冷蔵庫。
2. A high pressure side of the two-stage compression compressor, comprising a two-stage compression compressor, a condenser, a refrigerator compartment evaporator, a freezer compartment evaporator, a gas-liquid separation means, a refrigeration throttle means, and a freezing throttle means. Refrigerant discharged from the discharge port, the condenser, the refrigeration throttle means, the refrigerating chamber evaporator through the gas-liquid separation means through the evaporator, the gas refrigerant separated by the gas-liquid separation means, the intermediate The liquid refrigerant sucked from the intermediate pressure side suction port of the two-stage compression compressor through the pressure suction pipe and separated by the gas-liquid separation means passes through the refrigeration throttle means, the freezer compartment evaporator, and the low pressure suction pipe. A refrigerating cycle is configured so as to be sucked from the low-pressure side suction port of the two-stage compression compressor, and a refrigerating room blower that sends cold air from the refrigerating room evaporator to a refrigerating room; A refrigerator having a freezer air blower for sending air to a freezer compartment, wherein the refrigeration throttle means is a variable expansion valve capable of variably controlling an expansion amount, and the refrigerator control means includes the two-stage compression compressor. When the temperature of the evaporator for the freezer compartment becomes low to the blower rotation temperature after a predetermined waiting time has elapsed from the time of starting the variable expansion valve to the maximum opening, the opening of the variable expansion valve is changed. A refrigerator characterized by rotating the blower for the refrigerating compartment and the blower for the refrigerating compartment while making the opening degree of a normal cooling state.
【請求項3】2段圧縮コンプレッサ、凝縮器、三方弁、
冷蔵室用蒸発器、冷凍室用蒸発器、気液分離手段、冷蔵
用絞り手段、冷凍用絞り手段を含み、 前記2段圧縮コンプレッサの高圧側吐出口から吐出され
た冷媒が、前記凝縮器、前記三方弁の一方の出口、前記
冷蔵用絞り手段、前記冷蔵室用蒸発器を経て前記気液分
離手段に流入し、 前記気液分離手段で分離されたガス冷媒が、中間圧サク
ションパイプを経て前記2段圧縮コンプレッサの中間圧
側吸込口から吸い込まれ、 前記気液分離手段で分離された液冷媒が、前記冷凍用絞
り手段、前記冷凍室用蒸発器、低圧サクションパイプを
経て前記2段圧縮コンプレッサの低圧側吸込口から吸い
込まれるようになし、 また、前記三方弁の他方の出口はバイパス用絞り手段を
介して前記冷凍室用蒸発器に接続された冷凍サイクルを
構成し、 前記冷蔵室用蒸発器からの冷気を冷蔵室へ送る冷蔵室用
送風機と、 前記冷凍室用蒸発器からの冷気を冷凍室へ送る冷凍室用
送風機と、 を有する冷蔵庫において、 前記冷蔵庫の制御手段は、 前記2段圧縮コンプレッサを起動すると共に前記三方弁
の他方の出口から前記冷凍室用蒸発器にのみ冷媒を送っ
た時から所定の待機時間経過後に、前記冷凍室用蒸発器
の温度が送風機回転温度まで低くなった時に、前記三方
弁の一方の出口から前記冷蔵室用蒸発器に冷媒を送ると
共に前記冷蔵室用送風機と前記冷蔵室用送風機とを回転
させることを特徴とする冷蔵庫。
3. A two-stage compression compressor, a condenser, a three-way valve,
A refrigerating compartment evaporator, a freezing compartment evaporator, a gas-liquid separating means, a refrigerating throttling means, and a freezing throttling means, wherein the refrigerant discharged from the high-pressure side discharge port of the two-stage compression compressor is the condenser, One of the outlets of the three-way valve, the refrigerating throttle means, the refrigerating compartment evaporator, and then into the gas-liquid separating means, the gas refrigerant separated by the gas-liquid separating means passes through the intermediate pressure suction pipe. The liquid refrigerant sucked from the intermediate pressure side suction port of the two-stage compression compressor and separated by the gas-liquid separation means passes through the freezing throttle means, the freezer compartment evaporator, and the low-pressure suction pipe, and then the two-stage compression compressor. Of the three-way valve, and the other outlet of the three-way valve constitutes a refrigerating cycle connected to the evaporator for freezing chamber via a throttle means for bypass, A refrigerator having a blower for a refrigerating compartment that sends cold air from the evaporator to a refrigerating compartment, and a blower for a freezing compartment that sends the cool air from the evaporator for the freezing compartment to a freezing compartment, wherein the control unit of the refrigerator is the After a predetermined waiting time has elapsed since the refrigerant was sent from the other outlet of the three-way valve only to the freezer compartment evaporator while the three-way compression compressor was started, the temperature of the freezer compartment evaporator was lowered to the blower rotation temperature. The refrigerator is characterized in that, when the temperature becomes low, a refrigerant is sent from one outlet of the three-way valve to the refrigerating compartment evaporator and the refrigerating compartment blower and the refrigerating compartment blower are rotated.
【請求項4】前記制御手段は、 前記2段圧縮コンプレッサを運転した状態で前記三方弁
