JP2003286550A - SUPER-MAGNECTOSTRICTION MATERIAL FOR FeGa ALLOY - Google Patents

SUPER-MAGNECTOSTRICTION MATERIAL FOR FeGa ALLOY

Info

Publication number
JP2003286550A
JP2003286550A JP2002090003A JP2002090003A JP2003286550A JP 2003286550 A JP2003286550 A JP 2003286550A JP 2002090003 A JP2002090003 A JP 2002090003A JP 2002090003 A JP2002090003 A JP 2002090003A JP 2003286550 A JP2003286550 A JP 2003286550A
Authority
JP
Japan
Prior art keywords
ribbon
magnetostriction
alloy
magnectostriction
giant magnetostrictive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002090003A
Other languages
Japanese (ja)
Other versions
JP4053328B2 (en
Inventor
Yasubumi Furuya
泰文 古屋
Sadako Okazaki
禎子 岡崎
Wuttig Manfred
ウッティグ マンフレッド
Chihiro Saito
千尋 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2002090003A priority Critical patent/JP4053328B2/en
Publication of JP2003286550A publication Critical patent/JP2003286550A/en
Application granted granted Critical
Publication of JP4053328B2 publication Critical patent/JP4053328B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a single crystalline material for Fe-x at%Ga (15<x<21) alloy having a great magnectostriction of -300×10<SP>-6</SP>, wherein a production condition is not sensitive, a production cost is low, and ductility is fully. <P>SOLUTION: A super-magnectostriction material for Fe-x at%Ga (15<x<21) alloy having a columnar crystalline integrated structure in the direction of beltlike thickness, is obtained by rapid solidification. The super-magnectostriction material is characterized in that this material has a crystal structure where a body-centered tetragonal structure emerged by stress induction that is different in axis length (a≠c) is mixed with a body-centered cubic structure. An integrated structure having an easily magnetizable direction [100] in the direction of beltlike thickness, is formed by heat-treatment of this super-magnectostriction material. The obtained strain is great as -400×10<SP>-6</SP>or above in the direction of beltlike thickness. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、Fe合金系超磁歪
材料、特に急冷凝固薄帯からなるFeGa合金超磁歪材
料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an Fe alloy-based giant magnetostrictive material, and more particularly to an FeGa alloy giant magnetostrictive material composed of a rapidly solidified ribbon.

【0002】[0002]

【従来の技術】1840年にJames Joule によって磁歪現象
が発見され、振動子などに応用されるようになった。し
かし、当時用いられていた磁歪材料のニッケルやコバル
トの磁歪定数は、−40〜−60×10-6と小さいもの
であった。
2. Description of the Related Art The magnetostriction phenomenon was discovered by James Joule in 1840 and was applied to oscillators. However, the magnetostriction constants of nickel and cobalt which were the magnetostrictive materials used at that time were as small as -40 to -60 × 10 -6 .

【0003】1960年代の終わりからアメリカ海軍研究所
のClark らによって、室温で巨大磁歪を発生する超磁歪
材料の研究が続けられており、1974年に室温で1000ppm
以上の磁歪定数をもつ材料としてTerfenol-D(Tb0.3
Dy0.7 Fe2.0 )が開発された。Terfenol-Dは超磁歪
アクチュエータとして、潜水艦探知ソナー、地中探査シ
ステム、制振装置、精密機械や構造物の運動制御用リニ
ヤ・回転モータなど期待される用途が広い。
Since the end of the 1960s, Clark et al. Of the United States Naval Research Institute have been researching giant magnetostrictive materials that generate giant magnetostriction at room temperature, and in 1974, 1000 ppm at room temperature.
As a material having the above magnetostriction constant, Terfenol-D (Tb 0.3
Dy 0.7 Fe 2.0 ) was developed. Terfenol-D has a wide range of potential applications as a giant magnetostrictive actuator, such as submarine detection sonar, underground exploration systems, vibration control devices, linear machines and rotary motors for motion control of precision machinery and structures.

【0004】Fe合金系超磁歪材料について、本発明者
らは、先に急冷凝固法を用いて製造した方向性の強い微
細柱状結晶を持つFePd急冷薄帯試料で1000×1
-6以上の超磁歪の発現に成功している(特開平11−
269611号公報)。
Regarding the Fe alloy-based giant magnetostrictive material, the inventors of the present invention have prepared a 1000 × 1 FePd quenched ribbon sample having fine directional fine columnar crystals produced by the rapid solidification method.
0 -6 or more have been successfully expressed in the giant magnetostrictive (JP-11-
269611).

【0005】また、掛下らは、Fe3-x Pt1+x (−
0.02≦x≦0.2)を熱処理により規則化率を0.
6〜0.95とした磁歪量0.3%以上の超磁歪合金を
開発している(特開2001−240947号公報)。
In addition, Kakeshita et al. Reported that Fe 3-x Pt 1 + x (-
0.02 ≦ x ≦ 0.2) is heat-treated to give an ordering rate of 0.
A giant magnetostrictive alloy having a magnetostriction amount of 6% to 0.95 and a magnetostriction amount of 0.3% or more has been developed (JP 2001-240947 A).

【0006】[0006]

【発明が解決しようとする課題】超磁歪材料のTerfenol
-D(Tb0.3Dy0.7 Fe2.0 )は非常に脆く、薄板や線材に
加工するのは難しい。そのため、Terfenol-Dを用いたア
クチュエータはロット型に限定され、センサ・アクチュ
エータの応用範囲が限られている。さらに、ロット型の
形状は渦電流損失のため有効性を限定してしまう。
[Problems to be Solved by the Invention] Terfenol, a giant magnetostrictive material
-D (T b0.3 Dy 0.7 Fe 2.0 ) is very brittle and difficult to process into thin plates and wire rods. Therefore, the actuator using Terfenol-D is limited to the lot type, and the application range of the sensor / actuator is limited. In addition, lot-shaped geometries limit their effectiveness due to eddy current losses.

