JP2003293842A - Failure determining device for water temperature sensor - Google Patents

Failure determining device for water temperature sensor

Info

Publication number
JP2003293842A
JP2003293842A JP2003127256A JP2003127256A JP2003293842A JP 2003293842 A JP2003293842 A JP 2003293842A JP 2003127256 A JP2003127256 A JP 2003127256A JP 2003127256 A JP2003127256 A JP 2003127256A JP 2003293842 A JP2003293842 A JP 2003293842A
Authority
JP
Japan
Prior art keywords
water temperature
cooling water
operating state
failure
temperature sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003127256A
Other languages
Japanese (ja)
Inventor
Tomonobu Sakagami
友伸 坂上
Hidetsugu Kanao
英嗣 金尾
Mitsuhiro Miyake
光浩 三宅
Takuya Matsumoto
卓也 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2003127256A priority Critical patent/JP2003293842A/en
Publication of JP2003293842A publication Critical patent/JP2003293842A/en
Pending legal-status Critical Current

Links

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a failure determining device for a water temperature sensor which positively determines a failure of the water temperature sensor irrespective of an operating situation. <P>SOLUTION: It is determined whether an internal combustion engine at warming up is in an operating state of affecting a cooling water temperature WT on the basis of a calorific value estimated from a suction air capacity detected by an air flow sensor. Clocking by a timer is started from a point of time when it is determined that the internal combustion engine is in the operating state of affecting the cooling water temperature. The clocking by the timer is carried out under a condition that it is determined that the internal combustion engine is in the operating state of affecting the cooling water temperature after starting clocking. It is judged that there is a failure when a sensor detected value does not fluctuate out of a set water temperature range throughout a predetermined time (300 sec) even though it is determined that the internal combustion engine is in the operating state of affecting the cooling water temperature. Since determination is carried out by the timer in consideration of the calorific value fluctuating in response to an operating state of the internal combustion chamber, easy and accurate failure determination is enabled. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、内燃機関(以下、
エンジンという)に用いられる水温センサの故障判定装
置に関するものである。 【0002】 【従来の技術】周知のように、水温センサの検出情報は
燃料噴射や点火時期等のエンジン運転のための各種制御
に利用されており、この情報が誤っている場合には制御
が適切に行われずに、排気ガス中の有害成分を増加させ
る事態を招いてしまう。そこで、米国等では水温センサ
の故障判定機能の装備が法規上、義務付けられており、
故障判定時には運転席の警告灯を点灯する等の対策を講
じている。 【0003】サーミスタ等からなるこの種の水温センサ
は、冷却水温を抵抗値として出力しており、上記した故
障判定としては、正常時に変化し得る実用領域を越えた
領域で水温センサの検出値が固着したとき(断線)、逆
に実用領域を下回った領域で検出値が固着したとき(シ
ョート)、及び実用領域内で所定以上の急な水温低下を
示して検出値が変化したとき、即ち、エンジン運転中に
も拘わらずあり得ないはずの検出値の低下があったとき
(ドリフト)の3種の状況を想定し、いずれかの状況に
該当するときに故障判定を下している。 【0004】 【発明が解決しようとする課題】ところで、例えば結線
ミス等によって水温センサの出力に他のセンサの出力が
混入しているときには、他のセンサの出力の影響により
水温センサの出力変化が緩慢になってしまう場合があ
る。又、このような状況下で上記した断線やショートが
生じると、本来は実用領域外で固着するはずの水温セン
サの検出値が、他のセンサの出力の影響で実用領域内で
固着することになる。これらの場合もセンサ故障として
判定すべきであるが、例えば、下り坂走行でエンジン発
熱量が極めて少ない運転状態の場合でも、同様な出力状
況となり、従来の故障判定装置では両者の識別ができな
いため、的確に故障判定することができないという問題
があった。 【0005】本発明の目的は、運転状況に関係なく、本
来の水温センサの故障を確実に識別することができる水
温センサの故障判定装置を提供することにある。 【0006】 【課題を解決するための手段】上記目的を達成するた
め、本発明では、内燃機関の発熱量と相関するパラメー
タを検出する相関パラメータ検出手段と、相関パラメー
タ検出手段にて検出されたパラメータに基づいて、水温
センサの故障判定を行う判定手段とを備え、該判定手段
は、相関パラメータ検出手段にて検出されたパラメータ
に基づいて、暖機時の内燃機関が冷却水温に影響を与え
得る運転状態にあるか否かを判定する運転状態判定手段
と、運転状態判定手段にて冷却水温に影響を与え得る運
転状態にあると判定された時点から計時を開始するタイ
マとを有し、前記判定手段は、水温センサの検出値が所
定時間に亘って設定水温範囲を越えて変動しないときに
故障判定を下し、前記タイマは計時開始後に、冷却水温
に影響を与え得る運転状態にあると判定されたことを条
件に計時することを特徴とする水温センサの故障判定装
置が提供される。 【0007】このように、エンジンの運転状態が冷却水
温に影響を与え得る運転状態を条件にタイマによる経過
時間の計測(計時)が行われ、水温センサの検出値が、
所定期間を経過した後に設定水温範囲の領域にあるか否
かを判定することで、すなわち、暖機時の内燃機関の運
転状態に応じて変動する発熱量を考慮に入れて判定する
ことで水温センサの故障判定を行っている。このため、
簡易な方法によりエンジン暖機持の水温センサの的確な
故障判定が可能となる。 【0008】 【発明の実施の形態】以下、本発明を具体化した水温セ
ンサの故障判定装置の一実施例を説明する。図1に示す
ように、本実施例の故障判定装置が適用されたエンジン
1は、直列4気筒ガソリン機関として構成されている。
エンジン1の燃焼室2は吸気ポート3、吸気マニホール
ド4、サージタンク5、及び吸気通路6を介してエアク
リーナ7と接続され、エアクリーナ7より導入された吸
入空気は、スロットル弁8にて流量調整された後に燃料
噴射弁9から噴射された燃料と混合されて、吸気弁10
の開弁に伴って混合気として燃焼室2内に吸入されるよ
うになっている。燃焼室2には点火プラグ11が設けら
れ、混合気はこの点火プラグ11に点火されて燃焼し、
ピストン12を押し下げて機関トルクを発生させる。
又、燃焼室2は排気ポート13、排気マニホールド1
4、排気通路15、及び触媒コンバータ16を介して図
示しない消音器と接続され、燃焼後の排気ガスは、排気
弁17の開弁に伴って燃焼室2より排出されて、触媒コ
ンバータ16により有害成分を浄化された後に大気中に
排出されるようになっている。 【0009】車室内には、図示しない入出力装置,制御
プログラムや制御マップ等の記憶に供される記憶装置
(ROM,RAM,BURAM等)、中央処理装置(C
PU)、タイマカウンタ等を備えたECU(エンジン制
御ユニット)21が設置されており、エンジン1の総合
的な制御を行う。ECU21の入力側には、吸入空気量
Qを検出する相関パラメータ検出手段としてのエアフロ
ーセンサ22、エンジン1の冷却水温WTを検出する水
温センサ23、排気ガス中の酸素濃度を検出するO2
ンサ24等の各種センサが接続され、出力側には前記燃
料噴射弁9や点火プラグ11、車両の運転席に設けられ
た警告灯25等が接続されている。ECU70は各セン
サからの検出情報に基づき、燃料噴射量や点火時期等を
決定して燃料噴射弁9及び点火プラグ11を駆動制御す
ると共に、後述する水温センサ23の故障判定処理を実
行して、故障判定時には警告灯25を点灯させる。 【0010】次に、上記のように構成されたエンジン1
の水温センサ23の故障判定装置の動作を説明する。E
CU21は図2及び図3に示す故障判定ルーチンを所定
時間毎に実行する。ECU21はステップS2でエンジ
ン1の始動が完了したか否かを判定し、始動が完了する
と、ステップS4で水温センサ23にて検出された冷却
水温WTを読み込み、ステップS6でその冷却水温WTが
F/B開始水温WF/B以上か否かを判定する。周知のよ
うにECU21は、冷間始動等の際には暖機時増量等の
補正を行いながらオープンループにより燃料噴射量を制
御し、冷却水温WTがF/B開始水温に達すると、O2
ンサ24の出力に基づく通常のフィードバック制御に切
換える。つまり、ステップS6ではエンジン1が冷機及
び暖機の何れの状態にあるかを判定し、以降の故障判定
処理を異にしているのである。尚、F/B開始水温WF/
Bはエンジン1の固有値であり、一般的には7〜30℃
程度の範囲で設定されている。 【0011】ステップS6での判定がNO(否定)でエ
ンジン1が冷機状態の場合、ECU21はステップS8
に移行してエアフローセンサ22の出力に基づいて吸入
空気量Qを算出する。本実施例ではエアフローセンサ2
2として、吸気通路6内に設けた支柱22aの下流側に
発生する渦列をカウントするカルマン渦式センサを採用
しているため、エアフローセンサ22からは渦発生周期
と対応する周波数の出力が得られ、ステップS8ではそ
の出力周波数が吸入空気量Qに変換される。尚、吸入空
気量Qは、このようにエアフローセンサ22により直接
検出する他に、例えば、エンジン回転速度と吸気マニホ
ールド内の圧力、或いはエンジン回転速度と体積効率に
基づいて推定してもよい。次いで、ステップS10で吸
入空気量Qが予め設定された下限空気量Qa以上か否か
を判定し、YES(肯定)の判定を下すまで、ステップ
S8及びステップS10の処理を繰り返す。 【0012】冷却水温WTの変化は、エンジン1の発熱
量が変化することによって引き起こされ、本実施例では
後に詳述するように、実際の発熱量を推定するためのパ
ラメータとして吸入空気量Qを利用し、吸入空気量Qの
多少に応じて、冷却水温WTの上昇状況に基づく故障判
定の閾値(制限時間Tlmt)を切換えている。ところ
が、吸入空気量Qが極小の運転状況では、冷却水温WT
の上昇が緩慢で判定できないため、その判定可能な境界
を下限空気量Qa(本実施例では、エアフローセンサ2
2の周波数換算で20Hz)として設定して、ステップ
S10で判定しているのである。 【0013】ステップS10の判定がYESになると、
ステップS12で現在の冷却水温WTを読み込み、ステ
ップS14で図4のマップに従って吸入空気量Qと冷却
水温WTから制限時間Tlmtを設定する(制限時間設定手
段)。マップから明らかなように、制限時間Tlmtは冷
却水温WTにほぼ反比例して設定されるが、同一の冷却
水温WTであっても、周波数換算で70Hzを境界として
吸入空気量Qが多い領域のときには制限時間Tlmtを短
く、吸入空気量Qが少ない領域のときには制限時間Tlm
tを長く設定している。尚、制限時間Tlmtはこのように
2段階に切換えることなく、例えば吸入空気量Qに応じ
て無段階に変化するように設定してもよい。 【0014】次いで、ステップS16でタイマTをスタ
ートし、ステップS18で冷却水温WTが前記したF/
B開始水温WF/B以上か否かを、ステップS20でタイ
マTが制限時間Tlmt以上か否かを判定する。そして、
制限時間Tlmtが経過する以前に冷却水温WTがF/B開
始水温WF/Bに達して、ステップS18の判定がYES
になると、ステップS22で正常判定を下して、警告灯
25を消灯状態に保持する。又、冷却水温WTがF/B
開始水温WF/Bに達することなく制限時間Tlmtが経過し