を全閉状態にして冷媒回収を行った後に、前記2段圧縮
コンプレッサを停止させることを特徴とする請求項3記
載の冷蔵庫。
4. The control means stops the two-stage compression compressor after collecting the refrigerant by fully closing the three-way valve while the two-stage compression compressor is operating. The refrigerator according to Item 3.
【請求項5】前記制御手段は、 前記三方弁と前記冷蔵用絞り手段とが、一体の三方弁タ
イプの可変式膨張弁であることを特徴とする請求項3ま
たは4記載の冷蔵庫。
5. The refrigerator according to claim 3, wherein the control means is a three-way valve type variable expansion valve in which the three-way valve and the refrigeration throttle means are integrated.
【請求項6】2段圧縮コンプレッサ、凝縮器、三方弁タ
イプの可変式膨張弁、冷蔵室用蒸発器、冷凍室用蒸発
器、気液分離手段、冷凍用絞り手段を含み、 前記2段圧縮コンプレッサの高圧側吐出口から吐出され
た冷媒が、前記凝縮器、前記可変式膨張弁の一方の出
口、前記冷蔵室用蒸発器を経て前記気液分離手段に流入
し、 前記気液分離手段で分離されたガス冷媒が、中間圧サク
ションパイプを経て前記2段圧縮コンプレッサの中間圧
側吸込口から吸い込まれ、 前記気液分離手段で分離された液冷媒が、前記冷凍用絞
り手段、前記冷凍室用蒸発器、低圧サクションパイプを
経て前記2段圧縮コンプレッサの低圧側吸込口から吸い
込まれるようになし、 また、前記可変式膨張弁の他方の出口はバイパス用絞り
手段を介して前記冷凍室用蒸発器に接続される冷凍サイ
クルを構成し、 前記冷蔵室用蒸発器からの冷気を冷蔵室へ送る冷蔵室用
送風機と、 前記冷凍室用蒸発器からの冷気を冷凍室へ送る冷凍室用
送風機と、 を有する冷蔵庫において、 前記冷蔵庫の制御手段は、 前記2段圧縮コンプレッサを起動すると共に前記可変式
膨張弁が最大開度で他方の出口から前記冷凍室用蒸発器
にのみ冷媒を送った時から所定の第1待機時間経過後
に、前記冷凍室用蒸発器の温度が設定温度まで低くなっ
た時に、前記可変式膨張弁が最大開度で一方の出口から
前記冷蔵室用蒸発器に冷媒を送り、さらに、この時から
所定の第2待機時間経過後に、前記冷凍室用蒸発器の温
度が送風機回転温度まで低くなった時に、前記可変式膨
張弁が通常の冷却状態における開度で前記一方の出口か
ら前記冷蔵室用蒸発器に冷媒を送ると共に前記冷蔵室用
送風機と前記冷蔵室用送風機とを回転させることを特徴
とする冷蔵庫。
6. A two-stage compression compressor, a condenser, a three-way valve type variable expansion valve, a refrigerator compartment evaporator, a freezer compartment evaporator, a gas-liquid separation means, and a freezing throttle means, The refrigerant discharged from the high-pressure side discharge port of the compressor flows into the gas-liquid separation means via the condenser, one outlet of the variable expansion valve, the evaporator for the refrigerating chamber, and the gas-liquid separation means The separated gas refrigerant is sucked from the intermediate pressure side suction port of the two-stage compression compressor through the intermediate pressure suction pipe, and the liquid refrigerant separated by the gas-liquid separation means is used for the freezing throttle means and the freezer compartment. The two-stage compression compressor is sucked from the low-pressure side suction port through the evaporator and the low-pressure suction pipe, and the other outlet of the variable expansion valve is provided with the freezing chamber evaporator through the throttle means for bypass. Constituting a refrigeration cycle connected to, a refrigerating room blower for sending cold air from the refrigerating room evaporator to a refrigerating room, and a refrigerating room blower for sending cool air from the freezing room evaporator to a freezing room, In the refrigerator having, the control means of the refrigerator activates the two-stage compression compressor, and when the variable expansion valve has a maximum opening degree and sends the refrigerant only from the other outlet to the freezer compartment evaporator, After the lapse of the first standby time, when the temperature of the freezer compartment evaporator is lowered to a set temperature, the variable expansion valve sends the refrigerant from one outlet to the refrigerating compartment evaporator at the maximum opening, Furthermore, after the elapse of a predetermined second standby time from this time, when the temperature of the freezer compartment evaporator temperature becomes low to the blower rotation temperature, the variable expansion valve has the one opening at the opening degree in the normal cooling state. From the refrigeration room Refrigerator, characterized in that rotating and the refrigerating compartment fan and the refrigerator compartment fan and sends the refrigerant to the evaporator.
【請求項7】前記制御手段は、 前記2段圧縮コンプレッサを運転した状態で前記可変式
膨張弁を全閉状態にして冷媒回収を行った後に、前記2
段圧縮コンプレッサを停止させることを特徴とする請求
項6記載の冷蔵庫。
7. The control means, after the refrigerant is recovered by fully closing the variable expansion valve in a state where the two-stage compression compressor is operated,
The refrigerator according to claim 6, wherein the stage compression compressor is stopped.
【請求項8】前記送風機回転温度が、前記冷凍室の目標
温度より所定温度低い温度に設定されていることを特徴
とする請求項1から7のうちいずれか一項に記載の冷蔵
庫。
8. The refrigerator according to claim 1, wherein the blower rotation temperature is set to a temperature lower by a predetermined temperature than a target temperature of the freezer compartment.
JP2002097628A 2002-03-29 2002-03-29 Refrigerator Pending JP2003294346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002097628A JP2003294346A (en) 2002-03-29 2002-03-29 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002097628A JP2003294346A (en) 2002-03-29 2002-03-29 Refrigerator