【0007】近年、Clarkらは、FeGa合金の単結晶
における磁気・磁歪・弾性的性質について調査し、Fe
−xat%Ga(15<x<21)の組成において〜30
0×10-6の大きな磁歪を持ち、耐久性・延性があると
報告している(A.E.Clark 、M.Wun-Fogle 、J.B.Restro
ff、T.A.Ross、and D.L.Schlagel:Actuator)。しか
し、単結晶材料は製造条件が繊細でコストが高いことか
ら実用化されにくい。
Recently, Clark et al. Investigated the magnetic, magnetostrictive, and elastic properties of single crystals of FeGa alloy,
In a composition of −xat% Ga (15 <x <21), it is ˜30
It has a large magnetostriction of 0 × 10 -6 and is reported to have durability and ductility (AEClark, M.Wun-Fogle, JBRestro
ff, TARoss, and DLSchlagel: Actuator). However, the single crystal material is difficult to be put into practical use because the manufacturing conditions are delicate and the cost is high.

【0008】[0008]

【課題を解決するための手段】本発明者らは、大磁歪を
もち、延性があり、磁場に対してヒステリシスが小さい
二元系多結晶FeGa合金超磁歪材料の開発に成功し
た。
The present inventors have succeeded in developing a binary polycrystalline FeGa alloy giant magnetostrictive material having large magnetostriction, ductility and small hysteresis with respect to a magnetic field.

【0009】すなわち、本発明は、急冷凝固法によっ
て、薄帯の厚み方向に柱状結晶集合組織を有するFe−
xat%Ga(15<x≦20)合金超磁歪材料である。
また、本発明は、体心立方構造の他に応力誘起によって
出現した軸の長さが異なる(a≠c)体心正方晶が混在
している結晶構造であることを特徴とする上記の超磁歪
材料である。また、本発明は、上記の超磁歪材料を熱処
理することにより厚み方向に磁化容易方向[100] を持つ
集合組織が形成されていることを特徴とするFeGa合
金超磁歪材料である。
That is, according to the present invention, Fe-having a columnar crystal texture in the thickness direction of the ribbon is produced by the rapid solidification method.
xat% Ga (15 <x ≦ 20) alloy giant magnetostrictive material.
Further, the present invention is a crystal structure having a body-centered cubic structure and a mixture of body-centered tetragonal crystals having different axial lengths (a ≠ c) that have appeared due to stress induction (a ≠ c). It is a magnetostrictive material. Further, the present invention is a FeGa alloy giant magnetostrictive material characterized in that a texture having an easy magnetization direction [100] is formed in the thickness direction by heat-treating the above giant magnetostrictive material.

【0010】強磁性体に外部から磁界を印加した際に、
ある方向に磁化することによって伸び縮みする現象を磁
歪(ε)と呼び、磁歪が生じる材料を磁歪材料と呼ぶ。
印加磁界方向に伸びて直角方向に縮む正磁歪と、その逆
の負磁歪がある。印加磁界の強さが大きくなるに従って
磁歪はある一定値に近づき、この値を磁歪定数と呼ぶ。
磁歪は、ε=ΔL/L(ΔL:ひずみ量、L:元の長
さ)で表す。
When an external magnetic field is applied to the ferromagnetic material,
The phenomenon of expansion and contraction when magnetized in a certain direction is called magnetostriction (ε), and the material that causes magnetostriction is called magnetostrictive material.
There are positive magnetostriction that extends in the direction of the applied magnetic field and contracts in the perpendicular direction, and negative magnetostriction that is the opposite. Magnetostriction approaches a certain constant value as the strength of the applied magnetic field increases, and this value is called a magnetostriction constant.
The magnetostriction is represented by ε = ΔL / L (ΔL: strain amount, L: original length).

【0011】超磁歪材料は、室温で0.1%以上の磁歪
定数をもち、キュリー温度が高い。キュリー温度は、Te
rfenol- Dは623 〜653K、PZT (圧電材料)は418Kであ
る。また、数十V以下の低電圧で駆動でき、100 μsオ
ーダーの高速応答性を持つ。外部磁界によって遠隔駆動
ができ、圧電材料よりもヒステリシスが小さく、許容圧
縮応力が大きい。
The giant magnetostrictive material has a magnetostriction constant of 0.1% or more at room temperature and a high Curie temperature. Curie temperature is Te
The rfenol-D is 623-653K, and the PZT (piezoelectric material) is 418K. In addition, it can be driven at a low voltage of tens of volts or less and has a high-speed response of the order of 100 μs. It can be driven remotely by an external magnetic field, has less hysteresis and has a larger allowable compressive stress than piezoelectric materials.

【0012】本発明の急冷凝固薄帯からなるFeGa合
金超磁歪材料は、下記のような特長を有する。 (1)従来のバルク材料は等方的であるのに対し、本発
明の薄帯材料は急冷凝固により、薄帯の厚み方向に柱状
結晶集合組織が形成され、磁化の方向依存性から、厚み
方向で大きな保磁力が得られ、磁歪も厚み方向で−40
0×10-6以上と大きい。Fe−17at%Ga薄帯材料
では、厚み方向で−630×10-6もの最も大きな磁歪
が得られる。 (2)従来のバルク材料は体心立方構造と面心立方構造
からなる混晶であるのに対して、XRDによる構造解析
から、本発明の薄帯材料は体心立方構造と応力誘起によ
る体心正方構造をもつ組織が存在し、これが大磁歪に寄
与している。 (3)薄帯材料を熱処理して、厚み方向に磁化容易方向
[100 ]を持つ集合組織を形成することにより、θ=9
0°近傍で大磁歪が出現させることができる。
The FeGa alloy giant magnetostrictive material comprising the rapidly solidified ribbon of the present invention has the following features. (1) Whereas the conventional bulk material is isotropic, the ribbon material of the present invention forms a columnar crystal texture in the thickness direction of the ribbon due to rapid solidification, and the thickness depends on the direction dependence of the magnetization. Coercive force is obtained in the thickness direction, and magnetostriction is -40 in the thickness direction.
It is as large as 0x10 -6 or more. With the Fe-17 at% Ga thin ribbon material, the largest magnetostriction of −630 × 10 −6 can be obtained in the thickness direction. (2) Whereas the conventional bulk material is a mixed crystal composed of a body-centered cubic structure and a face-centered cubic structure, the ribbon material of the present invention shows that the ribbon material of the present invention has a body-centered cubic structure and a stress-induced body. There is a tissue with a tetragonal structure, which contributes to large magnetostriction. (3) θ = 9 by heat treating the ribbon material to form a texture having an easy magnetization direction [100] in the thickness direction.
Large magnetostriction can appear near 0 °.