て、ステップS20の判定がYESになると、ステップ
S24で故障判定を下して、警告灯25を点灯状態に保
持する(判定手段)。その後、ステップS26でタイマ
Tをリセットして、このルーチンを終了する。尚、ステ
ップS18の判定ではF/B開始水温WF/Bを用いてい
るが、必ずしもF/B開始水温WF/Bである必要はな
く、別の値を用いてもよい。 【0015】以上の冷機時における故障判定の処理状況
を図5に基づいて説明する。尚、図中の曲線Hは、始動
後に走行が開始されて冷却水温WTがある程度の速さで
上昇した場合を示し、曲線Lは、始動後にアイドル運転
で放置されて冷却水温WTの上昇が緩慢な場合を示し、
何れの場合も始動直後に故障判定処理を開始している。 【0016】走行時を表す曲線Hの場合は、ある程度の
負荷でエンジン1を運転していることから吸入空気量Q
も多く、Q≧70Hzに基づいて制限時間Tlmtが短く設
定され、アイドル運転時を表す曲線Lの場合は、吸入空
気量Qが少ないことから、Q<70Hzに基づいて制限
時間Tlmtが長く設定される。即ち、燃料噴射量は基本
的に吸入空気量Qに基づいて制御され、その燃料噴射量
(つまり、燃焼に供される燃料量)に応じてエンジン発
熱量が左右される。よって、吸入空気量Qが多い領域で
はエンジン発熱量が大であるため、冷却水温WTは短時
間でF/B開始水温WF/Bに達するとの前提で、短い制
限時間Tlmtをもって判定が行われ、逆に吸入空気量Q
が少ない領域ではエンジン発熱量が小であるため、冷却
水温WTはF/B開始水温WF/Bに達するまでに長時間を
要するとの前提で、長い制限時間Tlmtをもって判定が
行われる。何れの場合でも、制限時間Tlmtの経過前
に、水温センサ23にて検出された冷却水温WTがF/
B開始水温WF/Bに達するため、正常判定が行われる。 【0017】曲線Lのようにセンサ検出値が緩慢に上昇
する状況は、吸入空気量Qが多い領域であっても、従来
技術で述べたように、結線ミス等で水温センサ23の出
力に他のセンサの出力が混入した場合に生ずる。このと
きには短い制限時間Tlmtが設定されるが、制限時間Tl
mtが経過してもセンサ検出値がF/B開始水温WF/Bに
達しないため、故障判定が行われる。 【0018】よって、このように検出値の上昇が緩慢な
場合、その原因がエンジン1の運転状態にあるのか水温
センサ23の故障にあるのかを確実に識別することがで
き、誤検出された冷却水温WTに基づいて燃料噴射や点
火時期等のエンジン制御が行われる事態を未然に防止す
ることができる。一方、ステップS6での判定がYES
でエンジン1が暖機状態の場合、ECU21はステップ
S32で水温センサ23にて検出された冷却水温WTを
基準に、−0.5℃の値を下限温度WT1として、+0.
5℃の値を上限温度WT2として設定する。次いで、ステ
ップS34で、前記したステップS8と同じくエアフロ
ーセンサ22の出力に基づいて吸入空気量Qを算出し、
ステップS36で吸入空気量Qが下限空気量Qb以上か
否かを判定する(運転状態判定手段)。 【0019】冷機状態での運転で次第に上昇した冷却水
温WTは、暖機が完了すると平衡状態に移行してエンジ
ン固有のほぼ一定温度の保たれる。この状態でエンジン
1の運転状況が変化してその発熱量が増減すると、その
増減方向に応じて冷却水温WTは変動する。後に詳述す
るように、このときの冷却水温WTの変動に基づいて故
障判定するのであるが、冷機時に説明した下限空気量Q
aと同様に、吸入空気量Qが極小の運転状況では、発熱
量の増減によって冷却水温WTが影響されないため、冷
却水温WTに影響を与え得る運転状態のときの吸入空気
量Qとして下限空気量Qbを定め、下限空気量Qb以上に
限って故障判定を行うように配慮しているのである。 【0020】ステップS36の判定がYESの場合、ス
テップS38でタイマTをスタートさせ、ステップS4
0で水温センサ23にて検出された冷却水温WTが下限
温度WT1及び上限温度WT2間の領域内(設定水温範囲)
にあるか否かを判定し、ステップS42でタイマTに基
づいてサンプリング期間である300secが経過したか
否かを判定する。冷却水温WTが領域内にあるとしてス
テップS40でYESの判定を下し、ステップS42で
未だ300secが経過していないとしてNOの判定を下
すと、前記ステップS34に戻って以降の処理を繰り返
す。このとき、ステップS36で吸入空気量Qが下限空
気量Qa未満になって判定がNOになると、その間はス
テップS44でタイマTを一時停止させる。つまり、吸
入空気量Qが極小で冷却水温WTに影響を与えることが
ない運転状態のときには、ステップS40での故障判定
を中断すると共に、ステップS42でのサンプリング期
間のカウントも中断する。 【0021】そして、300secが経過する以前に冷却
水温WTが下限温度WT1及び上限温度WT2間の領域から
外れて、ステップS40の判定がNOになると、ステッ
プS46で正常判定を下して、警告灯25を消灯状態に
保持する。又、冷却水温WTが領域内から外れることな
く300secが経過して、ステップS42の判定がYE
Sになると、ステップS48で故障判定を下して、警告
灯25を点灯状態に保持する(判定手段)。その後、ス
テップS50でタイマTをリセットして、このルーチン
を終了する。 【0022】以上の暖機時における故障判定の処理状況
を図6に基づいて説明する。尚、図では水温センサ23
の正常時を実線で、水温センサ23の故障時を一点鎖線
で示している。故障判定を開始すると、冷却水温WTを
中心とした幅1℃の領域(ハッチングで示す)が下限温
度WT1及び上限温度WT2によって定められ、冷却水温W
Tのサンプリングが開始される。上記のように吸入空気
量Qの極小時にはサンプリングを中断するため、サンプ
リング期間中はエンジン1がある程度の発熱量をもって
運転していると見なすことができる。そして、300se
cのサンプリング期間中に運転状況に応じて発熱量が僅
かでも増減すると、その影響を受けて冷却水温WTは実
線で示すように変動し、ハッチングの領域から外れる。
つまり、この状況は、冷却水温WTの変動に呼応して水
温センサ23の検出値が変化したことを意味するため、
正常判定がなされる。 【0023】一方、従来技術で述べたように、断線やシ
ョートの発生に結線ミス等が重なって、水温センサ23
の検出値が実用領域内で固着した場合には、冷却水温W
Tは一点鎖線で示すようにほとんど変動せずに、サンプ
リング期間中、常にハッチングの領域内に保持される。
1℃の水温変動も生じないほど発熱量が安定した運転状
況が300secのサンプリング期間に亘って継続するこ
とは、通常は考えられないため、実際には冷却水温WT
は変動しているものの水温センサ23が検出できないと
見なして、故障判定がなされる。 【0024】よって、このように検出値が固着してほぼ
一定の場合、その原因がエンジン1の運転状態にあるの
か水温センサ23の故障にあるのかを確実に識別するこ
とができ、誤検出された冷却水温WTに基づいて燃料噴
射や点火時期等のエンジン制御が行われる事態を未然に
防止することができる。以上で実施例の説明を終える
が、本発明の態様はこの実施例に限定されるものではな
い。例えば、上記実施例では、エンジン1の発熱量と相
関するパラメータとして、エアフローセンサ22にて検
出された吸入空気量Qを用い、その吸入空気量Qに基づ
いて制限時間Tlmtを設定したり(冷機時)、冷却水温
WTに影響を与え得る運転状態か否かを判定したり(暖
機時)したが、必ずしも吸入空気量Qを用いる必要はな
く、これに代えて燃料噴射量を用いたり、或いはエンジ
ン1の発熱量を高温センサにより直接検出したりしても
よい。 【0025】 【発明の効果】以上説明したように本発明の水温センサ
の故障判定装置によれば、内燃機関が冷却水温に影響を
及ぼす運転状態にあることを条件にタイマにより計時し
て、所定期間が経過した後に水温センサの検出値が設定
水温範囲の領域にあって変動しないときに、故障を判定
するようにしたため、簡易な方法により発熱量を考慮に
入れた判定がなされて、暖機時における水温センサの故
障を確実に識別することができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an internal combustion engine (hereinafter, referred to as an internal combustion engine).
(Referred to as an engine). [0002] As is well known, information detected by a water temperature sensor is used for various controls for engine operation such as fuel injection and ignition timing. If this information is incorrect, control is performed. If not performed properly, it may lead to an increase in harmful components in the exhaust gas. Therefore, in the United States and other countries, the provision of a water temperature sensor failure judgment function is required by law,
At the time of failure determination, measures such as turning on a warning light in the driver's seat are taken. [0003] This type of water temperature sensor comprising a thermistor or the like outputs the cooling water temperature as a resistance value. When the detected value is fixed (disconnection), conversely when the detected value is fixed in a region below the practical region (short), and when the detected value changes by showing a sudden drop in water temperature within a practical region, that is, Assuming three types of situations (drift) when there is a decrease in the detection value that should not be possible even during the operation of the engine, a failure judgment is made when any of the situations is met. [0004] When the output of another sensor is mixed with the output of the water temperature sensor due to, for example, a connection error or the like, the output of the water temperature sensor changes due to the influence of the output of the other sensor. May be slow. In addition, if the above-described disconnection or short circuit occurs under such circumstances, the detection value of the water temperature sensor, which should originally be fixed outside the practical range, may be fixed within the practical range due to the output of other sensors. Become. In these cases, it should be determined as a sensor failure.However, for example, even in an operation state in which the amount of heat generated by the engine is extremely small while traveling downhill, the same output state is obtained, and the conventional failure determination device cannot distinguish between the two. However, there has been a problem that failure determination cannot be performed accurately. SUMMARY OF THE INVENTION It is an object of the present invention to provide a water temperature sensor failure judging device which can reliably identify an original water temperature sensor failure irrespective of operating conditions. In order to achieve the above object, according to the present invention, there is provided a correlation parameter detecting means for detecting a parameter correlated with a calorific value of an internal combustion engine, and a correlation parameter detecting means for detecting the parameter. Determining means for determining