Publications (1)

Publication Number Publication Date
JP2003294346A true JP2003294346A (en) 2003-10-15

Family

ID=29240053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002097628A Pending JP2003294346A (en) 2002-03-29 2002-03-29 Refrigerator

Country Status (1)

Country Link
JP (1) JP2003294346A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101937247A (en) * 2010-03-30 2011-01-05 合肥美的荣事达电冰箱有限公司 Air cooling refrigerator as well as moisture-preservation control method and system thereof
CN105091427A (en) * 2015-08-07 2015-11-25 珠海格力电器股份有限公司 Control method of electronic expansion valve of double-stage compression middle air supply system and air conditioner
CN108088116A (en) * 2017-12-04 2018-05-29 珠海格力电器股份有限公司 Heat pump system for increasing air supplement amount by utilizing heat recovery and control method thereof
CN111288742A (en) * 2020-02-19 2020-06-16 长虹美菱股份有限公司 Refrigerator temperature setting method based on potentiometer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101937247A (en) * 2010-03-30 2011-01-05 合肥美的荣事达电冰箱有限公司 Air cooling refrigerator as well as moisture-preservation control method and system thereof
CN101937247B (en) * 2010-03-30 2013-06-05 合肥美的荣事达电冰箱有限公司 Air cooling refrigerator as well as moisture-preservation control method and system thereof
CN105091427A (en) * 2015-08-07 2015-11-25 珠海格力电器股份有限公司 Control method of electronic expansion valve of double-stage compression middle air supply system and air conditioner
CN108088116A (en) * 2017-12-04 2018-05-29 珠海格力电器股份有限公司 Heat pump system for increasing air supplement amount by utilizing heat recovery and control method thereof
CN108088116B (en) * 2017-12-04 2018-12-11 珠海格力电器股份有限公司 Heat pump system for increasing air supplement amount by utilizing heat recovery and control method thereof
CN111288742A (en) * 2020-02-19 2020-06-16 长虹美菱股份有限公司 Refrigerator temperature setting method based on potentiometer

Similar Documents

Publication Publication Date Title
JP3630632B2 (en) refrigerator
JP2003207248A (en) Refrigerator
KR100772217B1 (en) Control method of air conditioner
JP2008032336A (en) Two-stage expansion refrigeration apparatus
KR20100034442A (en) The control method of a refrigerator
JP5641875B2 (en) Refrigeration equipment
KR101275184B1 (en) Control method of refrigerating system
KR102198955B1 (en) Refrigerator and method for controlling the same
JP3610402B2 (en) Heat pump equipment
JP2008138914A (en) Refrigerating device and method of returning refrigerating machine oil
JP5796619B2 (en) Air conditioner
JP5558132B2 (en) Refrigerator and refrigeration apparatus to which the refrigerator is connected
JP4082435B2 (en) Refrigeration equipment
KR101558503B1 (en) Air conditioner
KR102500807B1 (en) Air conditioner and a method for controlling the same
JP5170299B1 (en) Air conditioner
JP4082040B2 (en) Refrigeration equipment
JP2003294346A (en) Refrigerator
JP3714348B2 (en) Refrigeration equipment
JP4823131B2 (en) Air conditioner
JP4274250B2 (en) Refrigeration equipment
KR101275183B1 (en) Control method of refrigerating system
JP2013108729A (en) Air conditioner
JP3993540B2 (en) Refrigeration equipment
JP2009264612A (en) Refrigerating device