【0013】Fe−xat%Gaの式において、Gaが2
1at%(x=21)になると磁歪の方向依存性がなく、
測定角度90°における大磁歪が得られず、またGaの
量が増えるにつれて硬化し、180°の曲げ延性試験で
破断し、延性がなくなる。したがって、Fe−xat%G
aの式におけるxは20以下とする。
In the formula of Fe-xat% Ga, Ga is 2
At 1 at% (x = 21), there is no direction dependence of magnetostriction,
A large magnetostriction cannot be obtained at a measurement angle of 90 °, and it hardens as the amount of Ga increases, and it breaks in a bending ductility test of 180 ° and loses ductility. Therefore, Fe-xat% G
x in the formula of a is 20 or less.

【0014】本発明の急冷凝固薄帯からなるFeGa超
磁歪材料は、磁化増加、減少時のε〜H曲線のヒステリ
シス幅は小さく、残留磁歪も少ないため、センサ・アク
チュエータ材料として有利であり、磁気駆動型センサ・
アクチュエータ材料として有用である。
The FeGa giant magnetostrictive material comprising the rapidly solidified ribbon of the present invention is advantageous as a sensor / actuator material because it has a small hysteresis width of the ε-H curve when the magnetization increases and decreases and has a small residual magnetostriction. Drive type sensor
It is useful as an actuator material.

【0015】また、鉄粉とエポキシ樹脂などの薄層と本
発明の磁歪材料を積層することにより、厚み方向に磁場
を印加した場合、長手方向に縮み、厚み方向に伸びる大
きな磁歪を有するバルク積層型磁歪アクチュエータを形
成し、ソナーや防振台制御などに用いて有用な特性を発
揮できる。
Further, by laminating iron powder, a thin layer such as epoxy resin, and the magnetostrictive material of the present invention, when a magnetic field is applied in the thickness direction, a bulk lamination having a large magnetostriction that shrinks in the longitudinal direction and extends in the thickness direction. Forming a magnetostrictive actuator, it can exhibit useful characteristics when used for sonar and vibration control.

【0016】図1は、本発明の急冷凝固薄帯を、単ロー
ルを用いて製造する方法を概念的に示したものである。
図1に示すように、原料を石英ノズル1に入れて、加熱
コイル2で加熱溶解し、回転ロール3の回転面に噴出さ
せて金属の急冷凝固薄帯4を製造する装置および方法は
周知であり、本発明の磁歪材料を得るにはこれらの手段
を適宜用いる。図1に、概念的に示すように、回転ロー
ルを用いる金属の急冷凝固薄帯の製造においては、冷却
速度をTとした場合、冷却速度が遅い(T=10K/s
程度)場合デンドライト状や粗大結晶に成長し、T≧1
6 K/sとなると合金組成によってアモルファスにす
ることが可能となる。T=103 K/sから106 K/
sの間では、合金組成により微結晶のものや柱状結晶の
ものが得られる。
FIG. 1 conceptually shows a method for producing the rapidly solidified ribbon of the present invention using a single roll.
As shown in FIG. 1, an apparatus and a method for producing a rapidly solidified thin ribbon 4 of metal by putting a raw material into a quartz nozzle 1, heating and melting it with a heating coil 2 and ejecting the material onto a rotating surface of a rotating roll 3 are well known. Therefore, these means are appropriately used to obtain the magnetostrictive material of the present invention. As shown conceptually in FIG. 1, in the production of a rapidly solidified ribbon of metal using a rotating roll, when the cooling rate is T, the cooling rate is slow (T = 10 K / s).
Degree) If it grows into dendrite-like or coarse crystal, T ≧ 1
When it becomes 0 6 K / s, it can be made amorphous depending on the alloy composition. T = 10 3 K / s to 10 6 K / s
Between s, fine crystals and columnar crystals are obtained depending on the alloy composition.

【0017】本発明の急冷凝固薄帯からなるFeGa超
磁歪材料は急冷凝固法で、上記のように薄帯の厚み方向
に結晶方向が揃った微細な柱状結晶集合組織を形成する
ことによって得られる。この急冷凝固薄帯を急冷時に導
入された材料内部の応力の緩和および再結晶化を促すた
めに、1073K〜1273Kの温度範囲で0.5時間
から3時間の熱処理を行うと、薄帯材料の厚み方向に磁
化容易方向[100] を持つ集合組織が形成される。
The FeGa giant magnetostrictive material comprising the rapidly solidified ribbon of the present invention is obtained by the rapid solidification method by forming a fine columnar crystal texture in which the crystal directions are aligned in the thickness direction of the ribbon as described above. . When this rapidly solidified ribbon is subjected to heat treatment for 0.5 to 3 hours at a temperature range of 1073K to 1273K in order to promote relaxation of stress inside the material introduced during quenching and recrystallization, the ribbon material A texture having an easy magnetization direction [100] in the thickness direction is formed.

【0018】本発明の急冷凝固薄帯からなるFeGa超
磁歪材料の大磁歪現象は、急冷凝固法によって薄帯の厚
み方向に結晶方向が揃った微細な柱状結晶集合組織が形
成されるので、ある特定方向(θ)に大きい磁歪が発現
することと関係している。また、そのために磁化時の磁
区(磁壁)の移動・回転が材料内で一斉に起こり、磁歪
の出現・消失が滑らかに起こるためと考えられる。
The large magnetostriction phenomenon of the FeGa giant magnetostrictive material composed of the rapidly solidified ribbon of the present invention is that a fine columnar crystal texture whose crystal direction is aligned in the thickness direction of the ribbon is formed by the rapid solidification method. This is related to the occurrence of large magnetostriction in the specific direction (θ). It is also considered that the movement and rotation of magnetic domains (domain walls) during magnetization occur simultaneously in the material, and the appearance and disappearance of magnetostriction occur smoothly.