a failure of the water temperature sensor based on the parameter, the determining means affecting the cooling water temperature by the internal combustion engine during warm-up based on the parameter detected by the correlation parameter detecting means. Operating state determining means for determining whether or not the operating state to obtain, and a timer to start timing from the time when it is determined that the operating state can affect the cooling water temperature by the operating state determining means, The determination means makes a failure determination when the detection value of the water temperature sensor does not fluctuate beyond a set water temperature range for a predetermined time, and the timer has an effect on the cooling water temperature after the start of time measurement. The time is determined on the condition that it is determined that the vehicle is in an operating state that can provide the following. As described above, the elapsed time is measured (timed) by the timer under the condition that the operation state of the engine can affect the cooling water temperature, and the detection value of the water temperature sensor is
It is determined whether or not the temperature is within the set water temperature range after a predetermined period has elapsed, that is, by taking into account the heat value that varies depending on the operating state of the internal combustion engine during warm-up, the water temperature is determined. The sensor failure is being determined. For this reason,
An accurate failure determination of the water temperature sensor for warming up the engine can be performed by a simple method. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a water temperature sensor failure judging device embodying the present invention will be described below. As shown in FIG. 1, an engine 1 to which the failure determination device of the present embodiment is applied is configured as an in-line four-cylinder gasoline engine.
The combustion chamber 2 of the engine 1 is connected to an air cleaner 7 via an intake port 3, an intake manifold 4, a surge tank 5, and an intake passage 6, and the flow rate of intake air introduced from the air cleaner 7 is adjusted by a throttle valve 8. After that, the fuel is mixed with the fuel injected from the fuel injection valve 9 and the intake valve 10
With the opening of the valve, the mixture is sucked into the combustion chamber 2 as an air-fuel mixture. An ignition plug 11 is provided in the combustion chamber 2, and the air-fuel mixture is ignited by the ignition plug 11 and burns.
The piston 12 is depressed to generate engine torque.
The combustion chamber 2 has an exhaust port 13, an exhaust manifold 1
4, connected to a muffler (not shown) via the exhaust passage 15 and the catalytic converter 16, and the exhaust gas after combustion is discharged from the combustion chamber 2 with the opening of the exhaust valve 17, and is harmful to the catalytic converter 16. After the components are purified, they are released into the atmosphere. In the passenger compartment, an input / output device (not shown), storage devices (ROM, RAM, BURAM, etc.) for storing control programs and control maps, etc., and a central processing unit (C)
An ECU (engine control unit) 21 provided with a PU (Pull Input / Output Unit), a timer counter, and the like is installed to perform comprehensive control of the engine 1. On the input side of the ECU 21, an air flow sensor 22 as a correlation parameter detecting means for detecting an intake air amount Q, a water temperature sensor 23 for detecting a cooling water temperature WT of the engine 1, and an O 2 sensor 24 for detecting an oxygen concentration in exhaust gas The output side is connected to the fuel injection valve 9, the ignition plug 11, a warning light 25 provided in the driver's seat of the vehicle, and the like. The ECU 70 determines the fuel injection amount, the ignition timing, and the like based on the detection information from each sensor, controls the driving of the fuel injection valve 9 and the ignition plug 11, and executes a failure determination process for the water temperature sensor 23, which will be described later. At the time of failure determination, the warning lamp 25 is turned on. Next, the engine 1 constructed as described above
The operation of the failure determination device for the water temperature sensor 23 will be described. E
The CU 21 executes the failure determination routine shown in FIGS. 2 and 3 every predetermined time. The ECU 21 determines whether or not the start of the engine 1 has been completed in step S2. When the start is completed, the ECU 21 reads the cooling water temperature WT detected by the water temperature sensor 23 in step S4, and in step S6, the cooling water temperature WT is set to F / B start water temperature WF / B is determined. As is well known, the ECU 21 controls the fuel injection amount by an open loop while performing correction such as a warm-up increase during a cold start or the like, and when the cooling water temperature WT reaches the F / B start water temperature, O 2 The control is switched to the normal feedback control based on the output of the sensor 24. That is, in step S6, it is determined whether the engine 1 is in a cold state or a warm-up state, and the subsequent failure determination processing is different. In addition, F / B start water temperature WF /
B is a characteristic value of the engine 1 and is generally 7 to 30 ° C.
It is set in the range of about. If the determination in step S6 is NO (No) and the engine 1 is in a cold state, the ECU 21 proceeds to step S8.
Then, the intake air amount Q is calculated based on the output of the air flow sensor 22. In this embodiment, the airflow sensor 2