【0019】この磁歪機構について、X線構造解析に基
づいて説明する。X線構造解析は、マック・サイエンス
製M18XHF-SRAを用い、X線回折CuΚα 線にて解析し
た。材料は、組成がFe−15at%Gaのバルク材料と
薄帯材料さらに1173Kで1時間熱処理した薄帯材料
を、アルミ製材料板の材料保持部(18×20mm)に入れ
て固定した。
This magnetostrictive mechanism will be described based on the X-ray structural analysis. For the X-ray structural analysis, M18XHF-SRA manufactured by Mac Science was used and analyzed by X-ray diffraction Cu Kα ray. As the material, a bulk material having a composition of Fe-15 at% Ga, a ribbon material, and a ribbon material which was heat-treated at 1173 K for 1 hour were placed and fixed in a material holding portion (18 × 20 mm) of an aluminum material plate.

【0020】図2に、Fe−15at%Ga合金のバルク
材料と急冷薄帯材料のX線回折パターンを示す。図2か
ら、バルク材料の大部分は、格子定数a=2.896A
の体心立方構造から構成されていることが分かる。さら
に、バルク材料は2θ=42.7°および77.5°に
小さなピークが出現することから、格子定数a=3.6
83Aを持つ面心立方構造の規則格子Fe3 Gaが析出
した混晶である。
FIG. 2 shows X-ray diffraction patterns of the bulk material of the Fe-15 at% Ga alloy and the quenched ribbon material. From FIG. 2, most of the bulk material has a lattice constant a = 2.896A.
It can be seen that it is composed of the body-centered cubic structure of. Furthermore, in the bulk material, small peaks appear at 2θ = 42.7 ° and 77.5 °, so that the lattice constant a = 3.6.
It is a mixed crystal in which an ordered lattice Fe 3 Ga having a face-centered cubic structure having 83 A is deposited.

【0021】一方、薄帯材料ではバルク材料に存在した
規則格子Fe3 Gaは消滅している。そして、{100
}、{200 }、{211 }、{220 }線が分離している
ことから、体心立方構造の他に軸の長さが異なる(a≠
c)体心正方晶が混在している。1173K・1時間で
熱処理した急冷薄帯材料のX線回折パターンは、2θ=
64.4°の{200 }ピーク強度が増大し、その他のピ
ークはかなり小さくなる。これは、薄帯の厚み方向の近
傍に(100 )面を持つ集合組織が形成されたことを示
す。 さらに、{220 }ピークは3本に分離し、体心立
方構造から回折される強い2θ=64.4°ピークの前
後に格子定数の長い{200 }ピークと短い{200 }ピー
クが出現している。
On the other hand, in the ribbon material, the ordered lattice Fe 3 Ga existing in the bulk material has disappeared. And {100
}, {200}, {211}, and {220} lines are separated, so the length of the axis is different in addition to the body-centered cubic structure (a ≠
c) Body-centered tetragonal crystals are mixed. The X-ray diffraction pattern of the quenched ribbon material heat-treated at 1173 K for 1 hour is 2θ =
The {200} peak intensity at 64.4 ° increases and the other peaks are much smaller. This indicates that a texture having a (100) plane was formed near the thickness direction of the ribbon. Furthermore, the {220} peak is separated into three, and a long {200} peak and a short {200} peak with a long lattice constant appear around the strong 2θ = 64.4 ° peak diffracted from the body-centered cubic structure. There is.

【0022】以上のX線回折の解析結果から、液体急冷
凝固後の薄帯材料は体心立方構造を持つ組織の他に、応
力誘起によって出現した体心正方構造を持つ組織が混在
する。ゆえに、磁場を印加することによって印加方向に
最も近い磁化容易軸方向[100] を持つ磁区が成長するこ
とによって大磁歪が出現するものと考えられる。さら
に、1173K・1時間熱処理した薄帯材料では、薄帯
の厚み方向に磁化容易方向[100] を持つ集合組織が形成
されていることから、磁歪の角度依存性が強くなり、θ
〜90°方向で最大磁歪−400×10-6が出現する。
From the above X-ray diffraction analysis results, the ribbon material after liquid rapid solidification contains not only a structure having a body-centered cubic structure, but also a structure having a body-centered tetragonal structure that appears due to stress induction. Therefore, it is considered that large magnetostriction appears when a magnetic domain is applied and the magnetic domain having the easy axis direction [100] closest to the application direction grows. Furthermore, in the ribbon material heat-treated at 1173 K for 1 hour, since the texture having the easy magnetization direction [100] is formed in the thickness direction of the ribbon, the angle dependence of magnetostriction becomes strong, and θ
The maximum magnetostriction of −400 × 10 −6 appears in the −90 ° direction.

【0023】[0023]

【実施例】比較例1 純度99.9%の電解鉄および純度99.9%のガリウムを、ア
ルゴン雰囲気中でプラズマアーク溶解法にて溶解を行
い、Fe−15at%Gaの組成のインゴットを作製し
た。このインゴットを、約5×4×1mmに切り出して
バルク材料とした。
EXAMPLES Comparative Example 1 Electrolytic iron having a purity of 99.9% and gallium having a purity of 99.9% were melted by a plasma arc melting method in an argon atmosphere to prepare an ingot having a composition of Fe-15 at% Ga. This ingot was cut into about 5 × 4 × 1 mm to obtain a bulk material.

【0024】実施例1 比較例1で作製したFe−15at%Gaインゴットの一
部を合金組織を均一にするため、1173K・24時間
熱処理を行い、急冷凝固用の原料とした。この原料を単
ロール法により急冷凝固して薄帯を作製した。手順は、
約5gの材料を石英ノズル(内径8mm、外径10m
m、長さ120mm、孔5mm)に入れ、ホルダにセッ
トする。真空排気後、アルゴンガス置換し、高周波電流
コイルで1723Kに加熱した。その後、アルゴンガス
圧力でロールに吹出した。回転ロールの直径は200m
m、ロールの回転速度は31.4m/sで行った。これ
により縦横約5mm、厚さ130μmの急冷凝固FeG
a合金超磁歪材料を作製した。
Example 1 Part of the Fe-15 at% Ga ingot produced in Comparative Example 1 was heat-treated at 1173 K for 24 hours in order to make the alloy structure uniform, and used as a raw material for rapid solidification. This raw material was rapidly cooled and solidified by a single roll method to produce a ribbon. The procedure is
Quartz nozzle (inner diameter 8mm, outer diameter 10m)
m, length 120 mm, hole 5 mm) and set in the holder. After evacuation, the atmosphere was replaced with argon gas, and the mixture was heated to 1723K with a high frequency current coil. Then, it was blown into a roll with argon gas pressure. The diameter of the rotating roll is 200m
m, and the rotation speed of the roll was 31.4 m / s. As a result, rapidly solidified FeG with a length of about 5 mm and a thickness of 130 μm
An a-alloy giant magnetostrictive material was produced.

【0025】実施例2 組成をFe−17at%Gaとした以外は実施例1と同様
にFeGa合金超磁歪材料を作製した。
Example 2 An FeGa alloy giant magnetostrictive material was produced in the same manner as in Example 1 except that the composition was changed to Fe-17 at% Ga.

【0026】比較例2 組成をFe−21at%Gaとした以外は実施例1と同様
にFeGa合金超磁歪材料を作製した。
Comparative Example 2 An FeGa alloy giant magnetostrictive material was produced in the same manner as in Example 1 except that the composition was Fe-21 at% Ga.

【0027】実施例1、2および比較例1、2について
下記の特性の測定を行った。 (磁化、磁歪測定)磁化測定は東英工業製振動材料型磁
力計(VSM)を用いて最大磁場を796kA/mと
し、磁化‐磁場ヒステリシス曲線(M−Hループ)を測
定した。振動材料型磁力計は磁化測定器・ガウスメータ
で構成されている。材料を磁場中で磁化し、一定振幅・
一定周波数にて振動させることにより、検出コイルに誘
起する磁気誘導電圧から材料の磁化の大きさを測定し、
M−Hループを測定する。
The following characteristics were measured for Examples 1 and 2 and Comparative Examples 1 and 2. (Measurement of Magnetization and Magnetostriction) For the measurement of magnetization, a maximum magnetic field was set to 796 kA / m using a vibrating material type magnetometer (VSM) manufactured by Toei Industry Co., Ltd., and a magnetization-magnetic field hysteresis curve (MH loop) was measured. The vibrating material type magnetometer is composed of a magnetometer and a Gauss meter. Magnetize the material in a magnetic field,
By vibrating at a constant frequency, the magnitude of the magnetization of the material is measured from the magnetic induction voltage induced in the detection coil,
Measure the MH loop.

【0028】図3に示すように、磁歪の測定は、長手方
向と平行にひずみゲージ10を貼り、試料20を棒状ホ
ルダー(図示せず)に固定して磁場中心にくるように吊
り下げ、静歪指示計(新興通信工業製)で測定した。
磁場発生装置は電磁石(日本電子製)を用い、磁場の強
さは955kA/mまで加えた。また、電磁石を回転さ
せることによりM−Hループおよび磁歪の角度依存性を
調べた。図3に示すように、薄帯材料は長手方向を、バ
ルク材料は平面内の一方向を回転軸に固定し、材料の厚
み方向に磁場を印加した時を測定方向θ=90°として
0°〜90°の範囲を測定した。
As shown in FIG. 3, the magnetostriction is measured by attaching a strain gauge 10 parallel to the longitudinal direction, fixing the sample 20 to a rod-shaped holder (not shown), and suspending the sample 20 so that it is centered on the magnetic field. It was measured with a strain indicator (manufactured by Shinko Communication Industry).
An electromagnet (manufactured by JEOL Ltd.) was used as the magnetic field generator, and the magnetic field strength was applied up to 955 kA / m. Moreover, the angle dependence of the MH loop and the magnetostriction was examined by rotating the electromagnet. As shown in FIG. 3, the ribbon material is fixed in the longitudinal direction, and the bulk material is fixed in one direction in the plane with the rotation axis, and when a magnetic field is applied in the thickness direction of the material, the measurement direction is θ = 90 ° and 0 ° is set. The range of ˜90 ° was measured.

【0029】(磁化測定)図4(a)に、実施例1(F
e−15at%Ga薄帯材料)のM‐Hループを示す。θ
=0°方向で約160kA/mの磁場で飽和し、その時
の磁化は〜240×10-6Wb・m/kgであった。θ
=90°方向では反磁界が強いため磁化されにくく、磁
場796kA/mでも飽和していない。
(Magnetization Measurement) FIG. 4A shows the first embodiment (F
(e-15 at% Ga ribbon material) shows the MH loop. θ
It was saturated in a magnetic field of about 160 kA / m in the = 0 ° direction, and the magnetization at that time was ˜240 × 10 −6 Wb · m / kg. θ
In the direction of = 90 °, the demagnetizing field is strong, so that it is difficult to magnetize, and the magnetic field is not saturated even at 796 kA / m.

【0030】図4(b)に、比較例1(Fe−15at%
Gaバルク材料)のM‐Hループを示す。θ=0°方向
では、磁場796kA/mで磁化は230×10-6Wb
・m/kgであり、薄帯材料でのθ=0°方向の飽和磁
化とおおよそ一致する。
In FIG. 4B, Comparative Example 1 (Fe-15 at%)
Ga bulk material) MH loop is shown. In the θ = 0 ° direction, the magnetization is 230 × 10 −6 Wb at a magnetic field of 796 kA / m.
-M / kg, which is approximately the same as the saturation magnetization in the θ = 0 ° direction in the ribbon material.

【0031】よって、急冷凝固前後で飽和磁化が低下し
ないことが分かった。θ=90°方向では、磁場796
kA/mで磁化217×10-6Wb・m/kgであり、
θ=0°と90°の差は薄帯材料のそれに比べると小さ
い。これは反磁界が薄帯びよりも小さいためであると考
えられる。
Therefore, it was found that the saturation magnetization did not decrease before and after the rapid solidification. In the θ = 90 ° direction, the magnetic field is 796
The magnetization is 217 × 10 −6 Wb · m / kg at kA / m,
The difference between θ = 0 ° and 90 ° is smaller than that of the ribbon material. It is considered that this is because the demagnetizing field is smaller than that of the thin ribbon.