As 2, a Karman vortex sensor that counts a vortex street generated on the downstream side of the strut 22a provided in the intake passage 6 is employed, so that an output of a frequency corresponding to the vortex generation cycle is obtained from the airflow sensor 22. Then, in step S8, the output frequency is converted into the intake air amount Q. The intake air amount Q may be estimated based on, for example, the engine rotation speed and the pressure in the intake manifold, or the engine rotation speed and the volumetric efficiency, instead of being directly detected by the airflow sensor 22 as described above. Next, in step S10, it is determined whether or not the intake air amount Q is equal to or larger than a preset lower limit air amount Qa, and the processes of step S8 and step S10 are repeated until a determination of YES (affirmative) is made. The change in the cooling water temperature WT is caused by a change in the heat value of the engine 1. In this embodiment, as will be described in detail later, the intake air amount Q is used as a parameter for estimating the actual heat value. The threshold value (limit time limit Tlmt) for failure determination based on the rise of the cooling water temperature WT is switched according to the intake air amount Q. However, in the operation state where the intake air amount Q is extremely small, the cooling water temperature WT
Since the rise of the air flow is slow and cannot be determined, the boundary at which the determination can be made is determined by the lower limit air amount Qa (in this embodiment, the air flow sensor 2).
This is set as 20 Hz in the frequency conversion of 2, and the determination is made in step S10. When the determination in step S10 is YES,
In step S12, the current cooling water temperature WT is read, and in step S14, a time limit Tlmt is set from the intake air amount Q and the cooling water temperature WT according to the map of FIG. 4 (time limit setting means). As is clear from the map, the time limit Tlmt is set substantially in inverse proportion to the cooling water temperature WT. However, even when the cooling water temperature WT is the same, when the intake air amount Q is large at the boundary of 70 Hz in frequency conversion, When the time limit Tlmt is short and the amount of intake air Q is small, the time limit Tlm
t is set long. Note that the time limit Tlmt may be set so as to change steplessly in accordance with, for example, the intake air amount Q without switching to the two steps as described above. Next, at step S16, a timer T is started, and at step S18, the cooling water temperature WT is adjusted to the above-mentioned F / F.
In step S20, it is determined whether or not the timer T is equal to or more than a time limit Tlmt. And
Before the time limit Tlmt elapses, the cooling water temperature WT reaches the F / B start water temperature WF / B, and the determination in step S18 is YES.
Then, a normality determination is made in step S22, and the warning lamp 25 is kept in the off state. Also, the cooling water temperature WT is F / B
If the time limit Tlmt has elapsed without reaching the start water temperature WF / B and the determination in step S20 is YES, a failure determination is made in step S24, and the warning lamp 25 is held in a lighting state (determination means). Then, the timer T is reset in step S26, and this routine ends. Although the F / B start water temperature WF / B is used in the determination in step S18, the F / B start water temperature WF / B is not necessarily required, and another value may be used. The processing status of the above-described failure judgment at the time of cooling will be described with reference to FIG. Note that a curve H in the figure shows a case where the running is started after the start and the cooling water temperature WT rises at a certain speed, and a curve L is a case where the cooling water temperature WT is slowly increased due to being left in idle operation after the start. When
In any case, the failure determination process is started immediately after the start. In the case of a curve H representing a running time, since the engine 1 is operated with a certain load, the intake air amount Q
The limit time Tlmt is set short based on Q ≧ 70 Hz, and in the case of the curve L representing the idling operation, since the intake air amount Q is small, the limit time Tlmt is set long based on Q <70 Hz. You. That is, the fuel injection amount is basically controlled based on the intake air amount Q, and the engine heat value depends on the fuel injection amount (that is, the fuel amount used for combustion). Therefore, since the engine calorific value is large in the region where the intake air amount Q is large, the determination is made with a short time limit Tlmt on the assumption that the cooling water temperature WT reaches the F / B start water temperature WF / B in a short time. And conversely, the intake air amount Q
Since the engine calorific value is small in a region where the temperature is small, the determination is made with a long time limit Tlmt on the assumption that the cooling water temperature WT takes a long time to reach the F / B start water temperature WF / B. In any case, the cooling water temperature WT detected by the water temperature sensor 23 becomes F / F before the time limit Tlmt elapses.
Since the B-start water temperature WF / B is reached, a normality determination is made. The situation in which the sensor detection value rises slowly as indicated by the curve L is, as described in the prior art, the output of the water temperature sensor 23 due to a connection error or the like, even in a region where the intake air amount Q is large. Occurs when the output of the sensor is mixed. At this time, a short time limit Tlmt is set.
Since the sensor detection value does not reach the F / B start water temperature WF / B even after mt has elapsed, a failure determination is made. Thus, when the rise of the detected value is slow, it is possible to reliably determine whether the cause is the operating state of the engine 1 or the failure of the water temperature sensor 23. It is possible to prevent a situation in which engine control such as fuel injection and ignition timing is performed based on the water temperature WT. On the other hand, the determination in step S6 is YES
When the engine 1 is in the warm-up state, the ECU 21 sets the value of −0.5 ° C. as the lower limit temperature WT1 based on the cooling water temperature WT detected by the water temperature sensor 23 in step S32, and sets +0.
A value of 5 ° C. is set as the upper limit temperature WT2. Next, in step S34, the intake air amount Q is calculated based on the output of the airflow sensor 22, as in step S8 described above.