【0032】図5は、M‐Hループから得られた実施例
1(薄帯材料)および比較例1(バルク材料)に対する
磁場796kA/m印加時の保磁力(Hc)の方向依存
性を示す。バルク材料は、方向によらず等方的であり、
全方向で薄帯材料より小さい約1.5kA/mのHcを
示すのに対し、薄帯材料では0°から90°に近づくに
つれて急激に大きくなり、約4.8kA/mのHcに達
した。これは急冷凝固により形成されたFe−15at%
Ga合金の結晶方向性によるものと考えられる。
FIG. 5 shows the direction dependence of the coercive force (Hc) when a magnetic field of 796 kA / m is applied to Example 1 (thin band material) and Comparative Example 1 (bulk material) obtained from the MH loop. . Bulk material is isotropic regardless of direction,
It shows Hc of about 1.5 kA / m, which is smaller than that of the ribbon material in all directions, whereas the ribbon material rapidly increases from 0 ° to 90 ° and reaches Hc of about 4.8 kA / m. . This is Fe-15at% formed by rapid solidification
It is considered that this is due to the crystal orientation of the Ga alloy.

【0033】(磁歪の測定)図6に、実施例1(Fe−
15at%Ga薄帯材料)と比較例1(バルク材料)にお
ける磁歪の方向依存を示す。バルク材料の磁歪は薄帯材
料より方向依存性が小さく、一方、薄帯材料はθ=90
°で磁歪が最大であり、保磁力の方向依存性と似てい
る。これは、バルク材料はランダム結晶なので、薄帯材
料の強い結晶方向性が大磁歪に関係することを示すと考
えられる。
(Measurement of Magnetostriction) FIG. 6 shows Example 1 (Fe-
The direction dependence of magnetostriction between the 15 at% Ga ribbon material) and Comparative Example 1 (bulk material) is shown. The magnetostriction of bulk material is less directionally dependent than the ribbon material, while the ribbon material is θ = 90.
The magnetostriction is maximum at °, which is similar to the direction dependence of coercive force. This is considered to indicate that the strong crystal orientation of the ribbon material is related to the large magnetostriction because the bulk material is a random crystal.

【0034】図7は、実施例1(Fe−15at%Ga薄
帯材料)にθ=90°方向に磁場(H)955kA/m
を印加した時の磁歪(ε)を示す。最大−400×10
-6の磁歪が発現し、これはバルク材料の最大磁歪の約1
0倍に達する大きなものであった。
FIG. 7 shows a magnetic field (H) of 955 kA / m in the θ = 90 ° direction in Example 1 (Fe-15 at% Ga ribbon material).
Shows the magnetostriction (ε) when is applied. Up to −400 × 10
-6 magnetostriction appears, which is about 1 of the maximum magnetostriction of bulk materials.
It was as big as 0 times.

【0035】図8に、磁場955kA/mを印加した時
の実施例1(x=15)、実施例2(x=17)、比較
例2(x=21)3種類の組成の薄帯材料の磁歪(ε)
を示す。実施例1(Fe−15at%Ga)、実施例2
(Fe−17at%Ga)は90°付近で大きな磁歪が発
現し、実施例2(Fe−17at%Ga)は約−600×
10-6もの大きな磁歪が得られ最も大きい。一方、比較
例2(Fe−21at%Ga)の最大磁歪は約10×10
-6と最も小さい。
FIG. 8 shows a ribbon material having three kinds of compositions, Example 1 (x = 15), Example 2 (x = 17), and Comparative Example 2 (x = 21) when a magnetic field of 955 kA / m was applied. Magnetostriction (ε)
Indicates. Example 1 (Fe-15 at% Ga), Example 2
(Fe-17 at% Ga) exhibits a large magnetostriction at around 90 °, and Example 2 (Fe-17 at% Ga) has about -600 ×.
The largest magnetostriction of 10 −6 is obtained. On the other hand, the maximum magnetostriction of Comparative Example 2 (Fe-21 at% Ga) is about 10 × 10.
-6 and the smallest.

【0036】実施例1、2および比較例2の薄帯を曲げ
延性試験した結果、実施礼、2では180°の曲げでも
破断せず、十分延性があることが分かった。比較例2で
は曲げ角度が180度で破断し、Gaの含有量の増加に
伴い硬化して脆性が生じた。
As a result of bending ductility tests of the thin strips of Examples 1 and 2 and Comparative Example 2, it was found that the strips of Example 2 did not break even when bent by 180 ° and had sufficient ductility. In Comparative Example 2, the sample was broken at a bending angle of 180 degrees and hardened with the increase of the Ga content to cause brittleness.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、単ロールを用いて急冷凝固薄帯を製造
する方法を概念的に示す説明図である。
FIG. 1 is an explanatory view conceptually showing a method for producing a rapidly solidified ribbon by using a single roll.

【図2】図2は、Fe−15at%Ga合金薄帯材料とバ
ルク材料のX線回折パターンを示すグラフである。
FIG. 2 is a graph showing X-ray diffraction patterns of a Fe-15 at% Ga alloy ribbon material and a bulk material.

【図3】図3は、材料の磁気・磁歪測定方向を示す概念
図である。
FIG. 3 is a conceptual diagram showing a magnetic / magnetostrictive measurement direction of a material.

【図4】図4は、実施例1と比較例1のFe−15at%
Ga合金薄帯材料のM−Hループ図である。
FIG. 4 shows Fe-15 at% of Example 1 and Comparative Example 1.
It is a MH loop figure of a Ga alloy ribbon material.

【図5】図5は、実施例1と比較例1のFe−15at%
Ga合金薄帯材料の保磁力の方向依存性を示すグラフで
ある。
FIG. 5 shows Fe-15 at% of Example 1 and Comparative Example 1.
It is a graph which shows the direction dependence of the coercive force of a Ga alloy ribbon material.

【図6】図6は、実施例1と比較例1のFe−15at%
Ga合金薄帯材料の磁歪の方向依存性を示すグラフであ
る。
FIG. 6 shows Fe-15 at% of Example 1 and Comparative Example 1.
It is a graph which shows the direction dependence of magnetostriction of a Ga alloy ribbon material.

【図7】図7は、実施例1のFe−15at%Ga合金薄
帯材料のθ=90°の磁歪の大きさを示すグラフであ
る。
FIG. 7 is a graph showing the magnitude of magnetostriction at θ = 90 ° of the Fe-15 at% Ga alloy ribbon material of Example 1.

【図8】図8は、実施例1、2、比較例2のFe−15
at%Ga合金薄帯材料の磁歪の方向依存性を示すグラフ
である。
FIG. 8 shows Fe-15 of Examples 1 and 2 and Comparative Example 2.
It is a graph which shows the direction dependence of magnetostriction of an at% Ga alloy ribbon material.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 マンフレッド ウッティグ アメリカ合衆国 メリーランド州20901 シルバー・スプリング ウィトニイ・スト リート 8922 (72)発明者 斎藤 千尋 青森県弘前市桔梗野5−13−14 コーポ薔 薇I−202   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Manfred Utig             United States Maryland 20901             Silver Spring Witney Strike             REIT 8922 (72) Inventor Chihiro Saito             Corporal Rose 5-13-14 Kikyono, Hirosaki City, Aomori Prefecture             I-202

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 急冷凝固法によって、薄帯の厚み方向に
柱状結晶集合組織を有するFe−xat%Ga(15<x
≦20)合金超磁歪材料。
1. Fe-xat% Ga (15 <x) having columnar crystal texture in the thickness direction of the ribbon by the rapid solidification method.
≦ 20) Alloy giant magnetostrictive material.
【請求項2】 体心立方構造の他に応力誘起によって出
現した軸の長さが異なる(a≠c)体心正方晶が混在し
ている結晶構造であることを特徴とする請求項1記載の
超磁歪材料。
2. A crystal structure having a body-centered cubic structure and a mixture of body-centered tetragonal crystals having different axial lengths (a ≠ c) that appear due to stress induction, in addition to the body-centered cubic structure. Giant magnetostrictive material.
【請求項3】 請求項1記載の超磁歪材料を熱処理する
ことにより薄帯の厚み方向に磁化容易方向[100] を持つ
集合組織が形成されていることを特徴とするFeGa合
金超磁歪材料。
3. An FeGa alloy giant magnetostrictive material characterized in that a texture having an easy magnetization direction [100] is formed in the thickness direction of the ribbon by heat-treating the giant magnetostrictive material according to claim 1.
JP2002090003A 2002-03-27 2002-03-27 Polycrystalline FeGa alloy ribbon with giant magnetostrictive properties Expired - Fee Related JP4053328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002090003A JP4053328B2 (en) 2002-03-27 2002-03-27 Polycrystalline FeGa alloy ribbon with giant magnetostrictive properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002090003A JP4053328B2 (en) 2002-03-27 2002-03-27 Polycrystalline FeGa alloy ribbon with giant magnetostrictive properties

Publications (2)

Publication Number Publication Date
JP2003286550A true JP2003286550A (en) 2003-10-10
JP4053328B2 JP4053328B2 (en) 2008-02-27

Family

ID=29235411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002090003A Expired - Fee Related JP4053328B2 (en) 2002-03-27 2002-03-27 Polycrystalline FeGa alloy ribbon with giant magnetostrictive properties

Country Status (1)

Country Link
JP (1) JP4053328B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005087963A1 (en) * 2004-03-11 2005-09-22 Japan Science And Technology Agency Bulk solidified quenched material and process for producing the same
CN100377379C (en) * 2005-03-14 2008-03-26 北京航空航天大学 Fe-Ga magnetiostriction material of low field large magnetostrain and its preparing method
JP2008069434A (en) * 2006-09-15 2008-03-27 Nissan Motor Co Ltd FeGaAl BASED ALLOY AND MAGNETOSTRICTION TYPE TORQUE SENSOR
CN100436044C (en) * 2007-01-19 2008-11-26 北京航空航天大学 A sort of Fe-Ga magnetostriction alloy wire and preparation method
JP2012500333A (en) * 2008-08-19 2012-01-05 北京麦格東方材料技術有限公司 Magnetostrictive material and method for preparing the same
JP2012119565A (en) * 2010-12-02 2012-06-21 Tokyo Institute Of Technology Control method of magnetic anisotropy
CN103556045A (en) * 2013-10-21 2014-02-05 北京航空航天大学 Novel magnetostrictive material designed according to FeGa-RFe2 magnetocrystalline anisotropy compensation principle and preparation method thereof
CN104775068A (en) * 2015-04-02 2015-07-15 浙江大学 High-performance macroscopic foam-state Fe73Ga27 magnetostrictive material and preparation process thereof
WO2016121132A1 (en) * 2015-01-29 2016-08-04 日本高周波鋼業株式会社 Magnetostrictive member and method for manufacturing same
CN108251753A (en) * 2018-02-08 2018-07-06 东北大学 A kind of high-magnetostriction coefficient Fe-Ga base strips and preparation method thereof
JP2018137427A (en) * 2016-12-27 2018-08-30 有研稀土新材料股▲フン▼有限公司 Magnetostriction device and manufacturing method therefor
JP2018193275A (en) * 2017-05-17 2018-12-06 株式会社福田結晶技術研究所 HIGH-PERFORMANCE/HIGH-QUALITY Fe-Ga-BASED ALLOY SINGLE CRYSTAL SUBSTRATE, AND PRODUCTION METHOD THEREOF
CN109868508A (en) * 2018-12-28 2019-06-11 北京航空航天大学 A method of control solid liquid interface growing large-size FeGa magnetostriction monocrystalline
JP2019186327A (en) * 2018-04-05 2019-10-24 パナソニックIpマネジメント株式会社 Magnetostrictive material and magnetostrictive type device arranged by use thereof
JP2020136594A (en) * 2019-02-25 2020-08-31 パナソニックIpマネジメント株式会社 Magnetostrictor and manufacturing method thereof
WO2021175174A1 (en) * 2020-03-04 2021-09-10 南京大学 Method for preparing rare earth alloy spherical single crystal magnetic powder, and rare earth giant magnetostrictive material having &lt;111&gt; orientation