In step S36, it is determined whether the intake air amount Q is equal to or more than the lower limit air amount Qb (operating state determination means). The cooling water temperature WT gradually increased by the operation in the cold state shifts to an equilibrium state when the warm-up is completed, and is maintained at a substantially constant temperature inherent to the engine. In this state, when the operating condition of the engine 1 changes and the amount of generated heat increases or decreases, the cooling water temperature WT changes in accordance with the direction of the increase or decrease. As will be described in detail later, the failure is determined based on the fluctuation of the cooling water temperature WT at this time.
As in the case of a, in an operation state where the intake air amount Q is extremely small, the cooling water temperature WT is not affected by an increase or decrease in the amount of heat generation. Therefore, the lower limit air amount is used as the intake air amount Q in an operating state that can affect the cooling water temperature WT. Qb is determined, and consideration is given to performing a failure determination only when the air amount is equal to or more than the lower limit air amount Qb. If the determination in step S36 is YES, the timer T is started in step S38, and step S4
0, the cooling water temperature WT detected by the water temperature sensor 23 is within the range between the lower limit temperature WT1 and the upper limit temperature WT2 (set water temperature range).
Is determined in step S42, and in step S42, it is determined whether or not 300 seconds, which is the sampling period, has elapsed based on the timer T. If the determination of YES is made in step S40 assuming that the cooling water temperature WT is within the range, and the determination of NO is made in step S42 that 300 seconds have not yet elapsed, the process returns to step S34 and the subsequent processing is repeated. At this time, if the intake air amount Q is less than the lower limit air amount Qa in step S36 and the determination is NO, the timer T is temporarily stopped in step S44 during that time. That is, when the operation state is such that the intake air amount Q is minimal and does not affect the cooling water temperature WT, the failure determination in step S40 is interrupted, and the counting of the sampling period in step S42 is also interrupted. If the cooling water temperature WT is out of the range between the lower limit temperature WT1 and the upper limit temperature WT2 before 300 seconds elapse, and the determination in step S40 becomes NO, a normal determination is made in step S46 and a warning light is issued. 25 is kept off. Further, 300 seconds have elapsed without the cooling water temperature WT falling out of the region, and the determination in step S42 is YES.
When S is reached, a failure determination is made in step S48, and the warning lamp 25 is kept in the lighting state (determination means). After that, the timer T is reset in step S50, and this routine ends. The processing status of the failure determination at the time of warm-up will be described with reference to FIG. In the figure, the water temperature sensor 23
The normal time is indicated by a solid line, and the time when the water temperature sensor 23 has failed is indicated by an alternate long and short dash line. When the failure determination is started, an area (indicated by hatching) having a width of 1 ° C. around the cooling water temperature WT is determined by the lower limit temperature WT1 and the upper limit temperature WT2, and the cooling water temperature W
T sampling is started. As described above, the sampling is interrupted when the intake air amount Q is minimum, so that it can be considered that the engine 1 is operating with a certain amount of heat generation during the sampling period. And 300se
If the calorific value slightly increases or decreases during the sampling period of c according to the operating condition, the cooling water temperature WT fluctuates as shown by the solid line under the influence, and goes out of the hatched area.
That is, since this situation means that the detection value of the water temperature sensor 23 has changed in response to the fluctuation of the cooling water temperature WT,
A normal determination is made. On the other hand, as described in the prior art, the occurrence of disconnection or short-circuit overlaps with a connection error or the like, and the water temperature sensor 23
If the detected value of is stuck in the practical range, the cooling water temperature W
T hardly fluctuates as shown by the dashed line, and is always kept in the hatched area during the sampling period.
Since it is not normally conceivable that an operating condition in which the calorific value is stable enough to cause a water temperature fluctuation of 1 ° C. to continue for a sampling period of 300 sec, it is actually impossible to consider the cooling water temperature WT
Is determined to be undetectable by the water temperature sensor 23 although it has fluctuated. Thus, when the detected value is fixed and almost constant, it is possible to reliably determine whether the cause is the operating state of the engine 1 or the failure of the water temperature sensor 23, and an erroneous detection is made. It is possible to prevent a situation in which engine control such as fuel injection and ignition timing is performed based on the cooling water temperature WT. This concludes the description of the embodiment, but aspects of the present invention are not limited to this embodiment. For example, in the above-described embodiment, the intake air amount Q detected by the air flow sensor 22 is used as a parameter correlated with the heat generation amount of the engine 1, and the time limit Tlmt is set based on the intake air amount Q (cooling unit). At that time, it was determined whether or not the operation state could affect the cooling water temperature WT (at the time of warm-up). However, it is not always necessary to use the intake air amount Q, and instead, the fuel injection amount is used. Alternatively, the heat value of the engine 1 may be directly detected by a high temperature sensor. As described above, according to the water temperature sensor failure judging device of the present invention, a timer is used to measure a predetermined time on condition that the internal combustion engine is in an operating state that affects the cooling water temperature. When the detected value of the water temperature sensor is within the range of the set water temperature range and does not fluctuate after the elapse of the period, the failure is determined. The failure of the water temperature sensor at the time can be reliably identified.

【図面の簡単な説明】 【図1】実施例の水温センサの故障判定装置を示す全体
構成図である。 【図2】ECUが実行する故障判定ルーチンを示すフロ
ーチャートである。 【図3】ECUが実行する故障判定ルーチンを示すフロ
ーチャートである。 【図4】制限時間Tlmtを設定するためのマップであ
る。 【図5】冷機時の故障判定状況を示すタイムチャートで
ある。 【図6】暖機時の故障判定状況を示すタイムチャートで
ある。 【符号の説明】 1 エンジン(内燃機関) 21 ECU(判定手段、制限時間設定手段、運転状
態判定手段) 22 エアフローセンサ(相関パラメータ検出手段) 23 水温センサ Q 吸入空気量(相関パラメータ) WT 冷却水温 Tlmt 制限時間
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an overall configuration diagram showing a failure determination device for a water temperature sensor according to an embodiment. FIG. 2 is a flowchart illustrating a failure determination routine executed by an ECU. FIG. 3 is a flowchart illustrating a failure determination routine executed by an ECU. FIG. 4 is a map for setting a time limit Tlmt. FIG. 5 is a time chart showing a failure determination situation at the time of cooling. FIG. 6 is a time chart showing a failure determination situation during warm-up. [Description of Signs] 1 Engine (internal combustion engine) 21 ECU (determination means, time limit setting means, operating state determination means) 22 Air flow sensor (correlation parameter detection means) 23 Water temperature sensor Q Intake air amount (correlation parameter) WT Cooling water temperature Tlmt time limit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三宅 光浩 東京都港区芝五丁目33番8号 三菱自動車 工業株式会社内 (72)発明者 松本 卓也 東京都港区芝五丁目33番8号 三菱自動車 工業株式会社内 Fターム(参考) 3G084 DA27 DA30 EA05 EA07 EB22 FA07 FA20    ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Mitsuhiro Miyake             Mitsubishi Motors 5-33-8 Shiba, Minato-ku, Tokyo             Industrial Co., Ltd. (72) Inventor Takuya Matsumoto             Mitsubishi Motors 5-33-8 Shiba, Minato-ku, Tokyo             Industrial Co., Ltd. F term (reference) 3G084 DA27 DA30 EA05 EA07 EB22                       FA07 FA20

Claims (1)

【特許請求の範囲】 【請求項1】 内燃機関の発熱量と相関するパラメータ
を検出する相関パラメータ検出手段と、 前記相関パラメータ検出手段にて検出されたパラメータ
に基づいて、水温センサの故障判定を行う判定手段とを
備え、当該判定手段は、 前記相関パラメータ検出手段にて検出されたパラメータ
に基づいて、暖機時の内燃機関が冷却水温に影響を与え
得る運転状態にあるか否かを判定する運転状態判定手段
と、 前記運転状態判定手段にて冷却水温に影響を与え得る運
転状態にあると判定された時点から計時を開始するタイ
マとを有し、 前記判定手段は、水温センサの検出値が所定時間に亘っ
て設定水温範囲を越えて変動しないときに故障判定を下
し、 前記タイマは、計時開始後に、前記冷却水温に影響を与
え得る運転状態にあると判定されたことを条件に計時す
ることを特徴とする水温センサの故障判定装置。
Claims: 1. A correlation parameter detecting means for detecting a parameter correlated with a calorific value of an internal combustion engine; and a failure determination of a water temperature sensor based on the parameter detected by the correlation parameter detecting means. Determining means for determining, based on the parameters detected by the correlation parameter detecting means, whether or not the internal combustion engine at the time of warm-up is in an operating state that can affect the cooling water temperature. Operating state determining means, and a timer that starts measuring time from a point in time when the operating state determining means determines that the operating state can affect the cooling water temperature, wherein the determining means detects a water temperature sensor. When the value does not fluctuate beyond the set water temperature range for a predetermined time, a failure judgment is made, and after the timer starts, the timer is set in an operating state that may affect the cooling water temperature. A failure determination device for a water temperature sensor, which measures time on condition that it is determined that a failure has occurred.
JP2003127256A 2003-05-02 2003-05-02 Failure determining device for water temperature sensor Pending JP2003293842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003127256A JP2003293842A (en) 2003-05-02 2003-05-02 Failure determining device for water temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003127256A JP2003293842A (en) 2003-05-02 2003-05-02 Failure determining device for water temperature sensor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP10210006A Division JP2000045851A (en) 1998-07-24 1998-07-24 Failure determination device for water temperature sensor

Publications (1)

Publication Number Publication Date
JP2003293842A true JP2003293842A (en) 2003-10-15

Family

ID=29244617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003127256A Pending JP2003293842A (en) 2003-05-02 2003-05-02 Failure determining device for water temperature sensor

Country Status (1)

Country Link
JP (1) JP2003293842A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006274897A (en) * 2005-03-29 2006-10-12 Fujitsu Ten Ltd Electronic control unit for vehicle
JP2008175116A (en) * 2007-01-18 2008-07-31 Denso Corp Water temperature sensor abnormality diagnostic device of internal combustion engine
JP2010101860A (en) * 2008-10-27 2010-05-06 Mitsubishi Motors Corp Failure diagnosis device of mechanism loaded on vehicle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006274897A (en) * 2005-03-29 2006-10-12 Fujitsu Ten Ltd Electronic control unit for vehicle
JP2008175116A (en) * 2007-01-18 2008-07-31 Denso Corp Water temperature sensor abnormality diagnostic device of internal combustion engine
JP4591841B2 (en) * 2007-01-18 2010-12-01 株式会社デンソー Water temperature sensor abnormality diagnosis device for internal combustion engine
JP2010101860A (en) * 2008-10-27 2010-05-06 Mitsubishi Motors Corp Failure diagnosis device of mechanism loaded on vehicle

Similar Documents

Publication Publication Date Title
JP4462142B2 (en) Control device for internal combustion engine
JPH09158713A (en) Catalyst deterioration judging device of internal combustion engine
JP3759567B2 (en) Catalyst degradation state detection device
JP2008138522A (en) Method of early warming up catalyst during engine starting, and fuel control device provided with the method
JP3988518B2 (en) Exhaust gas purification device for internal combustion engine
JP2000045851A (en) Failure determination device for water temperature sensor
JP2008038720A (en) Abnormality diagnosis device for downstream side oxygen sensor of exhaust emission control system
JP2003293842A (en) Failure determining device for water temperature sensor
JP3858622B2 (en) Control device for internal combustion engine
JP3973390B2 (en) Intake pressure detection method for internal combustion engine
JP2004060563A (en) Fuel injection amount control device of internal combustion engine
JPH07293315A (en) Air-fuel ratio detecting method
JP2006046071A (en) Atmospheric pressure estimating device for vehicle
JPH05163992A (en) Fail safe device for mixed fuel supply device
JP3973387B2 (en) Intake pressure detection method for internal combustion engine
KR20170034132A (en) Apparatus and method for removing poison of lamda sensor
JPH08100635A (en) Catalyst deterioration detection device for internal combustion engine
JP3899510B2 (en) Abnormality diagnosis device for catalyst early warm-up control system of internal combustion engine
JPH09310635A (en) Air-fuel ratio control device of internal combustion engine
JP2000130221A (en) Fuel injection control device of internal combustion engine
JP4371028B2 (en) Engine air-fuel ratio control device
JP3156582B2 (en) Catalyst deterioration determination device for internal combustion engine
JPH0617692A (en) Failure judgment device for engine fuel system
JPH05321720A (en) Fuel cut control device of internal combustion engine
JP4246676B2 (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070402

A131 Notification of reasons for refusal

Effective date: 20070425

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070704

A521 Written amendment

Effective date: 20070827

Free format text: JAPANESE INTERMEDIATE CODE: A523

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070907

A912 Removal of reconsideration by examiner before appeal (zenchi)

Effective date: 20071019

Free format text: JAPANESE INTERMEDIATE CODE: A912