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005087963A1 (en) * 2004-03-11 2008-01-31 独立行政法人科学技術振興機構 Bulk solidified quenching material and method for producing the same
JP4814085B2 (en) * 2004-03-11 2011-11-09 独立行政法人科学技術振興機構 Manufacturing method of iron-based magnetostrictive alloy
US8092616B2 (en) 2004-03-11 2012-01-10 Japan Science And Technology Agency Method for producing a giant magnetostrictive alloy
WO2005087963A1 (en) * 2004-03-11 2005-09-22 Japan Science And Technology Agency Bulk solidified quenched material and process for producing the same
CN100377379C (en) * 2005-03-14 2008-03-26 北京航空航天大学 Fe-Ga magnetiostriction material of low field large magnetostrain and its preparing method
JP2008069434A (en) * 2006-09-15 2008-03-27 Nissan Motor Co Ltd FeGaAl BASED ALLOY AND MAGNETOSTRICTION TYPE TORQUE SENSOR
CN100436044C (en) * 2007-01-19 2008-11-26 北京航空航天大学 A sort of Fe-Ga magnetostriction alloy wire and preparation method
JP2012500333A (en) * 2008-08-19 2012-01-05 北京麦格東方材料技術有限公司 Magnetostrictive material and method for preparing the same
JP2012119565A (en) * 2010-12-02 2012-06-21 Tokyo Institute Of Technology Control method of magnetic anisotropy
CN103556045B (en) * 2013-10-21 2015-08-05 北京航空航天大学 A kind of New Magnetostrictive Material based on the design of FeGa-RFe2 magnetocrystalline anisotropy compensation principle and preparation method thereof
CN103556045A (en) * 2013-10-21 2014-02-05 北京航空航天大学 Novel magnetostrictive material designed according to FeGa-RFe2 magnetocrystalline anisotropy compensation principle and preparation method thereof
WO2016121132A1 (en) * 2015-01-29 2016-08-04 日本高周波鋼業株式会社 Magnetostrictive member and method for manufacturing same
CN107109683B (en) * 2015-01-29 2018-09-14 日本高周波钢业株式会社 Magnetostriction component and its manufacturing method
JP2016138028A (en) * 2015-01-29 2016-08-04 日本高周波鋼業株式会社 Magnetostrictive member and manufacturing method therefor
CN107109683A (en) * 2015-01-29 2017-08-29 日本高周波钢业株式会社 Magnetostriction component and its manufacture method
US9991438B2 (en) 2015-01-29 2018-06-05 NIPPON KOSHUHA STEEL Co., Ltd Magnetostrictive member and manufacturing method thereof
CN104775068A (en) * 2015-04-02 2015-07-15 浙江大学 High-performance macroscopic foam-state Fe73Ga27 magnetostrictive material and preparation process thereof
JP2018137427A (en) * 2016-12-27 2018-08-30 有研稀土新材料股▲フン▼有限公司 Magnetostriction device and manufacturing method therefor
JP2018193275A (en) * 2017-05-17 2018-12-06 株式会社福田結晶技術研究所 HIGH-PERFORMANCE/HIGH-QUALITY Fe-Ga-BASED ALLOY SINGLE CRYSTAL SUBSTRATE, AND PRODUCTION METHOD THEREOF
CN108251753A (en) * 2018-02-08 2018-07-06 东北大学 A kind of high-magnetostriction coefficient Fe-Ga base strips and preparation method thereof
JP2019186327A (en) * 2018-04-05 2019-10-24 パナソニックIpマネジメント株式会社 Magnetostrictive material and magnetostrictive type device arranged by use thereof
CN109868508A (en) * 2018-12-28 2019-06-11 北京航空航天大学 A method of control solid liquid interface growing large-size FeGa magnetostriction monocrystalline
CN109868508B (en) * 2018-12-28 2019-09-20 北京航空航天大学 A method of control solid liquid interface growing large-size FeGa magnetostriction monocrystalline
JP2020136594A (en) * 2019-02-25 2020-08-31 パナソニックIpマネジメント株式会社 Magnetostrictor and manufacturing method thereof
WO2021175174A1 (en) * 2020-03-04 2021-09-10 南京大学 Method for preparing rare earth alloy spherical single crystal magnetic powder, and rare earth giant magnetostrictive material having &lt;111&gt; orientation

Also Published As

Publication number Publication date
JP4053328B2 (en) 2008-02-27

Similar Documents

Publication Publication Date Title
Jiles The development of highly magnetostrictive rare earth-iron alloys
JP2003286550A (en) SUPER-MAGNECTOSTRICTION MATERIAL FOR FeGa ALLOY
US8092616B2 (en) Method for producing a giant magnetostrictive alloy
US6299702B1 (en) Method of annealing amorphous ribbons and marker for electronic article surveillance
JP4498611B2 (en) A method using tensile stress control and low-cost alloy composition to anneal amorphous alloys in short annealing time
JPH0127125B2 (en)
Fujimori et al. Soft ferromagnetic properties of some amorphous alloys
JP2008069434A (en) FeGaAl BASED ALLOY AND MAGNETOSTRICTION TYPE TORQUE SENSOR
US3949351A (en) Variable delay line
Jiles et al. Magnetization and magnetostriction in terbium–dysprosium–iron alloys
Hathaway et al. Magnetomechanical damping in giant magnetostriction alloys
US8308874B1 (en) Magnetostrictive materials, devices and methods using high magnetostriction, high strength FeGa and FeBe alloys
Bitoh et al. Magnetization process and coercivity of Fe-(Al, Ga)-(P, C, B, Si) soft magnetic glassy alloys
JP6884299B2 (en) Composite reinforced magnetostrictive composite material and its manufacturing method
Meeks et al. Piezomagnetic and elastic properties of metallic glass alloys Fe67CO18B14Si1 and Fe81B13. 5Si3. 5C2
Tsuya et al. Magnetostriction of ribbon‐form amorphous and crystalline ferromagnetic alloys
JP6042602B2 (en) Method for producing α-Fe / R2TM14B nanocomposite magnet
Shin et al. Elastically coupled magneto-electric elements with highly magnetostrictive amorphous films and PZT substrates
Fujimori et al. Magnetic Properties of an Fe–13P–7C Amorphous Ferromagnet—The Effects of Stress, Stress-Annealing and Magnetic-Field-Annealing—
Abell et al. Magnetomechanical coupling in Dy0. 73Tb0. 27Fe2 alloys
JP3872323B2 (en) Co-Ni-Ga based Heusler type magnetic shape memory alloy and method for producing the same
JPH11297521A (en) Nano-crystalline high-magnetostrictive alloy and sensor using the alloy
JP2003096529A5 (en)
Okazaki et al. Magnetostrictive properties of Fe-Ga/Ni bimorph layers
Wang et al. Progress on improvement and application of magnetostrictive properties of the Fe-Ga alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4053328

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees